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Abstract

Sub-grid-scale processes occurring at or near the surface of an ice sheet have a potentially large impact on local and integrated

surface mass balance (SMB) via redistribution and sublimation. Given observational complexity, they are either ignored or

parameterized over large-length scales. Here, we train random forest models to predict 1-km variability in snow accumulation

rates over the Antarctic Ice Sheet using atmospheric variables and topographic characteristics. Observations of snow accumu-

lation from both in situ and airborne radar data provide the predictors needed to train the random forest models. We find that

sub-grid-scale processes yield a net reduction in grounded SMB of ˜50 Gt yr-1, and our model evaluation suggests this is likely

a lower bound. Spatial correlation between the predicted snow accumulation variability with satellite-derived surface height

change indicates that sub-grid-scale processes operate differently through time, in tandem with temporal snow accumulation

anomalies.
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Key Points:

• We predict spatial deviations in net accumulation through synthesis of topographic and atmospheric
characteristics on a 1-km grid

• Kilometer-scale deviations in net accumulation typically range between -41 and 33% and are as large
as -172% of the MERRA-2 mean

• We link spatial deviations in net accumulation to seasonal satellite-derived height changes from ICESat-
2.

Abstract

Sub-grid-scale processes occurring at or near the surface of an ice sheet have a potentially large impact
on local and integrated net accumulation of snow via redistribution and sublimation. Given observational
complexity, they are either ignored or parameterized over large-length scales. Here, we train random forest
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models to predict 1-km variability in net accumulation over the Antarctic Ice Sheet using atmospheric
variables and topographic characteristics as predictors. Observations of net snow accumulation from both
in situ and airborne radar data provide the input observable targets needed to train the random forest
models. We find that kilometer-scale processes modify local net accumulation by as much as 172% of the
atmospheric model mean. The correlation in space between the predicted net accumulation variability and
satellite-derived surface-height change indicates that kilometer-scale processes operate differently through
time, driven largely by the seasonal anomalies in snow accumulation.

1 Introduction

Large-scale snowfall events deposit a substantial amount of freshwater over the Antarctic Ice Sheet (AIS),
acting in opposition to present-day sea-level rise. Approximately 7 mm of global sea-level equivalent falls
annually in the form of snow over the entire ice sheet (Mottram et al., 2021); any short-to-long-term deviations
in time and space from this mean will directly impact the temporal evolution mass balance of the AIS and
its individual glacial drainage systems (Rignot et al., 2019; Smith et al., 2020). State-of-the-art atmospheric
models do not agree, however, on the total magnitude of annual snow accumulation (Mottram et al., 2021),
ranging by more 500 Gt yr-1, a value which largely overshadows a reconciled AIS total mass balance of -109
Gt yr-1 (Shepherd et al., 2018). This lack of constraint yields arguably the largest source of uncertainty in
estimates of AIS mass balance and its contribution to global sea level (Rignot et al., 2019; Shepherd et al.,
2018; Smith et al., 2020). We aim to constrain the magnitude of net snow accumulation over the AIS at fine
spatial resolution within a global atmospheric model using airborne and ground-based measurements.

While snowfall events over the ice sheet are synoptic, blowing snow processes occurring prior to or after
deposition at the surface impart local-scale variability as snow is redistributed or preferentially sublimated
(Lenaerts et al., 2019). At present, global atmospheric models are not capable of accounting for these
small-scale impacts (Gelaro et al., 2017), and only a small handful of regional climate models simulate
these processes albeit at much coarser scales than they actually occur (Amory et al., 2021; Van Wessem et
al., 2018). A lack of observed accumulation rates at the scale necessary to measure these local processes
challenged development of both physics-based and empirical models. Recently, ground-based (Das et al.,
2013; Spikes et al., 2004) and airborne (Dattler et al., 2019; Medley et al., 2013) radar observations of the
ice sheet’s near-surface internal stratigraphy have revealed the small-scale variability in snow accumulation
at fine along-track resolution and over large swaths of the ice sheet. Here, we built on prior work (Das et al.,
2013; Dattler et al., 2019; Scambos et al., 2012; Studinger et al., 2020) investigating small-scale variability
in snow accumulation and regions of net scour, including their relationship to local topography and wind
characteristics, to predict kilometer-scale net snow accumulation over the entire ice sheet.

We are only focused on dry snow processes (snowfall, sublimation, erosion, deposition) that yield net snow
accumulation, whereas the surface mass balance (SMB) also accounts for mass loss via runoff. We define net
accumulation as the of snow that accumulates at the surface after accounting for all the dry snow processes,
and in this work, we allow net accumulation less than zero. Dry snow processes account for almost the
entirety of ice-sheet SMB; runoff is relevant in only small number of areas.

The 1980–2017 mean annual snow accumulation (± 1 standard deviation) derived from NASA’s Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) over the
AIS totals to 2568 ± 147 Gt yr-1, with 2037 ± 125 Gt yr-1 over grounded ice and 531 ± 34 Gt yr-1 over
floating ice without accounting for erosion and deposition. This global model is coarsely resolved and does not
include physical processes that occur over ice sheets over short length scales, such as blowing snow. Regional
climate models (RCMs) (Agosta et al., 2019; Lenaerts et al., 2012; Van Wessem et al., 2018) have accounted
for these processes with varying degrees of complexity; however, while some of the parameterizations hold
for transport over smaller length scales (Amory et al., 2021), the model outputs are resolved at the 10s
of km scales. For instance, results from a 5 km RCM run over West Antarctica did not show significant
improvement in SMB representation against the same RCM run at 27 km (Lenaerts et al., 2018). Another
study (Das et al., 2013) used thresholding of wind and topographic regimes to determine regions of net wind
scour (i.e., SMB < 0) which yielded an estimated loss of snow mass input due to wind erosion between
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11 and 36.5 Gt yr-1. The latter study does not provide context for the total impact of snow redistribution
because net snow deposition was not considered, providing only one side of the balance equation. Here, we
built a static map of net accumulation variability over the grounded and floating portions of the AIS at 1-km
resolution.

2 Data

2.1 ICESat-2 Surface Height and Height Change

Launched in 2018, NASA’s next generation Ice, Cloud, and land Elevation satellite (ICESat-2) is a photon-
counting laser altimeter designed to provide precise, repeatable measurements of ice-surface height change
every 91 days, globally to latitudes not exceeding 88° in magnitude (Markus et al., 2017). Here, we use the
ICESat-2 L3A Land Ice Height, Version 2 (ATL06; Smith et al. (2019)) collected during the first three 91-day
cycles (October 14, 2018–June 26, 2019). Because ICESat-2 was not pointing at its designed repeat tracks
during the first two cycles, data collected during the first ˜180 days provide additional height measurements,
which improved spatial coverage. More details regarding building a DEM using ICESat-2 data are in Section
S2.

