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Abstract

The trustworthiness of neural networks is often challenged because they lack the ability to express uncertainty and explain

their skill. This can be problematic given the increasing use of neural networks in high stakes decision-making such as in

climate change applications. We address both issues by successfully implementing a Bayesian Neural Network (BNN), where

parameters are distributions rather than deterministic, and applying novel implementations of explainable AI (XAI) techniques.

The uncertainty analysis from the BNN provides a comprehensive overview of the prediction more suited to practitioners’ needs

than predictions from a classical neural network. Using a BNN means we can calculate the entropy (i.e. uncertainty) of the

predictions and determine if the probability of an outcome is statistically significant. To enhance trustworthiness, we also

spatially apply the two XAI techniques of Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanation (SHAP)

values. These XAI methods reveal the extent to which the BNN is suitable and/or trustworthy. Using two techniques gives

a more holistic view of BNN skill and its uncertainty, as LRP considers neural network parameters, whereas SHAP considers

changes to outputs. We verify these techniques using comparison with intuition from physical theory. The differences in

explanation identify potential areas where new physical theory guided studies are needed.
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Abstract20

The trustworthiness of neural networks is often challenged because they lack the abil-21

ity to express uncertainty and explain their skill. This can be problematic given the in-22

creasing use of neural networks in high stakes decision-making such as in climate change23

applications. We address both issues by successfully implementing a Bayesian Neural Net-24

work (BNN), where parameters are distributions rather than deterministic, and apply-25

ing novel implementations of explainable AI (XAI) techniques. The uncertainty anal-26

ysis from the BNN provides a comprehensive overview of the prediction more suited to27

practitioners’ needs than predictions from a classical neural network. Using a BNN means28

we can calculate the entropy (i.e. uncertainty) of the predictions and determine if the29

probability of an outcome is statistically significant. To enhance trustworthiness, we also30

spatially apply the two XAI techniques of Layer-wise Relevance Propagation (LRP) and31

SHapley Additive exPlanation (SHAP) values. These XAI methods reveal the extent to32

which the BNN is suitable and/or trustworthy. Using two techniques gives a more holis-33

tic view of BNN skill and its uncertainty, as LRP considers neural network parameters,34

whereas SHAP considers changes to outputs. We verify these techniques using compar-35

ison with intuition from physical theory. The differences in explanation identify poten-36

tial areas where new physical theory guided studies are needed.37

Plain Language Summary38

Understanding ocean dynamics and how they are affected by global heating is cru-39

cial for understanding climate change impacts. Neural networks are ideally suited to this40

problem, but do not explain how they make predictions nor express how certain they are41

of the predictions’ accuracy, which considerably limits their trustworthiness for ocean42

science problems. Here, we address both issues by using a ‘Bayesian Neural Network’43

(BNN), which directly expresses prediction uncertainty, and applying explainable AI tech-44

niques to explain how the BNN arrives at its prediction. The BNN provides a compre-45

hensive overview more suited to addressing the core problem than that provided by clas-46

sical neural networks. We also apply two explainable AI techniques (SHAP and LRP)47

to the BNN and evaluate their trustworthiness by comparing the similarities and differ-48

ences between their explanations with intuition from physical theory. Any differences49

offer an opportunity to develop physical theory guided by what the BNN considers im-50

portant.51

1 Introduction52

There is already scientific certainty that global heating is changing the climate, but53

understanding exactly how the climate will change and the potential impacts is an open54

problem. Increasingly, artificial intelligence techniques, such as neural networks, are be-55

ing used to better understand climate change (for example Ham et al., 2019; Hunting-56

ford et al., 2019; Rolnick et al., 2019; Cowls et al., 2021), but as neural network tech-57

niques become evermore ubiquitous, there is a growing need for methods to quantify their58

trustworthiness and uncertainty (Li et al., 2021; Mamalakis et al., 2021). Following Son-59

newald & Lguensat (2021), we define a method to be trustworthy if its results are ex-60

plainable and interpretable, and therefore these two concepts are somewhat linked as im-61

proving uncertainty quantification also improves result interpretability. Quantifying un-62

certainty using classical neural networks is particularly difficult because they lack the63

ability to express it and are often overconfident in their results (Mitros & Mac Namee,64

2019; Joo et al., 2020). A range of techniques have been used to address this uncertainty65

quantification issue (Guo et al., 2017) and a particularly common one is to use an en-66

semble of deep learning models (for example Beluch et al., 2018). However, choosing a67

good ensemble of models is non-trivial (see Scher & Messori, 2021) and may be compu-68

tationally expensive because it requires the network to be trained multiple times. This69
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lack of uncertainty analysis limits the extent to which classical neural networks can be70

useful for ocean and climate science problems. For example, lack of knowledge of uncer-71

tainties in future projections of sea level rise limits how effective coastal protection mea-72

sures can be for coastal communities (Sánchez-Arcilla et al., 2021). Measures of uncer-73

tainty are also important for out-of-sample predictions, which are common in climate74

change science because neural networks must be trained on historical data and applied75

to a changed climate scenario where the dynamics governing a region may have funda-76

mentally changed. Thus, quantifying uncertainty within a climate application is of paramount77

importance as decisions based on neural network predictions could have wide ranging78

impacts. Moreover, there can be distrust of neural network predictions in the climate79

science community because of the potential for spurious correlations giving rise to pre-80

dictions that are nonphysical. Predictions are more trustworthy if they are explainable81

(i.e. if the reason why the network predicted the result can be understood by members82

of the climate science community). However, adding explainability techniques to uncer-83

tainty analysis is an understudied area.84

In this work, we address both issues of uncertainty and trustworthiness by imple-85

menting a Bayesian Neural Network (BNN) (Jospin et al., 2020) with novel implemen-86

tations of explainable AI techniques (known as XAI) (Samek et al., 2021). We focus on87

applying this technique to assess uncertainty in dynamical ocean regime predictions due88

to a changing climate following the THOR (Tracking global Heating with Ocean Regimes)89

framework (Sonnewald & Lguensat, 2021). This is the first time BNNs have been used90

to predict large-scale ocean circulations, although they have been used for localised stream-91

flows in Rasouli et al. (2012, 2020). Our work is particularly pertinent with a recent IPCC92

Special Report (Hoegh-Guldberg et al., 2018) highlighting uncertainty in ocean circu-93

lation as a key knowledge gap area that must be addressed. Both (Sonnewald & Lguen-94

sat, 2021) and our work are designed to predict future changes to ocean circulation us-95

ing data from the sixth phase of the Coupled Model Intercomparison Project (CMIP)96

(used in IPCC reports) (Eyring et al., 2015). We note however that, as CMIP6 is a large97

international collaboration, data dissemination and quality control can be difficult, which98

in turn limits the capability for good analysis. Sonnewald & Lguensat (2021) is an ex-99

ample of using sparse data in this context, and resolving this issue generally is an area100

of ongoing research (Eyring et al., 2019).101

Unlike classical neural networks, BNNs make well-calibrated uncertainty predic-102

tions (Mitros & Mac Namee, 2019; Jospin et al., 2020) and clearly inform the user of how103

unsure the outcome is. This provides a more comprehensive description of the neural net-104

work prediction compared to a classical neural network and one which better meets the105

needs of climate and ocean science researchers. Furthermore, the uncertainty measures106

provided by the BNN approach reveal whether a prediction made on a sample that dif-107

fers greatly from the training data can be trusted. For example, it is known that the wind108

stress over the Southern Ocean will change in the future, with implications for the dy-109

namics key to maintaining global scale heat transport. However, the region already has110

extreme conditions, so a change here could result in entirely new dynamical connections.111

The BNN outputs would allow us to understand if the prediction based on the new con-112

ditions can still be trusted. This uncertainty analysis is possible in BNNs because the113

weights, biases and/or outputs are distributions rather than deterministic point values.114

