Development and evaluation of E3SM-MOSAIC: Spatial distributions and radiative effects of nitrate aerosol

Mingxuan Wu¹, Hailong Wang¹, Richard C. Easter², Zheng Lu³, Xiaohong Liu³, Balwinder Singh⁴, Po-Lun Ma⁴, Qi Tang⁵, Rahul A. Zaveri¹, Ziming Ke³, Rudong Zhang⁶, Louisa K. Emmons⁷, Simone Tilmes⁷, Jack E. Dibb⁸, Xue Zheng⁵, Shaocheng Xie⁹, and L. Ruby Leung¹⁰

¹Pacific Northwest National Laboratory
²Pacific Northwest National Laboratory
³Texas A&M University
⁴Pacific Northwest National Laboratory (DOE)
⁵Lawrence Livermore National Laboratory (DOE)
⁶Lanzhou University
⁷National Center for Atmospheric Research (UCAR)
⁸University of New Hampshire
⁹Lawrence Livermore National Laboratory
¹⁰PNNL

November 22, 2022

Abstract

Nitrate aerosol plays an important role in affecting regional air quality as well as Earth's climate. However, it is not well represented or even neglected in many global climate models. In this study, we couple the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol Module (MAM4) in DOE's Energy Exascale Earth System Model version 2 (E3SMv2) to treat nitrate aerosol and its radiative effects. We find that nitrate aerosol simulated by E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO₃ transfer to/from interstitial particles related to accommodation coefficients of HNO₃ ($\alpha_{\rm HNO3}$) on dust and non-dust particles. We compare three different treatments of HNO₃ transfer: 1) a treatment (MTC_SLOW) that uses a low $\alpha_{\rm HNO3}$ in the mass transfer coefficient (MTC) calculation; 2) a dust-weighted MTC treatment (MTC_WGT) that uses a low $\alpha_{\rm HNO3}$ on non-dust particles; and 3) a dust-weighted MTC treatment that also splits coarse mode aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC_SPLC). MTC_WGT and MTC_SPLC increase the global annual mean (2005-2014) nitrate burden from 0.096 (MTC_SLOW) to 0.237 and 0.185 Tg N, respectively, mostly in the coarse mode. They also produce stronger nitrate direct radiative forcing (-0.048 and -0.051 W m⁻², respectively) and indirect forcing (-0.33 and -0.35 W m⁻², respectively) than MTC_SLOW (-0.021 and -0.24 W m⁻²). All three treatments overestimate nitrate surface concentrations compared with ground-based observations. MTC_WGT and MTC_SPLC improve the vertical profiles of nitrate concentrations against aircraft measurements below 400 hPa.

1 Development and evaluation of E3SM-MOSAIC: Spatial distributions

2 and radiative effects of nitrate aerosol

- 3 Mingxuan Wu¹, Hailong Wang¹, Richard C. Easter¹, Zheng Lu², Xiaohong Liu²,
- 4 Balwinder Singh¹, Po-Lun Ma¹, Qi Tang³, Rahul A. Zaveri¹, Ziming Ke², Rudong Zhang¹,
- 5 Louisa K. Emmons⁴, Simone Tilmes⁴, Jack E. Dibb⁵, Xue Zheng³, Shaocheng Xie³, L.

6 Ruby Leung¹

- 7
- ¹Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA,
 USA
- 10 ²Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
- 11 ³Lawrence Livermore National Laboratory, Livermore, CA, USA
- ⁴National Center for Atmospheric Research, Boulder, CO, USA
- 13 ⁵Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New
- 14 Hampshire, Durham, NH, USA
- 15 Correspondence to: mingxuan.wu@pnnl.gov and hailong.wang@pnnl.gov
- 16

17 Key Points:

- The MOSAIC module is implemented in E3SMv2 with MOZART gas chemistry 18 • to simulate nitrate aerosols 19 Modeled nitrate concentrations are in good agreement with aircraft observations 20 • but have high biases at the surface 21 Treatments of HNO₃ accommodation coefficients and the mixing state of dust and 22 • sea salt particles significantly impact nitrate lifecycle 23 24
- 25

26 Abstract

27 Nitrate aerosol plays an important role in affecting regional air quality as well as Earth's climate. However, it is not well represented or even neglected in many global 28 climate models. In this study, we couple the Model for Simulating Aerosol Interactions 29 and Chemistry (MOSAIC) module with the four-mode version of the Modal Aerosol 30 Module (MAM4) in DOE's Energy Exascale Earth System Model version 2 (E3SMv2) to 31 treat nitrate aerosol and its radiative effects. We find that nitrate aerosol simulated by 32 E3SMv2-MAM4-MOSAIC is sensitive to the treatment of gaseous HNO₃ transfer 33 to/from interstitial particles related to accommodation coefficients of HNO₃ (α_{HNO_3}) on 34 dust and non-dust particles. We compare three different treatments of HNO₃ transfer: 1) a 35 treatment (MTC_SLOW) that uses a low α_{HNO_3} in the mass transfer coefficient (MTC) 36 calculation; 2) a dust-weighted MTC treatment (MTC_WGT) that uses a high α_{HNO_3} on 37 non-dust particles; and 3) a dust-weighted MTC treatment that also splits coarse mode 38 aerosols into the coarse dust and sea salt sub-modes in MOSAIC (MTC SPLC). 39 MTC WGT and MTC SPLC increase the global annual mean (2005-2014) nitrate 40 burden from 0.096 (MTC SLOW) to 0.237 and 0.185 Tg N, respectively, mostly in the 41 coarse mode. They also produce stronger nitrate direct radiative forcing (-0.048 and -42 0.051 W m⁻², respectively) and indirect forcing (-0.33 and -0.35 W m⁻², respectively) 43 than MTC SLOW (-0.021 and -0.24 W m⁻²). All three treatments overestimate nitrate 44 surface concentrations compared with ground-based observations. MTC WGT and 45 MTC SPLC improve the vertical profiles of nitrate concentrations against aircraft 46

47 measurements below 400 hPa.

48

49 Plain Language Summary

Atmospheric aerosols play an important role in the Earth's climate system through 50 their effects on radiation and clouds, and their representation continues to be a major 51 52 uncertainty in global climate models. Nitrate aerosol accounts for a notable fraction of total aerosol mass, but it is crudely represented or even neglected in many modern global 53 climate models. In this study, we implement a comprehensive but computationally 54 efficient aerosol chemistry module in the U.S. DOE Energy Exascale Earth System 55 Model version 2 (E3SMv2), a state-of-the-science global climate model, to simulate 56 nitrate aerosols and quantify their radiative effects. Modeled nitrate concentrations are in 57 good agreement with aircraft observations but have positive biases relative to 58 ground-based network measurements. We also find that simulated nitrate lifecycle is 59 sensitive to the treatment of gaseous HNO₃ transfer to/from interstitial particles related to 60 a parameter characterizing the sticking probability of a gas molecule at the surface of 61 different aerosols such as dust and sea salt particles. 62

- 63
- 64
- 65
- 66

67

68 **1. Introduction**

Nitrate, formed in the atmosphere via gas-to-particle conversion of NO_x, plays an 69 important role in the Earth's climate (Boucher et al., 2013; Naik et al., 2021). It can affect 70 the Earth's radiation budget directly through scattering solar radiation (e.g., Adams et al., 71 2001; van Dorland et al., 1997) and indirectly through acting as cloud condensation 72 nuclei (CCN) (e.g., Kulmala et al., 1993; Xu & Penner, 2012 [XP12]). The formation of 73 74 nitrate aerosols can also impact the atmospheric chemistry. Ammonium nitrate forms predominantly in the fine aerosol mode through the aqueous phase reaction between 75 HNO₃ and excess NH₃ (left after fully neutralizing sulfate) (e.g., Bassett & Seinfeld, 76 1983; Metzger et al., 2002). Nitrate aerosols can also form in the coarse aerosol mode 77 through heterogeneous reactions of nitrogen species such as HNO₃ and N₂O₅ on the 78 79 surface of mineral dust and sea salt particles (e.g., Chen et al., 2020; Dentener et al., 1996; Liao et al., 2003). Consequently, the consumption of HNO₃ and N₂O₅ to form nitrate 80 81 aerosols reduces NO_x and further leads to a reduction of O₃ (e.g., Bauer et al., 2007 [B07]; 82 Liao & Seinfeld, 2005; Riemer et al., 2003). More importantly, nitrate aerosols are likely to increase in the future, exerting a stronger radiative forcing (RF) on climate (e.g., Bauer 83 et al., 2007; Bellouin et al., 2011 [B11]; Hauglustaine et al., 2014 [H14]), due to 84 projected reductions in NO_x and SO₂ emissions but increase in NH₃ emissions in future 85 scenarios. 86

B7 Despite the important roles, nitrate aerosols are not treated in many global climate
B8 models (GCMs) participating in the Coupled Model Intercomparison Project phase 6

89	(CMIP6), which may influence the estimate of historical aerosol RF and the projection of
90	future climate change. Only a limited number of GCMs explicitly simulate the lifecycle
91	of nitrate aerosols and quantify their RF, or radiative effect (RE), due to aerosol-radiation
92	interactions (REari/RFari) (e.g., Adams et al., 2001; An et al., 2019 [A19]; Bellouin et al.,
93	2011; Bian et al., 2017 [B17]; Feng & Penner, 2007 [FP07]; Hauglustaine et al., 2014;
94	Liao et al., 2003; Lu et al., 2021 [L21]; Myhre et al., 2013; Skeie et al., 2011; Xu &
95	Penner, 2012; Zaveri et al., 2021 [Z21]; Zhou et al., 2012). Even fewer studies have
96	assessed nitrate RF/RE due to aerosol-cloud interactions (RFaci/REaci) (e.g., Lu et al.,
97	2021; Xu & Penner, 2012; Zaveri et al., 2021). B17 found that global nitrate burdens
98	from 9 GCMs participating in the Aerosol Comparisons between Observations and
99	Models (AeroCom) phase III range from 0.03 to 0.43 Tg N with a median value of 0.13
100	Tg N. Z21 summarized the simulated nitrate burdens from 12 previous studies and
101	reported a range from 0.013 to 0.52 Tg N with a median value of 0.14 Tg N. The large
102	spread in the simulated nitrate burdens results in large uncertainties in estimating nitrate
103	RFari. In AeroCom phase II experiments, global mean nitrate RFari (1850-2000) is
104	estimated to be -0.08 W m ⁻² with a range from -0.12 to -0.02 W m ⁻² (Myhre et al., 2013)
105	The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5)
106	gives a similar estimate of -0.11 W m ⁻² (1750-2010) but with a larger spread from -0.30
107	to -0.03 W m^{-2} (Boucher et al., 2013).

108 One key challenge in simulating the formation of nitrate aerosols is the dynamic mass 109 transfer between gas-phase HNO₃ and nitrate aerosols. Previous laboratory and field

studies found that the equilibrium timescale for submicron nitrate aerosols ranges from a 110 few seconds (for particle diameter $d_p = 0.1 \ \mu m$) to around 20 minutes (for $d_p = 1 \ \mu m$) 111 112 (Cruz et al., 2000; Dassios & Pandis, 1999; Fountoukis et al., 2009; Meng & Seinfeld, 1996), whereas it requires much longer, a few hours to days, for supermicron particles to 113 reach equilibrium (Fridlind & Jacobson, 2000; Meng & Seinfeld, 1996). Most GCMs 114 115 have adopted thermodynamic equilibrium models (TEQMs), such as ISORROPIA-I (Nenes et al., 1998), ISORROPIA-II (Fountoukis & Nenes, 2007), and EQSAM3 116 (Metzger & Lelieveld, 2007), to treat the gas-aerosol partitioning (e.g., Adams et al., 117 2001; An et al., 2019; Bauer et al., 2007; Bellouin et al., 2011; Bian et al., 2017; 118 Hauglustaine et al., 2014; Zhou et al., 2012). FP07 used a hybrid dynamical approach 119 120 (HDYN), which assumes instantaneous thermodynamic equilibrium for fine aerosols (d_p in 0.01–0.63 µm) and calculates dynamical mass transfer for coarse aerosols (dp in 0.63– 121 10.0 µm). They found that the HDYN approach predicts less nitrate burden, especially in 122 123 the coarse mode, than the common approach (e.g., Bian et al., 2017; Fairlie et al., 2010; Hauglustaine et al., 2014) that combines a TEQM and the first-order gas-to-particle 124 approximation to calculate the rates of heterogeneous reactions of HNO₃ onto dust and 125 sea salt particles. Very few global modeling studies have used a fully dynamic treatment 126 for partitioning HNO₃ over the entire aerosol size distribution (Lu et al., 2021; Zaveri et 127 al., 2021). 128

129 The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et130 al., 2008) is a comprehensive aerosol chemistry module. It uses the Adaptive Step

131	Time-split Euler Method (ASTEM) submodule to simulate the dynamic partitioning
132	between all semivolatile gases (HNO ₃ , NH ₃ , HCl, and secondary organic aerosol [SOA]
133	precursors) and particles of different sizes in an accurate but computationally efficient
134	way. A sectional version of MOSAIC was first implemented in the Weather Research and
135	Forecasting Model with Chemistry (WRF-Chem) (Fast et al., 2006) and applied in many
136	regional studies (e.g., Gao et al., 2014; Zhang et al., 2012). Recently, Z21 and L21
137	implemented MOSAIC in the Community Earth System Model version 1 (CESM1) and
138	version 2 (CESM2), respectively, and coupled it with the Model for Ozone and Related
139	chemical Tracers (MOZART) gas chemistry (Emmons et al., 2020) and the 7-mode and
140	4-mode version of Modal Aerosol Module (MAM7 and MAM4) (Liu et al., 2012; Liu et
141	al., 2016), respectively. The simulated concentrations of sulfate, nitrate, and ammonium
142	aerosols in CESM1 and CESM2 agree reasonably well with observations. However, they
143	used a low accommodation coefficient for ${\rm HNO}_3$ ($\alpha_{{\rm HNO}_3} \leq 0.0011$) in the
144	dust-containing MAM aerosol modes, which was measured for HNO3 on pure dust
145	particles (Fairlie et al., 2010; Li et al., 2012). This may substantially underestimate the
146	formation of nitrate aerosols associated with gas-aerosol partitioning, particularly in the
147	MAM4 coarse mode that contains predominately sea salt over oceans, because previous
148	studies found that α_{HNO_3} on sea salt particles is much larger than the one for dust
149	particles (e.g., Abbatt & Waschewsky, 1998; Fairlie et al., 2010; Guimbaud et al., 2002;
150	Li et al., 2012; Song et al., 2007).