To investigate spatial patterns of height change, we also use the ICESat-2 L3B Slope-Corrected Land Ice
Height Time Series, Version 4 (ATL11; Smith et al. (2021)) spanning cycles 3–11 (March 29, 2019–June 23,
2021). The ATL11 dataset provides along-track height that is slope-corrected onto a reference pair track for
each cycle beginning with cycle 3 when ICESat-2 began pointing at its designed reference ground tracks. We
eliminate less robust surface heights by using heights that have a quality summary flag set to zero.

2.2 Atmospheric

We use several atmospheric variables from NASA’s Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2; Gelaro et al., 2017), including hourly 10-m winds, and snowfall in
addition to monthly evaporation, humidity, and surface temperature from January 1, 1980 to December 31,
2019 (GMAO, 2015a, 2015b, 2015c, 2015d). MERRA-2 data are provided globally at 0.5° latitude by 0.625°
longitude resolution.

2.3 Snow Accumulation

2.3.1 AntSMB Database

Snow accumulation measurements over the large scales of interest to this work are few. We use a comprehen-
sive collection of Antarctic SMB measurements derived from various sources and methods including ground
penetrating radar (GPR), stakes, snow pits and ice cores referred to as the AntSMB dataset (Wang et al.,
2021). Specifically, we use the multi-year averaged SMB observations that exceed a 3-year span, the majority
of which are from GPR analysis. Given that the data set contains SMB, there might be some observations
where runoff occurs and that are not equivalent to our dry snow net accumulation; however, without a
straightforward way to differentiate these sites as well as the relatively small impact of runoff over the AIS,
we use all points that meet the time-span requirement. Thus, we assume net accumulation equals SMB,
equivalent to assuming no runoff occurs.

We also derive snow accumulation (Section 4.2.1) from additional snow radar data collected October 25,
2019 (Leuschen, 2014) that was released subsequent to the development of the Dattler et al. (2019) dataset.
We replicate the methodology from Dattler et al. (2019).

2.3.1 Supplemental GPR Measurements

We also use additional GPR data not included in the AntSMB database that were presented by Medley
et al. (2014), which cover the Pine Island and Thwaites Glacier catchments. They represent the 1985–2009
mean accumulation rate and are provided at 500-m along-track spacing.

3 Prediction of Kilometer-Scale Variability in Snow Accumulation
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We built a 1-km static map of predicted spatial deviations in net accumulation from the background large-
scale MERRA-2 annual mean using airborne and ground-based observations of accumulation and a series
of topographic and atmospheric predictors. We next outline the various predictors, and then explain the
random forest method implemented for prediction.

3.1 Predictors

In all, we used 11 predictors that described the topographic and climatic characteristics as well as their
interactions over the AIS. Topographic predictors were based on the DEM described in Section S2 and
include height, slope, aspect, curvature, and a 20-km high-pass filter of the surface height (Figures S3-S7).
Because the outer ICESat-2 beam pairs are separated by ˜6 km, prior to determination of the topographic
characteristics, we applied a 6-km low-pass filter to the DEM to minimize any tracking artifacts. Climatic
predictors were built from MERRA-2 mean annual variables and include 10-meter wind speed, 10-meter
wind direction, air temperature, specific humidity, and total precipitation-minus-evaporation (P-E ; Figures
S8-S12). TheP-E is the MERRA-2 net accumulation. Finally, we use the mean slope in the mean wind
direction (Figure S13), the dot product of the wind and slope vectors, as described in the Section S3.

3.2 Training Data

The AntSMB and Medley et al. (2014) data were modified to represent the relative deviation in snow
accumulation from the large-scale MERRA-2 mean annual P-E (i.e., the percent deviation from MERRA-
2), which we hereinafter refer to as the small-scale variability, SSV :

SSV = Observation−MERRA2
|MERRA2| × 100 .# (1)

Because most observations are from GPR analysis, we generate two subsets: GPR and traditional, the latter
includes stake, core, and snow pit measurements. Each set was then gridded onto the same 1-km grid as
the DEM by averaging points that fall within the same grid cell (Figure S2). As done with the DEM, we
applied a 6-km low-pass filter.

The fact that this work used measurements from a large compilation of observations from a variety of
techniques, means that there was not consistency in the temporal reference window across all observations.
Thus, observations represented anywhere from a minimum of 3 years to over one thousand years, some
of which overlapped with the MERRA-2 time window and some of which did not, introducing additional
uncertainty. While not ideal, we used all observations from all time windows to maximize the number of
observations across as many conditions as possible; however, the bias introduced from a non-coincident model
and observation time window could have been propagated throughout our results.

3.3 Random Forest Method

Using the random forest (RF) regression algorithm we predictedSSV over the entire AIS using 11 predictors
(Section 3.1) and 2 training datasets (Section 3.2). The GPR (n = 27,316) gridded data were randomly
sampled into 80% training and 20% testing partitions. We reserved an entire stake transect (n = 581) from
the traditional data set to act as an independent model evaluation, and the remaining 2,535 traditional
gridded values were split 80/20. Thus, a total of 23,881 observations were used for RF training. The
testing partition was not used to build the RF model but rather for performance evaluation. Specifically, we
employed bootstrap aggregation method (i.e., bagging) and an interaction-based predictor-selection technique
for all RF experiments to increase detection of predictor interactions (Loh, 2002). The ensemble bagging
technique builds decision trees each generated from a random sample with replacement of the training
dataset, diversifying the individual trees. The training data were weighted by the mean distance to all other
observations, giving higher weights to those with more distant neighbors; this scheme minimizes the impact
of GPR oversampling regions like West Antarctica.

Using two RF parameter scenarios (optimized and standard practice; Section S4), we built two final RF
of 200 decision trees for SSV prediction using our ICESat-2 DEM. The standard deviation amongst the
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individual trees provided an assessment of the spread in the prediction at the cell-by-cell basis, each of which
were combined with the RMSE of the testing set (8.7–9.0% depending on RF model; Figure S14; Table
S2) through root sum of squares to generate uncertainty, which is typically lower the closer the proximity
to training observations. To investigate the impact of the choice of DEM, we employed the same exercise
outlined above using the REMA DEM resampled to the same 1-km grid as our ICESat-2 DEM. Two CryoSat-
2 DEMs were not used (see Sections S1.2 and S2.1). Thus, we built 4 SSV models.