Moreover, these distributions mean BNNs can easily be used as part of an ensemble ap-115

proach (a very common approach in climate science), by simply sampling point estimates116

from the trained distributions to generate an ensemble (Bykov et al., 2020).117

Using BNNs is a large step towards trustworthy predictions, but results also gain118

considerable trustworthiness to climate researchers and practitioners if their skill is phys-119

ically explainable. Note that throughout we define explaining skill to mean explaining120

the correlations between the input features that give rise to the predictions. Governments121

and regulatory bodies are also increasingly imposing regulations that require trustwor-122
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thiness in AI processes used in certain decision-making (see Cath et al., 2018) and im-123

posing large fines if the standards are not met (see for example recent directives from124

the European Commission (2021) and the USA government (E.O. 13960 of Dec 3, 2020)).125

XAI techniques can be used to explain the skill of neural networks (Samek et al., 2019,126

2021; Arrieta et al., 2020), but there has been little work combining explainability with127

uncertainty analysis in part because the distributions in BNNs add extra complexity. In128

this work, we adapt two common XAI techniques so that they can be used to explain129

the skill in BNN results: Layer-wise Relevance Propagation (LRP) (Binder et al., 2016)130

which is here applied to BNNs for only the second time after having been first applied131

to BNNs in Bykov et al. (2020) and SHAP values (Lundberg & Lee, 2017) which are here132

applied to a BNN for the first time. These XAI methods reveal the extent to which the133

BNN is fit for purpose for our problem. Moreover, our approach means we can gain a134

reliable notion of the confidence of the explanation, which has been highlighted as a key135

area where XAI techniques must improve (Lakkaraju et al., 2022). Applying our XAI136

techniques to BNNs trained on real-world ocean circulation data in an application de-137

signed to understand future climate has the added benefit that we are able to validate138

and confirm these novel applications of XAI using physical understanding of ocean cir-139

culation processes, improving confidence in our BNN predictions. Thus, our novel frame-140

work is able to quantify uncertainty and improve trustworthiness (i.e. explainability and141

interpretability) in predictions, marking a significant step forward for using neural net-142

works in climate and ocean science.143

In this work, we choose to apply two different XAI techniques specifically to gain144

a holistic view of the skill of the BNN as LRP considers the neural network parameters145

whereas SHAP considers the impact of changing input features on the BNN outputs. This146

is important to ensure that what the BNN has learned is genuinely rooted in physical147

theory. The two different approaches also give a more overall impression of uncertainty148

as they capture different aspects with LRP capturing model uncertainty and SHAP cap-149

turing prediction sensitivity to this model uncertainty. Furthermore, by considering two150

different techniques, we can explore whether they agree as to which features are impor-151

tant in each region of the domain. This allows us test if the ‘disagreement problem’ ex-152

ists in this work, where two techniques explain network skill in different ways (Krishna153

et al., 2022), which is a growing area of interest in XAI research.154

To summarise the main contributions of our work are that we present the first ap-155

plication of BNNs to quantify uncertainty in large-scale ocean circulation predictions,156

and explain the skill of these predictions through novel implementations of the XAI tech-157

niques, SHAP and LRP, thereby improving trustworthiness. The remainder of this pa-158

per is structured as follows: Section 2 explores the theory behind BNNs and applying159

XAI techniques to BNNs, Section 3 explores the dataset used to train the BNN, Section160

4 shows the results of applying the BNN and novel XAI techniques to the dataset and161

finally Section 5 concludes this work.162

2 Methods163

2.1 Bayesian Neural Networks (BNNs)164

Unlike classical deterministic neural networks, Bayesian Neural Networks (BNNs)165

are capable of making well-calibrated uncertainty predictions, which provide a measure166

of the uncertainty of the outcome (Jospin et al., 2020). This is possible due to the fact167

that the weights and biases on at least some of the layers in the network are distribu-168

tions rather than single point estimates (see Figure 1). More specifically, as BNNs use169

a Bayesian framework, once trained, the distributions of the weights and biases repre-170

sent the posterior distributions based on the training data (Bykov et al., 2020). Note that171

for brevity in this section hereafter, we refer to the weights and biases as network pa-172

rameters. The distributions in the output layer facilitate the assessment of aleatoric un-173
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(a) Classical deterministic Neural Network.

Weights and biases are point estimates.

(b) Bayesian Neural Network (BNN). Weights

and biases are distributions.

Figure 1: Comparing a standard neural network to a BNN.

certainty (uncertainty in the data) and the distributions in the hidden layers facilitate174

the assessment of epistemic uncertainty (uncertainty in the model) (Salama, 2021). In175

this work, we choose to assess both types of uncertainty and use distributions for the out-176

put layer, as well as for the network parameters of the hidden layers. Our BNN approach177

therefore provides a more holistic view than previous work to assess uncertainty in large-178

scale ocean neural network predictions in Gordon & Barnes (2022) where a determin-179

istic neural network is used to predict the mean and variance of the output distribution.180

Following Jospin et al. (2020), the posterior distributions in the BNN (i.e. the dis-181

tributions of the network parameters given the training data) are calculated using Bayes182

rule183

p (W |Dtr) =
p(Dtr|W )p(W )

p(Dtr)
=

p(Dtr|W )p(W )∫
W

p(Dtr|W )p(W ) dW
, (1)184

where W are the network parameters, Dtr = (xn, yn) the training data and p(W ) the185

prior distribution of the parameters. The probability of output y given input x is then186

given by the marginal probability distribution187

p(y|x,Dtr) =

∫
W

p(y|f(x;W ))p(W |Dtr) dW, (2)188

where f(·;W ) is the neural network. However, computing p (W |Dtr) directly is very dif-189

ficult, especially due to the denominator in (1) which is intractable (Jospin et al., 2020;190

Bykov et al., 2020). A number of methods have been proposed to approximate the de-191

nominator term including Markov Chain Monte Carlo sampling (Titterington, 2004) and192

variational inference (Osawa et al., 2019). We use the latter which approximates the pos-193

terior using a variational distribution, qΦ(W ), with a known formula dependent on the194

parameters, Φ, that define the distribution (for example for a normal distribution, Φ are195

its mean and variance). The BNN then learns the parameters Φ which lead to the clos-196

est match between the variational distribution and the posterior distribution i.e. the pa-197

rameters Φ which minimise the following Kullback–Leibler divergence (KL-divergence)198

DKL(qΦ||p) =
∫
W

qΦ(W
′) log

(
qΦ(W

′)

p (W ′|Dtr)

)
dW ′. (3)199

This formula still requires the posterior to be computed and so following standard prac-200

tice, we use the ELBO formula instead201 ∫
W

qΦ(W
′) log

(
p(W ′, Dtr)

qΦ(W ′)

)
dW ′, (4)202

which is equal to log(p(Dtr))−DKL(qΦ||p). Thus maximising (4) is equivalent to min-203

imising (3) since log(p(Dtr)) only depends on the prior (Jospin et al., 2020). In our work,204
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we follow standard practice and assume that all variational forms of the posterior are205

normal distributions and thus the Φ parameters the neural network learns are the mean206

and variance of these distributions. Furthermore, for all priors in the BNN, we use the207

normal distribution N (0, 1), which is again standard practice because of the normal dis-208

tribution’s mathematical properties and simple log-form (Silvestro & Andermann, 2020).209

In our work, we also calculate the entropy of the final distribution as a measure of210

uncertainty. In information theory, entropy is considered as the expected information211

of a random variable and for each sample i is given by212

Hi = −
Nl∑
j=1

pij log(pij), (5)213

where Nl is the number of possible variable outcomes and pij is the probability of each214

outcome j for sample i (Goodfellow et al., 2016). Hence, the larger the entropy value,215

the less skewed the distribution and the more uncertain the model is of the result.216

Finally, for the layer architecture of the BNN, we use the same architecture as in217

Sonnewald & Lguensat (2021), who use a deterministic neural network to predict ocean218

regimes from the same dataset as ours (see Section 3). Thus, our BNN has 4 layers with219

[24, 24, 16, 16] nodes and ‘tanh’ activation, where the layers are ‘DenseVariational’ lay-220

ers from the TensorFlow probability library (Dillon et al., 2017), rather than the ‘Dense’221

layers used in Sonnewald & Lguensat (2021). For the output layer of the network, we222

use the ‘OneHotCategorical’ layer from the TensorFlow probability library instead of a223

