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Abstract

Nitrate aerosol plays an important role in affecting regional air quality as well as Earth’s climate. However, it is not well

represented or even neglected in many global climate models. In this study, we couple the Model for Simulating Aerosol

Interactions and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol Module (MAM4) in DOE’s

Energy Exascale Earth System Model version 2 (E3SMv2) to treat nitrate aerosol and its radiative effects. We find that nitrate

aerosol simulated by E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO3 transfer to/from interstitial

particles related to accommodation coefficients of HNO3 (αHNO3) on dust and non-dust particles. We compare three different

treatments of HNO3 transfer: 1) a treatment (MTC SLOW) that uses a low αHNO3 in the mass transfer coefficient (MTC)

calculation; 2) a dust-weighted MTC treatment (MTC WGT) that uses a high αHNO3 on non-dust particles; and 3) a dust-

weighted MTC treatment that also splits coarse mode aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC -

SPLC). MTC WGT and MTC SPLC increase the global annual mean (2005-2014) nitrate burden from 0.096 (MTC SLOW)

to 0.237 and 0.185 Tg N, respectively, mostly in the coarse mode. They also produce stronger nitrate direct radiative forcing

(–0.048 and –0.051 W m–2, respectively) and indirect forcing (–0.33 and –0.35 W m–2, respectively) than MTC SLOW (–0.021

and –0.24 W m–2). All three treatments overestimate nitrate surface concentrations compared with ground-based observations.

MTC WGT and MTC SPLC improve the vertical profiles of nitrate concentrations against aircraft measurements below 400

hPa.

1



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems 

  1

Development and evaluation of E3SM-MOSAIC: Spatial distributions 1 

and radiative effects of nitrate aerosol 2 

Mingxuan Wu1, Hailong Wang1, Richard C. Easter1, Zheng Lu2, Xiaohong Liu2, 3 

Balwinder Singh1, Po-Lun Ma1, Qi Tang3, Rahul A. Zaveri1, Ziming Ke2, Rudong Zhang1, 4 

Louisa K. Emmons4, Simone Tilmes4, Jack E. Dibb5, Xue Zheng3, Shaocheng Xie3, L. 5 

Ruby Leung1 6 

  7 

1Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 8 

USA 9 
2Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA 10 
3Lawrence Livermore National Laboratory, Livermore, CA, USA 11 
4National Center for Atmospheric Research, Boulder, CO, USA 12 
5Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New 13 

Hampshire, Durham, NH, USA 14 

Correspondence to: mingxuan.wu@pnnl.gov and hailong.wang@pnnl.gov 15 

 16 

Key Points: 17 

 The MOSAIC module is implemented in E3SMv2 with MOZART gas chemistry 18 

to simulate nitrate aerosols 19 

 Modeled nitrate concentrations are in good agreement with aircraft observations 20 

but have high biases at the surface 21 

 Treatments of HNO3 accommodation coefficients and the mixing state of dust and 22 

sea salt particles significantly impact nitrate lifecycle 23 

 24 

 25 
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Abstract 26 

Nitrate aerosol plays an important role in affecting regional air quality as well as 27 

Earth’s climate. However, it is not well represented or even neglected in many global 28 

climate models. In this study, we couple the Model for Simulating Aerosol Interactions 29 

and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol 30 

Module (MAM4) in DOE’s Energy Exascale Earth System Model version 2 (E3SMv2) to 31 

treat nitrate aerosol and its radiative effects. We find that nitrate aerosol simulated by 32 

E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO3 transfer 33 

to/from interstitial particles related to accommodation coefficients of HNO3 (αୌ୒୓య
) on 34 

dust and non-dust particles. We compare three different treatments of HNO3 transfer: 1) a 35 

treatment (MTC_SLOW) that uses a low αୌ୒୓య
 in the mass transfer coefficient (MTC) 36 

calculation; 2) a dust-weighted MTC treatment (MTC_WGT) that uses a high αୌ୒୓య
 on 37 

non-dust particles; and 3) a dust-weighted MTC treatment that also splits coarse mode 38 

aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC_SPLC). 39 

MTC_WGT and MTC_SPLC increase the global annual mean (2005-2014) nitrate 40 

burden from 0.096 (MTC_SLOW) to 0.237 and 0.185 Tg N, respectively, mostly in the 41 

coarse mode. They also produce stronger nitrate direct radiative forcing (–0.048 and –42 

0.051 W m–2, respectively) and indirect forcing (–0.33 and –0.35 W m–2, respectively) 43 

than MTC_SLOW (–0.021 and –0.24 W m–2). All three treatments overestimate nitrate 44 

surface concentrations compared with ground-based observations. MTC_WGT and 45 

MTC_SPLC improve the vertical profiles of nitrate concentrations against aircraft 46 
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measurements below 400 hPa.  47 

 48 

Plain Language Summary 49 

Atmospheric aerosols play an important role in the Earth’s climate system through 50 

their effects on radiation and clouds, and their representation continues to be a major 51 

uncertainty in global climate models. Nitrate aerosol accounts for a notable fraction of 52 

total aerosol mass, but it is crudely represented or even neglected in many modern global 53 

climate models. In this study, we implement a comprehensive but computationally 54 

efficient aerosol chemistry module in the U.S. DOE Energy Exascale Earth System 55 

Model version 2 (E3SMv2), a state-of-the-science global climate model, to simulate 56 

nitrate aerosols and quantify their radiative effects. Modeled nitrate concentrations are in 57 

good agreement with aircraft observations but have positive biases relative to 58 

ground-based network measurements. We also find that simulated nitrate lifecycle is 59 

sensitive to the treatment of gaseous HNO3 transfer to/from interstitial particles related to 60 

a parameter characterizing the sticking probability of a gas molecule at the surface of 61 

different aerosols such as dust and sea salt particles.  62 

 63 

 64 

 65 

 66 

 67 
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1. Introduction 68 

Nitrate, formed in the atmosphere via gas-to-particle conversion of NOx, plays an 69 

important role in the Earth’s climate (Boucher et al., 2013; Naik et al., 2021). It can affect 70 

the Earth’s radiation budget directly through scattering solar radiation (e.g., Adams et al., 71 

2001; van Dorland et al., 1997) and indirectly through acting as cloud condensation 72 

nuclei (CCN) (e.g., Kulmala et al., 1993; Xu & Penner, 2012 [XP12]). The formation of 73 

nitrate aerosols can also impact the atmospheric chemistry. Ammonium nitrate forms 74 

predominantly in the fine aerosol mode through the aqueous phase reaction between 75 

HNO3 and excess NH3 (left after fully neutralizing sulfate) (e.g., Bassett & Seinfeld, 76 

1983; Metzger et al., 2002). Nitrate aerosols can also form in the coarse aerosol mode 77 

through heterogeneous reactions of nitrogen species such as HNO3 and N2O5 on the 78 

surface of mineral dust and sea salt particles (e.g., Chen et al., 2020; Dentener et al., 1996; 79 

Liao et al., 2003). Consequently, the consumption of HNO3 and N2O5 to form nitrate 80 

aerosols reduces NOx and further leads to a reduction of O3 (e.g., Bauer et al., 2007 [B07]; 81 

Liao & Seinfeld, 2005; Riemer et al., 2003). More importantly, nitrate aerosols are likely 82 

to increase in the future, exerting a stronger radiative forcing (RF) on climate (e.g., Bauer 83 

et al., 2007; Bellouin et al., 2011 [B11]; Hauglustaine et al., 2014 [H14]), due to 84 

projected reductions in NOx and SO2 emissions but increase in NH3 emissions in future 85 

scenarios.   86 

Despite the important roles, nitrate aerosols are not treated in many global climate 87 

models (GCMs) participating in the Coupled Model Intercomparison Project phase 6 88 
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(CMIP6), which may influence the estimate of historical aerosol RF and the projection of 89 

future climate change. Only a limited number of GCMs explicitly simulate the lifecycle 90 

of nitrate aerosols and quantify their RF, or radiative effect (RE), due to aerosol-radiation 91 

interactions (REari/RFari) (e.g., Adams et al., 2001; An et al., 2019 [A19]; Bellouin et al., 92 

2011; Bian et al., 2017 [B17]; Feng & Penner, 2007 [FP07]; Hauglustaine et al., 2014; 93 

Liao et al., 2003; Lu et al., 2021 [L21]; Myhre et al., 2013; Skeie et al., 2011; Xu & 94 

Penner, 2012; Zaveri et al., 2021 [Z21]; Zhou et al., 2012). Even fewer studies have 95 

assessed nitrate RF/RE due to aerosol-cloud interactions (RFaci/REaci) (e.g., Lu et al., 96 

2021; Xu & Penner, 2012; Zaveri et al., 2021). B17 found that global nitrate burdens 97 

from 9 GCMs participating in the Aerosol Comparisons between Observations and 98 

Models (AeroCom) phase III range from 0.03 to 0.43 Tg N with a median value of 0.13 99 

Tg N. Z21 summarized the simulated nitrate burdens from 12 previous studies and 100 

reported a range from 0.013 to 0.52 Tg N with a median value of 0.14 Tg N. The large 101 

spread in the simulated nitrate burdens results in large uncertainties in estimating nitrate 102 

RFari. In AeroCom phase II experiments, global mean nitrate RFari (1850-2000) is 103 

estimated to be –0.08 W m–2 with a range from –0.12 to –0.02 W m–2 (Myhre et al., 2013). 104 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 105 

gives a similar estimate of –0.11 W m–2 (1750-2010) but with a larger spread from –0.30 106 

to –0.03 W m–2 (Boucher et al., 2013).  107 

One key challenge in simulating the formation of nitrate aerosols is the dynamic mass 108 

transfer between gas-phase HNO3 and nitrate aerosols. Previous laboratory and field 109 
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studies found that the equilibrium timescale for submicron nitrate aerosols ranges from a 110 

few seconds (for particle diameter dp = 0.1 m) to around 20 minutes (for dp = 1 m) 111 

(Cruz et al., 2000; Dassios & Pandis, 1999; Fountoukis et al., 2009; Meng & Seinfeld, 112 

1996), whereas it requires much longer, a few hours to days, for supermicron particles to 113 

reach equilibrium (Fridlind & Jacobson, 2000; Meng & Seinfeld, 1996). Most GCMs 114 

have adopted thermodynamic equilibrium models (TEQMs), such as ISORROPIA-I 115 

(Nenes et al., 1998), ISORROPIA-II (Fountoukis & Nenes, 2007), and EQSAM3 116 

(Metzger & Lelieveld, 2007), to treat the gas-aerosol partitioning (e.g., Adams et al., 117 

2001; An et al., 2019; Bauer et al., 2007; Bellouin et al., 2011; Bian et al., 2017; 118 