4 Results

4.1 Small-Scale Variability Predictions

The SSV map provides insight into both the kilometer-scale variability as well as the large-scale biases
in MERRA-2 accumulation. Typical SSV (Figure 1a) range between -40.8% to +32.5% (lower and upper
5%), whereas absolute deviations in SSV (Figure 1b) span -63.2 to +64.2 mm w.e. yr-1. Similarly, theSSV
uncertainties (Figure 1c) range between 14.9% and 59.7%, whereas the absolute uncertainties (Figure 1d)
span 5.3 to 201.4 mm w.e. yr-1. The uncertainties are larger in locations that are further from observations
(Figure 1c). The RF models are strongly correlated with each other (all combinations r2> 0.94). When
integrated in space, they predict between a reduction of 23.3 Gt yr-1 and an increase of 3.3 Gt yr-1 in the
MERRA-2 net accumulation (Table S2). Predictions on ice shelves suggest a more positive accumulation
(+12.1 to +22.4 Gt yr-1). All indicate small to moderate reductions in the MERRA-2 accumulation over
grounded ice (-18.8 to -35.4 Gt yr-1).

Uncertainty calculations for the integrated values account for correlated errors within a 20-km radius, a value
chosen to correspond with the 20-km high-pass filtered surface heights used as a predictor. Because no model
outperformed the others (Table S2), we present the most likely representation of SSV as the mean of all four
predictions; we conservatively combine their cell-by-cell uncertainties through the root sum of squares. This
approach yields integrated SSV for floating and grounded ice of +17.3 ± 11.7 Gt yr-1 and -25.0 ± 16.4 Gt
yr-1, combining to -7.7 ± 20.1 Gt yr-1. Hereinafter, all results presented are in reference to this scenario. We
note that the signal-to-noise ratio is >1 for only 11% of the ice sheet, indicating the uncertainty outweighs
the signal (Figure S15). When comparing the RF model and its uncertainty bounds with the independent
stake transect, however, we find the uncertainties are predominantly inflated (Figure S16). Specifically, the
RMSE between the observed and modeledSSV s over the independent transect is 23% (Table S2), but the
mean RF uncertainty amounts to 31%.

4.2 Comparison with ICESat-2 Height Change

4.2.1 Case Study with Coincident Snow Radar

Over long timescales and an unchanging climate, the amount of snow that falls and accumulates is balanced
by firn compaction and the loss of firn via conversion to ice suggesting that ice-surface-height does not evolve
because of snowfall processes; however, at sub annual scales, episodic and seasonal evolution of precipitation
and temperature have a large impact on surface-height changes. Thus, if our static SSV model is stable
in time, then we should observe height changes that resemble the variability in snow accumulation. To
investigate the importance of this variability on our interpretation of ice-surface-height evolution, we analyze
the relationship between ICESat-2 observed changes with our SSV model, Operation IceBridge (OIB) snow
radar data, and MERRA-2 climate.

In 2019, OIB underflew ICESat-2 ground tracks over coastal Wilkes and Victoria Land, which provides us
the ability to directly compare OIB snow radar, our SSV models, and ICESat-2 height change. We analyze
a 100-km segment from October 25, 2019 that follows a trajectory near-perpendicular to the coast (Figure 2;
Figure S1b). The ICESat-2 height change along this ground track between May 2, 2020 and August 1, 2020
shows an overall increase with significant small-scale variations along track (Figure 2a). We next compare the
ICESat-2 data with coincident OIB snow radar data by following the same procedure as outlined by Dattler
et al. (2019) to produce net accumulation by tracking a single radar horizon through space. We show the
resulting radar-derived accumulation, the SSV models, and the MERRA-2 meanP-E interpolated to each
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radar measurement in Figure 2b, and the snow radar echogram and tracked layer in Figure 2c. As with the
Dattler et al. (2019) dataset, our radar-derived accumulations were calculated in a way that matches them
with the large-scale MERRA-2 mean. That assumption does not impact our assessment of the SSV in the
snow accumulation.

Based on this exercise, we confirm that our models are capable of predicting SSV in snow accumulation
and that there are not substantial differences between the RF models. We note that these snow radar
data were collected in 2019 and are not part of the GPR accumulation dataset compiled by Dattler et al.
(2019), which used data collected up through 2017. Thus, the comparison here is independent of our RF
model development. We also confirm that the RF models underestimate the total magnitude of the larger
deviations. Nevertheless, we observe significant correlation between the radar-derived accumulations, RF
models of SSV , and ICESat-2 height change variability.

4.3 Ice-Sheet-Wide Height Change and Snow Accumulation Variability

ICESat-2 ATL11 provides along-track, slope-corrected heights spanning nine 91-day cycles, providing sea-
sonal height change over a two-year period. For each reference pair track, we calculate cycle-by-cycle height
change (i.e., height change over a 91-day interval) and apply a 6-km moving mean to match the same filter
applied to our ICESat-2 DEM (Section S2). For each reference pair track, we find the mean MERRA-2P-E
anomaly over the exact time epoch for each cycle and for that specific track. This step provides the temporal
accumulation anomaly along each reference pair track over the same time and space as the ICESat-2 ATL11
data. We also interpolate our static RF SSV models onto the ATL11 heights. To investigate the relationship
between observed height change and our predicted SSV , we correlate the ATL11 height changes with the
mean predicted SSV along 50-km segments for each cycle pair. This relationship, as well as the temporal
accumulation anomaly over each cycle pair, is summarized in Figure 3. We find that the sign and magnitude
of the correspondence between spatial variations in snow accumulation and observed height changes varies
by season.

5 Discussion

We use a combination of snow accumulation derived from GPR, as well as other traditional observational
constraints, with topographic and atmospheric characteristics derived from ICESat-2 surface height data
and MERRA-2 to predict net accumulation on a 1-km grid. Neither selection of the RF model parameters
nor choice of DEM largely impacted the results, suggesting that we used a robust choice of predictors.
Comparison of performance statistics on the testing and training datasets suggest some RF model overfitting
given the increased performance of the training dataset; however, the models remain performant at a level
similar to the statistics for the testing and transect subsets in unobserved regions, and the uncertainties at
those locations reflect the reduced performance. Not all predictors, however, were equally important. We
found that MSWD was by far the most influential predictor followed by wind speed, P-E , and wind direction
in order.