‘SoftMax’ layer and thus use the negative log-likelihood function as the loss function. The224

network is compiled with an Adam Optimizer (Kingma & Ba, 2014) with an initial learn-225

ing rate of 0.01, which is reduced by a factor of 4 if the loss metric on the validation dataset226

does not decrease after 15 epochs (i.e. after the entire training dataset has passed through227

the neural network fifteen times). The network is trained for 100 epochs and the best228

model network parameters over all epochs are recorded and saved as the trained param-229

eters.230

2.2 Explainable AI (XAI)231

Whilst using a BNN enables scientists to determine how certain the network is of232

its results, being able to explain the source of the predictive skill is also of key impor-233

tance particularly because of the potential for spurious correlations in neural networks234

giving rise to nonphysical predictions. As discussed in Section 1, XAI techniques have235

recently been developed to explain the skill of neural networks (i.e. explain the corre-236

lations between the input features that give rise to the predictions). These techniques237

can then be used to reveal the extent to which neural networks are fit for purpose for238

a given problem (Samek et al., 2019; Arrieta et al., 2020). However, there has been lit-239

tle research into combining XAI techniques with uncertainty analysis. In this section,240

we outline how to adapt the two common XAI techniques, LRP and SHAP, so that they241

can be applied to BNNs. We remind the reader that we selected two XAI techniques orig-242

inating from two different classes to gain a holistic view of the skill of the BNN. This is243

important to ensure that what the BNN has learned is genuinely rooted in physical the-244

ory, and we compare the outcomes of these methods with intuition from that theory.245

2.2.1 Layer-wise Relevance Propagation (LRP)246

LRP explains network skill by calculating the contribution (or relevance) of each247

input datapoint to the output score (Binder et al., 2016). This leads to the construction248

of a ‘heatmap’ where a positive/negative ‘relevance’ means a feature contributes posi-249

tively/negatively to the output (Bach et al., 2015). For a neural network, this relevance250

is calculated by back-propagating the relevance layer-by-layer from the output layer to251

the input layer.252
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LRP has been successfully used to explain neural network skill in fields as diverse253

as medicine (Böhle et al., 2019), information security (Seibold et al., 2020) and text anal-254

ysis (Arras et al., 2017), and has also already been applied to deterministic neural net-255

works in climate science (Sonnewald & Lguensat, 2021; Toms et al., 2020; Mamalakis256

et al., 2022). However, there has been little research into applying LRP to BNNs, be-257

cause the formulae used to calculate the relevance are difficult to apply when the net-258

work parameters are distributions.259

BNNs do however have the advantage that it is easy to generate a deterministic260

ensemble of networks from them, simply by sampling network parameters from the dis-261

tributions. We therefore follow the novel methodology in Bykov et al. (2020) and use LRP262

on this ensemble of networks, efficiently generating an ensemble of LRP values which serve263

as a proxy for explaining the skill of the BNN. Each datapoint has its own distribution264

of LRP values and own level of uncertainty. If a datapoint has positive or negative rel-265

evance for every ensemble member, we can be increasingly confident about this point’s266

relevance for explaining the skill of the BNN. For the remaining points, still following267

(Bykov et al., 2020), quantile heatmaps of the ensemble of LRP values can be used to268

visualise how many ensemble members have positive relevance and how many have neg-269

ative.270

There are many different formulae for calculating the relevance score with LRP (see271

Montavon et al., 2019), but in this work, we follow Sonnewald & Lguensat (2021) and272

use the LRP-ϵ rule which is good for handling noise. The relevance at layer l of a neu-273

ron i is then the sum of R
(l,l+1)
i←j for all neurons j in layer l + 1 where274

R
(l,l+1)
i←j =

zij
zj + ϵ sign(zj)

R
(l+1)
j . (6)275

Here zij is the activation at neuron i multiplied by the weight from neuron i to j and276

zj =
∑

i zij (see Montavon et al. (2019) for more details).277

2.2.2 SHapley Additive exPlanation (SHAP) values278

For our second XAI technique, we consider Shapley Additive Explanation values,279

known more commonly as SHAP values. These were first proposed in the context of game280

theory in Shapley (1953), but have since been extended to explaining skill in neural net-281

works (Lundberg & Lee, 2017) and have been applied in climate science to determinis-282

tic neural networks in Dikshit & Pradhan (2021); Mamalakis et al. (2022). There has283

been work adding uncertainty to the SHAP values of deterministic neural networks by284

adding noise (Slack et al., 2021), but this work represents the first time SHAP values are285

used to explain the skill of a BNN.286

SHAP values are designed to compute the contribution of each input datapoint to287

the neural network output using a type of occlusion analysis. They test the effect of re-288

moving/adding a feature to the final output i.e. calculating fF (x)− fF\i(x), where f289

is the model, F is the set of all features and i the feature being considered (Lundberg290

& Lee, 2017). To calculate the SHAP value, we must combine this for all features in the291

model with a weighted average meaning the SHAP value of feature i for output y = fF (x)292

is293

ϕi(x) =
∑

S⊂F\i

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{i}(x)− fS(x)], (7)294

where S are all the sub-sets of F excluding feature i. Note that summing the SHAP value295

for every feature i gives the difference between the model prediction and the null model296

i.e.297

fF (x) = E[y] +
∑
i

ϕi(x), (8)298

where E[y] is the average of all outputs y in the training dataset (Mazzanti, 2020). We299

remark here that evaluating (7) for every feature can be computationally expensive; the300
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complexity of the problem scales by 2|F |. Therefore various techniques have been pro-301

posed to speed up the evaluation of SHAP values, the most popular of which is KernelSHAP302

(Lundberg & Lee, 2017). In this work, however, we choose to calculate the exact SHAP303

values because we only have eight features (see Section 3) and these more efficient tech-304

niques assume feature independence (which our dataset does not have), and can lead to305

compromises on accuracy if not handled appropriately (Aas et al., 2021).306

Like with LRP, we apply SHAP to an ensemble of deterministic neural networks307

generated from the BNN. We note here that SHAP is model agnostic so in the future,308

with changes to implementation, it may be possible to apply SHAP directly to the BNN309

itself. We expect the SHAP results to differ from the LRP results because the LRP en-310

semble captures the model uncertainty as LRP values are a weighted sum of the network311

weights, whereas SHAP captures the sensitivities of the outputs as a result of these un-312

certainties.313

3 Data314

A recent IPCC Special report highlights the need for a better understanding of un-315

certainty in ocean circulation patterns (Hoegh-Guldberg et al., 2018). An understand-316

ing of emergent circulation patterns can be gained using a dynamical regime framework317

(Sonnewald et al., 2019). These regimes simplify dynamics and each regime is then de-318

fined to be the solution space where the simplification is justifiable (Kaiser et al., 2021).319

Sonnewald et al. (2019) show that unsupervised clustering techniques such as k-means320

clustering can be used to identify and partition dynamical regimes if the equations gov-321

erning the dynamics are known. Specifically they use k-means clustering of model data322

from the numerical ocean model ECCOv4 (Estimating the Circulation and Climate of323

the Ocean) to identify dynamical regimes and develop geoscientific utility criteria. In our324

work, we follow Sonnewald & Lguensat (2021) and use this regime deconstruction frame-325

work as the labelled target data that the BNN seeks to predict at each point on the grid.326

Because the dynamical regimes were found in the model equation space, we have an au-327

tomatic way to verify the explainable AI results. Figure 2 shows a global representation328

of these six dynamical ocean regimes, which we have labelled A, B, C, D, E and F cor-329

responding to the regimes ‘NL’, ‘SO’, ‘TR’, ‘N-SV’, ‘S-SV’ and ‘MD’ in Sonnewald &330

Lguensat (2021). We have made this label simplification because the aim of this work331

is to develop a neural network technique to improve trustworthiness in ocean predictions.332

Thus anything other than a high-level understanding of the physics is beyond the scope333

of this work and we refer the reader to Sonnewald et al. (2019) and Sonnewald & Lguen-334

sat (2021) for a more in-depth discussion.335

Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
dynamic
sea level

A High High High High High High
B High High High High High High
C High Med Med High Med Med
D Low Low Low Med Low Low
E Med Med Med High Med Med
F Med Med Med Med Med Med

Table 1: Approximate importance of features for predicting each regime according to the equation

space, using analysis from Figure 1 in Sonnewald et al. (2019).