Hauglustaine et al., 2014; Zhou et al., 2012). FP07 used a hybrid dynamical approach 119 

(HDYN), which assumes instantaneous thermodynamic equilibrium for fine aerosols (dp 120 

in 0.01–0.63 m) and calculates dynamical mass transfer for coarse aerosols (dp in 0.63–121 

10.0 m). They found that the HDYN approach predicts less nitrate burden, especially in 122 

the coarse mode, than the common approach (e.g., Bian et al., 2017; Fairlie et al., 2010; 123 

Hauglustaine et al., 2014) that combines a TEQM and the first-order gas-to-particle 124 

approximation to calculate the rates of heterogeneous reactions of HNO3 onto dust and 125 

sea salt particles. Very few global modeling studies have used a fully dynamic treatment 126 

for partitioning HNO3 over the entire aerosol size distribution (Lu et al., 2021; Zaveri et 127 

al., 2021).  128 

The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et 129 

al., 2008) is a comprehensive aerosol chemistry module. It uses the Adaptive Step 130 
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Time-split Euler Method (ASTEM) submodule to simulate the dynamic partitioning 131 

between all semivolatile gases (HNO3, NH3, HCl, and secondary organic aerosol [SOA] 132 

precursors) and particles of different sizes in an accurate but computationally efficient 133 

way. A sectional version of MOSAIC was first implemented in the Weather Research and 134 

Forecasting Model with Chemistry (WRF-Chem) (Fast et al., 2006) and applied in many 135 

regional studies (e.g., Gao et al., 2014; Zhang et al., 2012). Recently, Z21 and L21 136 

implemented MOSAIC in the Community Earth System Model version 1 (CESM1) and 137 

version 2 (CESM2), respectively, and coupled it with the Model for Ozone and Related 138 

chemical Tracers (MOZART) gas chemistry (Emmons et al., 2020) and the 7-mode and 139 

4-mode version of Modal Aerosol Module (MAM7 and MAM4) (Liu et al., 2012; Liu et 140 

al., 2016), respectively. The simulated concentrations of sulfate, nitrate, and ammonium 141 

aerosols in CESM1 and CESM2 agree reasonably well with observations. However, they 142 

used a low accommodation coefficient for HNO3 ( αୌ୒୓య
൑ 0.0011 ) in the 143 

dust-containing MAM aerosol modes, which was measured for HNO3 on pure dust 144 

particles (Fairlie et al., 2010; Li et al., 2012). This may substantially underestimate the 145 

formation of nitrate aerosols associated with gas-aerosol partitioning, particularly in the 146 

MAM4 coarse mode that contains predominately sea salt over oceans, because previous 147 

studies found that αୌ୒୓య
 on sea salt particles is much larger than the one for dust 148 

particles (e.g., Abbatt & Waschewsky, 1998; Fairlie et al., 2010; Guimbaud et al., 2002; 149 

Li et al., 2012; Song et al., 2007).  150 

In this study, we implement MOSAIC in DOE’s Energy Exascale Earth System 151 
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Model version 2 (E3SMv2) and coupled it with MAM4 (Liu et al., 2016; Wang et al., 152 

2020) and MOZART gas-phase chemistry (Emmons et al., 2010; Tilmes et al., 2015). We 153 

also modify the calculation of mass transfer coefficients (MTCs) in MOSAIC to consider 154 

different accommodation coefficients of HNO3 on particles that are mostly dust, partially 155 

dust, and non-dust. The goals of this study are to (1) evaluate the performance of 156 

E3SMv2-MOSAIC in simulating the spatiotemporal distributions of nitrate aerosols 157 

against ground-based observations and aircraft measurements, (2) examine the impacts of 158 

treatments of mass transfer between gaseous HNO3 and interstitial particles on the 159 

lifecycle of nitrate aerosols due to different αୌ୒୓య
 on dust and non-dust particles, and (3) 160 

quantify RFari and RFaci of nitrate aerosols in E3SMv2. The paper is organized as 161 

follows. Section 2 describes the calculation of MTCs, accommodation coefficients, the 162 

coupling between MOSAIC and MAM4/MOZART in E3SMv2, and the model 163 

experiments design. Section 3 shows the changes of nitrate mass budgets due to different 164 

MTC treatments, evaluates modeled nitrate concentrations against ground-based 165 

observations and aircraft measurements, and then gives the estimation of RFari and RFaci 166 

of nitrate aerosols. Discussion and conclusions are presented in Section 4. 167 

 168 

2. Methodology 169 

2.1. Model Description 170 

In this study, we use E3SMv2 (Golaz et al., 2022) along with its atmosphere 171 

component (EAMv2) and land component (ELMv2). Compared to EAMv1 (Rasch et al., 172 
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2019; Xie et al., 2018), the deep convection scheme (ZM, Zhang & McFarlane, 1995) in 173 

EAMv2 adopts the dynamic Convective Available Potential Energy (dCAPE) trigger (Xie 174 

& Zhang, 2000) and an unrestricted air parcel launch level (ULL) approach (Wang et al., 175 

2015), which improves the simulated precipitation (Xie et al., 2019), particularly the 176 

precipitation diurnal cycle. EAMv2 mostly adopts most of the tunable parameters in the 177 

parameterizations of (1) turbulence, cloud macrophysics, and shallow convection 178 

(CLUBB, Golaz et al., 2002; Bogenschutz et al., 2013), (2) deep convection, and (3) 179 

cloud microphysics (MG2, Gettelman & Morrison, 2015) from the recalibrated 180 

atmosphere model, EAMv1P, which significantly improves the simulations of clouds and 181 

precipitation climatology (Ma et al., 2022). The high equilibrium climate sensitivity (ECS 182 

= 5.3 K) in E3SMv1 is also reduced to 4 K in E3SMv2. 183 

In MAM4 of EAMv2 (Liu et al., 2016; Wang et al., 2020), mass and number mixing 184 

ratios of aerosol species, including black carbon (BC), primary organic matter (POM), 185 

SOA, marine organic aerosol (MOA), sulfate, mineral dust, sea salt and aerosol water, in 186 

four lognormal modes are predicted with a prescribed geometric standard deviation for 187 

each mode. Aerosol particles are assumed to be internally mixed within the same mode 188 

and externally mixed between different modes. Compared to EAMv1, EAMv2 changes 189 

the size distribution of emitted dust particles following the brittle fragmentation theory 190 

(Kok, 2011) with prescribed mass fraction of 1.1% and 98.9% for the accumulation and 191 

coarse modes, respectively.  192 

 193 
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2.2. The Coupling between MOSAIC and MAM4/MOZART 194 

To couple MOSAIC with MAM4 in EAMv2, we add additional aerosol species in 195 

MAM4 following L21. As listed in Table 1, we add nitrate aerosol (NOଷ
ି) to the 196 

accumulation, Aitken, and coarse modes to simulate the formation of various salts 197 

containing nitrate anions (e.g., NH4NO3, NaNO3, and Ca(NO3)2) in MOSAIC. Note that 198 

nitrate and other secondary species are allowed to form on the primary carbon mode 199 

particles, but they are immediately transferred to the accumulation mode though the 200 

aging process. The optical properties (e.g., refractive index) of nitrate aerosols are set to 201 

those of sulfate. We use 0.67 for the hygroscopicity of nitrate aerosols (Petters & 202 

Kreidenweis, 2007) following L21 and XP12, which is larger than the hygroscopicity of 203 

sulfate aerosols. Same as nitrate aerosol, ammonium aerosol (NHସ
ା) is added to the three 204 

MAM4 modes to simulate the formation of various salts containing ammonium cations 205 

(e.g., NH4NO3, NH4HSO4, and NH4Cl). Sulfate aerosol represents SOସ
ଶି when MOSAIC 206 

is coupled with MAM4, while it represents NH4HSO4 in the default MAM4.  207 

MOSAIC explicitly treats the heterogeneous reactions of HNO3 on dust (i.e., CaCO3) 208 

and sea salt (i.e., NaCl) particles. To consider the reactions on dust in MAM4, we add 209 

calcium (Caଶା) and carbonate (COଷ
ଶି) aerosols in each mode containing dust with emitted 210 

mass fractions of 2% and 3%, respectively, following Zaveri et al. (2008). The remaining 211 

95% of the emitted dust in each mode is treated as other inorganic (OIN) in MOSAIC, 212 

which does not have chemical reactions with gas and aerosol species. In the default 213 

MAM4 of EAMv2, dust is only present in the accumulation and coarse modes. When we 214 
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initially coupled MOSAIC with the default MAM4 in E3SM, we found that the model 215 

yielded much stronger REaci (~ 1.0 W m2) than L21. This was found to be due to 216 

strong production of nitrate aerosols in the Aitken mode caused by using a much higher 217 

αୌ୒୓య
 (0.65) for the Aitken mode but lower values (0.0011) for the accumulation and 218 

coarse modes in the calculation of MTCs. We discuss this issue in detail in section 2.3. 219 

We then add dust species (OIN, calcium, and carbonate) to the Aitken mode (0.00165% 220 

of the total dust mass emission) to avoid too strong REaci and be consistent with the 221 

configuration of L21. As in Z21 and L21, primary sea salt aerosol in each MAM4 mode 222 

is split into three species: sodium (Naା), chloride (Clି), and sea salt sulfate, with emitted 223 

mass fractions of 38.5%, 53.8%, and 7.7%, respectively. 224 

MOSAIC implemented in EAMv2 replaces the default MAM4 treatment of 225 

gas-aerosol exchange and simulates the dynamic mass transfer between semivolatile 226 

gases, including H2SO4, HNO3, HCl, NH3, and a single lumped SOA precursor, and 227 

aerosols, including sulfate, nitrate, ammonium, chloride, and SOA. The aqueous (i.e., 228 

cloud water) chemistry, which already includes reactions of SO2, is also modified to 229 

include reactions of HNO3, NH3, and HCl. MOSAIC is coupled with MOZART-4 gas 230 

chemistry scheme (Emmons et al., 2010; Tilmes et al., 2015) that predicts HNO3 through 231 

O3-NOx-HOx chemistry or N2O5 hydrolysis. Nighttime nitrate radical (NO3) oxidation of 232 

biogenic volatile organic compounds (BVOC) can lead to the formation of appreciable 233 

amount of SOA composed of organic nitrates (e.g., Fisher et al., 2016; Hao et al., 2014; 234 

Kiendler-Scharr et al., 2016; Ng et al., 2017; Rollins et al., 2012; Zaveri et al., 2010; 235 
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Zaveri et al., 2020). Although about 10% of the global mean SOA burden was estimated 236 

to form via NO3-BVOC chemistry (Pye et al., 2010), the fate and importance of 237 

particle-phase organic nitrates are still uncertain due to its poorly constrained sinks such 238 

as hydrolysis to HNO3 (Pye et al., 2015). Consequently, formation of particulate organic 239 

nitrates is not presently treated by MOSAIC but will be considered in the future. Note 240 

that we have also removed some coding bugs in the coupling between MOSAIC and 241 

parameterizations of cloud microphysics (e.g., mixed-phase cloud ice nucleation) in 242 