151 In this study, we implement MOSAIC in DOE's Energy Exascale Earth System

152	Model version 2 (E3SMv2) and coupled it with MAM4 (Liu et al., 2016; Wang et al.,
153	2020) and MOZART gas-phase chemistry (Emmons et al., 2010; Tilmes et al., 2015). We
154	also modify the calculation of mass transfer coefficients (MTCs) in MOSAIC to consider
155	different accommodation coefficients of HNO3 on particles that are mostly dust, partially
156	dust, and non-dust. The goals of this study are to (1) evaluate the performance of
157	E3SMv2-MOSAIC in simulating the spatiotemporal distributions of nitrate aerosols
158	against ground-based observations and aircraft measurements, (2) examine the impacts of
159	treatments of mass transfer between gaseous HNO3 and interstitial particles on the
160	lifecycle of nitrate aerosols due to different α_{HNO_3} on dust and non-dust particles, and (3)
161	quantify RFari and RFaci of nitrate aerosols in E3SMv2. The paper is organized as
162	follows. Section 2 describes the calculation of MTCs, accommodation coefficients, the
163	coupling between MOSAIC and MAM4/MOZART in E3SMv2, and the model
164	experiments design. Section 3 shows the changes of nitrate mass budgets due to different
165	MTC treatments, evaluates modeled nitrate concentrations against ground-based
166	observations and aircraft measurements, and then gives the estimation of RFari and RFaci
167	of nitrate aerosols. Discussion and conclusions are presented in Section 4.

168

169 **2. Methodology**

170 **2.1. Model Description**

In this study, we use E3SMv2 (Golaz et al., 2022) along with its atmosphere component (EAMv2) and land component (ELMv2). Compared to EAMv1 (Rasch et al.,

8

173	2019; Xie et al., 2018), the deep convection scheme (ZM, Zhang & McFarlane, 1995) in
174	EAMv2 adopts the dynamic Convective Available Potential Energy (dCAPE) trigger (Xie
175	& Zhang, 2000) and an unrestricted air parcel launch level (ULL) approach (Wang et al.,
176	2015), which improves the simulated precipitation (Xie et al., 2019), particularly the
177	precipitation diurnal cycle. EAMv2 mostly adopts most of the tunable parameters in the
178	parameterizations of (1) turbulence, cloud macrophysics, and shallow convection
179	(CLUBB, Golaz et al., 2002; Bogenschutz et al., 2013), (2) deep convection, and (3)
180	cloud microphysics (MG2, Gettelman & Morrison, 2015) from the recalibrated
181	atmosphere model, EAMv1P, which significantly improves the simulations of clouds and
182	precipitation climatology (Ma et al., 2022). The high equilibrium climate sensitivity (ECS
183	= 5.3 K) in E3SMv1 is also reduced to 4 K in E3SMv2.

In MAM4 of EAMv2 (Liu et al., 2016; Wang et al., 2020), mass and number mixing 184 ratios of aerosol species, including black carbon (BC), primary organic matter (POM), 185 SOA, marine organic aerosol (MOA), sulfate, mineral dust, sea salt and aerosol water, in 186 four lognormal modes are predicted with a prescribed geometric standard deviation for 187 each mode. Aerosol particles are assumed to be internally mixed within the same mode 188 and externally mixed between different modes. Compared to EAMv1, EAMv2 changes 189 the size distribution of emitted dust particles following the brittle fragmentation theory 190 (Kok, 2011) with prescribed mass fraction of 1.1% and 98.9% for the accumulation and 191 coarse modes, respectively. 192

193

9

194 **2.2.** The Coupling between MOSAIC and MAM4/MOZART

To couple MOSAIC with MAM4 in EAMv2, we add additional aerosol species in 195 MAM4 following L21. As listed in Table 1, we add nitrate aerosol (NO_3^-) to the 196 accumulation, Aitken, and coarse modes to simulate the formation of various salts 197 containing nitrate anions (e.g., NH₄NO₃, NaNO₃, and Ca(NO₃)₂) in MOSAIC. Note that 198 199 nitrate and other secondary species are allowed to form on the primary carbon mode particles, but they are immediately transferred to the accumulation mode though the 200 aging process. The optical properties (e.g., refractive index) of nitrate aerosols are set to 201 those of sulfate. We use 0.67 for the hygroscopicity of nitrate aerosols (Petters & 202 Kreidenweis, 2007) following L21 and XP12, which is larger than the hygroscopicity of 203 sulfate aerosols. Same as nitrate aerosol, ammonium aerosol (NH_4^+) is added to the three 204 205 MAM4 modes to simulate the formation of various salts containing ammonium cations (e.g., NH_4NO_3 , NH_4HSO_4 , and NH_4Cl). Sulfate aerosol represents SO_4^{2-} when MOSAIC 206 207 is coupled with MAM4, while it represents NH₄HSO₄ in the default MAM4.

MOSAIC explicitly treats the heterogeneous reactions of HNO₃ on dust (i.e., CaCO₃) and sea salt (i.e., NaCl) particles. To consider the reactions on dust in MAM4, we add calcium (Ca²⁺) and carbonate (CO₃²⁻) aerosols in each mode containing dust with emitted mass fractions of 2% and 3%, respectively, following Zaveri et al. (2008). The remaining 95% of the emitted dust in each mode is treated as other inorganic (OIN) in MOSAIC, which does not have chemical reactions with gas and aerosol species. In the default MAM4 of EAMv2, dust is only present in the accumulation and coarse modes. When we

initially coupled MOSAIC with the default MAM4 in E3SM, we found that the model 215 yielded much stronger REaci ($\sim -1.0 \text{ W m}^{-2}$) than L21. This was found to be due to 216 strong production of nitrate aerosols in the Aitken mode caused by using a much higher 217 α_{HNO_2} (0.65) for the Aitken mode but lower values (≤ 0.0011) for the accumulation and 218 coarse modes in the calculation of MTCs. We discuss this issue in detail in section 2.3. 219 We then add dust species (OIN, calcium, and carbonate) to the Aitken mode (0.00165% 220 of the total dust mass emission) to avoid too strong REaci and be consistent with the 221 configuration of L21. As in Z21 and L21, primary sea salt aerosol in each MAM4 mode 222 is split into three species: sodium (Na⁺), chloride (Cl⁻), and sea salt sulfate, with emitted 223 mass fractions of 38.5%, 53.8%, and 7.7%, respectively. 224

MOSAIC implemented in EAMv2 replaces the default MAM4 treatment of 225 226 gas-aerosol exchange and simulates the dynamic mass transfer between semivolatile gases, including H₂SO₄, HNO3, HCl, NH₃, and a single lumped SOA precursor, and 227 228 aerosols, including sulfate, nitrate, ammonium, chloride, and SOA. The aqueous (i.e., cloud water) chemistry, which already includes reactions of SO2, is also modified to 229 include reactions of HNO₃, NH₃, and HCl. MOSAIC is coupled with MOZART-4 gas 230 chemistry scheme (Emmons et al., 2010; Tilmes et al., 2015) that predicts HNO₃ through 231 232 O_3 -NO_x-HO_x chemistry or N_2O_5 hydrolysis. Nighttime nitrate radical (NO₃) oxidation of biogenic volatile organic compounds (BVOC) can lead to the formation of appreciable 233 amount of SOA composed of organic nitrates (e.g., Fisher et al., 2016; Hao et al., 2014; 234 Kiendler-Scharr et al., 2016; Ng et al., 2017; Rollins et al., 2012; Zaveri et al., 2010; 235

Zaveri et al., 2020). Although about 10% of the global mean SOA burden was estimated 236 to form via NO₃-BVOC chemistry (Pye et al., 2010), the fate and importance of 237 particle-phase organic nitrates are still uncertain due to its poorly constrained sinks such 238 as hydrolysis to HNO₃ (Pye et al., 2015). Consequently, formation of particulate organic 239 nitrates is not presently treated by MOSAIC but will be considered in the future. Note 240 241 that we have also removed some coding bugs in the coupling between MOSAIC and parameterizations of cloud microphysics (e.g., mixed-phase cloud ice nucleation) in 242 EAMv2, compared to Z21 and L21, and an error in the implementation of the wet 243 deposition scheme (Neu & Prather, 2012) that affects the removal rates of weakly soluble 244 species. 245

246

247 2.3. Mass Transfer Coefficients and Accommodation Coefficients

In MOSAIC, the dynamic mass transfer equations for gases to/from interstitial aerosol particles are expressed as:

250
$$\frac{dC_{a,i,m}}{dt} = k_{j,m} (C_{g,j} - C_{eq,j,m})$$
(1)

251
$$\frac{dC_{g,j}}{dt} = -\sum_{m} k_{j,m} \left(C_{g,j} - C_{eq,j,m} \right)$$
(2)

where $C_{a,i,m}$ (nmol m⁻³) is the concentration of aerosol species i in aerosol mode m; $C_{g,j}$ (nmol m⁻³) is the concentration of gas species j; $C_{eq,j,m}$ is the equilibrium concentration of gas species j on the particle surface in mode m; and $k_{j,m}$ (s⁻¹) is the MTC. The MTC (k_j) for a single particle size (r_p) can be calculated as:

256
$$k_j = 4\pi r_p D_{g,j} n(r_p) f(K n_j(r_p), \alpha_j)$$
(3)

where r_p is the particle radius; $D_{g,j}$ is the gas diffusivity of specie j; n is the number concentration of particles; and $f(Kn_j, \alpha_j)$ is the transition regime correction factor (Fuchs & Sutugin, 1971) as a function of the Knudsen Number Kn_j and accommodation coefficient α_j . Equation (3) is integrated (averaged) over each mode's lognormal size distribution to obtain $k_{j,m}$. $f(Kn_j, \alpha_j)$ is calculated as:

262
$$f(Kn_j, \alpha_j) = \frac{0.75\alpha_j(1+Kn_j)}{Kn_j(1+Kn_j)+0.283\alpha_jKn_j+0.75\alpha_j}$$
(4)

The accommodation coefficient represents the sticking probability of a gas molecule at the particle surface (Feng & Penner, 2007). It is a key parameter in calculating dynamic mass transfer. If α_j increases, $k_{j,m}$ would increase and may further lead to an increase in aerosol concentrations.

When Z21 implemented MOSAIC in CESM1, they introduced a relatively low $\alpha_{\rm HNO_3}$ (≤ 0.0011) for HNO₃ onto dust particles (i.e., dust containing aerosol modes), which is calculated as a function of relative humidity (RH):

270
$$\alpha = \begin{cases} \frac{0.0018RH}{(1-RH)(1+7RH)} & \text{RH} < 0.8\\ 0.0011 & \text{RH} \ge 0.8 \end{cases}$$
 (5)

The formula follows Li et al. (2012) but is modified to match the uptake coefficients from Fairlie et al. (2010). This low α was also used for HCl onto dust containing modes. A much higher value ($\alpha_{HNO_3} = 0.65$) was used for HNO_3 and HCl onto modes that do not contain any dust. In the CESM1-MAM7 initially used by Z21, dust was only present in the fine and coarse dust modes, as in Liu et al. (2012). Z21 later switched to a newer version of CESM1, in which dust is present in the Aitken and accumulation modes (in

relatively small amounts). An unplanned side effect of this switch was that equation (5) 277 was applied to the Aitken and accumulation modes, as they always contained non-zero 278 (although often extremely small) amount of dust species. When L21 implemented 279 MOSAIC in CESM2-MAM4 (using the code from CESM1-MAM7), equation (5) was 280 likewise applied for the accumulation, Aitken, and coarse modes of MAM4 everywhere, 281 even at locations where dust concentrations were minor. Equation (5) was derived and 282 283 calibrated for HNO₃ on pure dust particles, and α_{HNO_3} for aerosol species, such as sea salt and nitrate, are much larger than that for pure dust (e.g., Abbatt & Waschewsky, 1998; 284 Dassios & Pandis, 1999; Fairlie et al., 2010; Guimbaud et al., 2002; Li et al., 2012; Song 285 et al., 2007). Thus equation (5) should probably only be used for modes that are 286 predominately dust at certain location and time. Note that while MAM assumes that 287 288 aerosols in each mode are internally mixed, dust particles are often externally mixed with other types of particles (e.g., sea salt) in the real world. This should be considered for 289 290 HNO_3 mass transfer to/from particles. It should also be noted that equation (5) is not used in MOSAIC of WRF-Chem. 291

To account for the different accommodation coefficients of HNO₃ on dust and non-dust particles, we first introduce a dust-weighted MTC treatment. Within the MOSAIC routine that calculates MTCs, we temporarily divide each aerosol mode into dust and non-dust sub-modes. The dust sub-mode only contains dust species, and the number concentrations ($n_{dst,m}$) are calculated using prescribed typical mass median diameters ($r_{dst,p,m}$) of 0.089, 0.52, and 2.626 µm (summarized from values over dust regions) for the Aitken, accumulation, and coarse modes, respectively. The non-dust sub-mode contains the other aerosol species and the remaining number concentrations $(n_{ndst,m} = n_m - n_{dst,m})$. We calculate an MTC for each sub-mode, using equation (5) for the dust sub-mode and $\alpha_{HNO_3} = 0.193$ (following FP07 and XP12) for the non-dust sub-mode. The MTCs for the two sub-modes are then added to form a total MTC for an aerosol mode in MAM4. With this treatment, the other parts of the MOSAIC module are unaware of the sub-modes.

Aerosol nitrate formation is strongly dependent on particle composition. Z21 found 305 that most of the nitrate mass (~73% of the total annual burden) exists in the fine and 306 coarse sea salt modes of MAM7. Nitrate burden in the coarse sea salt mode (0.57 mg m^{-2}) 307 was much larger than the one in the coarse dust mode (0.06 mg m⁻²). We make a step 308 309 further by modifying the dust-weighted MTC treatment to split the aerosols in the coarse mode of the default MAM4 into the coarse dust and coarse sea salt sub-modes before 310 calling MOSAIC module, so that MOSAIC works with 5 aerosol modes. We apply 311 equation (5) to calculate α_{HNO_3} in the coarse dust sub-mode and $\alpha_{HNO_3} = 0.193$ in the 312 coarse sea salt sub-mode. We first partition aerosol number concentrations in the coarse 313 mode into the two sub-modes, using prescribed typical mass median diameters for pure 314 315 dust (2.626 μ m) and sea salt (2.059 μ m) particles as well as mass concentrations of primary dust (OIN/0.95) and primary sea salt (sodium/0.385). Mass concentrations of 316 OIN, calcium, and carbonate are assigned to the coarse dust sub-mode, while mass 317 concentrations of sodium, sea salt sulfate, and MOA are assigned to the coarse sea salt 318

sub-mode. The mass fractions of nitrate and ammonium partitioned to the coarse sea salt 319 sub-mode are calculated using fitting relations, $y = x^{a}$ (a = 0.11 and 0.01, respectively) 320 where x is the mass fraction of primary sea salt to the sum of coarse mode primary sea 321 salt and dust. The mass fraction of non-sea-salt sulfate (nss-sulfate) partitioned to the 322 coarse dust sub-mode is calculated using $y = x^{0.18}$ where x is the mass fraction of primary 323 324 dust to the sum of coarse mode primary sea salt and dust. These fitting relations are derived from the simulations of Z21 that used MAM7 which treats dust and sea salt in 325 separate modes (fine/coarse dust modes and fine/coarse sea salt modes). BC, POM, and 326 SOA are partitioned using number fractions of aerosol number concentrations in the 327 sub-modes to the total coarse mode number concentrations. After 11 of the 12 aerosol 328 species in the coarse mode have been partitioned, chloride is partitioned so that the two 329 330 sub-modes have equal normalized charge balance (i.e., (cations - anions)/(cations +anions)). Finally, dry and wet mass median diameters are calculated using the partitioned 331 aerosol mass and number concentrations. After all calculations in MOSAIC are done 332 333 within the model time step, coarse mode aerosol mass and number concentrations are updated to the sum of values from the two sub-modes. This mode splitting is admittedly 334 highly approximate, but it does allow MOSAIC to treat the different heterogeneous 335 reactions of HNO₃ onto dust and sea salt particles. 336

337

338 2.4. Experiments Design

339 We ran E3SMv2 with the spectral-element dynamical core for EAMv2 at

16

approximately 1-degree horizontal resolution (ne30pg2) with 72 vertical layers from 340 2004 to 2014, and the last 10-yr results are used for our analysis. The horizontal wind 341 components u and v were nudged towards the Modern-Era Retrospective analysis for 342 Research and Applications Version 2 (MERRA-2) (Gelaro et al., 2017) meteorology 343 using a relaxation timescale of 6 h to facilitate the evaluation of MOSAIC against 344 345 observations under realistic meteorological conditions. Monthly mean prescribed historical SST and sea ice in 2004-2014 were used. We used the anthropogenic and 346 biomass burning emissions of aerosols and precursor gases specified for CMIP6 (Hoesly 347 et al., 2018; van Marle et al., 2017), except for SOA precursors (Wang et al., 2020). 348 Biogenic emissions were calculated online using the Model of Emissions of Gases and 349 Aerosols from Nature version 2.1 (MEGANv2.1) (Guenther et al., 2012) incorporated in 350 351 ELMv2.