For our input features, we follow Sonnewald & Lguensat (2021) and use data from336

the numerical ocean model ECCOv4 (Estimating the Circulation and Climate of the Ocean),337
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Figure 2: Global representation of dynamical ocean regimes in ECCOv4 data. For a full

description of the ocean regimes see Sonnewald & Lguensat (2021).

but the framework is set up so that it can be readily trained on CMIP6 data in the fu-338

ture (Forget et al., 2015). The following features are then used for prediction: wind stress339

curl, Coriolis (deflection effect caused by the Earth’s rotation), bathymetry (measure-340

ment of ocean depth), dynamic sea level, and the latitudinal and longitudinal gradients341

of the bathymetry and the dynamic sea level. These features are chosen following the342

dynamical regime decomposition in Sonnewald et al. (2019) and Table 1 shows which343

features are important for each regime according to the clustering of the equation space344

based on theoretical intuition. The specific composition of these features into terms in345

the equation space then manifests as different key ocean circulation patterns. Finally,346

for the training and test dataset split, we split by ocean basin and use shuffle for vali-347

dation. The Atlantic Ocean basin (80oW to 20oE) is the test dataset and the rest of the348

global ocean dataset is the training dataset.349

4 Results350

In this section, we first use a BNN to make a probabilistic forecast of ocean circu-351

lation regimes and show the value added by the uncertainty analysis that can be con-352

ducted through using a BNN instead of a deterministic neural network. We then use two353

modified XAI techniques to explain the skill of this network, comparing the two tech-354

niques with each other and with physical understanding.355

4.1 Bayesian Neural Networks (BNNs)356

The advantage of BNNs over deterministic neural networks is the uncertainty es-357

timate they provide. However, for BNNs to be of value they must also make accurate358

predictions. Figure 3 compares the accuracy metrics of the BNN applied to the train-359

ing dataset (the global ocean, excluding the Atlantic Ocean basin) and the validation360

dataset (shuffled) during training. The accuracy metric clearly converges and the level361

of accuracy is high, indicating that the architecture and learning rates chosen are ap-362

propriate for this dataset. When the trained BNN is applied to the test dataset (the At-363

lantic Ocean basin), the accuracy is 80%, which is approximately the same as the accu-364

racy achieved by the deterministic neural network in Sonnewald & Lguensat (2021) on365

the same data. Thus, by using a BNN we have not lost accuracy. Figure 4b shows the366

spatial distribution of the correct and incorrect regime predictions. Most incorrect pre-367

dictions occur for regime A for which errors are not unexpected – it is a composite regime368

with a less Gaussian structure meaning it is less clearly defined and less easily determined369

by k-means (Sonnewald et al., 2019).370
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Figure 3: Training accuracy and loss metrics for the BNN showing that the training has

converged. Recall from Section 3 that the training dataset is the global ocean, excluding the

Atlantic Ocean basin, and that shuffle is used for validation.

(a) Correct dynamical ocean regimes map.
(b) Accuracy (T = Correct; F =

Incorrect).

(c) Difference between

P(predicted regime) and P(correct
regime).

(d) Entropy. (e) Confidence Interval value.

Figure 4: Spatial distribution of key metrics calculated from the BNN predictions for the test

dataset (Atlantic Ocean basin), as well as the correct regimes in this region. The diamonds are

the three locations of the example datapoints in Figure 5.
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(a) Example where correct regime predicted with

high certainty (Location is blue diamond in

Figure 4).

(b) Example where correct regime predicted with

some epistemic uncertainty (Location is black

diamond in Figure 4).

(c) Example where incorrect regime predicted

with both epistemic and aleatoric uncertainty

(Location is magenta diamond in Figure 4).

Figure 5: Box-and-whisker plot of BNN predictions of ocean regimes, generated using an

ensemble of outputs. The correct regime is coloured green and the incorrect regimes are coloured

purple.

As we are considering aleatoric uncertainty (uncertainty in the input data), the BNN371

output is not deterministic but is instead a distribution. Moreover, as we are also con-372

sidering epistemic uncertainty (uncertainty in the model parameters), the network pa-373

rameters are distributions, the full output is an ensemble of distributions. In Figure 5,374

we show both types of uncertainty using a box-and-whisker plot for the predictions for375

three example datapoints. The narrower the box and whisker, the lower the epistemic376

uncertainty in the prediction for this regime. For example, in Figure 5a there is almost377

no width to the box and whisker indicating low epistemic uncertainty, whereas for Fig-378

ure 5b there are a range of possible probabilities of the most likely regime occurring, in-379

dicating epistemic uncertainty. In both Figures 5a and 5b the highest probability is high380

(almost 1 for Figure 5a and just under 0.8 on average for Figure 5b), which indicates that381

the aleatoric uncertainty is low. Therefore, practitioners can be confident in the results382

for both these datapoints, with Figure 5a being more trustworthy than Figure 5b. By383

contrast, Figure 5c has high levels of epistemic uncertainty and fairly high levels of aleatoric384

uncertainty meaning that although the practitioner can trust that the regime is either385

A or F, the overall regime prediction for this datapoint is not very trustworthy.386
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Figure 6: Distribution of entropy values for the correct and incorrect regime predictions. Recall

that the lower the entropy, the more certain the result.

Using these distributions, we can calculate the difference between the probability387

the BNN assigns to the predicted regime and the probability it assigns to the correct regime.388

If the BNN has predicted the correct regime then this difference is zero, and, if the BNN389

is very certain in its prediction of the incorrect regime, the maximum possible probabil-390

ity difference is one. The spatial distribution of this value is shown in Figure 4c and un-391

surprisingly corresponds closely with the spatial distribution of the correct and incor-392

rect BNN predictions in Figure 4b. The probability difference map adds value compared393

to the accuracy map because we can see where errors are more substantial. For exam-394

ple, although the BNN appears to perform poorly in the accuracy statistics around Green-395

land (especially around 50◦W and 50◦N and 20◦W and 70◦N), the difference between396

the probability of the correct regime and the highest probability is low. Therefore the397

BNN is still assigning a high probability to the correct regime here which is useful for398

practitioners. In contrast, off the north coast of South America, the probability differ-399

ence is almost 1 meaning the BNN is doing a poor job here and should not be used in400

its current state for predictions here. Comparing Figure 4c with Figure 4a reveals that401

almost all the high probability differences occur at the boundaries between regime A and402

other regimes (for example in the Southern Ocean at the boundary between regimes B403

and D with regime A), indicating this is a weakness in the BNN. Thus by analysing this404

probability difference, we have gained valuable information for future predictions and405

learnt that to improve the BNN accuracy, we should provide more training data on the406

boundaries between regime A and other regimes.407

The distributions outputted by the BNN can also be used to numerically quantify408

the uncertainty in the network predictions. We can calculate the entropy value using (5),409

where we recall that the higher the value the more uncertain the result. Figure 4d shows410

the spatial distribution of this entropy and comparing with Figure 4b shows that the higher411

entropy values tend to be where the BNN prediction is incorrect. More precisely, Fig-412

ure 6 compares the distribution of the entropy when the BNN predictions are correct and413

when they are incorrect, and clearly shows that the entropy for the correct predictions414

is skewed towards lower values, whereas the entropy for the incorrect predictions is skewed415

higher. This is a good result because it means that the predictions are notably more un-416

certain when they are incorrect than when they are correct, i.e. the correct results are417

also the results that the BNN informs the practitioner are the most trustworthy.418
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(a) Spatial distribution of points where

the most likely regime is not statistically

significantly different from other regimes.

(b) Confidence interval plot of example

datapoint, where the probabilities for the

top three regimes are not statistically

significantly different.

Figure 7: Considering whether the differences between the probabilities for each regime are

statistically significantly different. The star on (a) is the location of the example datapoint in (b).

In both figures, incorrect predictions are coloured purple and correct predictions green.