EAMv2, compared to Z21 and L21, and an error in the implementation of the wet 243 

deposition scheme (Neu & Prather, 2012) that affects the removal rates of weakly soluble 244 

species.  245 

 246 

2.3. Mass Transfer Coefficients and Accommodation Coefficients 247 

In MOSAIC, the dynamic mass transfer equations for gases to/from interstitial 248 

aerosol particles are expressed as: 249 

𝑑𝐶𝑎,𝑖,𝑚

𝑑𝑡
ൌ 𝑘௝,௠൫𝐶௚,௝ െ 𝐶௘௤,௝,௠൯                                               (1) 250 

ௗ஼೒,ೕ

ௗ௧
ൌ െ ∑ 𝑘௝,௠௠ ൫𝐶௚,௝ െ 𝐶௘௤,௝,௠൯                                          (2) 251 

where Ca,i,m (nmol m–3) is the concentration of aerosol species i in aerosol mode m; Cg,j 252 

(nmol m–3) is the concentration of gas species j; Ceq,j,m is the equilibrium concentration of 253 

gas species j on the particle surface in mode m; and kj,m (s–1) is the MTC. The MTC (kj) 254 

for a single particle size (rp) can be calculated as: 255 

𝑘௝ ൌ 4𝜋𝑟௣𝐷௚,௝𝑛൫𝑟௣൯𝑓൫𝐾𝑛௝൫𝑟௣൯, 𝛼௝൯                                         (3) 256 
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where rp is the particle radius; Dg,j is the gas diffusivity of specie j; n is the number 257 

concentration of particles; and f(Knj, j) is the transition regime correction factor (Fuchs 258 

& Sutugin, 1971) as a function of the Knudsen Number Knj and accommodation 259 

coefficient j. Equation (3) is integrated (averaged) over each mode’s lognormal size 260 

distribution to obtain kj,m. f(Knj, j) is calculated as: 261 

𝑓൫𝐾𝑛௝, 𝛼௝൯ ൌ
଴.଻ହఈೕ൫ଵା௄௡ೕ൯

௄௡ೕ൫ଵା௄௡ೕ൯ା଴.ଶ଼ଷఈೕ௄௡ೕା଴.଻ହఈೕ
                              (4) 262 

The accommodation coefficient represents the sticking probability of a gas molecule at 263 

the particle surface (Feng & Penner, 2007). It is a key parameter in calculating dynamic 264 

mass transfer. If j increases, kj,m would increase and may further lead to an increase in 265 

aerosol concentrations. 266 

When Z21 implemented MOSAIC in CESM1, they introduced a relatively low 267 

αୌ୒୓య
 (0.0011) for HNO3 onto dust particles (i.e., dust containing aerosol modes), 268 

which is calculated as a function of relative humidity (RH): 269 

𝛼 ൌ ቊ
଴.଴଴ଵ଼ோு

ሺଵିோுሻሺଵା଻ோுሻ
     RH൏0.8

0.0011                 RH൒0.8
                                            (5) 270 

The formula follows Li et al. (2012) but is modified to match the uptake coefficients from 271 

Fairlie et al. (2010). This low α was also used for HCl onto dust containing modes. A 272 

much higher value (αୌ୒୓య
ൌ 0.65) was used for HNO3 and HCl onto modes that do not 273 

contain any dust. In the CESM1-MAM7 initially used by Z21, dust was only present in 274 

the fine and coarse dust modes, as in Liu et al. (2012). Z21 later switched to a newer 275 

version of CESM1, in which dust is present in the Aitken and accumulation modes (in 276 
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relatively small amounts). An unplanned side effect of this switch was that equation (5) 277 

was applied to the Aitken and accumulation modes, as they always contained non-zero 278 

(although often extremely small) amount of dust species. When L21 implemented 279 

MOSAIC in CESM2-MAM4 (using the code from CESM1-MAM7), equation (5) was 280 

likewise applied for the accumulation, Aitken, and coarse modes of MAM4 everywhere, 281 

even at locations where dust concentrations were minor. Equation (5) was derived and 282 

calibrated for HNO3 on pure dust particles, and αୌ୒୓య
 for aerosol species, such as sea 283 

salt and nitrate, are much larger than that for pure dust (e.g., Abbatt & Waschewsky, 1998; 284 

Dassios & Pandis, 1999; Fairlie et al., 2010; Guimbaud et al., 2002; Li et al., 2012; Song 285 

et al., 2007). Thus equation (5) should probably only be used for modes that are 286 

predominately dust at certain location and time. Note that while MAM assumes that 287 

aerosols in each mode are internally mixed, dust particles are often externally mixed with 288 

other types of particles (e.g., sea salt) in the real world. This should be considered for 289 

HNO3 mass transfer to/from particles. It should also be noted that equation (5) is not used 290 

in MOSAIC of WRF-Chem.    291 

To account for the different accommodation coefficients of HNO3 on dust and 292 

non-dust particles, we first introduce a dust-weighted MTC treatment. Within the 293 

MOSAIC routine that calculates MTCs, we temporarily divide each aerosol mode into 294 

dust and non-dust sub-modes. The dust sub-mode only contains dust species, and the 295 

number concentrations (ndst,m) are calculated using prescribed typical mass median 296 

diameters (rdst,p,m) of 0.089, 0.52, and 2.626 m (summarized from values over dust 297 
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regions) for the Aitken, accumulation, and coarse modes, respectively. The non-dust 298 

sub-mode contains the other aerosol species and the remaining number concentrations 299 

(nndst,m = nm – ndst,m). We calculate an MTC for each sub-mode, using equation (5) for the 300 

dust sub-mode and αୌ୒୓య
ൌ 0.193  (following FP07 and XP12) for the non-dust 301 

sub-mode. The MTCs for the two sub-modes are then added to form a total MTC for an 302 

aerosol mode in MAM4. With this treatment, the other parts of the MOSAIC module are 303 

unaware of the sub-modes.  304 

Aerosol nitrate formation is strongly dependent on particle composition. Z21 found 305 

that most of the nitrate mass (~73% of the total annual burden) exists in the fine and 306 

coarse sea salt modes of MAM7. Nitrate burden in the coarse sea salt mode (0.57 mg m–2) 307 

was much larger than the one in the coarse dust mode (0.06 mg m–2). We make a step 308 

further by modifying the dust-weighted MTC treatment to split the aerosols in the coarse 309 

mode of the default MAM4 into the coarse dust and coarse sea salt sub-modes before 310 

calling MOSAIC module, so that MOSAIC works with 5 aerosol modes. We apply 311 

equation (5) to calculate αୌ୒୓య
 in the coarse dust sub-mode and αୌ୒୓య

ൌ 0.193 in the 312 

coarse sea salt sub-mode. We first partition aerosol number concentrations in the coarse 313 

mode into the two sub-modes, using prescribed typical mass median diameters for pure 314 

dust (2.626 m) and sea salt (2.059 m) particles as well as mass concentrations of 315 

primary dust (OIN/0.95) and primary sea salt (sodium/0.385). Mass concentrations of 316 

OIN, calcium, and carbonate are assigned to the coarse dust sub-mode, while mass 317 

concentrations of sodium, sea salt sulfate, and MOA are assigned to the coarse sea salt 318 
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sub-mode. The mass fractions of nitrate and ammonium partitioned to the coarse sea salt 319 

sub-mode are calculated using fitting relations, y = xa (a = 0.11 and 0.01, respectively) 320 

where x is the mass fraction of primary sea salt to the sum of coarse mode primary sea 321 

salt and dust. The mass fraction of non-sea-salt sulfate (nss-sulfate) partitioned to the 322 

coarse dust sub-mode is calculated using y = x0.18 where x is the mass fraction of primary 323 

dust to the sum of coarse mode primary sea salt and dust. These fitting relations are 324 

derived from the simulations of Z21 that used MAM7 which treats dust and sea salt in 325 

separate modes (fine/coarse dust modes and fine/coarse sea salt modes). BC, POM, and 326 

SOA are partitioned using number fractions of aerosol number concentrations in the 327 

sub-modes to the total coarse mode number concentrations. After 11 of the 12 aerosol 328 

species in the coarse mode have been partitioned, chloride is partitioned so that the two 329 

sub-modes have equal normalized charge balance (i.e., (cations – anions)/(cations + 330 

anions)). Finally, dry and wet mass median diameters are calculated using the partitioned 331 

aerosol mass and number concentrations. After all calculations in MOSAIC are done 332 

within the model time step, coarse mode aerosol mass and number concentrations are 333 

updated to the sum of values from the two sub-modes. This mode splitting is admittedly 334 

highly approximate, but it does allow MOSAIC to treat the different heterogeneous 335 

reactions of HNO3 onto dust and sea salt particles.  336 

 337 

2.4. Experiments Design 338 

We ran E3SMv2 with the spectral-element dynamical core for EAMv2 at 339 
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approximately 1-degree horizontal resolution (ne30pg2) with 72 vertical layers from 340 

2004 to 2014, and the last 10-yr results are used for our analysis. The horizontal wind 341 

components u and v were nudged towards the Modern-Era Retrospective analysis for 342 

Research and Applications Version 2 (MERRA-2) (Gelaro et al., 2017) meteorology 343 

using a relaxation timescale of 6 h to facilitate the evaluation of MOSAIC against 344 

observations under realistic meteorological conditions. Monthly mean prescribed 345 

historical SST and sea ice in 2004-2014 were used. We used the anthropogenic and 346 

biomass burning emissions of aerosols and precursor gases specified for CMIP6 (Hoesly 347 

et al., 2018; van Marle et al., 2017), except for SOA precursors (Wang et al., 2020). 348 

Biogenic emissions were calculated online using the Model of Emissions of Gases and 349 

Aerosols from Nature version 2.1 (MEGANv2.1) (Guenther et al., 2012) incorporated in 350 

ELMv2.  351 

As summarized in Table 2, we conducted five sets of experiments with present-day 352 

(PD, 2005-2014) and preindustrial (PI, 1850) emissions of aerosols and precursor gases. 353 

In MTC_SLOW, MTC_WGT, and MTC_SPLC, we ran E3SMv2-MOSAIC with and 354 

without the formation of nitrate aerosols. Note that MOSAIC module is still active when 355 

HNO3 partitioning to particles is turned off. In MTC_SLOW, MOSAIC was coupled with 356 