Our new SSV predictions over the entire AIS suggest an insignificant reduction of 7.7 +- 20.1 Gt yr-1, which
means there is no significant difference from the integrated MERRA-2 large-scale mean; however, our map
shows substantial deviations at the regional to local scales that are indicative of increased net accumulation
over the ice shelves (+17.3 +- 11.7 Gt yr-1 ) and decreased net accumulation over the grounded ice sheet
(-25.0 +- 16.4 Gt yr-1). Thus, we find that while MERRA-2 provides realistic estimates of integrated
accumulation, locally it fails to capture the local-to-regional deviations, which is unsurprising as the global
model cannot resolve finer-scale topography.

5.1 Snow accumulation variability and height change

At seasonal time scales, variations in surface height fluctuate in response to strong positive or negative
snowfall anomalies in time, albeit in a different fashion. Over the entire AIS, an integrated positive anomaly
(Figure 3: red/orange) typically occurs in winter, when the SSV model is positively correlated with observed
height changes. Locations that receive higher net accumulation than its immediate vicinity experience
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larger height increases, which have not yet been modulated by their enhanced compaction rates, which
operate on slower timescales. The opposite is true in the summer when the ice sheet typically experiences
negative accumulation anomalies (Figure 3: green/brown): locations that receive anomalously higher net
accumulation than its immediate vicinity experience larger height decreases. Even though a region might not
receive any accumulation, densification processes are more rapid where the long-term net accumulation is
larger; thus, under anomalously low accumulation conditions, we observe the spatial variations in compaction
rates that are generated from the spatial variations in the long-term net accumulation.

The signal when integrated over the entire ice sheet is less obvious in spring and summer. We hypothesize that
while during spring (Figure 3: purple/pink) there are typically large negative anomalies in accumulation, the
firn column remains cold coming out of winter, which reduces compaction rates and thus the correspondence
between theSSV and ATL11 height changes. We expect the opposite as well: during the fall (Figure 3:
blue/yellow), the firn column is warmer leading to more compaction, which counterbalances the typical
positive snow accumulation anomalies, although the signal is weaker.

These results indicate that substantial deviations in ATL11 height changes along-track exist in response to
kilometer-scale variations in the net accumulation and that the sign of the height change anomaly likely
reflects the sign of the temporal accumulation anomaly over the cycle-pair epoch. Thus, kilometer-scale
variability observed in ATL11 derived height change reflect surface processes and should not be considered
instrument noise but rather highlight precision and data product capability. Thus, any studies interested
in change over short length scales will need to strongly consider the impact of surface processes on the
interpretation of the observed spatiotemporal height changes.

5.2 Limitations

While we have provided a product of AIS net snow accumulation that is largely capable of reproducing
its spatial variability, several limitations remain that if addressed could improve the methodology. In the
generation of the DEM, we chose to remove any ATL06 surface heights that had an RMS error larger than 0.1
m, which likely excluded too much data in steeply sloping regions. This limitation could be overcome using
an RMS threshold as a function of slope. Because the technique used to derive the OIB snow accumulation
is tied to the MERRA-2 large-scale mean (Dattler et al., 2019), we only use MERRA-2 atmospheric data
as predictors. Given that the RF models predict accumulation variability due to small-scale topographic
deviations as well as to large-scale biases in MERRA-2, we cannot disentangle the two from one another,
making it is difficult to attribute their individual contributions.

Other limitations stem from the predictor training data used. While the topographic data are well resolved
at 1-km resolution, the atmospheric data only resolves variables at several 10s of km; thus, atmospheric
downscaling could lead to improved predictions. The set of predictors used might also be incomplete. Our
analysis suggests that height change from ICESat-2 is also strongly related to the SSV in snow accumulation,
and it could provide more constraint in the future at the ice-sheet-wide scale. Similarly, the RF model relies
on training data spanning several different atmospheric and topographic regimes, however, most of the GPR
observations are from the Antarctic Peninsula and West Antarctica. The traditional dataset fills in much of
the missing areas in East Antarctica, but much of the data are representative of a single point, which might
not be representative of the 1 km-by-1 km region in which it falls.

6 Conclusions

While atmospheric models generally agree on the synoptic-scale signatures of snow accumulation over the
AIS (Mottram et al., 2021), they at present either do not account for drifting snow processes or do so at a
coarse scale. Shallow radar studies have revealed significant deviations in the snow accumulation at sub-grid-
cell scales (Medley et al., 2013; Richardson et al., 1997; Spikes et al., 2004), which suggest that atmospheric
model evaluations against sparse point measurements of snow accumulation are likely flawed. The predictions
generated for this study will hopefully provide new context for model evaluations by eliminating some of the
scale ambiguity in model-observation comparisons. The resulting spatial anomalies in the net accumulation
are manifested in satellite-derived measurements of surface height changes, which also adds uncertainty to
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interpretation especially when considering seasonal timescales. Additional measurements of the small-scale
variations in snow accumulation as well as more targeted studies bringing together satellite altimetric height
changes and firn densification models at the local scale would prove more edifying in untangling the full
response of the surface to these various processes.
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Figure 1. Predicted small-scale variability (SSV) from the large-scale mean MERRA-2 accumulation and
associated uncertainty. The relative (a) and absolute (b) predicted SSV show heterogenous patterns of
deposition/erosion as well as larger-scale model biases. The uncertainty in both relative (c) and absolute (d)
predictions are the largest for the coastal slopes of the East Antarctic Ice Sheet.

Figure 2. Comparison of ICESat-2 ATL11 height change with the random forest models of small-scale
variability (SSV) and radar-derived snow accumulation. (a) The wintertime change in height (May 2, 2020–
August 1, 2020) over a 100-km ICESat-2 ground track posted at 60 m (grey) and with a 1-km moving average
applied (black). (b) Snow accumulation relative to the large-scale mean from MERRA-2 (green), the four
random forest SSV models (pink/purple) named by the DEM used and whether the model used optimized
(O) or standard (S) practice parameters, and coincident OIB snow radar-derived snow accumulation. (c)
OIB snow radar echogram collected October 25, 2019 that is coincident in space with the ICESat-2 ATL11
reference pair track 2. The layer traced in dashed orange provided the basis of the radar-derived snow
accumulation represented by an orange line in (b). This snow radar transect is mapped in Figure S1b.

Figure 3. Comparison of 50-km along-track (a) correlations between the mean random forest net accu-
mulation model and ICESat-2 ATL11 height change for 8 cycle pairs and (b) temporal snow accumulation
anomalies over the entire AIS. The results are presented as histograms of either the correlation coefficient
or the magnitude of the temporal anomaly in snow accumulation over 50-km ATL11 segments and are color
coded by cycle pair. The median of each distribution is displayed as a dotted vertical line. (c) The median
correlation coefficient values from (a) plotted in time referenced to the cycle pair and its associated season.
(d) the same as (c) but a time series of the median accumulation anomaly. Colors in both (c) and (d) match
those from (a) and (b).
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Key Points:

• We predict spatial deviations in net accumulation through synthesis of
topographic and atmospheric characteristics on a 1-km grid

• Kilometer-scale deviations in net accumulation typically range between
-41 and 33% and are as large as -172% of the MERRA-2 mean

• We link spatial deviations in net accumulation to seasonal satellite-derived
height changes from ICESat-2.