Finally, Figure 5 show that there can be substantial overlap between the box-and-419

whisker for each regime. However this can be misleading as box-and-whisker plots con-420

sider upper and lower quartiles which are not useful for assessing statistical significance.421

Therefore, we also consider the confidence intervals and in Figure 4e show the spatial422

distribution of their size. Note that unsurprisingly, the spatial distribution for the con-423

fidence intervals is very similar to that for the entropy because they are calculated us-424

ing similar statistics. Using confidence intervals, we find that for the majority of cases,425

the probabilities for the most likely regime are statistically significantly different from426

the probabilities for the other regimes. Figure 7a highlights the datapoints for which this427

is not the case, and unsurprisingly shows these datapoints correspond to points for which428

there is high entropy (see Figure 4d). For the vast majority of the datapoints in Figure429

7a, the top two most likely regimes are statistically significantly different from the other430

regimes and the correct regime is one of the two regimes. Therefore although the neu-431

ral network is uncertain for these datapoints, it is still predicting a high probability for432

the correct regime. Finally, there are approximately 20 datapoints where only the top433

three most likely regimes are significantly different from the others. An example of one434

such datapoint is shown in Figure 7b, where half the regimes have the same probabil-435

ity. Although this is not ideal, this is an example of where a BNN is better than a de-436

terministic neural network, because it clearly informs the user that it is very uncertain437

of its prediction and that using this BNN on this datapoint is inappropriate.438

Therefore, in this section we have shown that by looking at the probabilities and439

confidence intervals produced by the BNN, practitioners can make an informed decision440

as to whether to trust the BNN prediction for the dynamical regime or whether further441

analysis is required for these datapoints.442
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Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
dynamic
sea level
(lon)

Gradient
dynamic
sea level
(lat)

Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

A Med Med – Med Med + Med High + Med Med + Low Low Med High – Med Med –
B Low High + Low Med – Med High + Low Low Low Low Low Low Low Low

C Med High + Low
Med – (NH)
Med + (SH)

Low Low Low Low Low Low Low Low Low Low

D Med High + Med Med – Low
Med + (NH)
Med – (SH)

Med Med – Low Low Med Med + Low Low

E High High + Low Low Low High + Med High – Low Low Low High + Low Med +

F Med Med – Med Med – Low Med – High Med – Low Low High Med + High
Med

(– >+)

Table 2: General trends in the variance and relevance of LRP values for each regime and each

feature. Here + indicates that the feature is actively helpful and – that it is actively unhelpful (so

High + indicates high positive relevance). Note (– >+) indicates that between the 25th and 75th

quantiles, the variable changes from unhelpful to helpful.

4.2 Explainable AI (XAI)443

To explain the BNN’s skill, we apply two common XAI techniques, LRP and SHAP,444

to an ensemble of deterministic neural networks generated from the BNN. We consider445

LRP in Section 4.2.1 and SHAP in Section 4.2.2, and then compare results from the two446

techniques in Section 4.2.3 to test the ‘disagreement problem’ discussed in Section 2.2.447

If LRP and SHAP largely agree with each other as to which features are relevant in each448

region (i.e. there is no disagreement problem) and also agree with our intuition from phys-449

ical theory then this increases the trust in our XAI results. This is important to ensure450

that what the BNN has learned is genuinely rooted in physics.’ Moreover, the use of a451

BNN allows us to explore whether disagreement between SHAP and LRP is more likely452

to occur when predictions have higher entropy (i.e. higher uncertainty).453

4.2.1 Layer-wise Relevance Propagation (LRP)454

Applying LRP using our ensemble approach means that each input variable has455

its own distribution of LRP values and own level of uncertainty. Figure 9 shows the val-456

ues for which the sign of the LRP value (i.e the relevance) remains the same between457

the 25% to 75% quantiles of the ensemble. Note that throughout the LRP values are scaled458

by the maximum absolute LRP value for any variable across the ensemble. If the LRP459

value consistently has the same sign across the quantiles, then we can be confident of460

the effect this feature has on the output; the piece of information of most interest to prac-461

titioners in a recent survey in Lakkaraju et al. (2022).462

In Figure 9, red indicates that the variable in this area is actively helpful for the463

BNN in making its predictions, blue that it is actively unhelpful, and white that it is too464

uncertain to have consistent relevance. Note that certain areas of white may also be be-465

cause the variable does not contribute (see Figure A1 in Appendix A which shows the466

actual LRP values for the 25%, 50% and 75% quantiles of the ensemble). An important467

point to note when interpreting these trends is that our network predicts using a gridpoint-468

by-gridpoint approach and does not see the overall global map, thus making the spatial469

coherence striking in its consistency. To aid with the interpretation of the LRP values470

for each regime, we include Figure 8 (which shows the most probable ocean regime pre-471

dicted by the BNN) to help qualitatively see the trends, and Table 2 which highlights472

the general trends in the relevance and variance of the LRP values for each regime with473

respect to each feature. By comparing Table 1 with Table 2, we can compare the gen-474
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Figure 8: Most probable ocean regime predicted by Bayesian Neural Network.

(a) Wind stress curl. (b) Bathymetry. (c) Dynamic sea level. (d) Coriolis force.

(e) Gradient bathymetry

(lon).

(f) Gradient bathymetry

(lat).

(g) Gradient dynamic

sea level (lon).

(h) Gradient dynamic

sea level (lat).

Figure 9: LRP values which are consistent across the whole ensemble. Red indicates that the

variable in this area is actively helpful, blue that it is actively unhelpful, and white that it is too

uncertain to have consistent relevance.
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Figure 10: Locations of key dynamical processes and physical features of interest in Table 3: the

North Atlantic Drift is the blue region at ∼ 40◦N; the Gulf Stream leaving the continental shelf is

the green region near coastline at ∼ 70◦W and 40◦N; the wind gyre is the pink region at ∼ 0◦ and

30◦S; and the part of the Mid-Atlantic Ridge we are focusing on is are the gray-scale contours

crossing the wind gyre at ∼ 30◦W.

eral trends of the LRP values with what is expected from the clustering of the equation475

space. A strong difference is that according to LRP the gradients of the bathymetry are476

irrelevant to the BNN predictions with high certainty (apart from in key regions discussed477

in Table 3), whereas the equation space suggests the bathymetry gradients are relevant478

for some regimes.479

Of particular interest when comparing Tables 1 with 2 are the differences for Regimes480

A and B. From the equation space (see Table 1), we would expect all features to be ac-481

tively helpful for these regimes. However, in the case of Regime A, the LRP values con-482

clude that both the wind stress curl and the longitudinal gradient of the dynamic sea483

level are actively unhelpful. Figure 4 shows that both the highest areas of inaccuracy484

and the highest areas of entropy (i.e uncertainty) in the BNN occur for Regime A. These485

LRP values suggest that the reason for these errors and uncertainty is that the BNN is486

not correctly weighting the wind stress curl and the longitudinal gradient of the dynamic487

sea level for Regime A. By contrast, for Regime B, there are no features which are ac-488

tively unhelpful. Instead, there are some features for which the BNN has no relevance489

(gradients of both the bathymetry and the dynamic sea level). The BNN predictions for490

Regime B are generally accurate and certain, and therefore this implies that, despite the491

conclusions from the equation space, the BNN can rely on certain key features it has iden-492

tified to make accurate certain predictions. There is therefore scope for learning about493

the physical ocean processes guided by understanding of what the BNN determines as494

important and unimportant.495

For reasons of brevity, we do not detail all the physical interpretations in Figure496

9 and Table 2 but instead focus on the key dynamical processes of the North Atlantic497

Drift, the Gulf Stream leaving the continental shelf, and the North Atlantic wind gyre;498

and the key physical characteristic of the mid-Atlantic ridge specifically as it crosses the499

wind gyre (hereafter simply referred to as the mid-Atlantic ridge). The location of these500

processes is shown in Figure 10 and the variance and relevance of the LRP values in these501

regions are summarised in Table 3. The table highlights that for the North Atlantic Drift,502

there are no features which have strong positive relevance; in fact, the Coriolis force and503

latitudinal gradient of the sea level have strong negative relevance. Instead, the highly504

relevant areas for this region are not for the regime of the North Atlantic Drift (Regime505

F), but for the other regimes, for example, both the dynamic sea level and its longitu-506

dinal gradient are strongly positively relevant for Regime A in this region. This is also507

noted in Sonnewald & Lguensat (2021), who suggest this could be because of multiple508

inputs contributing medium importance to predictions for Regime F (see Table 1). In509

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Features

Wind stress
curl

Bath.
Dynamic
Sea Level

Coriolis
Gradient
bath.