As summarized in Table 2, we conducted five sets of experiments with present-day 352 (PD, 2005-2014) and preindustrial (PI, 1850) emissions of aerosols and precursor gases. 353 354 In MTC SLOW, MTC WGT, and MTC SPLC, we ran E3SMv2-MOSAIC with and without the formation of nitrate aerosols. Note that MOSAIC module is still active when 355 HNO₃ partitioning to particles is turned off. In MTC SLOW, MOSAIC was coupled with 356 MOZART and MAM4 in a way following L21. Equation (5) was used to calculate 357 α_{HNO_3} and α_{HCl} in the accumulation, Aitken, and coarse modes, which has a maximum 358 value of 0.0011. In MTC WGT, we applied the dust-weighted MTC treatment introduced 359 in section 2.3. Equation (5) was used to calculate α_{HNO_3} and α_{HCl} on dust particles, 360

361	while $\alpha_{HNO_3} = 0.193$ and $\alpha_{HCl} = 0.1$ were used for non-dust particles. In MTC_SPLC,
362	as introduced in section 2.3, we still adopted the dust-weighted MTC treatment in the
363	accumulation and Aitken modes but split coarse mode aerosols into the coarse dust and
364	sea salt sub-modes in MOSAIC. Equation (5) was used to calculate α_{HNO_3} and α_{HCl} in
365	the coarse dust sub-mode, while $\alpha_{HNO_3}=0.193$ and $\alpha_{HCl}=0.1$ were used in the
366	coarse sea salt sub-mode. Note that we used $\alpha_{NH_3}=0.65$ in MTC_SLOW and
367	$\alpha_{NH_3}=0.092$ (Feng & Penner, 2007; Xu & Penner, 2012) in MTC_WGT and
368	MTC_SPLC. In sections 3.1-3.4, we focus on the experiments with the formation of
369	nitrate turned on and PD emissions of aerosols and precursor gases (i.e.,
370	MTC_SLOW_PD, MTC_WGT_PD, and MTC_SPLC_PD). In section 3.5, we use the
371	experiments with the formation of nitrate turned off and/or PI emissions (i.e.,
372	xx_PD_noNO3, xx_PI, and xx_PI_noNO3) to estimate RFaci/REaci of nitrate aerosols
373	following Ghan (2013). Default and MZT mentioned in section 3.1 are meant for
374	experiments with PD emissions. Note that we also conducted an experiment that further
375	splits accumulation mode aerosols into three sub-modes in MOSAIC (MTC_SPLAC) and
376	an experiment that used $\alpha_{HNO_3} = 0.193$ for all MAM4 modes (MTC_FAST). As shown
377	in Table S1, MTC_SPLAC gives similar nitrate burden to MTC_SPLC (0.191 versus
378	0.185 Tg N). MTC_FAST produces slightly larger burden than MTC_WGT (0.256 versus
379	0.237 Tg N).

2.5. Observations

382	We first validate profiles of key gas species, including O ₃ , CO, NO _x , peroxyacetyl
383	nitrate (PAN) and HNO ₃ , against the averaged profiles, derived by Tilmes et al. (2015),
384	from various aircraft campaigns between 1995 and 2010 for different regions and seasons
385	around the globe. Modeled tropospheric column ozone (TCO) is evaluated against
386	satellite retrievals from the Ozone Monitoring Instrument (OMI) and the Microwave
387	Limb Sounder (MLS) onboard Aura (Ziemke et al., 2006), the same data used by Tang et
388	al. (2021) to evaluate E3SMv1/v2. To evaluate surface mass concentrations of modeled
389	precursor gases (HNO ₃ , NH ₃ , and SO ₂) and aerosols (nitrate, ammonium, and sulfate), we
390	use ground-based observations from the Clean Air Status and Trends Network
391	(CASTNET) and the Ammonia Monitoring Network (AMoN) over U.S., the European
392	Monitoring and Evaluation Programme (EMEP) over Europe, and the Acid Deposition
393	Monitoring Network in East Asia (EANET) over East Asia. To better understand the
394	model biases of surface HNO_3 , we compare modeled surface NO_x with ground-based
395	observations from U.S. EPA Air Quality System (AQS), EMEP, and EANET. We also
396	compare modeled vertical profiles of aerosols with measurements from the Soluble
397	Acidic Gases and Aerosol (SAGA) filters during aircraft campaigns, including the
398	Intercontinental Chemical Transport Experiment Phase B (INTEX-B) (Singh et al., 2009),
399	Arctic Research of the Composition of the Troposphere from Aircraft and Satellites
400	(ARCTAS) (Jacob et al., 2010), Deep Convective Clouds and Chemistry (DC3) (Barth et
401	al., 2015), Studies of Emissions and Atmospheric Composition, Clouds, and Climate
402	Coupling by Regional Surveys (SEAC ⁴ RS) (Toon et al., 2016), and Atmospheric

403	Tomography Mission (ATom) (Thompson et al., 2021). A cutoff size of $d_p = 4 \ \mu m$ is
404	applied to modeled profiles of aerosols for comparison (i.e., PM ₄), as the collection
405	efficiency of SAGA filters' inlet reduces to 50% for aerosols with d_p around 4 μm (Guo et
406	al., 2021; McNaughton et al., 2007).
407	
408	3. Results
409	3.1. Evaluation of Key Gas Species
410	In Figure 1, we first evaluate modeled tropospheric (2-7 km) gases from MZT and
411	MTC_SLOW (2005-2014) against the summarized observations from aircraft campaigns
412	(1995-2010) for different regions (Southern Hemisphere [SH], Tropics, Northern
413	Hemisphere [NH] mid-latitudes, and NH Polar) and seasons (March-April-May [MAM],
414	June-July-August [JJA], September-October-November [SON], and
415	December-January-February [DJF]). Simulated O ₃ concentrations have a very good
416	agreement with aircraft observations. However, simulated TCO has significant low biases
417	in the SH compared with OMI/MLS (Figure S1), which is similar to CESM1.2 (Tilmes et
418	al., 2015) and may be caused by the underestimation of biomass burning emissions (e.g.,
419	CO and VOCs). Modeled CO concentrations agree with the observations fairly well in
420	the SH and Tropics but have significant low biases in the NH mid- and high latitudes,
421	particularly in DJF and MAM, likely due to missing sources of anthropogenic emissions
422	(Emmons et al., 2020). MZT and MTC_SLOW underestimate NO_x but tend to
423	overestimate HNO ₃ in the NH mid- and high latitudes, which may be caused by too fast

chemical conversion from NO_x to HNO₃ or missing sources of NO_x emissions. Simulated 424 concentrations of O₃, CO, NO_x, and PAN are quite close between MZT, MTC SLOW, 425 MTC WGT, and MTC SPLC (not shown). MTC SLOW produces notably lower HNO₃ 426 than MZT, especially in the NH mid- and high latitudes, due to the neglected formation of 427 nitrate aerosols in MZT. In general, EAMv2 with MOZART and MOSAIC performs 428 429 similarly as CESM1.2 (Tilmes et al., 2015), the Community Atmosphere Model Version 6 with interactive chemistry (CAM6-chem) (Emmons et al., 2020), and Z21, in simulating 430 tropospheric gases (also see Figure S2). 431

432

433 3.2. Mass Budgets and Spatial Distributions of Nitrate and Other Aerosol Species

In this section, we examine the changes in mass budgets and spatial distributions of 434 nitrate and other aerosol species due to different treatments in calculating MTCs. As 435 shown in Table 3, global annual mean nitrate burden significantly increases from 0.096 436 (MTC SLOW) to 0.237 (MTC WGT) and 0.185 Tg N (MTC SPLC), and there are large 437 438 increases in both fine and coarse mode nitrate burdens. For the increase in coarse mode nitrate burden, it is primarily due to the increase in gas-aerosol exchange production, as 439 aqueous chemistry production is negligible and gas-aerosol exchange loss is relatively 440 small. The MTC treatments considering high α_{HNO_3} on non-dust particles in 441 MTC WGT and MTC SPLC substantially increase the net production of coarse mode 442 nitrate from 6.4 (MTC SLOW) to 16.0 and 12.9 Tg N a⁻¹, respectively, through 443 gas-aerosol exchange. For fine mode nitrate, the net chemical production is determined 444

by both large aqueous chemistry production and strong net loss through gas-aerosol 445 exchange. The strong gas-aerosol exchange loss of fine mode nitrate (-54.9 to -51.4 Tg 446 N a^{-1}) leads to net loss through gas-aerosol exchange (-30.5 to -20.8 Tg N a^{-1}). The 447 increase in fine mode nitrate burden is due to two factors. First, the MTC treatments in 448 MTC WGT and MTC SPLC increase the net production of fine mode nitrate from 6.4 449 (MTC SLOW) to 7.7 and 8.2 Tg N a^{-1} , respectively, because of the reduction in the net 450 loss through gas-aerosol exchange. Second, MTC WGT and MTC SPLC have lower 451 mass fractions of cloud-borne nitrate for the fine mode. It contributes to longer lifetime of 452 fine mode nitrate in MTC_WGT and MTC_SPLC, because cloud-borne nitrate aerosols 453 have much shorter lifetime than the interstitial ones due to strong wet removal. 454

Compared with MTC WGT, the net production of coarse mode nitrate through 455 gas-aerosol exchange in MTC SPLC decreases from 16.0 to 12.9 Tg N a⁻¹ due to the 456 treatment of splitting the coarse mode in MOSAIC. In MTC SPLC, coarse dust and sea 457 salt particles are externally mixed with low (≤ 0.0011) and high (0.65) α_{HNO_2} , 458 respectively, in MOSAIC. To compensate for the reduction in coarse mode production, 459 the net production of fine mode nitrate in MTC SPLC increases from 7.7 to 8.2 Tg N a^{-1} . 460 Consequently, the fine mode nitrate burden increases from 0.068 (MTC WGT) to 0.076 461 Tg N (MTC SPLC), while the coarse mode nitrate burden decreases from 0.169 to 0.110 462 Tg N. In contrast to the large increase of nitrate burdens in MTC WGT and MTC SPLC, 463 we find only a slight increase of ammonium burden from 0.390 to 0.430 and 0.436 Tg N. 464 This indicates that the increase in the formation of NaNO₃ and Ca(NO₃)₂ through 465

heterogeneous reactions with dust and sea salt mainly contributes to the increase of
nitrate burdens in MTC_WGT and MTC_SPLC. The differences in nss-sulfate burdens
among MZT, MTC_SLOW, MTC_WGT, and MTC_SPLC are quite small (within 1%,
see Table S2). The Default experiment has slightly higher nss-sulfate burden (0.784 Tg S)
than the other four experiments (ranging from 0.702 to 0.706 Tg S) due to larger
chemical production related to higher O₃ concentrations.

As shown in Figures 2a-2c, large values of nitrate burden are in East Asia, India, 472 Europe, and northeastern U.S. due to high anthropogenic emissions of NO_x and NH₃ and 473 in equatorial Africa due to high biomass burning emissions. These are mainly contributed 474 by fine mode nitrate (accumulation and Aitken mode), while coarse mode nitrate mainly 475 contributes to the total burden over oceans and dust source regions (Figure 3). Compared 476 to MTC SLOW, nitrate burdens in MTC WGT and MTC SPLC increase around the 477 globe. In Figure 2b, large increases are found over regions with high anthropogenic or 478 biomass burning emissions of NO_x, resulting from the substantial reduction in net loss of 479 fine mode nitrate through gas-aerosol exchange in MTC WGT (Figure S3). We also see 480 large increases in nitrate burden over dust source regions (Middle East, Sahel, and 481 northwestern China) associated with the increase in net production of coarse mode nitrate 482 through gas-aerosol exchange (Figure S3). Compared to MTC WGT, MTC SPLC has a 483 smaller increase of nitrate burden globally, especially in dust source regions (Figures 2c 484 and 2f). There are also large increases of ammonium burden in eastern China and 485 northeastern India in MTC WGT and MTC SPLC, compared to MTC SLOW, where the 486

487 ammonium burden is high in MTC SLOW (Figure S4).

As shown in Figures 2d and 2e, there are large relative differences (>200%) caused 488 by the MTC treatments over the Antarctic and regions between 40°S and 40°N where 489 nitrate burden is quite low ($<0.6 \text{ mg m}^{-2}$ in MTC SLOW). The increase of nitrate burden 490 over the Antarctic is mainly in the fine mode (Figures 3b and 3c). Compared to 491 492 MTC SLOW, the coarse mode nitrate burden in MTC WGT has a larger relative increase than the fine mode burden (178% versus 91%), which results in a decrease of 493 fine mode fraction from 36.9 to 28.7%. As shown in Figure 3e, fine mode fractions are 494 greatly reduced over oceans and some continental regions between 60°S and 60°N. The 495 decrease of coarse mode nitrate burden and the increase of fine mode nitrate burden in 496 MTC SPLC increase the fine mode fraction from 28.7% in MTC WGT to 40.9%, which 497 498 is even higher than that in MTC SLOW. Considerable increases in the fine mode fraction are found over Eurasia, North America, and the Arctic (Figure 3f). Latitude-altitude cross 499 sections of annually averaged zonal mean nitrate concentrations are shown in Figure S5. 500 Table 4 compares the mass budgets of nitrate in this study with results from previous 501 studies. The mass budgets of our three experiments are within the range (minimum to 502 maximum) of the mass budgets from B17. MTC SLOW produces lower nitrate burden 503 than the mean value of B17, while both MTC WGT and MTC SPLC produce higher 504 nitrate burden than the mean value of B17. All three experiments have shorter lifetime 505

than B17. In B17, large uncertainties are also found in the simulated global tropospheric

507 (pressure > 100 hPa) HNO₃ burdens, ranging from 0.15 to 1.3 Tg N, which contributes to

508	the large spread in simulated nitrate burdens as well. All three experiments produce lower
509	HNO ₃ burden than L21 and the mean value of B17 (Table S3). Due to stronger chemical
510	production of nitrate aerosols, MTC_WGT and MTC_SPLC have less HNO ₃ burden than
511	MTC_SLOW. In many GCMs that participated in AeroCom phase III experiments, nitrate
512	aerosols are not well represented. They neglect nitrate formation in the coarse mode
513	and/or repeatedly use TEQMs in the coarse mode as in the fine mode. We select 4 GCMs
514	(EMAC, EMEP, GMI, and INCA) which simulate the formation of nitrate aerosols in
515	both fine and coarse mode and consider the heterogeneous reactions on dust and sea salt
516	particles. The selected 4 GCMs give similar mass budgets to those from 9 GCMs (e.g.,
517	nitrate burden of 0.15 Tg N versus 0.14 Tg N) but with a narrow range of values. The fine
518	mode fraction in the four GCMs ranges from ~20% (EMEP) to ~50% (EMAC, GMI, and
519	INCA).