MOZART and MAM4 in a way following L21. Equation (5) was used to calculate 357 

αୌ୒୓య
 and αୌେ୪ in the accumulation, Aitken, and coarse modes, which has a maximum 358 

value of 0.0011. In MTC_WGT, we applied the dust-weighted MTC treatment introduced 359 

in section 2.3. Equation (5) was used to calculate αୌ୒୓య
 and αୌେ୪ on dust particles, 360 
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while αୌ୒୓య
ൌ 0.193 and αୌେ୪ ൌ 0.1 were used for non-dust particles. In MTC_SPLC, 361 

as introduced in section 2.3, we still adopted the dust-weighted MTC treatment in the 362 

accumulation and Aitken modes but split coarse mode aerosols into the coarse dust and 363 

sea salt sub-modes in MOSAIC. Equation (5) was used to calculate αୌ୒୓య
 and αୌେ୪ in 364 

the coarse dust sub-mode, while αୌ୒୓య
ൌ 0.193 and αୌେ୪ ൌ 0.1 were used in the 365 

coarse sea salt sub-mode. Note that we used α୒ୌయ
ൌ 0.65  in MTC_SLOW and 366 

α୒ୌయ
ൌ 0.092  (Feng & Penner, 2007; Xu & Penner, 2012) in MTC_WGT and 367 

MTC_SPLC. In sections 3.1-3.4, we focus on the experiments with the formation of 368 

nitrate turned on and PD emissions of aerosols and precursor gases (i.e., 369 

MTC_SLOW_PD, MTC_WGT_PD, and MTC_SPLC_PD). In section 3.5, we use the 370 

experiments with the formation of nitrate turned off and/or PI emissions (i.e., 371 

xx_PD_noNO3, xx_PI, and xx_PI_noNO3) to estimate RFaci/REaci of nitrate aerosols 372 

following Ghan (2013). Default and MZT mentioned in section 3.1 are meant for 373 

experiments with PD emissions. Note that we also conducted an experiment that further 374 

splits accumulation mode aerosols into three sub-modes in MOSAIC (MTC_SPLAC) and 375 

an experiment that used αୌ୒୓య
ൌ 0.193 for all MAM4 modes (MTC_FAST). As shown 376 

in Table S1, MTC_SPLAC gives similar nitrate burden to MTC_SPLC (0.191 versus 377 

0.185 Tg N). MTC_FAST produces slightly larger burden than MTC_WGT (0.256 versus 378 

0.237 Tg N). 379 

 380 

2.5. Observations 381 
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We first validate profiles of key gas species, including O3, CO, NOx, peroxyacetyl 382 

nitrate (PAN) and HNO3, against the averaged profiles, derived by Tilmes et al. (2015), 383 

from various aircraft campaigns between 1995 and 2010 for different regions and seasons 384 

around the globe. Modeled tropospheric column ozone (TCO) is evaluated against 385 

satellite retrievals from the Ozone Monitoring Instrument (OMI) and the Microwave 386 

Limb Sounder (MLS) onboard Aura (Ziemke et al., 2006), the same data used by Tang et 387 

al. (2021) to evaluate E3SMv1/v2. To evaluate surface mass concentrations of modeled 388 

precursor gases (HNO3, NH3, and SO2) and aerosols (nitrate, ammonium, and sulfate), we 389 

use ground-based observations from the Clean Air Status and Trends Network 390 

(CASTNET) and the Ammonia Monitoring Network (AMoN) over U.S., the European 391 

Monitoring and Evaluation Programme (EMEP) over Europe, and the Acid Deposition 392 

Monitoring Network in East Asia (EANET) over East Asia. To better understand the 393 

model biases of surface HNO3, we compare modeled surface NOx with ground-based 394 

observations from U.S. EPA Air Quality System (AQS), EMEP, and EANET. We also 395 

compare modeled vertical profiles of aerosols with measurements from the Soluble 396 

Acidic Gases and Aerosol (SAGA) filters during aircraft campaigns, including the 397 

Intercontinental Chemical Transport Experiment Phase B (INTEX-B) (Singh et al., 2009), 398 

Arctic Research of the Composition of the Troposphere from Aircraft and Satellites 399 

(ARCTAS) (Jacob et al., 2010), Deep Convective Clouds and Chemistry (DC3) (Barth et 400 

al., 2015), Studies of Emissions and Atmospheric Composition, Clouds, and Climate 401 

Coupling by Regional Surveys (SEAC4RS) (Toon et al., 2016), and Atmospheric 402 
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Tomography Mission (ATom) (Thompson et al., 2021). A cutoff size of dp = 4 m is 403 

applied to modeled profiles of aerosols for comparison (i.e., PM4), as the collection 404 

efficiency of SAGA filters’ inlet reduces to 50% for aerosols with dp around 4 m (Guo et 405 

al., 2021; McNaughton et al., 2007).   406 

 407 

3. Results 408 

3.1. Evaluation of Key Gas Species 409 

In Figure 1, we first evaluate modeled tropospheric (2-7 km) gases from MZT and 410 

MTC_SLOW (2005-2014) against the summarized observations from aircraft campaigns 411 

(1995-2010) for different regions (Southern Hemisphere [SH], Tropics, Northern 412 

Hemisphere [NH] mid-latitudes, and NH Polar) and seasons (March-April-May [MAM], 413 

June-July-August [JJA], September-October-November [SON], and 414 

December-January-February [DJF]). Simulated O3 concentrations have a very good 415 

agreement with aircraft observations. However, simulated TCO has significant low biases 416 

in the SH compared with OMI/MLS (Figure S1), which is similar to CESM1.2 (Tilmes et 417 

al., 2015) and may be caused by the underestimation of biomass burning emissions (e.g., 418 

CO and VOCs). Modeled CO concentrations agree with the observations fairly well in 419 

the SH and Tropics but have significant low biases in the NH mid- and high latitudes, 420 

particularly in DJF and MAM, likely due to missing sources of anthropogenic emissions 421 

(Emmons et al., 2020). MZT and MTC_SLOW underestimate NOx but tend to 422 

overestimate HNO3 in the NH mid- and high latitudes, which may be caused by too fast 423 
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chemical conversion from NOx to HNO3 or missing sources of NOx emissions. Simulated 424 

concentrations of O3, CO, NOx, and PAN are quite close between MZT, MTC_SLOW, 425 

MTC_WGT, and MTC_SPLC (not shown). MTC_SLOW produces notably lower HNO3 426 

than MZT, especially in the NH mid- and high latitudes, due to the neglected formation of 427 

nitrate aerosols in MZT. In general, EAMv2 with MOZART and MOSAIC performs 428 

similarly as CESM1.2 (Tilmes et al., 2015), the Community Atmosphere Model Version 6 429 

with interactive chemistry (CAM6-chem) (Emmons et al., 2020), and Z21, in simulating 430 

tropospheric gases (also see Figure S2). 431 

 432 

3.2. Mass Budgets and Spatial Distributions of Nitrate and Other Aerosol Species 433 

In this section, we examine the changes in mass budgets and spatial distributions of 434 

nitrate and other aerosol species due to different treatments in calculating MTCs. As 435 

shown in Table 3, global annual mean nitrate burden significantly increases from 0.096 436 

(MTC_SLOW) to 0.237 (MTC_WGT) and 0.185 Tg N (MTC_SPLC), and there are large 437 

increases in both fine and coarse mode nitrate burdens. For the increase in coarse mode 438 

nitrate burden, it is primarily due to the increase in gas-aerosol exchange production, as 439 

aqueous chemistry production is negligible and gas-aerosol exchange loss is relatively 440 

small. The MTC treatments considering high αୌ୒୓య
 on non-dust particles in 441 

MTC_WGT and MTC_SPLC substantially increase the net production of coarse mode 442 

nitrate from 6.4 (MTC_SLOW) to 16.0 and 12.9 Tg N a–1, respectively, through 443 

gas-aerosol exchange. For fine mode nitrate, the net chemical production is determined 444 
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by both large aqueous chemistry production and strong net loss through gas-aerosol 445 

exchange. The strong gas-aerosol exchange loss of fine mode nitrate (54.9 to 51.4 Tg 446 

N a–1) leads to net loss through gas-aerosol exchange (30.5 to 20.8 Tg N a–1). The 447 

increase in fine mode nitrate burden is due to two factors. First, the MTC treatments in 448 

MTC_WGT and MTC_SPLC increase the net production of fine mode nitrate from 6.4 449 

(MTC_SLOW) to 7.7 and 8.2 Tg N a–1, respectively, because of the reduction in the net 450 

loss through gas-aerosol exchange. Second, MTC_WGT and MTC_SPLC have lower 451 

mass fractions of cloud-borne nitrate for the fine mode. It contributes to longer lifetime of 452 

fine mode nitrate in MTC_WGT and MTC_SPLC, because cloud-borne nitrate aerosols 453 

have much shorter lifetime than the interstitial ones due to strong wet removal. 454 

Compared with MTC_WGT, the net production of coarse mode nitrate through 455 

gas-aerosol exchange in MTC_SPLC decreases from 16.0 to 12.9 Tg N a–1 due to the 456 

treatment of splitting the coarse mode in MOSAIC. In MTC_SPLC, coarse dust and sea 457 

salt particles are externally mixed with low (0.0011) and high (0.65) αୌ୒୓య
, 458 

respectively, in MOSAIC. To compensate for the reduction in coarse mode production, 459 

the net production of fine mode nitrate in MTC_SPLC increases from 7.7 to 8.2 Tg N a–1. 460 

Consequently, the fine mode nitrate burden increases from 0.068 (MTC_WGT) to 0.076 461 

Tg N (MTC_SPLC), while the coarse mode nitrate burden decreases from 0.169 to 0.110 462 

Tg N. In contrast to the large increase of nitrate burdens in MTC_WGT and MTC_SPLC, 463 

we find only a slight increase of ammonium burden from 0.390 to 0.430 and 0.436 Tg N. 464 

This indicates that the increase in the formation of NaNO3 and Ca(NO3)2 through 465 
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heterogeneous reactions with dust and sea salt mainly contributes to the increase of 466 

nitrate burdens in MTC_WGT and MTC_SPLC. The differences in nss-sulfate burdens 467 

among MZT, MTC_SLOW, MTC_WGT, and MTC_SPLC are quite small (within 1%, 468 

see Table S2). The Default experiment has slightly higher nss-sulfate burden (0.784 Tg S) 469 

than the other four experiments (ranging from 0.702 to 0.706 Tg S) due to larger 470 

chemical production related to higher O3 concentrations. 471 

As shown in Figures 2a–2c, large values of nitrate burden are in East Asia, India, 472 