Gradient
sea level
(lon)

Gradient
sea level
(lat)

Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

NAD Low Med + Low Low Med Med + Low High – Low Low Med Med – Low High –

GS Med High + Med Med – Low Low Med High + Med Med – High
High

(– >+)
Med Med +

Gyre Low High + Med Med – Low Low Med High – Low Low Med Med + Low Low

MAR High
Med

(– >+)
Low High – Med Med – Med High – Med Med – Med High + High Med +

Table 3: Variance and relevance of LRP values for the key dynamical processes of the North

Atlantic Drift (NAD); the Gulf Stream leaving the continental shelf (GS), the wind gyre and the

key physical feature of the Mid-Atlantic Ridge as it crosses the wind gyre (MAR) (see Figure 10).

Here + indicates that the feature is actively helpful and – that it is actively unhelpful (so High +

indicates high positive relevance). Note (– >+) indicates that between the 25th and 75th

quantiles, the variable changes from unhelpful to helpful.

contrast, where the Gulf Stream leaves the continental shelf, the Coriolis effect and wind510

stress curl are both strongly helpful. This conclusion greatly agrees with physical intu-511

ition, which states that these features are the key drivers for the Gulf Stream’s move-512

ment across the North Atlantic (Webb, 2021). Table 3 also shows that the bathymetry513

gradient is unhelpful for this process. Before leaving the coast, physical intuition sug-514

gests that the gradient of the bathymetry is the key driver of the Gulf Stream and this515

can be seen in the LRP values, (particularly for the latitudinal gradient in Figure A1h).516

It is therefore likely that the BNN is using the same weightings for the bathymetry gra-517

dient as the Gulf Stream leaves the continental shelf, but the key drivers have changed518

meaning the bathymetry gradient is no longer helpful. Also of interest is the longitudi-519

nal gradient of the sea level, which is unhelpful for the North Atlantic Drift, very un-520

certain for the Gulf Stream leaving the continental shelf (a region which has high entropy521

in Figure 4d) and then helpful for the wind gyre. This suggests the this feature is act-522

ing as an indicator between the three regimes discussed here. For the wind gyre, the wind523

stress curl is also strongly helpful, which agrees with the intuition from physical theory524

of gyres, which states that they are largely driven by the wind stress curl (see Munk, 1950).525

Note however that the theory also indicates that Coriolis should be somewhat helpful526

but it is actively unhelpful. This variation may be because the BNN does not seem to527

be able to accurately weight low values of Coriolis (near the equator). Nevertheless the528

general agreement with physical intuition for the dynamical processes discussed here high-529

lights our BNN’s ability to learn key physical processes.530

Unlike the other processes highlighted, the mid-Atlantic ridge is a physical char-531

acteristic of the bathymetry that will remain unchanged by a future climate. The ridge532

is clearly identifiable in the features in Figure 9 and it is therefore interesting to high-533

light the differences between the relevance of this ridge and the relevance of the other534

gridpoints in the wind gyre around it. The most noticeable difference is that the ridge535

adds uncertainty to the BNN predictions – for almost all features, the relevance of the536

mid-Atlantic ridge is more uncertain than that of the wind gyre. The exception is the537

bathymetry, which becomes strongly unhelpful with high certainty at the mid-Atlantic538

ridge. Added to the fact that the bathymetry gradients are also more unhelpful at the539

ridge than at the surrounding gridpoints, this suggests that the BNN is able to identify540

the ridge in the bathymetry but unable to weight it correctly, which leads to uncertainty541

in the relevance of the other features. We observe that, in contrast to bathymetry, both542

gradients of the dynamic sea level increase in helpfulness at the ridge, in particular the543

longitudinal gradient. Moreover, Figure 4 shows the BNN predicts the correct regime544
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for the mid-Atlantic ridge with high certainty. Therefore, this suggests that reliable and545

accurate predictions for regimes at the mid-Atlantic ridge should be based more on the546

gradient of the dynamic sea level than the bathymetry itself.547

To summarise, our discussion of LRP values in this section has highlighted both548

our BNN’s ability to identify known physical characteristics and the potential scope to549

advance physical theory through analysing its skill.550

4.2.2 SHapley Additive exPlanation (SHAP) Values551

Whereas LRP considers the relevance of a feature for all regimes simultaneously,552

the SHAP approach sees the problem as binary for each regime: including a feature at553

a gridpoint either increases the probability of the specific regime being considered there554

or decreases it. There is therefore a SHAP value for each gridpoint for each regime, mean-555

ing we have six times the number of SHAP values as we do LRP. Moreover our ensem-556

ble approach means each input variable and regime pairing has its own distribution of557

SHAP values and own level of uncertainty. Table 4 summarises the general trends in the558

SHAP values and in particular highlights that for all regimes and features the variance559

in the ensemble is low, and most features considered are actively helpful. The main ex-560

ceptions to the latter are the latitudinal gradient of the dynamic sea level and both bathymetry561

gradients, which are not important for regime predictions (apart from in certain key ar-562

eas discussed later).563

Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level
(lon)

Gradient
sea level
(lat)

Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

A Low Med + Low High + Low High + Low Med + Low Low Low High + Low Low
B Low High + Low Med + Low High + Low High + Low Low Low Low Low Low

C Low High + Low
Med – (NH)
Med + (SH)

Low High + Low Med + Low Low Low High + Low Low

D Low High + Low Low Low
Med + (NH)
Med – (SH)

Low Med + Low Low Low Med + Low Low

E Low High + Low Low Low High + Low Med – Low Low Low High + Low Low
F Low High + Low Low Low Med – Low Med + Low Low Low Med + Low Low

Table 4: General trends in the variance and relevance of SHAP values for each regime and each

feature, where NH refers to the values in the Northern Hemisphere and SH to those in the

Southern Hemisphere. To allow direct comparison with LRP, for each regime, we only consider

the SHAP values in the region of the regime rather than the whole domain. Therefore + means

the feature is actively helpful and – that it is actively unhelpful.

Figure 11 shows the gridpoints for which the sign of the SHAP value remains the564

same between the 25% and 75% quantiles of the ensemble. Note that even though our565

BNN uses a gridpoint-by-gridpoint approach, for ease of interpretation, we display the566

SHAP results using a spatial representation, as if SHAP had been applied to a full im-567

age. For simplicity, we focus here on Figure 11a which shows the SHAP values for Regime568

A, although note that the following statements hold true for the regimes for the other569

figures too. In Figure 11a, red indicates that the probability of Regime A is increased570

here by including this feature, blue that the probability is decreased and white mainly571

that this feature has no effect on the probability of predicting Regime A here (although572

it can also mean there is uncertainty in the SHAP value). If the red matches with the573

region where the BNN predicts Regime A or the blue matches with the region where the574

BNN does not predict Regime A, this means that including this feature is actively help-575
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Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level
(lon)

Gradient
sea level
(lat)

Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel. Var Rel.