The global annual mean nitrate burden in MTC SLOW is slightly lower than the one 520 from L21, and the net chemistry production in MTC SLOW is quite close to that in L21 521 (12.8 versus 12.3 Tg N a⁻¹). In MTC_SLOW, MOSAIC is coupled with MAM4 in 522 523 EAMv2 following L21, which uses quite low α_{HNO_3} in the accumulation, Aitken, and coarse mode. L21 also coupled MOSAIC with MAM7 in CESM2 and found that the 524 nitrate burden increases from 0.11 in MAM4 to 0.135 Tg N in MAM7. The latter is close 525 to the one from Z21 (0.139 Tg N). As we introduced in section 2.3, a high value of 0.65 is 526 used for α_{HNO_3} in the fine sea salt and coarse sea salt modes of MAM7, while equation 527 (5) ($\alpha_{HNO_3} \leq 0.0011$) is applied in the accumulation, Aitken, fine dust, and coarse dust 528

modes. In Z21 and L21, the coupling between MOSAIC and MAM7 partly considers the 529 high α_{HNO_2} on sea salt particles in calculating the mass transfer between HNO₃ and 530 nitrate aerosols, which leads to the increase of net production from gas-aerosol exchange 531 and further results in the increase of nitrate burden. The nitrate burden in MTC SPLC is 532 slightly higher than that in Z21 and L21 using MAM7. Note that equation (5) is also used 533 in the accumulation modes of MAM7 in Z21 and L21, indicating that there may be 534 underestimation of net accumulation mode chemistry production as well as nitrate 535 burdens in Z21 and L21 using MAM7. Z21 has less dry deposition and longer lifetime of 536 nitrate aerosols than MTC SLOW, partly because CESM2 reduces the geometric 537 standard deviations in the accumulation and coarse modes from 1.8, used in E3SMv2 and 538 CESM1, to 1.6 and 1.2, respectively (Wu et al., 2020). In EAMv2, the bottom model 539 layer is thinner than the one from CESM1 and CESM2, which can also affect the dry 540 deposition and lifetime of nitrate aerosols (Wu et al., 2020). The two studies (Feng & 541 542 Penner, 2007; Xu & Penner, 2012) using the HDYN approach produce similar mean 543 nitrate burden, which is larger than that in Z21 and L21.

544

545 3.3. Surface Concentrations of Nitrate, Ammonium, and Sulfate Aerosols and 546 Precursor Gases

547 Figures 4 and 5 evaluate modeled surface mass concentrations of aerosols (nitrate, 548 ammonium, and sulfate) and precursor gases (HNO₃, NH₃, and SO₂) against 549 ground-based observations from CASTNET and AMoN over U.S., EMEP over Europe,

26

550	and EANET over East Asia. Mean surface molar concentrations of aerosols and precursor
551	gases are listed in Table S4. In general, all three experiments overestimate nitrate surface
552	concentrations in U.S., Europe, and East Asia (Figures 4a-4c) due to the high model
553	biases of HNO ₃ (Figures 5a-5c). Modeled nitrate concentrations in MTC_SLOW agree
554	with the observations reasonably well, especially at EMEP and EANET sites, with
555	smaller biases than those in MTC_WGT and MTC_SPLC. MTC_WGT and MTC_SPLC
556	produce quite similar nitrate concentrations (within 1% differences). They both have a
557	significant increase in the annual mean value (by $\sim 130\%$), which exacerbates the high
558	biases in MTC_SLOW, whereas the large high biases of HNO ₃ in the two experiments
559	are reduced. Compared to MTC_SLOW, the increase of nitrate surface concentrations in
560	MTC_WGT and MTC_SPLC at the three networks corresponds to the increase of nitrate
561	burden over U.S., Europe, and East Asia in Figure 2. MTC_WGT and MTC_SPLC
562	substantially reduce the net loss of fine mode nitrate through gas-aerosol exchange and
563	therefore increase the net chemistry production. Note that the two experiments also have
564	stronger correlation (R) between modeled and observed nitrate surface concentrations.
565	We also found similar high model biases of HNO ₃ surface concentrations in Z21 and L21
566	at CASTNET, EMEP, and EANET sites (Figure S6). In B17, most GCMs overestimate
567	HNO_3 surface concentrations with a ratio up to 3.9 over U.S. We further compare
568	modeled surface concentrations of NO_x and NO_2 with ground-based observations and
569	found fairly strong low biases of NO _x at AQS and EANET sites and modest high biases
570	of NO ₂ at EMEP (Figure S7). The low biases of NO _x at U.S. and East Asia sites

counteract the high biases of HNO_3 and nitrate aerosols (comparing Figure S7 to Table S3), which suggests no strong bias in the NO_x emissions for these regions. For regions where E3SM-MOSAIC has low biases of NO_x but high biases of HNO_3 , it might indicate too rapid photochemical conversion of NO_x to HNO_3 . Also, the high biases of HNO_3 in these surface comparisons may be caused by slow wet and/or dry deposition, and this could contribute to the high biases of nitrate aerosols. Note that observations of NO_x and NO_2 are not collocated with HNO_3 measurements, especially for AQS.

MTC SLOW slightly underestimates ammonium surface concentrations 578 at CASTNET and EMEP sites (Figures 4d and 4e) but slightly overestimates the 579 concentrations at EANET sites (Figure 4f). The large increase of ammonium surface 580 concentrations in MTC WGT and MTC SPLC at the three networks (relative differences 581 around 67%, 107%, and 52%, respectively) indicates that the increase of nitrate surface 582 concentrations in the two experiments is mainly contributed by the increase of NH₄NO₃ 583 in the accumulation and Aitken modes. The three experiments underestimate NH₃ surface 584 concentrations at AMoN and EANET sites (Figures 5d and 5f) but overestimate the 585 concentrations at EMEP sites (Figure 5e). The three experiments produce quite close 586 sulfate surface concentrations (\sim 1%) and agree with the observations very well (relative 587 differences around -6%, -17%, and -3%, respectively) (Figures 4g-4i). Modeled SO₂ 588 surface concentrations have high biases at CASTNET and EMEP sites (Figures 5g and 589 5h), which is consistent with the performance of CAM-chem in Tilmes et al. (2015) and 590 CAM5 in Liu et al. (2012). The slight underestimation of SO₂ surface concentrations at 591

EANET sites (Figure 5i) is likely attributable to the underestimation of anthropogenic
SO₂ emissions in East Asia (e.g., Fan et al., 2018).

Figures 6-8 show the seasonal variations of modeled nitrate surface concentrations in 594 comparison with observations at selected CASTNET, EMEP, and EANET sites. We select 595 the CASTNET and EMEP sites following A19. In Figures 6a, 6b and 6d, observed nitrate 596 597 surface concentrations have their maximum in DJF because of low temperature and sulfate concentrations (Figure S8) and their minimum in JJA due to high temperature and 598 strong precipitation (Pye et al., 2008; Walker et al., 2012), which is typical in eastern and 599 600 central U.S. All three experiments overestimate the nitrate surface concentrations in all seasons due to high model biases of HNO₃ (Figure S9). MTC WGT and MTC SPLC 601 significantly increase the nitrate surface concentrations due to the increase in net fine 602 mode chemistry production, and they have much stronger seasonal contrast than 603 MTC SLOW and observations at the three sites. The high model biases are larger than 4 604 μ g m⁻³ in DJF, but they can be as low as ~1 μ g m⁻³ in JJA (e.g., Caddo Valley). 605

Unlike Beltsville, Mackville, and Caddo Valley where observed nitrate surface concentrations are close to ammonium concentrations, Everglades NP in Florida has much higher observed nitrate concentrations than ammonium concentrations (Figure S10). The surface molar concentrations of nitrate (\sim 24 nmol m⁻³) are slightly higher than those of ammonium (\sim 22 nmol m⁻³). This suggests that the formation of coarse mode NaNO₃ and Ca(NO₃)₂ through heterogeneous reactions with dust and sea salt largely contributes to the nitrate concentrations. Modeled nitrate surface concentrations have small seasonal

variations with their maximum in December, while the maximum of observations occurs 613 in March. All three experiments underestimate the nitrate surface concentrations at 614 615 Joshua Tree NP in California and produce an opposite seasonal cycle. As the three MOSAIC experiments overestimate HNO₃ (Figure S9), underestimate NH₃, and produce 616 ammonium and sulfate concentrations close to observations (Figures S8 and S10), the 617 nitrate formation at Joshua Tree NP may be ammonia-limited (Walker et al. 2012), 618 causing the low biases of modeled nitrate surface concentrations. At Denali NP in Alaska, 619 all three experiments overestimate nitrate surface concentrations in all seasons with their 620 maximum in DJF. Similarly, we find that MTC WGT and MTC SPLC produce higher 621 nitrate surface concentrations than MTC SLOW in all seasons and have stronger 622 seasonal variations than MTC SLOW at some EMEP and EANET sites. In Figures 7a 623 and 7d-7f, observed nitrate surface concentrations have their maximum in April likely 624 due to the seasonal variations of NH₃ emissions. We also find some improvements of 625 nitrate seasonality in Figures 7d-7f, especially at Malin Head. 626

627

628 **3.4. Vertical Profiles of Nitrate Aerosols**

In this section, we compare modeled vertical profiles of nitrate aerosols with measurements from aircraft campaigns. As shown in Figure 9, flights during INTEX-B, ARCTAS, DC3, and SEAC⁴RS mainly cover North America where nitrate burden is largely contributed by fine mode nitrate (Figure 3). These field experiments were conducted during our simulation period (2005-2014), mostly in MAM and JJA. In

634	general, MTC_SLOW significantly underestimates PM4 nitrate concentrations below/at
635	500 hPa, compared to the observations, while MTC_WGT and MTC_SPLC substantially
636	increase the concentrations and improve the model performance below/at 500 hPa
637	(Figure 10). MTC_WGT and MTC_SPLC overestimate PM ₄ nitrate concentrations above
638	400 hPa and sometimes exacerbate the high model biases there. All three experiments
639	overestimate HNO ₃ concentrations over continental U.S. as well as Alaska (Figure S11),
640	but it is not as significant as the high model biases of HNO3 surface concentrations at
641	CASTNET sites (Figure 5).

642 In Figure 10a, the high nitrate concentrations below 650 hPa, especially the spike at 750 hPa are not captured by model simulations, possibly because we use monthly mean 643 model output to get the profiles while the observed high nitrate concentrations are due to 644 645 episodic pollution plumes over the Gulf of Mexico (Singh et al., 2009). The observed high nitrate concentrations from ARCTAS flights, such as the spike at 600 hPa in Figure 646 10d, large values below 600 hPa in Figure 10e, and the spike at 700 hPa in Figure 10f, 647 are likely caused by fire plumes from Siberia, California, and Saskatchewan (Jacob et al., 648 2010). In Figure 10d, MTC WGT and MTC SPLC slightly overestimate the nitrate 649 concentrations below 800 hPa in April, while MTC SLOW has a better agreement with 650 the observations. This is consistent with the comparison of nitrate surface concentrations 651 at Denali NP in April (Figure 6f). In Figure 10e, the large low model biases of nitrate 652 concentrations below 600 hPa, mostly based on measurements over California, are 653 consistent with the comparison of nitrate surface concentrations at Joshua Tree NP in 654

June (Figure 5e). In Figures 10g-10j, all three experiments underestimate the nitrate
concentrations below 500 hPa, which is different from the comparison of nitrate surface
concentrations (Figure 4). The large spike at 600 hPa in Figure 10i is mostly caused by
wildfires in western U.S. (Toon et al., 2016).

As shown in Figure 11, ATom flights cover vast areas over the Pacific and Atlantic 659 Ocean, where the nitrate concentrations are mainly contributed by particles in the coarse 660 mode, and they were conducted in all seasons. We divide the observations and model 661 results, which are interpolated from monthly mean output along the flight tracks, into 8 662 sectors. Since the entire ATom campaigns were conducted during 2016-2018, we use the 663 10-yr averaged monthly model results for the comparison. Similarly, we find that 664 MTC SLOW underestimates PM₄ nitrate concentrations below/at 500 hPa over the 665 Pacific and Atlantic, while MTC WGT increases the concentrations and improves the 666 model performance below/at 500 hPa (Figure 12). Nitrate concentrations from 667 MTC SPLC and MTC WGT are close except for the regions strongly influenced by 668 outflow of Sahara dust (Figures 12f and 12g), where MTC WGT produces considerably 669 higher nitrate concentrations (closer to observations) than MTC SPLC. This is consistent 670 with the higher nitrate burden over dust source regions in MTC WGT than MTC SPLC 671 (Figure 2). Modeled HNO₃ concentrations agree well with the observations above 600 672 hPa (Figure S12). High model biases of HNO₃ concentrations are found over the tropical 673 Atlantic, North Atlantic, North Pacific and Arctic, while low biases occur over the South 674 Atlantic, South Pacific, tropical Pacific, and Antarctic. As shown in Figure 12a, all three 675

experiments overestimate nitrate concentrations below 800 hPa over the Arctic, where there are high model biases of HNO_3 . This is consistent with the comparison of nitrate surface concentrations at Denali NP in all seasons.