Europe, and northeastern U.S. due to high anthropogenic emissions of NOx and NH3 and 473 

in equatorial Africa due to high biomass burning emissions. These are mainly contributed 474 

by fine mode nitrate (accumulation and Aitken mode), while coarse mode nitrate mainly 475 

contributes to the total burden over oceans and dust source regions (Figure 3). Compared 476 

to MTC_SLOW, nitrate burdens in MTC_WGT and MTC_SPLC increase around the 477 

globe. In Figure 2b, large increases are found over regions with high anthropogenic or 478 

biomass burning emissions of NOx, resulting from the substantial reduction in net loss of 479 

fine mode nitrate through gas-aerosol exchange in MTC_WGT (Figure S3). We also see 480 

large increases in nitrate burden over dust source regions (Middle East, Sahel, and 481 

northwestern China) associated with the increase in net production of coarse mode nitrate 482 

through gas-aerosol exchange (Figure S3). Compared to MTC_WGT, MTC_SPLC has a 483 

smaller increase of nitrate burden globally, especially in dust source regions (Figures 2c 484 

and 2f). There are also large increases of ammonium burden in eastern China and 485 

northeastern India in MTC_WGT and MTC_SPLC, compared to MTC_SLOW, where the 486 



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems 

  24

ammonium burden is high in MTC_SLOW (Figure S4).   487 

As shown in Figures 2d and 2e, there are large relative differences (>200%) caused 488 

by the MTC treatments over the Antarctic and regions between 40ºS and 40ºN where 489 

nitrate burden is quite low (<0.6 mg m–2 in MTC_SLOW). The increase of nitrate burden 490 

over the Antarctic is mainly in the fine mode (Figures 3b and 3c). Compared to 491 

MTC_SLOW, the coarse mode nitrate burden in MTC_WGT has a larger relative 492 

increase than the fine mode burden (178% versus 91%), which results in a decrease of 493 

fine mode fraction from 36.9 to 28.7%. As shown in Figure 3e, fine mode fractions are 494 

greatly reduced over oceans and some continental regions between 60ºS and 60ºN. The 495 

decrease of coarse mode nitrate burden and the increase of fine mode nitrate burden in 496 

MTC_SPLC increase the fine mode fraction from 28.7% in MTC_WGT to 40.9%, which 497 

is even higher than that in MTC_SLOW. Considerable increases in the fine mode fraction 498 

are found over Eurasia, North America, and the Arctic (Figure 3f). Latitude-altitude cross 499 

sections of annually averaged zonal mean nitrate concentrations are shown in Figure S5.  500 

Table 4 compares the mass budgets of nitrate in this study with results from previous 501 

studies. The mass budgets of our three experiments are within the range (minimum to 502 

maximum) of the mass budgets from B17. MTC_SLOW produces lower nitrate burden 503 

than the mean value of B17, while both MTC_WGT and MTC_SPLC produce higher 504 

nitrate burden than the mean value of B17. All three experiments have shorter lifetime 505 

than B17. In B17, large uncertainties are also found in the simulated global tropospheric 506 

(pressure > 100 hPa) HNO3 burdens, ranging from 0.15 to 1.3 Tg N, which contributes to 507 
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the large spread in simulated nitrate burdens as well. All three experiments produce lower 508 

HNO3 burden than L21 and the mean value of B17 (Table S3). Due to stronger chemical 509 

production of nitrate aerosols, MTC_WGT and MTC_SPLC have less HNO3 burden than 510 

MTC_SLOW. In many GCMs that participated in AeroCom phase III experiments, nitrate 511 

aerosols are not well represented. They neglect nitrate formation in the coarse mode 512 

and/or repeatedly use TEQMs in the coarse mode as in the fine mode. We select 4 GCMs 513 

(EMAC, EMEP, GMI, and INCA) which simulate the formation of nitrate aerosols in 514 

both fine and coarse mode and consider the heterogeneous reactions on dust and sea salt 515 

particles. The selected 4 GCMs give similar mass budgets to those from 9 GCMs (e.g., 516 

nitrate burden of 0.15 Tg N versus 0.14 Tg N) but with a narrow range of values. The fine 517 

mode fraction in the four GCMs ranges from ~20% (EMEP) to ~50% (EMAC, GMI, and 518 

INCA).       519 

The global annual mean nitrate burden in MTC_SLOW is slightly lower than the one 520 

from L21, and the net chemistry production in MTC_SLOW is quite close to that in L21 521 

(12.8 versus 12.3 Tg N a–1). In MTC_SLOW, MOSAIC is coupled with MAM4 in 522 

EAMv2 following L21, which uses quite low αୌ୒୓య
 in the accumulation, Aitken, and 523 

coarse mode. L21 also coupled MOSAIC with MAM7 in CESM2 and found that the 524 

nitrate burden increases from 0.11 in MAM4 to 0.135 Tg N in MAM7. The latter is close 525 

to the one from Z21 (0.139 Tg N). As we introduced in section 2.3, a high value of 0.65 is 526 

used for αୌ୒୓య
 in the fine sea salt and coarse sea salt modes of MAM7, while equation 527 

(5) (αୌ୒୓య
൑ 0.0011) is applied in the accumulation, Aitken, fine dust, and coarse dust 528 



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems 

  26

modes. In Z21 and L21, the coupling between MOSAIC and MAM7 partly considers the 529 

high αୌ୒୓య
 on sea salt particles in calculating the mass transfer between HNO3 and 530 

nitrate aerosols, which leads to the increase of net production from gas-aerosol exchange 531 

and further results in the increase of nitrate burden. The nitrate burden in MTC_SPLC is 532 

slightly higher than that in Z21 and L21 using MAM7. Note that equation (5) is also used 533 

in the accumulation modes of MAM7 in Z21 and L21, indicating that there may be 534 

underestimation of net accumulation mode chemistry production as well as nitrate 535 

burdens in Z21 and L21 using MAM7. Z21 has less dry deposition and longer lifetime of 536 

nitrate aerosols than MTC_SLOW, partly because CESM2 reduces the geometric 537 

standard deviations in the accumulation and coarse modes from 1.8, used in E3SMv2 and 538 

CESM1, to 1.6 and 1.2, respectively (Wu et al., 2020). In EAMv2, the bottom model 539 

layer is thinner than the one from CESM1 and CESM2, which can also affect the dry 540 

deposition and lifetime of nitrate aerosols (Wu et al., 2020). The two studies (Feng & 541 

Penner, 2007; Xu & Penner, 2012) using the HDYN approach produce similar mean 542 

nitrate burden, which is larger than that in Z21 and L21.  543 

 544 

3.3. Surface Concentrations of Nitrate, Ammonium, and Sulfate Aerosols and 545 

Precursor Gases 546 

Figures 4 and 5 evaluate modeled surface mass concentrations of aerosols (nitrate, 547 

ammonium, and sulfate) and precursor gases (HNO3, NH3, and SO2) against 548 

ground-based observations from CASTNET and AMoN over U.S., EMEP over Europe, 549 
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and EANET over East Asia. Mean surface molar concentrations of aerosols and precursor 550 

gases are listed in Table S4. In general, all three experiments overestimate nitrate surface 551 

concentrations in U.S., Europe, and East Asia (Figures 4a–4c) due to the high model 552 

biases of HNO3 (Figures 5a–5c). Modeled nitrate concentrations in MTC_SLOW agree 553 

with the observations reasonably well, especially at EMEP and EANET sites, with 554 

smaller biases than those in MTC_WGT and MTC_SPLC. MTC_WGT and MTC_SPLC 555 

produce quite similar nitrate concentrations (within 1% differences). They both have a 556 

significant increase in the annual mean value (by ~130%), which exacerbates the high 557 

biases in MTC_SLOW, whereas the large high biases of HNO3 in the two experiments 558 

are reduced. Compared to MTC_SLOW, the increase of nitrate surface concentrations in 559 

MTC_WGT and MTC_SPLC at the three networks corresponds to the increase of nitrate 560 

burden over U.S., Europe, and East Asia in Figure 2. MTC_WGT and MTC_SPLC 561 

substantially reduce the net loss of fine mode nitrate through gas-aerosol exchange and 562 

therefore increase the net chemistry production. Note that the two experiments also have 563 

stronger correlation (R) between modeled and observed nitrate surface concentrations. 564 

We also found similar high model biases of HNO3 surface concentrations in Z21 and L21 565 

at CASTNET, EMEP, and EANET sites (Figure S6). In B17, most GCMs overestimate 566 

HNO3 surface concentrations with a ratio up to 3.9 over U.S. We further compare 567 

modeled surface concentrations of NOx and NO2 with ground-based observations and 568 

found fairly strong low biases of NOx at AQS and EANET sites and modest high biases 569 

of NO2 at EMEP (Figure S7). The low biases of NOx at U.S. and East Asia sites 570 
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counteract the high biases of HNO3 and nitrate aerosols (comparing Figure S7 to Table 571 

S3), which suggests no strong bias in the NOx emissions for these regions. For regions 572 

where E3SM-MOSAIC has low biases of NOx but high biases of HNO3, it might indicate 573 

too rapid photochemical conversion of NOx to HNO3. Also, the high biases of HNO3 in 574 

these surface comparisons may be caused by slow wet and/or dry deposition, and this 575 

could contribute to the high biases of nitrate aerosols. Note that observations of NOx and 576 

NO2 are not collocated with HNO3 measurements, especially for AQS.  577 

MTC_SLOW slightly underestimates ammonium surface concentrations at 578 

CASTNET and EMEP sites (Figures 4d and 4e) but slightly overestimates the 579 

concentrations at EANET sites (Figure 4f). The large increase of ammonium surface 580 

concentrations in MTC_WGT and MTC_SPLC at the three networks (relative differences 581 

around 67%, 107%, and 52%, respectively) indicates that the increase of nitrate surface 582 

concentrations in the two experiments is mainly contributed by the increase of NH4NO3 583 

in the accumulation and Aitken modes. The three experiments underestimate NH3 surface 584 

concentrations at AMoN and EANET sites (Figures 5d and 5f) but overestimate the 585 

concentrations at EMEP sites (Figure 5e). The three experiments produce quite close 586 

sulfate surface concentrations (~1%) and agree with the observations very well (relative 587 

differences around –6%, –17%, and –3%, respectively) (Figures 4g–4i). Modeled SO2 588 

surface concentrations have high biases at CASTNET and EMEP sites (Figures 5g and 589 

5h), which is consistent with the performance of CAM-chem in Tilmes et al. (2015) and 590 

CAM5 in Liu et al. (2012). The slight underestimation of SO2 surface concentrations at 591 
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EANET sites (Figure 5i) is likely attributable to the underestimation of anthropogenic 592 