Abstract

Sub-grid-scale processes occurring at or near the surface of an ice sheet have
a potentially large impact on local and integrated net accumulation of snow
via redistribution and sublimation. Given observational complexity, they are
either ignored or parameterized over large-length scales. Here, we train random
forest models to predict 1-km variability in net accumulation over the Antarctic
Ice Sheet using atmospheric variables and topographic characteristics as predic-
tors. Observations of net snow accumulation from both in situ and airborne
radar data provide the input observable targets needed to train the random
forest models. We find that kilometer-scale processes modify local net accumu-
lation by as much as 172% of the atmospheric model mean. The correlation in
space between the predicted net accumulation variability and satellite-derived
surface-height change indicates that kilometer-scale processes operate differently
through time, driven largely by the seasonal anomalies in snow accumulation.

1 Introduction

Large-scale snowfall events deposit a substantial amount of freshwater over the
Antarctic Ice Sheet (AIS), acting in opposition to present-day sea-level rise. Ap-
proximately 7 mm of global sea-level equivalent falls annually in the form of
snow over the entire ice sheet (Mottram et al., 2021); any short-to-long-term
deviations in time and space from this mean will directly impact the temporal
evolution mass balance of the AIS and its individual glacial drainage systems
(Rignot et al., 2019; Smith et al., 2020). State-of-the-art atmospheric models
do not agree, however, on the total magnitude of annual snow accumulation
(Mottram et al., 2021), ranging by more 500 Gt yr-1, a value which largely
overshadows a reconciled AIS total mass balance of -109 Gt yr-1 (Shepherd et
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al., 2018). This lack of constraint yields arguably the largest source of uncer-
tainty in estimates of AIS mass balance and its contribution to global sea level
(Rignot et al., 2019; Shepherd et al., 2018; Smith et al., 2020). We aim to
constrain the magnitude of net snow accumulation over the AIS at fine spatial
resolution within a global atmospheric model using airborne and ground-based
measurements.

While snowfall events over the ice sheet are synoptic, blowing snow processes
occurring prior to or after deposition at the surface impart local-scale variability
as snow is redistributed or preferentially sublimated (Lenaerts et al., 2019). At
present, global atmospheric models are not capable of accounting for these small-
scale impacts (Gelaro et al., 2017), and only a small handful of regional climate
models simulate these processes albeit at much coarser scales than they actually
occur (Amory et al., 2021; Van Wessem et al., 2018). A lack of observed accumu-
lation rates at the scale necessary to measure these local processes challenged
development of both physics-based and empirical models. Recently, ground-
based (Das et al., 2013; Spikes et al., 2004) and airborne (Dattler et al., 2019;
Medley et al., 2013) radar observations of the ice sheet’s near-surface internal
stratigraphy have revealed the small-scale variability in snow accumulation at
fine along-track resolution and over large swaths of the ice sheet. Here, we
built on prior work (Das et al., 2013; Dattler et al., 2019; Scambos et al., 2012;
Studinger et al., 2020) investigating small-scale variability in snow accumulation
and regions of net scour, including their relationship to local topography and
wind characteristics, to predict kilometer-scale net snow accumulation over the
entire ice sheet.

We are only focused on dry snow processes (snowfall, sublimation, erosion, de-
position) that yield net snow accumulation, whereas the surface mass balance
(SMB) also accounts for mass loss via runoff. We define net accumulation as the
of snow that accumulates at the surface after accounting for all the dry snow
processes, and in this work, we allow net accumulation less than zero. Dry snow
processes account for almost the entirety of ice-sheet SMB; runoff is relevant in
only small number of areas.

The 1980–2017 mean annual snow accumulation (± 1 standard deviation) de-
rived from NASA’s Modern-Era Retrospective analysis for Research and Appli-
cations, Version 2 (MERRA-2; Gelaro et al., 2017) over the AIS totals to 2568
± 147 Gt yr-1, with 2037 ± 125 Gt yr-1 over grounded ice and 531 ± 34 Gt
yr-1 over floating ice without accounting for erosion and deposition. This global
model is coarsely resolved and does not include physical processes that occur
over ice sheets over short length scales, such as blowing snow. Regional climate
models (RCMs) (Agosta et al., 2019; Lenaerts et al., 2012; Van Wessem et al.,
2018) have accounted for these processes with varying degrees of complexity;
however, while some of the parameterizations hold for transport over smaller
length scales (Amory et al., 2021), the model outputs are resolved at the 10s of
km scales. For instance, results from a 5 km RCM run over West Antarctica
did not show significant improvement in SMB representation against the same
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RCM run at 27 km (Lenaerts et al., 2018). Another study (Das et al., 2013)
used thresholding of wind and topographic regimes to determine regions of net
wind scour (i.e., SMB < 0) which yielded an estimated loss of snow mass input
due to wind erosion between 11 and 36.5 Gt yr-1. The latter study does not
provide context for the total impact of snow redistribution because net snow
deposition was not considered, providing only one side of the balance equation.
Here, we built a static map of net accumulation variability over the grounded
and floating portions of the AIS at 1-km resolution.

2 Data

2.1 ICESat-2 Surface Height and Height Change

Launched in 2018, NASA’s next generation Ice, Cloud, and land Elevation satel-
lite (ICESat-2) is a photon-counting laser altimeter designed to provide precise,
repeatable measurements of ice-surface height change every 91 days, globally to
latitudes not exceeding 88° in magnitude (Markus et al., 2017). Here, we use
the ICESat-2 L3A Land Ice Height, Version 2 (ATL06; Smith et al. (2019))
collected during the first three 91-day cycles (October 14, 2018–June 26, 2019).
Because ICESat-2 was not pointing at its designed repeat tracks during the
first two cycles, data collected during the first ~180 days provide additional
height measurements, which improved spatial coverage. More details regarding
building a DEM using ICESat-2 data are in Section S2.