679

680 **3.5. Radiative Forcing of Nitrate Aerosols**

681 Figure 13 shows RFari and RFaci of nitrate aerosols between PD (2005-2014) and PI (1850) from the three MOSAIC experiments. RFari and RFaci are calculated as the 682 differences of REari and REaci, respectively, between the corresponding PD and PI 683 experiments. In Figures 13a-13c, strong cooling signals are found over East Asia and 684 India, where PD nitrate burden is high. MTC_WGT and MTC_SPLC produce larger 685 RFari (-0.048 and -0.051 W m^{-2} , respectively) than MTC SLOW (-0.021 W m^{-2}) 686 because of the increase in fine mode burden over these regions (Figure 3). The RFari in 687 MTC SLOW is larger than that from L21 (-0.014 W m⁻², see Table 5), because 688 MTC SLOW has higher PD nitrate burden in the fine mode than L21 (0.036 versus 0.030 689 Tg N). The RFari from the three experiments is within the range (-0.12 to -0.02 W m⁻²) 690 of AeroCom phase II models (Myhre et al., 2013) and near the upper end of the range (-691 0.3 to -0.03 W m⁻²) from IPCC AR5 (Boucher et al., 2013). The RFari from MTC SPLC 692 is close to H14 and B07, but it is still lower than the estimates from A19, B11, and XP12, 693 which mostly depends on the amount of fine mode nitrate. The RFari of ammonium 694 aerosols is -0.068, -0.075, and -0.076 W m⁻² (Figure S13), respectively. 695

As shown in Figures 13d-13f, there are consistently negative values of RFaci over

North America, North Atlantic, Europe, Central Asia, Siberia, Tibetan Plateau, and North 697 Pacific. Most of the areas pass the significant test (10%), which is different from the 698 noisy spatial pattern of RFaci in Z21. Interestingly, we find similar warming signals over 699 China as in Z21, which results from reduced cloud droplet number concentration 700 differences (with and without nitrate formation) between PD and PI. This may be caused 701 by the competition between the formation of coarse mode nitrate and accumulation mode 702 sulfate for water vapor (Lu et al., 2021). The spatial pattern of the RFaci between 30°S 703 and 30°N looks noisy, but the mean values (30°S-30°N) are still negative (-0.140, -0.232, 704 and -0.256 W m⁻², respectively). MTC_WGT and MTC_SPLC produce much stronger 705 RFaci (-0.332 and -0.352 W m⁻², respectively) than MTC SLOW (-0.244 W m⁻²), as the 706 increased fine mode nitrate leads to more CCN and cloud droplets in the former 707 708 experiments.

709

710 **4. Discussion and Conclusions**

In this study, we implement the MOSAIC module (Zaveri et al., 2008) in E3SMv2 to simulate the spatiotemporal distributions of nitrate aerosols and estimate their radiative forcings due to aerosol-radiation and aerosol-cloud interactions (RFari and RFaci). We also modify the calculation of gas-aerosol mass transfer coefficient (MTC) in MOSAIC to consider different accommodation coefficients of HNO₃ onto dust and non-dust particles. The MTC treatments in MTC_WGT and MTC_SPLC use higher α_{HNO_3} (0.65) onto non-dust and partially-dust particles than that in MTC SLOW (≤0.0011), which

substantially enhance the HNO₃ condensation onto fine and coarse interstitial aerosol 718 particles. It leads to a significant increase of global annual mean nitrate burden from 719 0.096 (MTC SLOW) to 0.237 (MTC WGT) and 0.185 Tg N (MTC SPLC), which is 720 mainly due to the increase of coarse mode nitrate burden. The tropospheric HNO₃ burden 721 reduces from 0.425 (MTC SLOW) to 0.353 (MTC WGT) and 0.389 Tg N 722 723 (MTC SPLC). The modeled nitrate lifecyle in MTC SLOW is similar to those in Z21 and L21 using CESM. The nitrate and HNO₃ burdens from our three experiments are 724 within the range of those from AeroCom phase III models in B17. The large spread in 725 726 simulated nitrate burdens from previous studies results from not only their methods of gas-aerosol partitioning but also the large uncertainties in HNO₃ burdens. MTC WGT 727 and MTC SPLC increase the nitrate burden around the globe with relatively large 728 increases in East Asia, India, Europe, northeastern U.S., and equatorial Africa, largely 729 resulting from the substantial increase of HNO₃ condensation onto fine mode interstitial 730 aerosol particles. MTC SPLC has lower production of coarse mode nitrate through 731 732 gas-aerosol exchange and lower nitrate burden than MTC WGT, especially over dust source regions. 733

We evaluate modeled surface concentrations of nitrate, HNO₃, and other species against ground-based observations from three regional surface networks (i.e., CASTNET over U.S., EMEP over Europe, and EANET over East Asia). Simulated nitrate surface concentrations in MTC_SLOW agree with the observations reasonably well, especially over Europe and East Asia, with small normalized mean biases (NMBs) of 51.5%, 1.4%,
739	and 20.1% respectively. MTC_WGT and MTC_SPLC significantly increase nitrate
740	concentrations, which exacerbates the high biases and gives NMBs of ~260%, ~125%,
741	and $\sim 170\%$, respectively, for the three networks. All three experiments, particularly
742	MTC_SLOW, significantly overestimate HNO3 surface concentrations, which also results
743	in too large concentrations of combined nitrate aerosols and HNO3 gas. Thus, the better
744	agreement of nitrate surface concentrations with observations in MTC_SLOW should be
745	viewed with caution, because MTC_SLOW gives the largest NMBs (176-322%) for
746	HNO ₃ at the three networks. These high biases of HNO ₃ surface concentrations are also
747	found in Z21, L21, and most GCMs in B17. Seasonal variations of simulated and
748	observed nitrate surface concentrations are compared at selected sites. MTC_WGT and
749	MTC_SPLC produce higher nitrate surface concentrations than MTC_SLOW in all
750	seasons and have stronger seasonal variations than MTC_SLOW at many sites.
751	We compare simulated vertical profiles of PM4 nitrate concentrations with aircraft
752	measurements from INTEX-B, ARCTAS, DC3, and SEAC ⁴ RS field campaigns that were
753	conducted mainly in MAM and JJA over North America. MTC_SLOW significantly

underestimates PM_4 nitrate concentrations below 500 hPa compared with the observations, while MTC_WGT and MTC_SPLC substantially increase the nitrate concentrations and improve the model performance below 500 hPa. We also compare simulated vertical profiles of PM_4 nitrate concentrations with measurements from ATom campaigns that were conducted in all seasons over vast areas in the Pacific and Atlantic Ocean. Similarly, we find that MTC SLOW underestimates PM_4 nitrate concentrations 760 below 400 hPa over the Pacific and Atlantic, while MTC WGT increases the concentrations and improves the model performance below 400 hPa. MTC SPLC 761 produces considerably lower nitrate concentrations than MTC WGT in the tropical and 762 North Atlantic, where nitrate formation processes are strongly influenced by outflow of 763 Sahara dust. Unlike the comparisons of nitrate and HNO₃ surface concentrations with 764 765 ground-based observations showing high biases, MTC WGT and MTC SPLC tend to improve the model performance in simulating vertical profiles of nitrate and HNO₃. We 766 do not find significant overall high biases of HNO₃ concentrations in the troposphere 767 from the five campaigns, especially near the surface. It should be noted that the 768 comparisons with aircraft measurements are subject to considerable spatiotemporal 769 representativeness errors, given the very limited coverage of flight tracks. More 770 measurements of vertical profiles of nitrate and HNO₃ concentrations as well as 771 ground-based observations in the SH, South Asia, and East Asia are needed to evaluate 772 and constrain the model performance. 773

Large RFari values are found over East Asia and India where present-day nitrate burden is high. MTC_WGT and MTC_SPLC produce larger RFari (-0.048 and -0.051 W m⁻², respectively) than MTC_SLOW (-0.021 W m⁻²) because of the increase in fine mode burden. There are consistently negative values of RFaci over North America, North Atlantic, Europe, Central Asia, Siberia, Tibetan Plateau, and North Pacific in all three experiments. The RFari from all three experiments is within the range (-0.12 to -0.02 W m⁻²) of AeroCom phase II models (Myhre et al., 2013) and near the upper end of the range (-0.3 to -0.03 W m⁻²) from IPCC AR5 (Boucher et al., 2013). MTC_WGT and MTC_SPLC produce a stronger RFaci (-0.332 and -0.352 W m⁻², respectively) than MTC_SLOW (-0.244 W m⁻²), as the increased fine mode nitrate aerosols lead to more CCN and consequently impact on cloud properties.

The sensitivity of simulated nitrate aerosol to the MTC treatments in this study suggests that a model version in which dust and sea salt particles are treated as externally mixed (i.e., in separate modes) from each other and from anthropogenic particles should be developed.

789

790 Data Availability Statement

CASTNET data can be downloaded from https://www.epa.gov/castnet. AQS data can be 791 downloaded from https://www.epa.gov/outdoor-air-quality-data. AMoN data can be 792 downloaded from http://nadp.slh.wisc.edu/amon/. EMEP data can be downloaded from 793 https://www.emep.int/. downloaded 794 EANET data can be from https://monitoring.eanet.asia/document/public/index. INTEX-B, ARCTAS, DC3, and 795 796 SEAC⁴RS data are available at https://www-air.larc.nasa.gov/data.htm. ATom data are available at https://espo.nasa.gov/atom. The E3SMv2 source code is available at 797 https://github.com/E3SM-Project/E3SM. 798

799

800 Acknowledgments

801 This work is supported by the U.S. Department of Energy (DOE), Office of Science,

802	Office of Biological and Environmental Research, Earth and Environmental System
803	Modeling program as part of the Energy Exascale Earth System Model (E3SM) project.
804	The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle
805	Memorial Institute under contract DE-AC05-76RLO1830. The work at Lawrence
806	Livermore National Laboratory (LLNL) was performed under the auspices of the U.S.
807	DOE by LLNL under Contract DE-AC52-07NA27344.

809 **References**

- 810 Abbatt, J. P. D., & Waschewsky, G. C. G. (1998). Heterogeneous interactions of HOBr,
- HNO₃, O₃, and NO₂ with deliquescent NaCl aerosols at room temperature. *The Journal*

of Physical Chemistry A, *102*(21), 3719–3725. https://doi.org/10.1021/jp980932d

Adams, P. J., Seinfeld, J. H., Koch, D., Mickley, L., & Jacob, D. (2001). General

814 circulation model assessment of direct radiative forcing by the

- sulfate-nitrate-ammonium-water inorganic aerosol system. Journal of Geophysical
- 816 *Research*, *106*(D1), 1097–1111. https://doi.org/10.1029/2000JD900512

An, Q., Zhang, H., Wang, Z., Liu, Y., Xie, B., Liu, Q., et al. (2019). The development of

an atmospheric aerosol/chemistry-climate model, BCC_AGCM_CUACE2.0, and

- simulated effective radiative forcing of nitrate aerosols. Journal of Advances in
- 820 *Modeling Earth Systems*, 11(11), 3816–3835. https://doi.org/10.1029/2019MS001622
- 821 Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser,
- H., et al. (2015). The deep convective clouds and chemistry (DC3) field campaign.

- Bulletin of the American Meteorological Society, 96(8), 1281–1309.
 https://doi.org/10.1175/BAMS-D-13-00290.1
- 825 Bassett, M., & Seinfeld, J. H. (1983). Atmospheric equilibrium model of sulfate and
- 826 nitrate aerosols. *Atmospheric Environment*, 17(11), 2237–2252.
 827 https://doi.org/10.1016/0004-6981(83)90221-4
- Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., & Streets, D. G.
- 829 (2007). Nitrate aerosols today and in 2030: A global simulation including aerosols and
- tropospheric ozone. Atmospheric Chemistry and Physics, 7(19), 5043–5059.
- 831 https://doi.org/10.5194/acp-7-5043-2007
- Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., & Boucher, O. (2011). Aerosol
- forcing in the Climate Model Intercomparison Project (CMIP5) simulations by
- HadGEM2-ES and the role of ammonium nitrate. *Journal of Geophysical Research*,
- 835 *116*(D20), D20206. https://doi.org/10.1029/2011JD016074
- Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., et al. (2017).
- 837 Investigation of global particulate nitrate from the AeroCom phase III experiment.
- 838 Atmospheric Chemistry and Physics, 17(21), 12911–12940.
- 839 https://doi.org/10.5194/acp-17-12911-2017
- 840 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. (2013).
- 841 Clouds and aerosols. In T. F. Stocker, et al. (Eds.), *Climate change 2013: The physical*
- science basis. Contribution of working group I to the fifth assessment report of the
- 843 Intergovernmental Panel on Climate Change (pp. 571–658). Cambridge, UK/New

- 844 York, NY: Cambridge University Press
- Chen, Y., Cheng, Y., Ma, N., Wei, C., Ran, L., Wolke, R., et al. (2020). Natural sea-salt
- 846 emissions moderate the climate forcing of anthropogenic nitrate. *Atmospheric*
- 847 *Chemistry and Physics*, 20(2), 771–786. https://doi.org/10.5194/acp-20-771-2020
- 848 Cruz, C. N., Dassios, K. G., & Pandis, S. N. (2000). The effect of dioctyl phthalate films
- on the ammonium nitrate aerossol evaporation rate. *Atmospheric Environment*, 34(23),
- 850 3897–3905. https://doi.org/10.1016/S1352-2310(00)00173-4
- 851 Dassios, K. G., & Pandis, S. N. (1999). The mass accommodation coefficient of
- ammonium nitrate aerosol. *Atmospheric Environment*, 33(18), 2993–3003.
- 853 https://doi.org/10.1016/S1352-2310(99)00079-5
- Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., & Crutzen, P. J. (1996). Role
- of mineral aerosol as a reactive surface in the global troposphere. Journal of

856 *Geophysical Research*, 101(D17), 22869–22889. https://doi.org/10.1029/96JD01818

- 857 Emmons, L. K., Schwantes, R. H., Orlando, J. J., Tyndall, G., Kinnison, D., Lamarque,
- J.-F., et al. (2020). The Chemistry Mechanism in the Community Earth System Model
- version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(4),
- e2019MS001882. https://doi.org/10.1029/2019MS001882
- Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., et al.
- 862 (2010). Description and evaluation of the Model for Ozone and Related chemical
- Tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43–67.
- 864 https://doi.org/10.5194/gmd-3-43-2010

- Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., &
- Zhang, L. (2010). Impact of mineral dust on nitrate, sulfate, and ozone in transpacific
- Asian pollution plumes. *Atmospheric Chemistry and Physics*, 10(8), 3999–4012.
- 868 https://doi.org/10.5194/acp-10-3999-2010
- 869 Fan, T., Liu, X., Ma, P.-L., Zhang, Q., Li, Z., Jiang, Y., et al. (2018). Emission or
- atmospheric processes? An attempt to attribute the source of large bias of aerosols in
- eastern China simulated by global climate models. *Atmospheric Chemistry and Physics*,
- 872 *18*(2), 1395–1417. https://doi.org/10.5194/acp-18-1395-2018
- 873 Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,
- et al. (2006). Evolution of ozone, particulates, and aerosol direct radiative forcing in
- the vicinity of Houston using a fully coupled meteorology–chemistry–aerosol model.
- 876 Journal of Geophysical Research, 111(D21), D21305.
- 877 https://doi.org/10.1029/2005JD006721
- 878 Feng, Y., & Penner, J. E. (2007). Global modeling of nitrate and ammonium: Interaction
- of aerosols and tropospheric chemistry. *Journal of Geophysical Research*, *112*, D01304.
- 880 https://doi.org/10.1029/2005JD006404
- Fisher, J. A., Jacob, D. J., Travis, K. R., Kim, P. S., Marais, E. A., Chan Miller, C., et al.
- 882 (2016). Organic nitrate chemistry and its implications for nitrogen budgets in an
- isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and
- ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and
- 885 *Physics*, *16*(9), 5969–5991. https://doi.org/10.5194/acp-16-5969-2016