SO2 emissions in East Asia (e.g., Fan et al., 2018). 593 

Figures 6-8 show the seasonal variations of modeled nitrate surface concentrations in 594 

comparison with observations at selected CASTNET, EMEP, and EANET sites. We select 595 

the CASTNET and EMEP sites following A19. In Figures 6a, 6b and 6d, observed nitrate 596 

surface concentrations have their maximum in DJF because of low temperature and 597 

sulfate concentrations (Figure S8) and their minimum in JJA due to high temperature and 598 

strong precipitation (Pye et al., 2008; Walker et al., 2012), which is typical in eastern and 599 

central U.S. All three experiments overestimate the nitrate surface concentrations in all 600 

seasons due to high model biases of HNO3 (Figure S9). MTC_WGT and MTC_SPLC 601 

significantly increase the nitrate surface concentrations due to the increase in net fine 602 

mode chemistry production, and they have much stronger seasonal contrast than 603 

MTC_SLOW and observations at the three sites. The high model biases are larger than 4 604 

g m–3 in DJF, but they can be as low as ~1 g m–3 in JJA (e.g., Caddo Valley).  605 

Unlike Beltsville, Mackville, and Caddo Valley where observed nitrate surface 606 

concentrations are close to ammonium concentrations, Everglades NP in Florida has 607 

much higher observed nitrate concentrations than ammonium concentrations (Figure S10). 608 

The surface molar concentrations of nitrate (~24 nmol m–3) are slightly higher than those 609 

of ammonium (~22 nmol m–3). This suggests that the formation of coarse mode NaNO3 610 

and Ca(NO3)2 through heterogeneous reactions with dust and sea salt largely contributes 611 

to the nitrate concentrations. Modeled nitrate surface concentrations have small seasonal 612 
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variations with their maximum in December, while the maximum of observations occurs 613 

in March. All three experiments underestimate the nitrate surface concentrations at 614 

Joshua Tree NP in California and produce an opposite seasonal cycle. As the three 615 

MOSAIC experiments overestimate HNO3 (Figure S9), underestimate NH3, and produce 616 

ammonium and sulfate concentrations close to observations (Figures S8 and S10), the 617 

nitrate formation at Joshua Tree NP may be ammonia-limited (Walker et al. 2012), 618 

causing the low biases of modeled nitrate surface concentrations. At Denali NP in Alaska, 619 

all three experiments overestimate nitrate surface concentrations in all seasons with their 620 

maximum in DJF. Similarly, we find that MTC_WGT and MTC_SPLC produce higher 621 

nitrate surface concentrations than MTC_SLOW in all seasons and have stronger 622 

seasonal variations than MTC_SLOW at some EMEP and EANET sites. In Figures 7a 623 

and 7d-7f, observed nitrate surface concentrations have their maximum in April likely 624 

due to the seasonal variations of NH3 emissions. We also find some improvements of 625 

nitrate seasonality in Figures 7d-7f, especially at Malin Head. 626 

 627 

3.4. Vertical Profiles of Nitrate Aerosols 628 

In this section, we compare modeled vertical profiles of nitrate aerosols with 629 

measurements from aircraft campaigns. As shown in Figure 9, flights during INTEX-B, 630 

ARCTAS, DC3, and SEAC4RS mainly cover North America where nitrate burden is 631 

largely contributed by fine mode nitrate (Figure 3). These field experiments were 632 

conducted during our simulation period (2005-2014), mostly in MAM and JJA. In 633 
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general, MTC_SLOW significantly underestimates PM4 nitrate concentrations below/at 634 

500 hPa, compared to the observations, while MTC_WGT and MTC_SPLC substantially 635 

increase the concentrations and improve the model performance below/at 500 hPa 636 

(Figure 10). MTC_WGT and MTC_SPLC overestimate PM4 nitrate concentrations above 637 

400 hPa and sometimes exacerbate the high model biases there. All three experiments 638 

overestimate HNO3 concentrations over continental U.S. as well as Alaska (Figure S11), 639 

but it is not as significant as the high model biases of HNO3 surface concentrations at 640 

CASTNET sites (Figure 5).  641 

In Figure 10a, the high nitrate concentrations below 650 hPa, especially the spike at 642 

750 hPa are not captured by model simulations, possibly because we use monthly mean 643 

model output to get the profiles while the observed high nitrate concentrations are due to 644 

episodic pollution plumes over the Gulf of Mexico (Singh et al., 2009). The observed 645 

high nitrate concentrations from ARCTAS flights, such as the spike at 600 hPa in Figure 646 

10d, large values below 600 hPa in Figure 10e, and the spike at 700 hPa in Figure 10f, 647 

are likely caused by fire plumes from Siberia, California, and Saskatchewan (Jacob et al., 648 

2010). In Figure 10d, MTC_WGT and MTC_SPLC slightly overestimate the nitrate 649 

concentrations below 800 hPa in April, while MTC_SLOW has a better agreement with 650 

the observations. This is consistent with the comparison of nitrate surface concentrations 651 

at Denali NP in April (Figure 6f). In Figure 10e, the large low model biases of nitrate 652 

concentrations below 600 hPa, mostly based on measurements over California, are 653 

consistent with the comparison of nitrate surface concentrations at Joshua Tree NP in 654 
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June (Figure 5e). In Figures 10g-10j, all three experiments underestimate the nitrate 655 

concentrations below 500 hPa, which is different from the comparison of nitrate surface 656 

concentrations (Figure 4). The large spike at 600 hPa in Figure 10i is mostly caused by 657 

wildfires in western U.S. (Toon et al., 2016). 658 

As shown in Figure 11, ATom flights cover vast areas over the Pacific and Atlantic 659 

Ocean, where the nitrate concentrations are mainly contributed by particles in the coarse 660 

mode, and they were conducted in all seasons. We divide the observations and model 661 

results, which are interpolated from monthly mean output along the flight tracks, into 8 662 

sectors. Since the entire ATom campaigns were conducted during 2016-2018, we use the 663 

10-yr averaged monthly model results for the comparison. Similarly, we find that 664 

MTC_SLOW underestimates PM4 nitrate concentrations below/at 500 hPa over the 665 

Pacific and Atlantic, while MTC_WGT increases the concentrations and improves the 666 

model performance below/at 500 hPa (Figure 12). Nitrate concentrations from 667 

MTC_SPLC and MTC_WGT are close except for the regions strongly influenced by 668 

outflow of Sahara dust (Figures 12f and 12g), where MTC_WGT produces considerably 669 

higher nitrate concentrations (closer to observations) than MTC_SPLC. This is consistent 670 

with the higher nitrate burden over dust source regions in MTC_WGT than MTC_SPLC 671 

(Figure 2). Modeled HNO3 concentrations agree well with the observations above 600 672 

hPa (Figure S12). High model biases of HNO3 concentrations are found over the tropical 673 

Atlantic, North Atlantic, North Pacific and Arctic, while low biases occur over the South 674 

Atlantic, South Pacific, tropical Pacific, and Antarctic. As shown in Figure 12a, all three 675 
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experiments overestimate nitrate concentrations below 800 hPa over the Arctic, where 676 

there are high model biases of HNO3. This is consistent with the comparison of nitrate 677 

surface concentrations at Denali NP in all seasons.  678 

 679 

3.5. Radiative Forcing of Nitrate Aerosols 680 

Figure 13 shows RFari and RFaci of nitrate aerosols between PD (2005-2014) and PI 681 

(1850) from the three MOSAIC experiments. RFari and RFaci are calculated as the 682 

differences of REari and REaci, respectively, between the corresponding PD and PI 683 

experiments. In Figures 13a-13c, strong cooling signals are found over East Asia and 684 

India, where PD nitrate burden is high. MTC_WGT and MTC_SPLC produce larger 685 

RFari (–0.048 and –0.051 W m–2, respectively) than MTC_SLOW (–0.021 W m–2) 686 

because of the increase in fine mode burden over these regions (Figure 3). The RFari in 687 

MTC_SLOW is larger than that from L21 (–0.014 W m–2, see Table 5), because 688 

MTC_SLOW has higher PD nitrate burden in the fine mode than L21 (0.036 versus 0.030 689 

Tg N). The RFari from the three experiments is within the range (–0.12 to –0.02 W m–2) 690 

of AeroCom phase II models (Myhre et al., 2013) and near the upper end of the range (–691 

0.3 to –0.03 W m–2) from IPCC AR5 (Boucher et al., 2013). The RFari from MTC_SPLC 692 

is close to H14 and B07, but it is still lower than the estimates from A19, B11, and XP12, 693 

which mostly depends on the amount of fine mode nitrate. The RFari of ammonium 694 

aerosols is –0.068, –0.075, and –0.076 W m–2 (Figure S13), respectively.  695 

As shown in Figures 13d-13f, there are consistently negative values of RFaci over 696 
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North America, North Atlantic, Europe, Central Asia, Siberia, Tibetan Plateau, and North 697 

Pacific. Most of the areas pass the significant test (10%), which is different from the 698 

noisy spatial pattern of RFaci in Z21. Interestingly, we find similar warming signals over 699 

China as in Z21, which results from reduced cloud droplet number concentration 700 

differences (with and without nitrate formation) between PD and PI. This may be caused 701 

by the competition between the formation of coarse mode nitrate and accumulation mode 702 

sulfate for water vapor (Lu et al., 2021). The spatial pattern of the RFaci between 30ºS 703 

and 30ºN looks noisy, but the mean values (30ºS-30ºN) are still negative (–0.140, –0.232, 704 

and –0.256 W m–2, respectively). MTC_WGT and MTC_SPLC produce much stronger 705 

RFaci (–0.332 and –0.352 W m–2, respectively) than MTC_SLOW (–0.244 W m–2), as the 706 

increased fine mode nitrate leads to more CCN and cloud droplets in the former 707 

experiments. 708 

 709 

4. Discussion and Conclusions 710 

In this study, we implement the MOSAIC module (Zaveri et al., 2008) in E3SMv2 to 711 

simulate the spatiotemporal distributions of nitrate aerosols and estimate their radiative 712 

forcings due to aerosol-radiation and aerosol-cloud interactions (RFari and RFaci). We 713 

also modify the calculation of gas-aerosol mass transfer coefficient (MTC) in MOSAIC 714 

to consider different accommodation coefficients of HNO3 onto dust and non-dust 715 

particles. The MTC treatments in MTC_WGT and MTC_SPLC use higher αୌ୒୓య
 (0.65) 716 

onto non-dust and partially-dust particles than that in MTC_SLOW (0.0011), which 717 
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substantially enhance the HNO3 condensation onto fine and coarse interstitial aerosol 718 

particles. It leads to a significant increase of global annual mean nitrate burden from 719 