To investigate spatial patterns of height change, we also use the ICESat-2
L3B Slope-Corrected Land Ice Height Time Series, Version 4 (ATL11; Smith et
al. (2021)) spanning cycles 3–11 (March 29, 2019–June 23, 2021). The ATL11
dataset provides along-track height that is slope-corrected onto a reference pair
track for each cycle beginning with cycle 3 when ICESat-2 began pointing at
its designed reference ground tracks. We eliminate less robust surface heights
by using heights that have a quality summary flag set to zero.

2.2 Atmospheric

We use several atmospheric variables from NASA’s Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al.,
2017), including hourly 10-m winds, and snowfall in addition to monthly evap-
oration, humidity, and surface temperature from January 1, 1980 to December
31, 2019 (GMAO, 2015a, 2015b, 2015c, 2015d). MERRA-2 data are provided
globally at 0.5° latitude by 0.625° longitude resolution.

2.3 Snow Accumulation

2.3.1 AntSMB Database

Snow accumulation measurements over the large scales of interest to this work
are few. We use a comprehensive collection of Antarctic SMB measurements
derived from various sources and methods including ground penetrating radar
(GPR), stakes, snow pits and ice cores referred to as the AntSMB dataset (Wang
et al., 2021). Specifically, we use the multi-year averaged SMB observations that
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exceed a 3-year span, the majority of which are from GPR analysis. Given that
the data set contains SMB, there might be some observations where runoff
occurs and that are not equivalent to our dry snow net accumulation; however,
without a straightforward way to differentiate these sites as well as the relatively
small impact of runoff over the AIS, we use all points that meet the time-span
requirement. Thus, we assume net accumulation equals SMB, equivalent to
assuming no runoff occurs.

We also derive snow accumulation (Section 4.2.1) from additional snow radar
data collected October 25, 2019 (Leuschen, 2014) that was released subsequent
to the development of the Dattler et al. (2019) dataset. We replicate the
methodology from Dattler et al. (2019).

2.3.1 Supplemental GPR Measurements

We also use additional GPR data not included in the AntSMB database that
were presented by Medley et al. (2014), which cover the Pine Island and
Thwaites Glacier catchments. They represent the 1985–2009 mean accumu-
lation rate and are provided at 500-m along-track spacing.

3 Prediction of Kilometer-Scale Variability in Snow Accumulation

We built a 1-km static map of predicted spatial deviations in net accumulation
from the background large-scale MERRA-2 annual mean using airborne and
ground-based observations of accumulation and a series of topographic and at-
mospheric predictors. We next outline the various predictors, and then explain
the random forest method implemented for prediction.

3.1 Predictors

In all, we used 11 predictors that described the topographic and climatic charac-
teristics as well as their interactions over the AIS. Topographic predictors were
based on the DEM described in Section S2 and include height, slope, aspect,
curvature, and a 20-km high-pass filter of the surface height (Figures S3-S7).
Because the outer ICESat-2 beam pairs are separated by ~6 km, prior to deter-
mination of the topographic characteristics, we applied a 6-km low-pass filter
to the DEM to minimize any tracking artifacts. Climatic predictors were built
from MERRA-2 mean annual variables and include 10-meter wind speed, 10-
meter wind direction, air temperature, specific humidity, and total precipitation-
minus-evaporation (P−E; Figures S8-S12). The P−E is the MERRA-2 net ac-
cumulation. Finally, we use the mean slope in the mean wind direction (Figure
S13), the dot product of the wind and slope vectors, as described in the Section
S3.

3.2 Training Data

The AntSMB and Medley et al. (2014) data were modified to represent the
relative deviation in snow accumulation from the large-scale MERRA-2 mean
annual P−E (i.e., the percent deviation from MERRA-2), which we hereinafter
refer to as the small-scale variability, SSV :
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SSV = 𝑂𝑏servation−MERRA2
|MERRA2| × 100 .#(1)

Because most observations are from GPR analysis, we generate two subsets:
GPR and traditional, the latter includes stake, core, and snow pit measurements.
Each set was then gridded onto the same 1-km grid as the DEM by averaging
points that fall within the same grid cell (Figure S2). As done with the DEM,
we applied a 6-km low-pass filter.

The fact that this work used measurements from a large compilation of obser-
vations from a variety of techniques, means that there was not consistency in
the temporal reference window across all observations. Thus, observations rep-
resented anywhere from a minimum of 3 years to over one thousand years, some
of which overlapped with the MERRA-2 time window and some of which did
not, introducing additional uncertainty. While not ideal, we used all observa-
tions from all time windows to maximize the number of observations across as
many conditions as possible; however, the bias introduced from a non-coincident
model and observation time window could have been propagated throughout our
results.

3.3 Random Forest Method

Using the random forest (RF) regression algorithm we predicted SSV over the
entire AIS using 11 predictors (Section 3.1) and 2 training datasets (Section 3.2).
The GPR (n = 27,316) gridded data were randomly sampled into 80% training
and 20% testing partitions. We reserved an entire stake transect (n = 581) from
the traditional data set to act as an independent model evaluation, and the re-
maining 2,535 traditional gridded values were split 80/20. Thus, a total of 23,881
observations were used for RF training. The testing partition was not used to
build the RF model but rather for performance evaluation. Specifically, we em-
ployed bootstrap aggregation method (i.e., bagging) and an interaction-based
predictor-selection technique for all RF experiments to increase detection of
predictor interactions (Loh, 2002). The ensemble bagging technique builds deci-
sion trees each generated from a random sample with replacement of the training
dataset, diversifying the individual trees. The training data were weighted by
the mean distance to all other observations, giving higher weights to those with
more distant neighbors; this scheme minimizes the impact of GPR oversampling
regions like West Antarctica.

Using two RF parameter scenarios (optimized and standard practice; Section
S4), we built two final RF of 200 decision trees for SSV prediction using our
ICESat-2 DEM. The standard deviation amongst the individual trees provided
an assessment of the spread in the prediction at the cell-by-cell basis, each of
which were combined with the RMSE of the testing set (8.7–9.0% depending
on RF model; Figure S14; Table S2) through root sum of squares to generate
uncertainty, which is typically lower the closer the proximity to training obser-
vations. To investigate the impact of the choice of DEM, we employed the same
exercise outlined above using the REMA DEM resampled to the same 1-km grid
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as our ICESat-2 DEM. Two CryoSat-2 DEMs were not used (see Sections S1.2
and S2.1). Thus, we built 4 SSV models.