- 886 Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: A computationally efficient
- thermodynamic equilibrium model for $K^+-Ca^{2+}-Mg^{2+}-NH_4^+-Na^+-SO_4^{2-}-NO_3^--Cl^-$
- 888 H₂O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639–4659.
- https://doi.org/10.5194/acp-7-4639-2007
- 890 Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Van Reken, T., Fischer, M., et al.
- 891 (2009). Thermodynamic characterization of Mexico City aerosol during MILAGRO
- 892 2006. Atmospheric Chemistry and Physics, 9(6), 2141–2156.
- 893 https://doi.org/10.5194/acp-9-2141-2009
- Fuchs, N. A., & Sutugin, A. G. (1971). High-dispersed aerosols. In G. M. Hidy & J. R.
- Brock (Eds.), *Topics in Current Aerosol Research (Part 2)* (pp. 1–200). New York, NY:
- 896 Elsevier.
- Gao, Y., Zhao, C., Liu, X., Zhang, M., & Leung, L. R. (2014). WRF-Chem simulations of
- aerosols and anthropogenic aerosol radiative forcing in East Asia. *Atmospheric*
- *Environment*, *92*, 250–266. https://doi.org/10.1016/j.atmosenv.2014.04.038
- 900 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017).
- 901 The Modern-Era Retrospective Analysis for Research and Applications, Version 2
- 902 (MERRA-2). Journal of Climate, 30(14), 5419–5454.
- 903 https://doi.org/10.1175/JCLI-D-16-0758.1
- 904 Gettelman, A., & Morrison, H. (2015). Advanced two-moment bulk microphysics for
- global models. Part I: Off-line tests and comparison with other schemes. Journal of
- 906 *Climate*, 28(3), 1268–1287. https://doi.org/10.1175/JCLI-D-14-00102.1

- 907 Ghan, S. J. (2013). Technical note: Estimating aerosol effects on cloud radiative forcing.
- 908 Atmospheric Chemistry and Physics, 13(19), 9971–9974.
- 909 https://doi.org/10.5194/acp-13-9971-2013
- 910 Golaz, J.-C., Larson, V. E., & Cotton, W. R. (2002). A pdf-based model for boundary
- 911 layer clouds. Part I: Method and model description. Journal of the Atmospheric
 912 Sciences, 59(24), 3540–3551.
- 913 https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2
- Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al.
- 915 (2022). The DOE E3SM model version 2: Overview of the physical model. Submitted
- to Journal of Advances in Modeling Earth Systems.
- 917 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K.,
- 818 & Wang, X. (2012). The Model of Emissions of Gases and Aerosols from Nature
- version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic
- 920 emissions. Geoscientific Model Development, 5(6), 1471–1492.
- 921 https://doi.org/10.5194/gmd-5-1471-2012
- 922 Guimbaud, C., Arens, F., Gutzwiller, L., Gäggeler, H. W., & Ammann, M. (2002). Uptake
- of HNO₃ to deliquescent sea-salt particles: a study using the short-lived radioactive
- 924 isotope tracer ¹³N. Atmospheric Chemistry and Physics, 2(4), 249–257.
- 925 https://doi.org/10.5194/acp-2-249-2002
- 926 Guo, H., Campuzano-Jost, P., Nault, B. A., Day, D. A., Schroder, J. C., Kim, D., et al.
- 927 (2021). The importance of size ranges in aerosol instrument intercomparisons: a case

928	study for the Atmospheric Tomography Mission. Atmospheric Measurement
929	Techniques, 14(5), 3631-3655. https://doi.org/10.5194/amt-14-3631-2021
930	Hao, L. Q., Kortelainen, A., Romakkaniemi, S., Portin, H., Jaatinen, A., Leskinen, A., et
931	al. Atmospheric submicron aerosol composition and particulate organic nitrate
932	formation in a boreal forestland-urban mixed region. Atmospheric Chemistry and
933	Physics, 14(24), 13483-13495. https://doi.org/10.5194/acp-14-13483-2014
934	Hauglustaine, D. A., Balkanski, Y., & Schulz, M. (2014). A global model simulation of
935	present and future nitrate aerosols and their direct radiative forcing of climate.
936	Atmospheric Chemistry and Physics, 14(20), 11031–11063.
937	https://doi.org/10.5194/acp-14-11031-2014
938	Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T.,
939	et al. (2018). Historical (1750-2014) anthropogenic emissions of reactive gases and
940	aerosols from the Community Emissions Data System (CEDS). Geoscientific Model
941	Development, 11(1), 369-408. https://doi.org/10.5194/gmd-11-369-2018
942	Itahashi, S., Hayami, H., Uno, I., Pan, X., & Uematsu, M. (2016). Importance of
943	coarse-mode nitrate produced via sea salt as atmospheric input to East Asian oceans.
944	Geophysical Research Letters, 43(10), 5483–5491.
945	https://doi.org/10.1002/2016GL068722
946	Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., et al.

- 947 (2010). The Arctic Research of the Composition of the Troposphere from Aircraft and
- 948 Satellites (ARCTAS) mission: Design, execution, and first results. Atmospheric

- 949 *Chemistry and Physics*, 10(11), 5191–5212. https://doi.org/10.5194/acp-10-5191-2010
- 950 Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H.,
- 951 et al. (2016). Organic nitrates from night-time chemistry are ubiquitous in the
- European submicron aerosol. *Geophysical Research Letters*, 43(14), 7735–7744.
- 953 https://doi.org/10.1002/2016GL069239
- 954 Kok, J. F. (2011). A scaling theory for the size distribution of emitted dust aerosols
- suggests climate models underestimate the size of the global dust cycle. *Proceedings of*
- 956 *the National Academy of Sciences of the United States of America*, *108*(3), 1016–1021.
- 957 https://doi.org/10.1073/pnas.1014798108
- 958 Kulmala, M., Laaksonen, A., Korhonen, P., Vesala, T., Ahonen, T., & Barrett, J. C. (1993).
- 959 The effects of atmospheric nitric-acid vapor on cloud condensation nucleus activation.
- 960 Journal of Geophysical Research, 98(D12), 22949–22958.
- 961 https://doi.org/10.1029/93JD02070
- 962 Li, J., Wang, Z., Zhuang, G., Luo, G., Sun, Y., & Wang, Q. (2012). Mixing of Asian
- 963 mineral dust with anthropogenic pollutants over East Asia: a model case study of a
- 964 super-duststorm in March 2010. Atmospheric Chemistry and Physics, 12(16), 7591–
- 965 7607. https://doi.org/10.5194/acp-12-7591-2012
- 966 Liao, H., Adams, P. J., Chung, S. H., Seinfeld, J. H., Mickley, L. J., & Jacob, D. J. (2003).
- 967 Interactions between tropospheric chemistry and aerosols in a unified general
- 968 circulation model. Journal of Geophysical Research, 108(D1), 4001.
- 969 https://doi.org/10.1029/2001JD001260

970	Liao, H., & Seinfeld, J. H. (2005). Global impacts of gas-phase chemistry-aerosol
971	interactions on direct radiative forcing by anthropogenic aerosols and ozone. Journal
972	of Geophysical Research, 110(D18), D18208. https://doi.org/10.1029/2005JD005907
973	Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., et al. (2012). Toward a
974	minimal representation of aerosols in climate models: Description and evaluation in
975	the Community Atmosphere Model CAM5. Geoscientific Model Development, 5(3),
976	709-739. https://doi.org/10.5194/gmd-5-709-2012
977	Liu, X., Ma, PL., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. (2016).
978	Description and evaluation of a new four-mode version of the Modal Aerosol Module
979	(MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific
980	Model Development, 9(2), 505-522. https://doi.org/10.5194/gmd-9-505-2016
981	Lu, Z., Liu, X., Zaveri, R. A., Easter, R. C., Tilmes, S., Emmons, L. K., et al. (2021).
982	Radiative forcing of nitrate aerosols from 1975 to 2010 as simulated by MOSAIC
983	module in CESM2-MAM4. Journal of Geophysical Research: Atmospheres, 126(17),
984	e2021JD034809. https://doi.org/10.1029/2021JD034809
985	Ma, PL., Harrop, B. E., Larson, V. E., Neale, R. B., Gettelman, A., Morrison, H., et al.
986	(2022). Better calibration of cloud parameterizations and subgrid effects increases the

- 987 fidelity of E3SM Atmosphere Model version 1. Geoscientific Model Development,
- 988 15(7), 2881–2916. https://doi.org/10.5194/gmd-15-2881-2022
- 989 McNaughton, C. S., Clarke, A. D., Howell, S. G., Pinkerton, M., Anderson, B., Thornhill,
- 990 L., et al. (2007). Results from the DC-8 Inlet Characterization Experiment (DICE):

- 991 Airborne versus surface sampling of mineral dust and sea salt aerosols. Aerosol
- 992 Science and Technology, 41(2), 136–159. https://doi.org/10.1080/02786820601118406
- 993 Metzger, S., Dentener, F., Krol, M., Jeuken, A., & Lelieveld, J. (2002). Gas/aerosol
- partitioning 2. Global modeling results. Journal of Geophysical Research, 107(D16),
- 995 4313. https://doi.org/10.1029/2001JD001103
- 996 Metzger, S., & Lelieveld, J. (2007). Reformulating atmospheric aerosol thermodynamics
- and hygroscopic growth into fog, haze and clouds. *Atmospheric Chemistry and Physics*,
- 998 7(12), 3163–3193. https://doi.org/10.5194/acp-7-3163-2007
- 999 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., et al.
- 1000 (2013). Radiative forcing of the direct aerosol effect from AeroCom Phase II
- 1001 simulations. Atmospheric Chemistry and Physics, 13(4), 1853–1877.
- 1002 https://doi.org/10.5194/acp-13-1853-2013
- 1003 Naik, V., Szopa, S., Adhikary, B., Artaxo, P., Berntsen, T., Collins, W. D., et al. (2021).
- 1004 Short-lived climate forcers. In V. Masson-Delmotte, et al. (Eds.), *Climate change 2021:*
- 1005 The physical science basis. Contribution of working group I to the sixth assessment
- 1006 report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York,
- 1007 NY: Cambridge University Press. In Press
- 1008 Nenes, A., Pandis, S. N., & Pilinis, C. (1998). ISORROPIA: A new thermodynamic
- 1009 equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic
- 1010 *Geochemistry*, 4(1), 123–152. https://doi.org/10.1023/A:1009604003981
- 1011 Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., et al.

- 1012 (2017). Nitrate radicals and biogenic volatile organic compounds: oxidation,
- 1013 mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 17(3), 2103–
- 1014 2162. https://doi.org/10.5194/acp-17-2103-2017
- 1015 Petters, M., & Kreidenweis, S. (2007). A single parameter representation of hygroscopic
- 1016 growth and cloud condensation nucleus activity. *Atmospheric Chemistry and Physics*,
- 1017 7(8), 1961–1971. https://doi.org/10.5194/acp-7-1961-2007
- 1018 Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H. (2010). Global
- 1019 modeling of organic aerosol: the importance of reactive nitrogen (NO_x and NO_3).
- 1020 Atmospheric Chemistry and Physics, 10(22), 11261–11276.
- 1021 https://doi.org/10.5194/acp-10-11261-2010
- 1022 Pye, H. O. T., Liao, H., Wu, S., Mickley, L. J., Jacob, D. J., Henze, D. K., & Seinfeld, J.
- H. (2009). Effect of changes in climate and emissions on future sulfate-nitrate-
- ammonium aerosol levels in the United States. *Journal of Geophysical Research*, 114,
- 1025 D01205. https://doi.org/10.1029/2008JD010701
- 1026 Pye, H. O. T., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R. et al. (2015).
- 1027 Modeling the current and future roles of particulate organic nitrates in the Southeastern
- 1028 United States. Environmental Science & Technology, 49(24), 14195–14203.
- 1029 https://doi.org/10.1021/acs.est.5b03738
- 1030 Rasch, P. J., Xie, S., Ma, P.-L., Lin, W., Wang, H., Tang, Q., et al. (2019). An overview of
- the atmospheric component of the Energy Exascale Earth System Model. Journal of
- 1032 Earth System Model. Journal of Advances in Modeling Earth Systems, 11(8), 2377–

- 1033 2411. https://doi.org/10.1029/2019MS001629
- 1034 Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C., & Hass, H.
- 1035 (2003). Impact of the heterogeneous hydrolysis of N_2O_5 on chemistry and nitrate
- aerosol formation in the lower troposphere under photosmog conditions. *Journal of*
- 1037 *Geophysical Research*, 108(D4), 4144. https://doi.org/10.1029/2002JD002436
- 1038 Rollins, A. W., Browne, E. C., Min, K.-E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R.,
- 1039 et al. (2012). Evidence for NOx control over nighttime SOA formation. Science,
- 1040 *337*(6099), 1210–1212. https://doi.org/10.1126/science.1221520
- 1041 Singh, H. B., Brune, W. H., Crawford, J. H., Flocke, F., & Jacob, D. J. (2009). Chemistry
- and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006
- 1043 INTEX-B campaign overview and first results. *Atmospheric Chemistry and Physics*,

1044 9(7), 2301–2318. https://doi.org/10.5194/acp-9-2301-2009

- 1045 Skeie, R. B., Berntsen, T. K., Myhre, G., Tanaka, K., Kvalevåg, M. M., & Hoyle, C. R.
- 1046 (2011). Anthropogenic radiative forcing time series from pre-industrial times until
- 1047 2010. Atmospheric Chemistry and Physics, 11(22), 11827–11857.
- 1048 https://doi.org/10.5194/acp-11-11827-2011
- 1049 Song, C. H., Kim, C. M., Lee, Y. J., Carmichael, G. R., Lee, B. K., & Lee, D. S. (2007).
- 1050 An evaluation of reaction probabilities of sulfate and nitrate precursors onto East Asia
- 1051 dust particles. Journal of Geophysical Research, 112(D18), D18206.
- 1052 https://doi.org/2006JD008092
- 1053 Tang, Q., Prather, M. J., Hsu, J., Ruiz, D. J., Cameron-Smith, P. J., Xie, S., & Golaz, J.-C.