0.096 (MTC_SLOW) to 0.237 (MTC_WGT) and 0.185 Tg N (MTC_SPLC), which is 720 

mainly due to the increase of coarse mode nitrate burden. The tropospheric HNO3 burden 721 

reduces from 0.425 (MTC_SLOW) to 0.353 (MTC_WGT) and 0.389 Tg N 722 

(MTC_SPLC). The modeled nitrate lifecyle in MTC_SLOW is similar to those in Z21 723 

and L21 using CESM. The nitrate and HNO3 burdens from our three experiments are 724 

within the range of those from AeroCom phase III models in B17. The large spread in 725 

simulated nitrate burdens from previous studies results from not only their methods of 726 

gas-aerosol partitioning but also the large uncertainties in HNO3 burdens. MTC_WGT 727 

and MTC_SPLC increase the nitrate burden around the globe with relatively large 728 

increases in East Asia, India, Europe, northeastern U.S., and equatorial Africa, largely 729 

resulting from the substantial increase of HNO3 condensation onto fine mode interstitial 730 

aerosol particles. MTC_SPLC has lower production of coarse mode nitrate through 731 

gas-aerosol exchange and lower nitrate burden than MTC_WGT, especially over dust 732 

source regions.  733 

We evaluate modeled surface concentrations of nitrate, HNO3, and other species 734 

against ground-based observations from three regional surface networks (i.e., CASTNET 735 

over U.S., EMEP over Europe, and EANET over East Asia). Simulated nitrate surface 736 

concentrations in MTC_SLOW agree with the observations reasonably well, especially 737 

over Europe and East Asia, with small normalized mean biases (NMBs) of 51.5%, 1.4%, 738 
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and 20.1% respectively. MTC_WGT and MTC_SPLC significantly increase nitrate 739 

concentrations, which exacerbates the high biases and gives NMBs of ~260%, ~125%, 740 

and ~170%, respectively, for the three networks. All three experiments, particularly 741 

MTC_SLOW, significantly overestimate HNO3 surface concentrations, which also results 742 

in too large concentrations of combined nitrate aerosols and HNO3 gas. Thus, the better 743 

agreement of nitrate surface concentrations with observations in MTC_SLOW should be 744 

viewed with caution, because MTC_SLOW gives the largest NMBs (176-322%) for 745 

HNO3 at the three networks. These high biases of HNO3 surface concentrations are also 746 

found in Z21, L21, and most GCMs in B17. Seasonal variations of simulated and 747 

observed nitrate surface concentrations are compared at selected sites. MTC_WGT and 748 

MTC_SPLC produce higher nitrate surface concentrations than MTC_SLOW in all 749 

seasons and have stronger seasonal variations than MTC_SLOW at many sites. 750 

We compare simulated vertical profiles of PM4 nitrate concentrations with aircraft 751 

measurements from INTEX-B, ARCTAS, DC3, and SEAC4RS field campaigns that were 752 

conducted mainly in MAM and JJA over North America. MTC_SLOW significantly 753 

underestimates PM4 nitrate concentrations below 500 hPa compared with the 754 

observations, while MTC_WGT and MTC_SPLC substantially increase the nitrate 755 

concentrations and improve the model performance below 500 hPa. We also compare 756 

simulated vertical profiles of PM4 nitrate concentrations with measurements from ATom 757 

campaigns that were conducted in all seasons over vast areas in the Pacific and Atlantic 758 

Ocean. Similarly, we find that MTC_SLOW underestimates PM4 nitrate concentrations 759 
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below 400 hPa over the Pacific and Atlantic, while MTC_WGT increases the 760 

concentrations and improves the model performance below 400 hPa. MTC_SPLC 761 

produces considerably lower nitrate concentrations than MTC_WGT in the tropical and 762 

North Atlantic, where nitrate formation processes are strongly influenced by outflow of 763 

Sahara dust. Unlike the comparisons of nitrate and HNO3 surface concentrations with 764 

ground-based observations showing high biases, MTC_WGT and MTC_SPLC tend to 765 

improve the model performance in simulating vertical profiles of nitrate and HNO3. We 766 

do not find significant overall high biases of HNO3 concentrations in the troposphere 767 

from the five campaigns, especially near the surface. It should be noted that the 768 

comparisons with aircraft measurements are subject to considerable spatiotemporal 769 

representativeness errors, given the very limited coverage of flight tracks. More 770 

measurements of vertical profiles of nitrate and HNO3 concentrations as well as 771 

ground-based observations in the SH, South Asia, and East Asia are needed to evaluate 772 

and constrain the model performance.  773 

Large RFari values are found over East Asia and India where present-day nitrate 774 

burden is high. MTC_WGT and MTC_SPLC produce larger RFari (–0.048 and –0.051 W 775 

m–2, respectively) than MTC_SLOW (–0.021 W m–2) because of the increase in fine 776 

mode burden. There are consistently negative values of RFaci over North America, North 777 

Atlantic, Europe, Central Asia, Siberia, Tibetan Plateau, and North Pacific in all three 778 

experiments. The RFari from all three experiments is within the range (–0.12 to –0.02 W 779 

m–2) of AeroCom phase II models (Myhre et al., 2013) and near the upper end of the 780 
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range (–0.3 to –0.03 W m–2) from IPCC AR5 (Boucher et al., 2013). MTC_WGT and 781 

MTC_SPLC produce a stronger RFaci (–0.332 and –0.352 W m–2, respectively) than 782 

MTC_SLOW (–0.244 W m–2), as the increased fine mode nitrate aerosols lead to more 783 

CCN and consequently impact on cloud properties.  784 

The sensitivity of simulated nitrate aerosol to the MTC treatments in this study 785 

suggests that a model version in which dust and sea salt particles are treated as externally 786 

mixed (i.e., in separate modes) from each other and from anthropogenic particles should 787 

be developed. 788 

 789 

Data Availability Statement 790 

CASTNET data can be downloaded from https://www.epa.gov/castnet. AQS data can be 791 

downloaded from https://www.epa.gov/outdoor-air-quality-data. AMoN data can be 792 

downloaded from http://nadp.slh.wisc.edu/amon/. EMEP data can be downloaded from 793 

https://www.emep.int/. EANET data can be downloaded from 794 

https://monitoring.eanet.asia/document/public/index. INTEX-B, ARCTAS, DC3, and 795 

SEAC4RS data are available at https://www-air.larc.nasa.gov/data.htm. ATom data are 796 

available at https://espo.nasa.gov/atom. The E3SMv2 source code is available at 797 

https://github.com/E3SM-Project/E3SM. 798 
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 1283 

Table 1. List of Aerosol Species in the Default and Modified MAM4 Modes 1284 

Species Accumulation Aitken Coarse Primary carbon 

BC D  D D 

POM D  D D 

SOA D D D  

MOA D D D D 

SO4 D D D  

NH4 M M M  

NO3 M M M  

Cl D D D  

Na M M M  

Dust D M D  

Ca M M M  

CO3 M M M  

Total 12 10 12 3 

Note. “D” indicates species that are present in both default MAM4 and MOSAIC-MAM4. 1285 

“M” indicates species added to MOSAIC-MAM4.  1286 

 1287 

 1288 

 1289 

 1290 

 1291 

 1292 

 1293 

 1294 

 1295 

 1296 
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 1297 

Table 2. Summary of Model Experiments with Different Configurations 1298 

Experiment Aerosol and Precursor 

Gas Emission 

Nitrate 

Yes/No 

Description 

Default 2005-2014 (PD) N Default setting of E3SMv2 

 1850 (PI) N 

MZT 2005-2014 (PD) N E3SMv2 with MOZART gas chemistry 

 1850 (PI) N 

MTC_SLOW 2005-2014 (PD) Y MOZART-MAM4-MOSAIC; αୌ୒୓య ൑ 0.0011 for all aerosol modes 

in MAM4    2005-2014 (PD) N 

 1850 (PI) Y 

 1850 (PI) N 

MTC_WGT 2005-2014 (PD) Y αୌ୒୓య ൑ 0.0011  for dust particles; αୌ୒୓య ൌ 0.193  for non-dust 

particles; calculating dust-weighted MTCs for each mode using 

parameters (rp,m, nm, and αୌ୒୓య) for dust/non-dust particles 

 2005-2014 (PD) N 

 1850 (PI) Y 

 1850 (PI) N 

MTC_SPLC 2005-2014 (PD) Y same as MTC_WGT in the accumulation and Aitken mode but 

splitting coarse mode aerosols into the coarse dust and sea salt 

sub-mode in MOSAIC; αୌ୒୓య ൑ 0.0011  in the coarse dust 

sub-mode; αୌ୒୓య ൌ 0.193 in the sea salt sub-mode.  

 2005-2014 (PD) N 

 1850 (PI) Y 

 1850 (PI) N 

MTC_SPLAC 2005-2014 (PD) Y same as MTC_SPLC in the Aitken and coarse mode but splitting 

accumulation mode aerosols into the fine dust, sea salt and carbon 

mode in MOSAIC 

MTC_FAST 2005-2014 (PD) Y same as MTC_SLOW but use αୌ୒୓య ൌ 0.193 for all aerosol modes 

in MAM4 

 1299 

 1300 

 1301 

 1302 

 1303 

 1304 

 1305 
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 1306 

Table 3. Mass Budgets of Nitrate and Ammonium in the Three E3SM Experiments 1307 

NO3 MTC_SLOW MTC_WGT MTC_SPLC 

Aqueous Chemistry (Tg N a–1) 37.0 (36.9, 0.1) 28.6 (28.5, 0.1) 30.0 (29.9, 0.1) 

Gas-aerosol Exchange (Tg N a–1) –24.2 (–30.5, 6.3) –4.8 (–20.8, 16.0) –8.9 (–21.7, 12.8) 

Gas-aerosol Exchange Production (Tg N a–1) 26.8 (20.0, 6.8) 48.5 (29.6, 18.9) 48.6 (32.4, 16.3) 

Gas-aerosol Exchange Loss (Tg N a–1) –51.7 (–51.4, –0.3) –53.9 (–51.5, –2.4) –57.5 (–54.9, –2.6) 

Net Chemistry Production (Tg N a–1) 12.8 (6.4, 6.4) 23.8 (7.7, 16.0) 21.1 (8.2, 12.9) 

Dry Deposition (Tg N a–1) 4.3 (1.1, 3.1) 9.6 (1.7, 8.0) 8.2 (1.7, 6.5) 

Wet Deposition (Tg N a–1) 8.5 (5.3, 3.3) 14.1 (6.1, 8.1) 12.8 (6.5, 6.4) 

Burden (Tg N) 0.096 (0.036, 0.061) 0.237 (0.068, 0.169) 0.185 (0.076, 0.110) 

Lifetime (day) 2.75 (2.02, 3.47) 3.64 (3.20, 3.85) 3.21 (3.38, 3.11) 

NH4 MTC_SLOW MTC_WGT MTC_SPLC 

Aqueous Chemistry (Tg N a–1) 8.0 3.7 3.7 

Gas-aerosol Exchange (Tg N a–1) 8.5 16.1 16.4 

Net Chemistry Production (Tg N a–1) 16.5 19.8 20.1 

Dry Deposition (Tg N a–1) 4.4 5.7 5.7 

Wet Deposition (Tg N a–1) 12.4 14.4 14.7 

Burden (Tg N) 0.390 (0.388, 0.003) 0.430 (0.421, 0.009) 0.436 (0.431, 0.006) 