4 Results

4.1 Small-Scale Variability Predictions

The SSV map provides insight into both the kilometer-scale variability as well
as the large-scale biases in MERRA-2 accumulation. Typical SSV (Figure 1a)
range between -40.8% to +32.5% (lower and upper 5%), whereas absolute de-
viations in SSV (Figure 1b) span -63.2 to +64.2 mm w.e. yr-1. Similarly, the
SSV uncertainties (Figure 1c) range between 14.9% and 59.7%, whereas the
absolute uncertainties (Figure 1d) span 5.3 to 201.4 mm w.e. yr-1. The uncer-
tainties are larger in locations that are further from observations (Figure 1c).
The RF models are strongly correlated with each other (all combinations r2 >
0.94). When integrated in space, they predict between a reduction of 23.3 Gt
yr-1 and an increase of 3.3 Gt yr-1 in the MERRA-2 net accumulation (Table
S2). Predictions on ice shelves suggest a more positive accumulation (+12.1
to +22.4 Gt yr-1). All indicate small to moderate reductions in the MERRA-2
accumulation over grounded ice (-18.8 to -35.4 Gt yr-1).

Uncertainty calculations for the integrated values account for correlated errors
within a 20-km radius, a value chosen to correspond with the 20-km high-pass
filtered surface heights used as a predictor. Because no model outperformed
the others (Table S2), we present the most likely representation of SSV as
the mean of all four predictions; we conservatively combine their cell-by-cell
uncertainties through the root sum of squares. This approach yields integrated
SSV for floating and grounded ice of +17.3 ± 11.7 Gt yr-1 and -25.0 ± 16.4 Gt
yr-1, combining to -7.7 ± 20.1 Gt yr-1. Hereinafter, all results presented are in
reference to this scenario. We note that the signal-to-noise ratio is >1 for only
11% of the ice sheet, indicating the uncertainty outweighs the signal (Figure S15).
When comparing the RF model and its uncertainty bounds with the independent
stake transect, however, we find the uncertainties are predominantly inflated
(Figure S16). Specifically, the RMSE between the observed and modeled SSV s
over the independent transect is 23% (Table S2), but the mean RF uncertainty
amounts to 31%.

4.2 Comparison with ICESat-2 Height Change

4.2.1 Case Study with Coincident Snow Radar

Over long timescales and an unchanging climate, the amount of snow that falls
and accumulates is balanced by firn compaction and the loss of firn via conver-
sion to ice suggesting that ice-surface-height does not evolve because of snowfall
processes; however, at sub annual scales, episodic and seasonal evolution of pre-
cipitation and temperature have a large impact on surface-height changes. Thus,
if our static SSV model is stable in time, then we should observe height changes
that resemble the variability in snow accumulation. To investigate the impor-
tance of this variability on our interpretation of ice-surface-height evolution,
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we analyze the relationship between ICESat-2 observed changes with our SSV
model, Operation IceBridge (OIB) snow radar data, and MERRA-2 climate.

In 2019, OIB underflew ICESat-2 ground tracks over coastal Wilkes and Vic-
toria Land, which provides us the ability to directly compare OIB snow radar,
our SSV models, and ICESat-2 height change. We analyze a 100-km segment
from October 25, 2019 that follows a trajectory near-perpendicular to the coast
(Figure 2; Figure S1b). The ICESat-2 height change along this ground track be-
tween May 2, 2020 and August 1, 2020 shows an overall increase with significant
small-scale variations along track (Figure 2a). We next compare the ICESat-2
data with coincident OIB snow radar data by following the same procedure as
outlined by Dattler et al. (2019) to produce net accumulation by tracking a
single radar horizon through space. We show the resulting radar-derived accu-
mulation, the SSV models, and the MERRA-2 mean P−E interpolated to each
radar measurement in Figure 2b, and the snow radar echogram and tracked
layer in Figure 2c. As with the Dattler et al. (2019) dataset, our radar-derived
accumulations were calculated in a way that matches them with the large-scale
MERRA-2 mean. That assumption does not impact our assessment of the SSV
in the snow accumulation.

Based on this exercise, we confirm that our models are capable of predicting SSV
in snow accumulation and that there are not substantial differences between
the RF models. We note that these snow radar data were collected in 2019
and are not part of the GPR accumulation dataset compiled by Dattler et al.
(2019), which used data collected up through 2017. Thus, the comparison here
is independent of our RF model development. We also confirm that the RF
models underestimate the total magnitude of the larger deviations. Nevertheless,
we observe significant correlation between the radar-derived accumulations, RF
models of SSV, and ICESat-2 height change variability.

4.3 Ice-Sheet-Wide Height Change and Snow Accumulation Variability

ICESat-2 ATL11 provides along-track, slope-corrected heights spanning nine
91-day cycles, providing seasonal height change over a two-year period. For
each reference pair track, we calculate cycle-by-cycle height change (i.e., height
change over a 91-day interval) and apply a 6-km moving mean to match the same
filter applied to our ICESat-2 DEM (Section S2). For each reference pair track,
we find the mean MERRA-2 P−E anomaly over the exact time epoch for each
cycle and for that specific track. This step provides the temporal accumulation
anomaly along each reference pair track over the same time and space as the
ICESat-2 ATL11 data. We also interpolate our static RF SSV models onto the
ATL11 heights. To investigate the relationship between observed height change
and our predicted SSV, we correlate the ATL11 height changes with the mean
predicted SSV along 50-km segments for each cycle pair. This relationship, as
well as the temporal accumulation anomaly over each cycle pair, is summarized
in Figure 3. We find that the sign and magnitude of the correspondence between
spatial variations in snow accumulation and observed height changes varies by
season.
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5 Discussion

We use a combination of snow accumulation derived from GPR, as well as other
traditional observational constraints, with topographic and atmospheric charac-
teristics derived from ICESat-2 surface height data and MERRA-2 to predict
net accumulation on a 1-km grid. Neither selection of the RF model parameters
nor choice of DEM largely impacted the results, suggesting that we used a ro-
bust choice of predictors. Comparison of performance statistics on the testing
and training datasets suggest some RF model overfitting given the increased
performance of the training dataset; however, the models remain performant
at a level similar to the statistics for the testing and transect subsets in un-
observed regions, and the uncertainties at those locations reflect the reduced
performance. Not all predictors, however, were equally important. We found
that MSWD was by far the most influential predictor followed by wind speed,
P-E, and wind direction in order.

Our new SSV predictions over the entire AIS suggest an insignificant reduction
of 7.7 ± 20.1 Gt yr-1, which means there is no significant difference from the
integrated MERRA-2 large-scale mean; however, our map shows substantial
deviations at the regional to local scales that are indicative of increased net
accumulation over the ice shelves (+17.3 ± 11.7 Gt yr-1 ) and decreased net
accumulation over the grounded ice sheet (-25.0 ± 16.4 Gt yr-1). Thus, we find
that while MERRA-2 provides realistic estimates of integrated accumulation,
locally it fails to capture the local-to-regional deviations, which is unsurprising
as the global model cannot resolve finer-scale topography.