- 1054 (2021). Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM
- version 1 Earth system model. *Geoscientific Model Development*, 14(3), 1219–1236.
- 1056 https://doi.org/10.5194/gmd-14-1219-2021
- 1057 Thompson, C. R., Wofsy, S. C., Prather, M. J., Newman, P. A., Hanisco, T. F., Ryerson, T.
- B. et al. (2021). THE NASA ATMOSPHERIC TOMOGRAPHY (ATom) MISSION:
- 1059 Imaging the chemistry of the global atmosphere. Bulletin of the American
- 1060 *Meteorological Society*, 96(8), 1–53. https://doi.org/10.1175/BAMS-D-20-0315.1
- 1061 Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Ma, P.-L., Liu, X., et al.
- 1062 (2015). Description and evaluation of tropospheric chemistry and aerosols in the
- 1063 Community Earth System Model (CESM1.2). *Geoscientific Model Development*, 8(5),
- 1064 1395–1426. https://doi.org/10.5194/gmd-8-1395-2015
- 1065 Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., et al. (2016).
- 1066 Planning, implementation, and scientific goals of the Studies of Emissions and
- 1067 Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys
- 1068 (SEAC⁴RS) field mission. Journal of Geophysical Research: Atmospheres, 121(9),
- 1069 4967–5009. https://doi.org/10.1002/2015JD024297
- 1070 van Dorland, R., Dentener, F. J., & Lelieveld, J. (1997). Radiative forcing due to
- 1071 tropospheric ozone and sulfate aerosols. Journal of Geophysical Research, 102(D23),
- 1072 28079–28100. https://doi.org/10.1029/97JD02499
- 1073 van Marle, M., Kloster, S., Magi, B., Marlon, J., Daniau, A., Field, R., et al. (2017).
- 1074 Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging

- satellite observations with proxies and fire models (1750-2015). *Geoscientific Model*
- 1076 Development, 10(9), 3329–3357. https://doi.org/10.5194/gmd-10-3329-2017
- 1077 Walker, J. M., Philip, S., Martin, R. V., & Seinfeld, J. H. (2012). Simulation of nitrate,
- sulfate, and ammonium aerosols over the United States. Atmospheric Chemistry and
- 1079 *Physics*, *12*(22), 11213–11227. https://doi.org/10.5194/acp-12-11213-2012
- 1080 Wang, H., Easter, R. C., Zhang, R., Ma, P.-L., Singh, B., Zhang, K., et al. (2020).
- 1081 Aerosols in the E3SM Version 1: New developments and their impacts on radiative
- 1082 forcing. Journal of Advances in Modeling Earth Systems, 12, e2019MS001851.
- 1083 https://doi.org/10.1029/2019MS001851
- 1084 Wang, Y.-C., Pan, H.-L., & Hsu, H.-H. (2015). Impacts of the triggering function of
- 1085 cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric
- 1086 Radiation Measurement Southern Great Plains site. *Journal of Geophysical Research:*
- 1087 *Atmospheres*, *120*(20), 10681–10702. https://doi.org/10.1002/2015JD023337
- 1088 Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., et al. (2020). Understanding
- 1089 processes that control dust spatial distributions with global climate models and satellite
- 1090 observations. Atmospheric Chemistry and Physics, 20(22), 13835–13855.
- 1091 https://doi.org/10.5194/acp-20-13835-2020
- 1092 Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., et al. (2018).
- 1093 Understanding cloud and convective characteristics in version 1 of the E3SM
- atmosphere model. Journal of Advances in Modeling Earth Systems, 10(10), 2618-
- 1095 2644. https://doi.org/10.1029/2018MS001350

- 1096 Xie, S., Wang, Y.-C., Lin, W., Ma, H.-Y., Tang, Q., Tang, S., et al. (2019). Improved
- diurnal cycle of precipitation in E3SM with a revised convective triggering function.
- 1098 Journal of Advances in Modeling Earth Systems, 11(7), 2290–2310.
- 1099 https://doi.org/10.1029/2019MS001702
- 1100 Xie, S., & Zhang, M. (2000). Impact of the convection triggering function on
- single-column model simulations. Journal of Geophysical Research, 105(D11),
- 1102 14983–14996. https://doi.org/10.1029/2000JD900170
- 1103 Xu, L., & Penner, J. E. (2012). Global simulations of nitrate and ammonium aerosols and
- their radiative effects. Atmospheric Chemistry and Physics, 12(20), 9479–9504.
- 1105 https://doi.org/10.5194/acp-12-9479-2012
- 1106 Zaveri, R. A., Berkowitz, C. M., Brechtel, F. J., Gilles, M. K., Hubbe, J. M., et al. (2010).
- 1107 Nighttime chemical evolution of aerosol and trace gases in a power plant plume:
- 1108 Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃
- 1109 radical chemistry, and N₂O₅ heterogeneous hydrolysis. Journal of Geophysical
- 1110 Research, 115(D12), D12304. httsp://doi.org/10.1029/2009JD013250
- 1111 Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for Simulating
- 1112 Aerosol Interactions and Chemistry (MOSAIC). Journal of Geophysical Research, 113,
- 1113 D13204. https://doi.org/10.1029/2007JD008782
- 1114 Zaveri, R. A., Easter, R. C., Singh, B., Wang, H., Lu, Z., Tilmes, S., et al. (2021).
- 1115 Development and evaluation of chemistry-aerosol-climate model
- 1116 CAM5-chem-MAM7-MOSAIC: Global atmospheric distribution and radiative effects

- of nitrate aerosol. Journal of Advances in Modeling Earth Systems, 13,
 e2020MS002346. https://doi.org/10.1029/2020MS002346
- 1119 Zaveri, R. A., Shilling, J. E., Fast, J. D., & Springston, S. R. (2020). Efficient nighttime
- biogenic SOA formation in a polluted residual layer. *Journal of Geophysical Research:*
- 1121 *Atmospheres*, *125*(6), e2019JD031583. https://doi.org/10.1029/2019JD031583.
- 1122 Zhang, G. J., & McFarlane, N. A. (1995). Sensitivity of climate simulations to the
- 1123 parameterization of cumulus convection in the Canadian climate centre general
- 1124 circulation model. Atmosphere-Ocean, 33(3), 407–446.
- 1125 https://doi.org/10.1080/07055900.1995.9649539
- 1126 Zhang, Y., Chen, Y., Sarwar, G., & Schere, K. (2012). Impact of gas-phase mechanisms
- 1127 on Weather Research Forecasting Model with Chemistry (WRF/Chem) predictions:
- 1128 Mechanism implementation and comparative evaluation. Journal of Geophysical

1129 *Research*, *117*(D1), D01301. https://doi.org/10.1029/2011JD015775

- 1130 Zhou, C.-H., Gong, S., Zhang, X.-Y., Liu, H.-L., Xue, M., Cao, G.-L., et al. (2012).
- 1131 Towards the improvements of simulating the chemical and optical properties of
- 1132 Chinese aerosols using an online coupled model—CUACE/Aero. *Tellus B: Chemical*
- 1133 *and Physical Meteorology*, *64*(1), 18965. https://doi.org/10.3402/tellusb.v64i0.18965
- 1134 Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K., Levelt, P. F., &
- 1135 Waters, J. W. (2006). Tropospheric ozone determined from Aura OMI and MLS:
- Evaluation of measurements and comparison with the Global Modeling Initiative's
- 1137 Chemical Transport Model. Journal of Geophysical Research, 111(D19), D19303.

1139 https://doi.org/10.1029/2006JD007089

1140 Figures

Figure 1. Evaluation of modeled tropospheric O₃, CO, NO_x, PAN, and HNO₃ (averaged over 2005-2014) against observations from aircraft campaigns (operated during 1995-2010), averaged over 2-7 km.

1145

Figure 2. Spatial distributions of global annual mean (a-c) nitrate burden, (d-e) relative
differences of nitrate burden compared to MTC_SLOW, and (f) relative differences of
nitrate burden (MTC_SPLC) compared to MTC_WGT. Numbers at the top-right of each
panel are global annual mean values.

Figure 3. Spatial distributions of global annual mean (a-c) nitrate burden in the fine mode(accumulation and Aitken modes), and (d-f) mass fractions of the fine mode nitrate

- 1167 burden. Numbers at the top-right of each panel are global annual mean values.

Figure 4. Scatter plots of modeled annual mean surface concentrations (μ g m⁻³) of nitrate (top row), ammonium (middle row), and sulfate (bottom row) aerosols compared to observations at CASTNET (left column), EMEP (middle column), and EANET (right column) network sites during 2005-2014. The numbers are mean concentrations and correlation coefficients.

Figure 5. Scatter plots of modeled annual mean surface concentrations (μ g m⁻³) of HNO₃ (top row), NH₃ (middle row), and SO₂ (bottom row) compared to observations at CASTNET and AMoN (left column), EMEP (middle column), and EANET (right column) network sites during 2005-2014. The numbers are mean concentrations and correlation coefficients.

Figure 6. Seasonal variations of simulated (color lines and symbols) and observed (black
lines and circles) nitrate surface concentrations (μg m⁻³) at 6 CASTNET sites: Beltsville
(39.0°N, 76.8°W), Mackville (37.7°N, 85.0°W), Everglades NP (25.4°N, 80.7°W), Caddo
Valley (34.2°N, 93.1°W), Joshua Tree NP (34.1°N, 116.4°W), and Denali NP (63.7°N,
149.0°W).

Figure 7. Seasonal variations of simulated (color lines and symbols) and observed (black
lines and circles) nitrate surface concentrations (μg m⁻³) at 6 EMEP sites: Tustervatn
(65.8°N, 13.9°E), K-puszta (47.0°N, 19.6°E), Jarczew (51.8°N, 22.0°E), Malin Head
(55.4°N, 7.3°W), Råö (57.4°N, 11.9°E), and Kollumerwaard (53.3°N, 6.3°E).

Figure 8. Seasonal variations of simulated (color lines and dots) and observed (black
lines and dots) nitrate surface concentrations (μg m⁻³) at 6 EANET sites: Listvyanka
(51.8°N, 104.9°E), Primorskaya (43.6°N, 132.2°E), Banryu (34.7°N, 131.8°E), Ogasawara
(27.1°N, 142.2°E), Hanoi (21.1°N, 105.7°E), and Serpong (6.4°S, 109.7°E).

1229 Figure 9. Flight tracks of INTEX-B, ARCTAS, DC3, and SEAC⁴RS campaigns. The

1230 colors represent flight tracks during different days.

Figure 10. Vertical profiles of nitrate PM_4 mass concentrations (µg m⁻³ in STP) from model simulations (colored lines) and four aircraft campaigns (dark solid lines for mean values in the corresponding month; shaded areas for plus/minus one standard deviation of observations). Numbers shown are median concentrations. Values in parentheses are for

1242 vertical levels below/at and above 500 hPa, respectively.

1251 (Autumn, 2017), and ATom-4 (Spring, 2018) campaigns. Black boxes are regions used1252 for the average of observations and model results along flight tracks. The latitudes and

1253 longitudes of these regions are (60°N-90°N, 170°W-10°W), (20°N-60°N, 170°E-110°W),

1254 (20°N-60°N, 50°W-0°), (20°S-20°N, 170°E-110°W), (20°S-20°N, 50°W-0°), (60°S-20°S,

```
1255 160°E-70°W), (60°S-20°S, 70°W-0°), and (60°S-90°S, 170°W-10°W). The colors represent
```

1256 flight tracks during different days.

- 1252
- 1253
- 1254

Figure 12. Vertical profiles of nitrate PM_4 mass concentrations (µg m⁻³ in STP) from model simulations (colored lines) and ATom 1-4 campaigns (black dots for mean values; grey lines for plus/minus one standard deviation of observations). Numbers shown are median concentrations. Values in parentheses are for vertical levels below/at and above 500 hPa, respectively.

1263

1264

1265

1266

1267

1273 Figure 13. Spatial distributions of RFari (a-c) and RFaci (d-f) of nitrate aerosols between

1274 1850 and 2010. Numbers at the top-right of each panel are global annual mean values.

1275 Areas with dots indicate the values with significance level not passing 10%.

	Species	Accumulation	Aitken	Coarse	Primary carbon	
	BC	D		D	D	
	POM	D		D	D	
	SOA	D	D	D		
	MOA	D	D	D	D	
	SO_4	D	D	D		
	$\rm NH_4$	Μ	М	М		
	NO ₃	М	М	М		
	Cl	D	D	D		
	Na	М	М	М		
	Dust	D	М	D		
	Ca	М	М	М		
	CO_3	М	М	М		
	Total	12	10	12	3	
1285	Note. "I	D" indicates sp	becies the	at are pre	esent in both default MAM4 and MOSAIC-MAM4	ł.
1286	"M" ind	licates species	added to	MOSA	IC-MAM4.	
		-				
1287						
1200						
1288						
1200						
1289						
1200						
1290						
4204						
1291						
4202						
1292						
4202						
1293						
1294						
1295						
1296						

Table 1. List of Aerosol Species in the Default and Modified MAM4 Modes

Table 2. Summary of Model Experiments with Different Configurations

Experiment	Aerosol and Precursor	Nitrate	Description
	Gas Emission	Yes/No	
Default	2005-2014 (PD)	Ν	Default setting of E3SMv2
	1850 (PI)	Ν	
MZT	2005-2014 (PD)	Ν	E3SMv2 with MOZART gas chemistry
	1850 (PI)	Ν	
MTC_SLOW	2005-2014 (PD)	Y	MOZART-MAM4-MOSAIC; $\alpha_{HNO_3} \leq 0.0011$ for all aerosol modes
	2005-2014 (PD)	Ν	in MAM4
	1850 (PI)	Y	
	1850 (PI)	Ν	
MTC_WGT	2005-2014 (PD)	Y	$\alpha_{\rm HNO_3} \leq 0.0011$ for dust particles; $\alpha_{\rm HNO_3} = 0.193$ for non-dust
	2005-2014 (PD)	Ν	particles; calculating dust-weighted MTCs for each mode using
	1850 (PI)	Y	parameters ($r_{p,m}$, n_m , and α_{HNO_3}) for dust/non-dust particles
	1850 (PI)	Ν	
MTC_SPLC	2005-2014 (PD)	Y	same as MTC_WGT in the accumulation and Aitken mode but
	2005-2014 (PD)	Ν	splitting coarse mode aerosols into the coarse dust and sea salt
	1850 (PI)	Y	sub-mode in MOSAIC; $\alpha_{HNO_3} \leq 0.0011$ in the coarse dust
	1850 (PI)	Ν	sub-mode; $\alpha_{HNO_3} = 0.193$ in the sea salt sub-mode.
MTC_SPLAC	2005-2014 (PD)	Y	same as MTC_SPLC in the Aitken and coarse mode but splitting
			accumulation mode aerosols into the fine dust, sea salt and carbon
			mode in MOSAIC
MTC_FAST	2005-2014 (PD)	Y	same as MTC_SLOW but use $\alpha_{HNO_3} = 0.193$ for all aerosol modes
			in MAM4
1200			
1299			
1300			
1300			
1301			
1301			
1302			
1302			
1303			
1304			
1305			

Table 3. *Mass Budgets of Nitrate and Ammonium in the Three E3SM Experiments*

NO ₃	MTC_SLOW	MTC_WGT	MTC_SPLC
Aqueous Chemistry (Tg N a ⁻¹)	37.0 (36.9, 0.1)	28.6 (28.5, 0.1)	30.0 (29.9, 0.1)
Gas-aerosol Exchange (Tg N a ⁻¹)	-24.2 (-30.5, 6.3)	-4.8 (-20.8, 16.0)	-8.9 (-21.7, 12.8)
Gas-aerosol Exchange Production (Tg N a ⁻¹)	26.8 (20.0, 6.8)	48.5 (29.6, 18.9)	48.6 (32.4, 16.3)
Gas-aerosol Exchange Loss (Tg N a ⁻¹)	-51.7 (-51.4, -0.3)	-53.9 (-51.5, -2.4)	-57.5 (-54.9, -2.6)
Net Chemistry Production (Tg N a ⁻¹)	12.8 (6.4, 6.4)	23.8 (7.7, 16.0)	21.1 (8.2, 12.9)
Dry Deposition (Tg N a ⁻¹)	4.3 (1.1, 3.1)	9.6 (1.7, 8.0)	8.2 (1.7, 6.5)
Wet Deposition (Tg N a ⁻¹)	8.5 (5.3, 3.3)	14.1 (6.1, 8.1)	12.8 (6.5, 6.4)
Burden (Tg N)	0.096 (0.036, 0.061)	0.237 (0.068, 0.169)	0.185 (0.076, 0.110)
Lifetime (day)	2.75 (2.02, 3.47)	3.64 (3.20, 3.85)	3.21 (3.38, 3.11)
NH ₄	MTC_SLOW	MTC_WGT	MTC_SPLC
Aqueous Chemistry (Tg N a ⁻¹)	8.0	3.7	3.7
Gas-aerosol Exchange (Tg N a ⁻¹)	8.5	16.1	16.4
Net Chemistry Production (Tg N a ⁻¹)	16.5	19.8	20.1
Dry Deposition (Tg N a ⁻¹)	4.4	5.7	5.7
Wet Deposition (Tg N a ⁻¹)	12.4	14.4	14.7
Burden (Tg N)	0.390 (0.388, 0.003)	0.430 (0.421, 0.009)	0.436 (0.431, 0.006)
Lifetime (day)	8.46	7.80	7.82

1309 mode, respectively.