NAD Low High + Low Low Low Med + Low Med + Low Low Low Med + Low Low
GS Low High + Low Med – Low Med – Low Med + Low Low Low High – Low Med +
Gyre Low High + Low Low Low Low Low Low Low Low Low Med + Low Low

MAR Low High + Med Med– Low Low Low Low Med Med – Low Med + Med Med +

Table 5: Variance and relevance of SHAP values for the key dynamical processes of the North

Atlantic Drift (NAD); the Gulf Stream leaving the continental shelf (GS), the wind gyre and the

key physical feature of the Mid-Atlantic Ridge as it crosses the wind gyre (MAR) (see Figure 10).

ful for predicting this regime in this location. An example of this in Figure 11a is the576

SHAP values for the longitudinal gradient of the sea level. If, however, the red matches577

with a region where the BNN does not predict Regime A or the blue matches with the578

region where the BNN does predict Regime A, then including this feature is actively un-579

helpful for predicting this regime. An example of this in Figure 11a is the dynamic sea580

level where including it increases the probability of Regime A everywhere below 40◦S581

and above the North Atlantic Drift, but Regime A is only predicted in certain parts of582

this region. Notably, Figure 4d shows that at the latitudes where the dynamic sea level583

is unhelpful, the BNN predictions have high entropy (i.e. high uncertainty) suggesting584

that the dynamic sea level may be a key contributing factor to the uncertainty here.585

As in the LRP section, we also consider the key dynamical processes of the North586

Atlantic Drift, the Gulf Stream leaving the continental shelf and the North Atlantic wind587

gyre, as well as the physical characteristic of the mid-Atlantic ridge where it crosses the588

wind gyre (see Figure 10). For the North Atlantic Drift, the SHAP values show that the589

wind stress curl is strongly helpful, and that the Coriolis, dynamic sea level and the lon-590

gitudinal gradient of the sea level are also helpful. The North Atlantic Drift is a geostrophic591

current and therefore this feature relevance agrees strongly with the physical theory which592

governs these types of currents (Webb, 2021). It is also in contrast to the conclusions593

from the LRP values where no feature is strongly helpful, only the dynamic sea level and594

the wind stress are at all helpful and the Coriolis is strongly unhelpful. This difference595

in the relevance of the Coriolis is also seen for the gyre, which SHAP values say is irrel-596

evant and the LRP values say is strongly unhelpful. Neither agree with intuition from597

physical theory, which suggests that Coriolis should have some relevance for the gyre.598

The SHAP values and LRP values do however both identify that for the gyre, the wind599

stress curl is strongly helpful and the longitudinal gradient of the sea level is helpful, which600

we recall from Section 4.2.1 agrees with physical intuition. The SHAP and LRP relevance601

patterns for where the Gulf Stream leaves the continental shelf are also similar to each602

other. Furthermore, the increased certainty in the SHAP values makes it clear that the603

longitudinal gradient of the sea level is strongly unhelpful for predictions of this process,604

whereas for LRP the relevance is very uncertain. Like with LRP, there is also a clear dis-605

tinction in the SHAP values between the North Atlantic Drift, the Gulf Stream leaving606

the continental shelf and the wind gyre, strengthening the hypothesis that this feature607

is an indicator between the three regimes. Finally, the mid-Atlantic ridge is not as promi-608

nent in the SHAP values as it is in the LRP values, but the SHAP values still have in-609

creased uncertainty there, which is particular significant when the general uncertainty610

in the ensemble of SHAP values is so low. Furthermore, like the LRP values, the SHAP611

values also show that both bathymetry and its gradients are more unhelpful at the mid-612

Atlantic ridge than for the surrounding gridpoints. This supports the conclusions made613

in Section 4.2.1 that the BNN is able to identify the ridge but not weight it properly.614
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Features

Wind stress
curl

Bathymetry
Dynamic
sea level

Coriolis
Gradient

bathymetry

Gradient
sea level
(lon)

Gradient
sea level
(lat)

A Med – >Med + Med + >High + = = = High – >High + Med – >Low
B = Med – >Med + = Low >High + = = =
C = = Low >High + Low >Med + = Low >Med + =
D = Med – >Low = Med – >Med + = = =
E = = = High – >Med – = = Med + >Low
F Med – >High + Med – >Low = Med – >Med + = = Med >Low

Table 6: Comparing the general trend in the relevances of LRP >SHAP. If the relevance changes

sign, the change is coloured red.

To summarise, we have shown that SHAP values provide further evidence of the615

BNN’s ability to identify known physical processes. We have also begun to demonstrate616

the benefit of using two different XAI techniques, and in the next section compare the617

findings from the two different techniques more systematically.618

4.2.3 LRP vs. SHAP619

As discussed in 2.2.2, LRP and SHAP use two very different approaches to explain620

skill and hence different types of uncertainty are reflected in their values: LRP consid-621

ers the neural network parameters and therefore captures the model uncertainty, whereas622

SHAP captures the sensitivities of the outputs as a result of the uncertainties. Compar-623

ing Tables 2 and 4 clearly shows that this different approach results in SHAP values be-624

ing more certain in their assessment of feature relevance than LRP values. This differ-625

ence suggest that our BNN is fairly robust because the uncertainty in the network is greater626

than the uncertainty in the predictions. This is equivalent to the findings in Section 2.1627

where our BNN predictions have low entropy (i.e. low uncertainty) despite the weights628

in the BNN being distributions (see Figure 4d).629

Table 6 directly compares the trends in the relevances of LRP and SHAP. Some630

differences between SHAP and LRP are due to the fact that SHAP values separate out631

the relevance of each feature for each regime, whereas LRP values consider the relevance632

of a feature for all regimes simultaneously. For example, in the upper part of the Atlantic633

(∼ 60◦N), the SHAP values for Regime A (Figure 11a) show that the wind stress curl634

is helpful for predicting that regime. However, the SHAP values for regimes C and E (Fig-635

ures 11c and 11e respectively) show that the wind stress curl also increases the proba-636

bility of regimes C and E at that location. Therefore when the SHAP values for all regimes637

are considered, the wind stress curl may actually be more unhelpful than helpful, agree-638

ing with LRP.639

As in Sections 4.2.1 and 4.2.2, for brevity we do not discuss all differences between640

SHAP and LRP. Instead, we summarise the key comparisons for each regime in the fol-641

lowing list:642

Regime A643

• Wind stress curl is helpful in SHAP but unhelpful in LRP (see discussion in text644

previously).645

• The locations where the dynamic sea level has strong relevance in the LRP val-646

ues coincides directly with the regions where regime A is predicted. The dynamic647

sea level is also helpful in SHAP, but SHAP shows that this feature also increases648

the probability of Regime A in areas where Regime A is not predicted. Note that649

the latter are areas of high entropy (see Figure 4d).650
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• The longitudinal gradient of the dynamic sea level is strongly unhelpful in LRP651

and strongly helpful in SHAP. Again this region of difference corresponds to ar-652

eas of high entropy in the BNN predictions.653

Regime B654

• Wind stress curl is strongly helpful in both LRP and SHAP, but along the east655

coast of Greenland, in the SHAP values, the wind stress curl increases the prob-656

ability of regime B, but the BNN does not predict this regime nor would regime657

B be accurate there. This region has high entropy and in the LRP values the rel-658

evance of the wind stress curl switches here from unhelpful in the 25th quantile659

to helpful in the 75th quantile. This suggests that the BNN has high uncertainty660

in the relevance of this input feature here.661

• In the SHAP values, the bathymetry is helpful but in LRP it is unhelpful. This662

is despite the fact that regions where this regime is predicted by the BNN, gen-663

erally have low entropy664

• Coriolis is strongly helpful in SHAP (as would be expected from physical intuition)665

but has low relevance in the LRP values, apart from around the tip of South Amer-666

ica where it is strongly helpful.667

Regime C668

• In regime C, particularly in the southern hemisphere, most features have no rel-669

evance in the LRP values but a medium or high relevance in the SHAP values.670

In particular, the dynamic sea level and its longitudinal gradient have no relevance671

with high certainty in the LRP values but strong positive relevance with high cer-672

tainty in the SHAP values. Note that entropy is low for this regime, particularly673

in the southern hemisphere674

• Wind stress curl is strongly helpful in both LRP and SHAP. This likely explains675

the irrelevance in other features in the LRP values: LRP values consider the weight-676

ings in the BNN, and the wind stress curl has such a strong weighting that all other677

features are comparatively close to zero. In contrast, SHAP values consider the678

sensitivity of the output to other features, which does change679

Regime D680

• In both SHAP and LRP, the dynamic sea level is helpful in the northern hemi-681

sphere but unhelpful in the southern hemisphere.682

• Coriolis is strongly helpful at high latitudes in the SHAP values and irrelevant at683

mid-latitudes. In contrast, Coriolis is unhelpful in the LRP values especially at684

the mid-latitudes. This variation suggests the BNN does not accurately weight685

low values of Coriolis (near the equator), resulting in unhelpful LRP values. Nearer686

the poles, the weighting improves enough for SHAP to become helpful but not enough687

for LRP to become helpful.688

• The wind stress curl is strongly helpful in both the SHAP and LRP values but the689