5.1 Snow accumulation variability and height change

At seasonal time scales, variations in surface height fluctuate in response to
strong positive or negative snowfall anomalies in time, albeit in a different fash-
ion. Over the entire AIS, an integrated positive anomaly (Figure 3: red/orange)
typically occurs in winter, when the SSV model is positively correlated with ob-
served height changes. Locations that receive higher net accumulation than
its immediate vicinity experience larger height increases, which have not yet
been modulated by their enhanced compaction rates, which operate on slower
timescales. The opposite is true in the summer when the ice sheet typically ex-
periences negative accumulation anomalies (Figure 3: green/brown): locations
that receive anomalously higher net accumulation than its immediate vicinity
experience larger height decreases. Even though a region might not receive any
accumulation, densification processes are more rapid where the long-term net
accumulation is larger; thus, under anomalously low accumulation conditions,
we observe the spatial variations in compaction rates that are generated from
the spatial variations in the long-term net accumulation.

The signal when integrated over the entire ice sheet is less obvious in spring
and summer. We hypothesize that while during spring (Figure 3: purple/pink)
there are typically large negative anomalies in accumulation, the firn column
remains cold coming out of winter, which reduces compaction rates and thus
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the correspondence between the SSV and ATL11 height changes. We expect
the opposite as well: during the fall (Figure 3: blue/yellow), the firn column is
warmer leading to more compaction, which counterbalances the typical positive
snow accumulation anomalies, although the signal is weaker.

These results indicate that substantial deviations in ATL11 height changes along-
track exist in response to kilometer-scale variations in the net accumulation and
that the sign of the height change anomaly likely reflects the sign of the tem-
poral accumulation anomaly over the cycle-pair epoch. Thus, kilometer-scale
variability observed in ATL11 derived height change reflect surface processes
and should not be considered instrument noise but rather highlight precision
and data product capability. Thus, any studies interested in change over short
length scales will need to strongly consider the impact of surface processes on
the interpretation of the observed spatiotemporal height changes.

5.2 Limitations

While we have provided a product of AIS net snow accumulation that is largely
capable of reproducing its spatial variability, several limitations remain that if
addressed could improve the methodology. In the generation of the DEM, we
chose to remove any ATL06 surface heights that had an RMS error larger than
0.1 m, which likely excluded too much data in steeply sloping regions. This
limitation could be overcome using an RMS threshold as a function of slope.
Because the technique used to derive the OIB snow accumulation is tied to
the MERRA-2 large-scale mean (Dattler et al., 2019), we only use MERRA-2
atmospheric data as predictors. Given that the RF models predict accumulation
variability due to small-scale topographic deviations as well as to large-scale
biases in MERRA-2, we cannot disentangle the two from one another, making
it is difficult to attribute their individual contributions.

Other limitations stem from the predictor training data used. While the to-
pographic data are well resolved at 1-km resolution, the atmospheric data only
resolves variables at several 10s of km; thus, atmospheric downscaling could lead
to improved predictions. The set of predictors used might also be incomplete.
Our analysis suggests that height change from ICESat-2 is also strongly related
to the SSV in snow accumulation, and it could provide more constraint in the fu-
ture at the ice-sheet-wide scale. Similarly, the RF model relies on training data
spanning several different atmospheric and topographic regimes, however, most
of the GPR observations are from the Antarctic Peninsula and West Antarctica.
The traditional dataset fills in much of the missing areas in East Antarctica,
but much of the data are representative of a single point, which might not be
representative of the 1 km-by-1 km region in which it falls.

6 Conclusions

While atmospheric models generally agree on the synoptic-scale signatures of
snow accumulation over the AIS (Mottram et al., 2021), they at present either
do not account for drifting snow processes or do so at a coarse scale. Shallow
radar studies have revealed significant deviations in the snow accumulation at
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sub-grid-cell scales (Medley et al., 2013; Richardson et al., 1997; Spikes et al.,
2004), which suggest that atmospheric model evaluations against sparse point
measurements of snow accumulation are likely flawed. The predictions gener-
ated for this study will hopefully provide new context for model evaluations by
eliminating some of the scale ambiguity in model-observation comparisons. The
resulting spatial anomalies in the net accumulation are manifested in satellite-
derived measurements of surface height changes, which also adds uncertainty to
interpretation especially when considering seasonal timescales. Additional mea-
surements of the small-scale variations in snow accumulation as well as more
targeted studies bringing together satellite altimetric height changes and firn
densification models at the local scale would prove more edifying in untangling
the full response of the surface to these various processes.
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Figure 1. Predicted small-scale variability (SSV) from the large-scale mean
MERRA-2 accumulation and associated uncertainty. The relative (a) and abso-
lute (b) predicted SSV show heterogenous patterns of deposition/erosion as well
as larger-scale model biases. The uncertainty in both relative (c) and absolute
(d) predictions are the largest for the coastal slopes of the East Antarctic Ice
Sheet.

Figure 2. Comparison of ICESat-2 ATL11 height change with the random for-
est models of small-scale variability (SSV) and radar-derived snow accumulation.
(a) The wintertime change in height (May 2, 2020–August 1, 2020) over a 100-km
ICESat-2 ground track posted at 60 m (grey) and with a 1-km moving average
applied (black). (b) Snow accumulation relative to the large-scale mean from
MERRA-2 (green), the four random forest SSV models (pink/purple) named by
the DEM used and whether the model used optimized (O) or standard (S) prac-
tice parameters, and coincident OIB snow radar-derived snow accumulation. (c)
OIB snow radar echogram collected October 25, 2019 that is coincident in space
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with the ICESat-2 ATL11 reference pair track 2. The layer traced in dashed
orange provided the basis of the radar-derived snow accumulation represented
by an orange line in (b). This snow radar transect is mapped in Figure S1b.

Figure 3. Comparison of 50-km along-track (a) correlations between the mean
random forest net accumulation model and ICESat-2 ATL11 height change for
8 cycle pairs and (b) temporal snow accumulation anomalies over the entire AIS.
The results are presented as histograms of either the correlation coefficient or the
magnitude of the temporal anomaly in snow accumulation over 50-km ATL11
segments and are color coded by cycle pair. The median of each distribution is
displayed as a dotted vertical line. (c) The median correlation coefficient values
from (a) plotted in time referenced to the cycle pair and its associated season.
(d) the same as (c) but a time series of the median accumulation anomaly. Colors
in both (c) and (d) match those from (a) and (b).
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