Table 4. Nitrate Mass Budgets in the Three E3SM Experiments Compared with Other

	Burden (Tg N)	ChemP (Tg N a ⁻¹)	Dry Dep (Tg N a^{-1})	Wet Dep (Tg N a^{-1})	Lifetime (day)
MTC_SLOW	0.096 (36.9, 63.1) ^a	12.8 (6.4, 6.4) ^b	4.3	8.5	2.75
MTC_WGT	0.237 (28.7, 71.3)	23.8 (7.7, 16.0)	9.6	14.1	3.64
MTC_SPLC	0.185 (40.9, 59.1)	21.1 (8.2, 12.9)	8.2	12.8	3.21
Bian et al. (2017) (B17)	$0.14 [0.03, 0.42]^{c}$	13.7 [1.5, 28.3] ^d	4.7 [0.25, 10.8]	10.4 [1.2, 20.5]	5.0 [2.0, 7.8]
	0.15 [0.06, 0.22] ^e	13.0 [10.5, 16.2]	4.6 [1.0, 10.5]	10.5 [7.1, 14.2]	4.2 [2.1, 5.9]
Lu et al. (2021) (L21)	0.11 (27.3, 72.7)	12.3 (5.1, 7.1)	2.8	9.3	3.3
	0.135 ^f				
Zaveri et al. (2021) (Z21)	0.139	21.7	9.0	12.5	2.36
Xu & Penner (2012) (XP12)	0.17 (52.3, 47.7) ^g	15.9 (8.5, 7.4)	4.0	12.0	3.92
Feng & Penner (2007) (FP07)	0.16 (42.9, 57.1) ^g	11.6 (4.6, 7.1)	3.0	8.6	5.0
Hauglustaine et al. (2014) (H14)	0.18 (27.8, 72.2)	14.4 (3.2, 11.2)	1.7	12.7	4.61

^aValues in parentheses are mass fractions for the fine (accumulation and Aitken mode) and coarse modes, respectively. ^bValues in parentheses are net chemistry productions in the fine and coarse modes, respectively. ^cValues in brackets are minimum and maximum values, respectively. ^dValues (mean, minimum, and maximum) are summarized from 7 GCMs (9 in total). Only two GCMs directly report chemistry production. The values for the other five GCMs are obtained from the sum of dry and wet deposition. "We select 4 GCMs which simulate the formation of nitrate aerosols in both the fine and coarse modes and consider the heterogeneous reactions on dust and sea salt particles. ^fThe value is from the experiment coupling MOSAIC and MAM7 in CESM2. ^gFine mode is for $d_p < 1.25$ μm.
Table 5. *RFari and RFaci of Nitrate Aerosols from This Study Compared with Other*

1340 *Studies*

		RFari (W m ⁻²)	RFaci (W m ⁻²)	Period
	MTC_SLOW	-0.021	-0.244	1850-2010
	MTC_WGT	-0.048	-0.332	1850-2010
	MTC_SPLC	-0.051	-0.352	1850-2010
	Lu et al. (2021) (L21)	-0.014	-0.219	1850-2010
	Xu & Penner (2012) (XP12)	-0.12	N/A	1850-2010
	An et al. (2019) (A19)	-0.14	N/A	1850-2010
	Hauglustaine et al. (2014) (H14)	-0.056	N/A	1850-2000
	Bellouin et al. (2011) (B11)	-0.12	N/A	1860-2000
	Bauer et al. (2007)	-0.06	N/A	1750-2000
	Li et al. (2015)	-0.025	N/A	1850-2000
	Boucher et al. (2013)	-0.11 (-0.3 to -0.03)	N/A	1750-2010
	Myhre et al. (2013)	-0.08 (-0.12 to -0.02)	N/A	1850-2000
1342 1343 1344 1345 1346				
1347 1348				
1349				

1	Supporting Information for			
2	Development and evaluation of E3SM-MOSAIC: Spatial distributions			
3	and radiative effects of nitrate aerosol			
4	Mingxuan Wu ¹ , Hailong Wang ¹ , Richard C. Easter ¹ , Zheng Lu ² , Xiaohong Liu ² ,			
5	Balwinder Singh ¹ , Po-Lun Ma ¹ , Qi Tang ³ , Rahul Zaveri ¹ , Ziming Ke ² , Rudong Zhang ¹ ,			
6	Louisa K. Emmons ⁴ , Simone Tilmes ⁴ , Jack E. Dibb ⁵ , Xue Zheng ³ , Shaocheng Xie ³ , L.			
7	Ruby Leung ¹			
8				
9	¹ Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA			
10	² Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA			
11	³ Lawrence Livermore National Laboratory, Livermore, CA, USA			
12	⁴ National Center for Atmospheric Research, Boulder, CO, USA			
13	⁵ Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,			
14	Durham, NH, USA			
15				
16				
17				
18				
19				
20				
21				

- 23 Contents of this file
- 24 Figures S1 to S13
- Tables S1 to S4

26

27 Introduction

In the Supporting Information section, we prepared 13 figures and 4 tables to support the 28 main manuscript. Table S1 gives the mass budget of nitrate in MTC SPLAC and 29 MTC FAST. Table S2 gives the mass budget of sulfate from 5 E3SM experiments. Table 30 S3 lists the tropospheric HNO₃ burden in the three MOSAIC experiments compared with 31 other studies. Table S4 lists the mean surface molar concentrations of aerosols and gases 32 33 for Figures 4 and 5 in the main manuscript. Figure S1 evaluates the modeled tropospheric column ozone against OMI/MLS retrievals. Figure S2 compares modeled tropospheric 34 35 C_2H_6 , C_3H_8 , C_2H_2 , and C_2H_4 with summaries of observations from aircraft campaigns. Figure S3 shows the spatial distributions of nitrate column mass tendencies due to 36 aqueous chemistry and gas-aerosol exchange. Figure S4 shows the spatial distributions of 37 ammonium burden. Figure S5 shows the latitude-altitude cross sections of nitrate 38 concentrations. Figure S6 evaluates modeled surface concentrations of nitrate aerosols 39 and HNO₃ from Zaveri et al. (2021) and Lu et al. (2021) against observations at 40 CASTNET, EMEP, and EANET network sites. Figure S7 evaluates modeled surface 41 concentrations of NO_x against observations at AQS, EMEP, and EANET network sites. 42

Figures S8-S10 show the seasonal variations of simulated and observed sulfate, HNO₃, and ammonium surface concentrations at 6 CASTNET sites. Figures S11 and S12 compare vertical profiles of HNO₃ concentrations from model simulations with observations from INTEX-B, ARCTAS, DC3, SEAC⁴RS, and ATom campaigns. Figure S13 shows the spatial distributions of RFari of ammonium aerosols.

- 49
- 50
- 51
- 52

Figure S1. Spatial distributions of global annual mean tropospheric column ozone
differences compared with OMI/MLS retrievals.

56

- 57
- 58

Figure S2. Evaluation of modeled tropospheric C₂H₆, C₃H₈, C₂H₂, and C₂H₄ (averaged
 over 2005-2014) with summaries of observations from aircraft campaigns (operated
 during 1995-2010), averaged over 2-7 km.

Figure S3. Spatial distributions of nitrate column mass tendencies (μ g m⁻² s⁻¹) due to (a-c) aqueous chemistry (AQCH), (d-f) gas-aerosol exchange (GAEX), (g-i) gas-aerosol exchange in the fine mode, and (j-l) gas-aerosol exchange in the coarse mode.

- _

Figure S4. Spatial distributions of global annual mean (a) ammonium burden (MTC_SLOW), (b-c) ammonium burden differences (MTC_WGT and MTC_SPLC) compared to MTC_SLOW, and (d-e) relative differences of ammonium burden compared to MTC_SLOW. Numbers at the top-right of each panel are global annual mean values.

. -

96 Figure S5. Latitude-altitude cross sections of annually averaged zonal mean (a-c) total,

Figure S6. Scatter plots of modeled annual mean surface concentrations (µg m⁻³) of nitrate aerosols (top row) and HNO₃ (bottom row) from Zaveri et al. (2021) (2000-2005) and Lu et al. (2021) (2005-2007) compared to observations at CASTNET (left column), EMEP (middle column), and EANET (right column) network sites during 2005-2014. The numbers are mean concentrations and correlation coefficients.

Figure S7. Scatter plots of modeled annual mean surface concentrations of NO_x (ppb) compared to observations at AQS and EANET network sites and NO_2 (ppb in STP; converted from $\mu g m^{-3}$) compared to observations at EMEP network sites. We only select rural and suburban sites for AQS network. The numbers are mean concentrations and correlation coefficients.

121

122

123

124

125

126

127

-_0

132 Figure S8. Seasonal variations of simulated (color lines and symbols) and observed

143 Figure S9. Seasonal variations of simulated (color lines and symbols) and observed

155 Figure S10. Seasonal variations of simulated (color lines and symbols) and observed

156 (black lines and circles) ammonium surface concentrations ($\mu g m^{-3}$) at six CASTNET 157 sites.

Figure S11. Vertical profiles of HNO₃ concentrations ($\mu g m^{-3}$ in STP) from model simulations (colored lines) and four aircraft campaigns (dark solid lines for mean values; shaded areas for plus/minus one standard deviation of observations).

Figure S12. Vertical profiles of HNO₃ concentrations ($\mu g m^{-3}$ in STP) from model simulations (colored lines) and ATom campaign (black dots for mean values; grey lines for plus/minus one standard deviation of observations).

Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

NO ₃	MTC_FAST	MTC_SPLAC
Aqueous Chemistry (Tg N a ⁻¹)	26.8 (26.8, 0.1)	29.4 (29.3, 0.1)
Gas-aerosol Exchange (Tg N a ⁻¹)	-0.4 (-19.7, 19.2)	-7.9 (-21.0, 13.1)
Net Chemistry Production (Tg N a^{-1})	26.4 (7.1, 19.3)	21.1 (8.3, 13.2)
Dry Deposition (Tg N a ⁻¹)	11.3 (1.5, 9.8)	8.4 (1.7, 6.7)
Wet Deposition (Tg N a ⁻¹)	15.0 (5.6, 9.5)	13.1 (6.6, 6.5)
Burden (Tg N)	0.256 (0.061, 0.194)	0.191 (0.080, 0.111)
Lifetime (day)	3.54 (3.18, 3.68)	3.25 (3.51, 3.08)

200 Table S1. Mass Budgets of Nitrate in MTC SPLAC and MTC FAST

201 Note. Values in parentheses are for the fine (accumulation and Aitken mode) and coarse

202 modes, respectively.

203

204 Table S2. Mass Budgets of nss-Sulfate

nss-SO ₄	Default	MZT	MTC_SLOW	MTC_WGT	MTC_SPLC
Emission (Tg S a ⁻¹)	1.81	1.81	1.81 (61.89)	1.81 (61.92)	1.81 (61.89)
Aqueous chemistry (Tg S a ⁻¹)	24.18	19.29	20.08	20.09	19.41
Gas-aerosol exchange (Tg S a ⁻¹)	15.80	12.93	12.65	12.51	12.60
Dry deposition (Tg S a ⁻¹)	8.79	8.11	8.37 (52.88)	8.24 (52.82)	8.24 (52.80)
Wet deposition (Tg S a ⁻¹)	33.12	26.36	26.99 (42.58)	26.96 (42.53)	27.01 (42.57)
Burden (Tg S)	0.784	0.703	0.706 (0.844)	0.702 (0.840)	0.705 (0.843)
Life time (day)	6.83	7.45	7.29 (3.23)	7.27 (3.22)	7.29 (3.23)

Note. Values in parentheses are for total sulfate, including ss-sulfate.

Table S3. Tropospheric HNO₃ burden in the Three E3SM Experiments Compared with

214 Other Studies

	Burden (Tg N) ^a	
MTC_SLOW	0.425	
MTC_WGT	0.353	
MTC_SPLC	0.389	
Bian et al. (2017)	$0.56 [0.15, 1.3]^{b}$	
	$0.39 [0.15, 0.69]^{c}$	
Lu et al. (2021)	0.637	
Zaveri et al. (2021)	0.422	
Xu & Penner (2012)	0.30	
Feng & Penner (2007)	0.37	

^aValues are calculated as pressure > 100 hPa for Bian et al. (2017), Lu et al. (2021), Zaveri et al. (2021), and this study; pressure > 150 hPa for Xu and Penner (2012); and pressure > 200 hPa for Feng and Penner (2007). ^bValues in brackets are minimum and maximum values, respectively. ^cWe select 4 GCMs which simulate the formation of nitrate aerosols in both the fine and coarse modes and consider the heterogeneous reactions on dust and sea salt particles.

221

222

223

224

225

226

227

228

229

230

250

Table S4. Mean Surface Molar Concentrations (ppb in STP; converted from $\mu g m^{-3}$) of

Region	Specie	Observation	MTC_SLOW	MTC_WGT	MTC_SPLC
U.S.	NO ₃	0.28	0.43	1.01	1.01
	HNO ₃	0.33	1.30	0.97	0.97
	NO ₃ +HNO ₃	0.61	1.72	1.98	1.98
	NH_4	0.97	0.92	1.54	1.54
	NH ₃	2.17	1.90	1.47	1.47
	NH ₄ +NH ₃	3.14	2.82	3.01	3.02
	SO_4	0.49	0.46	0.46	0.46
	SO ₂	0.72	1.32	1.33	1.33
Europe	NO ₃	0.56	0.53	1.18	1.17
	HNO ₃	0.25	0.70	0.44	0.44
	NO ₃ +HNO ₃	0.82	1.23	1.62	1.61
	NH_4	1.06	0.77	1.60	1.60
	NH ₃	1.70	2.45	1.87	1.87
	NH ₄ +NH ₃	2.76	3.22	3.47	3.47
	SO_4	0.42	0.34	0.35	0.35
_	SO ₂	0.47	1.00	1.00	1.00
East Asia	NO ₃	0.44	0.53	1.21	1.19
	HNO ₃	0.45	1.92	1.37	1.38
	NO ₃ +HNO ₃	0.89	2.44	2.58	2.57
	NH_4	1.28	1.43	2.16	2.19
	NH ₃	2.48	2.13	1.69	1.69
	NH ₄ +NH ₃	3.76	3.56	3.84	3.87
	SO_4	0.87	0.83	0.84	0.84
	SO_2	2.46	2.37	2.38	2.39

Aerosols and Precursor Gases for Figures 4 and 5.