SHAP values for wind stress curl do not have increased uncertainty at the mid-690

atlantic ridge. This reflects the general trend of greater certainty in SHAP val-691

ues than LRP values.692

Regime E693

• Wind stress curl is strongly helpful for SHAP and LRP, but the LRP values in the694

southern hemisphere have high variance especially around 35◦S where the BNN695

entropy is highest.696
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• Coriolis is strongly unhelpful in LRP especially at mid-latitudes but only slightly697

unhelpful in SHAP (see discussion for Regime D).698

• The latitudinal gradient of the dynamic sea level is irrelevant in the SHAP val-699

ues but has relevance in the LRP values. There is however a split in the LRP rel-700

evance at 35◦S – above this latitude the relevance is positive and below the rel-701

evance is negative. This split corresponds with an increase in entropy, where en-702

tropy is higher below this latitude.703

Regime F704

• Wind stress curl is strongly helpful in SHAP but unhelpful in LRP. We would ex-705

pect wind stress curl to be helpful from Table 1 so this is an example where SHAP706

agrees more closely with physical intuition than LRP.707

• Bathymetry is unhelpful for this regime in LRP but in SHAP only has relevance708

at the coastlines.709

• Coriolis is unhelpful in LRP at mid-latitudes but has no relevance in SHAP ex-710

cept at high latitudes (see discussion for Regime D).711

• The latitudinal gradient of the dynamic sea level is very uncertain in LRP chang-712

ing from unhelpful to helpful, despite the fact that the entropy is low for predic-713

tions of this regime. This gradient has no relevance according to SHAP , and thus714

the mean of the SHAP and LRP values agree for this feature. This reflects the gen-715

eral trend of greater certainty in SHAP values than LRP values.716

In general, SHAP and LRP agree on how to explain the skill of the BNN, thus mean-717

ing that in our work we do not have a ‘disagreement problem’. There are however some718

small differences, which can either be explained by the different ways in which these two719

techniques interpret skill or by the fact that they occur where there is high entropy in720

the BNN predictions reflecting the BNN’s uncertainty in feature relevance. We have thus721

demonstrated that both techniques are helpful for understanding the BNN’s interpre-722

tations of physical processes. Moreover, where the two techniques agree with each other723

and in particular also agree with physical intuition, this greatly improves the trustwor-724

thiness of the feature relevance explanations in the BNN and where the techniques dif-725

fer between themselves and/or with physical intuition there is scope for further analy-726

sis and learning of both BNN and physical ocean processes.727

5 Discussion and Conclusion728

In this work, we have successfully applied a BNN and two different XAI techniques729

to explore the trustworthiness of ocean dynamics predictions made using a machine learn-730

ing technique. We have shown that using a BNN rather than a classical deterministic731

neural network adds considerable value to predictions, by making uncertainty analysis732

possible and allowing practitioners to make informed decisions as to whether to trust a733

prediction or conduct further investigation. Furthermore, our analysis of the entropy (i.e.734

uncertainty) of the BNN predictions shows the promising result that the predictions are735

notably more certain when they are correct than when they are incorrect.736

Through our novel applications of the XAI techniques, LRP and SHAP, we have737

also shown that it is possible to explain the skill of a BNN, conduct uncertainty anal-738

ysis of explainability values, and hence use XAI techniques to understand the extent to739

which the BNN is fit for purpose, where we here demonstrate this using comparison with740

theory. Our spatial representation of both the SHAP and LRP values means that the741

relevance of specific important dynamical processes such as the North Atlantic Drift can742

be identified, thereby improving the interpretability and hence trustworthiness of the re-743

sults. This comparison with physical theory is important to ensure that what the BNN744

has learned is genuinely rooted in physical theory. Moreover, the spatial coherency of745
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both the uncertainty and XAI assessments suggest that our framework could be lever-746

aged to identify potential new physical hypotheses in areas of interest, guided by the BNN’s747

ability to highlight hitherto unrecognised correlations in the input space. However, we748

stress that these correlations do not necessarily imply causation (Samek et al., 2021).749

Therefore for deployment of developed neural network applications for high-stakes de-750

cision making within geoscience, these correlations should only be used to postulate new751

hypotheses, which must then be explored using a well-conducted study driven by phys-752

ical theory.753

Our comparison of LRP and SHAP values has shown that in general they agree754

with each other as to which features are relevant in each area of the domain, building755

trust in the BNN predictions and their explanations. This is particularly striking given756

that SHAP is model-agnostic and does not consider any internal architecture of the net-757

work, exploring only how sensitive the predictions are to the removal of input features,758

whereas LRP uses a model-intrinsic approach based on the internal architecture of the759

network. These two different XAI techniques do result in different levels of uncertainty760

in the feature relevances because LRP better captures the neural network model uncer-761

tainty and SHAP better captures BNN prediction sensitivity. Any disagreements in fea-762

ture relevance also tend to occur due to these different approaches and/or in regions of763

high entropy. Knowledge of these disagreements is useful to practitioners as it highlights764

areas where the explanation of the BNN’s skill is less trustworthy and may require fur-765

ther analysis. Furthermore the use of an ocean dynamical framework allows the accu-766

racy of the XAI results in this work to be verified with physical intuition. It also enables767

a better understanding of how SHAP and LRP explain skill which is beneficial to the768

machine learning community. Where there are differences between the XAI techniques769

and physical intuition, this provides another potential opportunity to learn more about770

physical theory, although with the same caveats discussed above.771

We hypothesise that the good agreement with physical intuition demonstrated in772

this work is in part due to the overall normally distributed covariance structure of the773

problem, which is helpful for the K-means clustering and thus directly beneficial for the774

BNN training (Sonnewald et al., 2019). The methodology outlined in this work has many775

potential applications in geoscience and beyond, for more complex and nonlinear covari-776

ance structures. Besides classification problems, where the re-application of our method-777

ology is straightforward, a promising research avenue is the use of XAI, augmented with778

uncertainty quantification, for regression problems. An example of high interest to the779

climate modeling community is subgrid scale parametrization efforts for numerical mod-780

els. So far, subgrid scale parametrizations based on neural networks have limited gen-781

eralization capacities, especially in areas of the numerical model space that they are not782

explicitly trained on (Bolton & Zanna, 2019). A regression based XAI framework could783

thus accelerate the development of such techniques, because the reasons why the net-784

works fail to generalise might be better understood for both specific local scale features785

such as where the Gulf Stream leaves the continental shelf and larger scale processes. In786

further work, we will benefit from the ongoing recent research developments in XAI for787

regression, for example in Letzgus et al. (2021), and aim to apply our methodology to788

this more challenging problem.789

Finally, we recommend that for trustworthy explainability results for more com-790

plex covariance structures, a BNN should be used along with one model-intrinsic XAI791

technique, like LRP and one model-agnostic XAI technique like SHAP, so as to consider792

both neural network model properties and output sensitivity. For an accurate and ro-793

bust network, we would expect the similarities between the two XAI techniques to dom-794

inate and the differences to highlight areas that require further analysis, thus being of795

valuable use to practitioners and might hint at new scientific hypotheses.796
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Appendix A LRP figures812

Figure 9 in Section 4.2.1 reveals the LRP values which have a consistent sign across813

the 25%, 50% and 75% quantiles. However, there is also considerable variability across814

the ensemble of LRP values and thus to give a better idea of this uncertainty, we also815

include Figure A1 which shows the 25%, 50% and 75% quantiles of the LRP ensemble.816

Using this figure, we see, for example, that for many regions the bathymetry gradients817

go from being strongly unhelpful at the 25% quantile to strongly helpful at the 75% quan-818

tile, showing a high degree of uncertainty. The figure also illustrates better the regions819

which are irrelevant to BNN predictions (i.e. where the LRP value is zero).820
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