Lifetime (day) 8.46 7.80 7.82 

Note. Values in parentheses are for the fine (accumulation and Aitken mode) and coarse 1308 

mode, respectively. 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

 1315 

 1316 

 1317 
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 1318 

Table 4. Nitrate Mass Budgets in the Three E3SM Experiments Compared with Other 1319 

Studies 1320 

 Burden (Tg N) ChemP (Tg N a–1) Dry Dep (Tg N a–1) Wet Dep (Tg N a–1) Lifetime (day) 

MTC_SLOW 0.096 (36.9, 63.1)a 12.8 (6.4, 6.4)b 4.3 8.5 2.75 

MTC_WGT 0.237 (28.7, 71.3) 23.8 (7.7, 16.0) 9.6 14.1 3.64 

MTC_SPLC 0.185 (40.9, 59.1) 21.1 (8.2, 12.9) 8.2 12.8 3.21 

Bian et al. (2017) (B17) 0.14 [0.03, 0.42]c 

0.15 [0.06, 0.22]e 

13.7 [1.5, 28.3]d 

13.0 [10.5, 16.2] 

4.7 [0.25, 10.8] 

4.6 [1.0, 10.5] 

10.4 [1.2, 20.5] 

10.5 [7.1, 14.2] 

5.0 [2.0, 7.8] 

4.2 [2.1, 5.9] 

Lu et al. (2021) (L21) 0.11 (27.3, 72.7) 

0.135f 

12.3 (5.1, 7.1) 

 

2.8 

 

9.3 

   

3.3 

Zaveri et al. (2021) (Z21) 0.139 21.7 9.0 12.5 2.36 

Xu & Penner (2012) (XP12) 0.17 (52.3, 47.7)g 15.9 (8.5, 7.4) 4.0 12.0 3.92 

Feng & Penner (2007) (FP07) 0.16 (42.9, 57.1)g 11.6 (4.6, 7.1) 3.0 8.6 5.0 

Hauglustaine et al. (2014) (H14) 0.18 (27.8, 72.2) 14.4 (3.2, 11.2) 1.7 12.7 4.61 
aValues in parentheses are mass fractions for the fine (accumulation and Aitken mode) 1321 

and coarse modes, respectively. bValues in parentheses are net chemistry productions in 1322 

the fine and coarse modes, respectively. cValues in brackets are minimum and maximum 1323 

values, respectively. dValues (mean, minimum, and maximum) are summarized from 7 1324 

GCMs (9 in total). Only two GCMs directly report chemistry production. The values for 1325 

the other five GCMs are obtained from the sum of dry and wet deposition. eWe select 4 1326 

GCMs which simulate the formation of nitrate aerosols in both the fine and coarse modes 1327 

and consider the heterogeneous reactions on dust and sea salt particles. fThe value is from 1328 

the experiment coupling MOSAIC and MAM7 in CESM2. gFine mode is for dp < 1.25 1329 

m.    1330 

 1331 

 1332 

 1333 

 1334 

 1335 

 1336 

 1337 
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 1338 

Table 5. RFari and RFaci of Nitrate Aerosols from This Study Compared with Other 1339 

Studies 1340 

 RFari (W m–2) RFaci (W m–2) Period 

MTC_SLOW –0.021 –0.244 1850-2010 

MTC_WGT –0.048 –0.332 1850-2010 

MTC_SPLC –0.051 –0.352 1850-2010 

Lu et al. (2021) (L21) –0.014 –0.219 1850-2010 

Xu & Penner (2012) (XP12) –0.12 N/A 1850-2010 

An et al. (2019) (A19) –0.14 N/A 1850-2010 

Hauglustaine et al. (2014) (H14) –0.056 N/A 1850-2000 

Bellouin et al. (2011) (B11) –0.12 N/A 1860-2000 

Bauer et al. (2007) –0.06 N/A 1750-2000 

Li et al. (2015) –0.025 N/A 1850-2000 

Boucher et al. (2013) –0.11 (–0.3 to –0.03) N/A 1750-2010 

Myhre et al. (2013) –0.08 (–0.12 to –0.02) N/A 1850-2000 

 1341 

 1342 

 1343 

 1344 

 1345 

 1346 

 1347 

 1348 

 1349 
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Contents of this file 23 

Figures S1 to S13 24 

Tables S1 to S4 25 

 26 

Introduction 27 

In the Supporting Information section, we prepared 13 figures and 4 tables to support the 28 

main manuscript. Table S1 gives the mass budget of nitrate in MTC_SPLAC and 29 

MTC_FAST. Table S2 gives the mass budget of sulfate from 5 E3SM experiments. Table 30 

S3 lists the tropospheric HNO3 burden in the three MOSAIC experiments compared with 31 

other studies. Table S4 lists the mean surface molar concentrations of aerosols and gases 32 

for Figures 4 and 5 in the main manuscript. Figure S1 evaluates the modeled tropospheric 33 

column ozone against OMI/MLS retrievals. Figure S2 compares modeled tropospheric 34 

C2H6, C3H8, C2H2, and C2H4 with summaries of observations from aircraft campaigns. 35 

Figure S3 shows the spatial distributions of nitrate column mass tendencies due to 36 

aqueous chemistry and gas-aerosol exchange. Figure S4 shows the spatial distributions of 37 

ammonium burden. Figure S5 shows the latitude-altitude cross sections of nitrate 38 

concentrations. Figure S6 evaluates modeled surface concentrations of nitrate aerosols 39 

and HNO3 from Zaveri et al. (2021) and Lu et al. (2021) against observations at 40 

CASTNET, EMEP, and EANET network sites. Figure S7 evaluates modeled surface 41 

concentrations of NOx against observations at AQS, EMEP, and EANET network sites. 42 
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Table S1. Mass Budgets of Nitrate in MTC_SPLAC and MTC_FAST 200 

NO3 MTC_FAST MTC_SPLAC 

Aqueous Chemistry (Tg N a–1) 26.8 (26.8, 0.1) 29.4 (29.3, 0.1) 

Gas-aerosol Exchange (Tg N a–1) –0.4 (–19.7, 19.2) –7.9 (–21.0, 13.1) 

Net Chemistry Production (Tg N a–1) 26.4 (7.1, 19.3) 21.1 (8.3, 13.2) 

Dry Deposition (Tg N a–1) 11.3 (1.5, 9.8) 8.4 (1.7, 6.7) 

Wet Deposition (Tg N a–1) 15.0 (5.6, 9.5) 13.1 (6.6, 6.5) 

Burden (Tg N) 0.256 (0.061, 0.194) 0.191 (0.080, 0.111) 

Lifetime (day) 3.54 (3.18, 3.68) 3.25 (3.51, 3.08) 

Note. Values in parentheses are for the fine (accumulation and Aitken mode) and coarse 201 

modes, respectively. 202 

 203 

Table S2. Mass Budgets of nss-Sulfate 204 

nss-SO4 Default MZT MTC_SLOW MTC_WGT MTC_SPLC 

Emission (Tg S a-1) 1.81 1.81 1.81 (61.89) 1.81 (61.92) 1.81 (61.89) 

Aqueous chemistry (Tg S a-1) 24.18 19.29  20.08 20.09 19.41 

Gas-aerosol exchange (Tg S a-1) 15.80 12.93  12.65 12.51 12.60 

Dry deposition (Tg S a-1) 8.79  8.11  8.37 (52.88) 8.24 (52.82) 8.24 (52.80) 

Wet deposition (Tg S a-1) 33.12  26.36  26.99 (42.58) 26.96 (42.53) 27.01 (42.57) 

Burden (Tg S) 0.784 0.703 0.706 (0.844) 0.702 (0.840) 0.705 (0.843) 

Life time (day) 6.83  7.45  7.29 (3.23) 7.27 (3.22) 7.29 (3.23)  

Note. Values in parentheses are for total sulfate, including ss-sulfate.   205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 
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Table S3. Tropospheric HNO3 burden in the Three E3SM Experiments Compared with 213 

Other Studies 214 

 Burden (Tg N)a 

MTC_SLOW 0.425  

MTC_WGT 0.353  

MTC_SPLC 0.389 

Bian et al. (2017) 0.56 [0.15, 1.3]b 

0.39 [0.15, 0.69]c 

Lu et al. (2021) 0.637  

Zaveri et al. (2021) 0.422 

Xu & Penner (2012) 0.30  

Feng & Penner (2007) 0.37  
aValues are calculated as pressure > 100 hPa for Bian et al. (2017), Lu et al. (2021), 215 

Zaveri et al. (2021), and this study; pressure > 150 hPa for Xu and Penner (2012); and 216 

pressure > 200 hPa for Feng and Penner (2007). bValues in brackets are minimum and 217 

maximum values, respectively. cWe select 4 GCMs which simulate the formation of 218 

nitrate aerosols in both the fine and coarse modes and consider the heterogeneous 219 

reactions on dust and sea salt particles.    220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 
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Table S4. Mean Surface Molar Concentrations (ppb in STP; converted from g m–3) of 232 

Aerosols and Precursor Gases for Figures 4 and 5.  233 

Region Specie Observation MTC_SLOW MTC_WGT MTC_SPLC 

U.S. NO3 0.28  0.43  1.01  1.01  

 HNO3 0.33 1.30 0.97 0.97 

 NO3+HNO3 0.61 1.72 1.98 1.98 

 NH4 0.97 0.92  1.54 1.54 

 NH3 2.17 1.90 1.47 1.47 

 NH4+NH3 3.14 2.82 3.01 3.02 

 SO4 0.49 0.46  0.46 0.46 

 SO2 0.72 1.32 1.33 1.33 

Europe NO3 0.56 0.53 1.18 1.17 

 HNO3 0.25 0.70 0.44 0.44 

 NO3+HNO3 0.82 1.23 1.62 1.61 

 NH4 1.06 0.77 1.60 1.60 

 NH3 1.70 2.45 1.87 1.87 

 NH4+NH3 2.76 3.22 3.47 3.47 

 SO4 0.42 0.34 0.35 0.35 

 SO2 0.47 1.00 1.00 1.00 

East Asia NO3 0.44 0.53 1.21 1.19 

 HNO3 0.45 1.92 1.37 1.38 

 NO3+HNO3 0.89 2.44 2.58 2.57 

 NH4 1.28 1.43 2.16 2.19 

 NH3 2.48 2.13 1.69 1.69 

 NH4+NH3 3.76 3.56 3.84 3.87 

 SO4 0.87 0.83 0.84 0.84 

 SO2 2.46 2.37 2.38 2.39 

 234 

 235 

 236 

 237 


