
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
12
35
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Canopy height and climate dryness parsimoniously explain spatial

variation of unstressed stomatal conductance

Yanlan Liu1, Olivia Flournoy2, Quan Zhang3, Kimberly Novick4, Randal D. Koster5, and
Alexandra Konings2

1The Ohio State University
2Stanford University
3Wuhan University
4Indiana University Bloomington
5NASA Goddard SFC

November 24, 2022

Abstract

The spatio-temporal variation of stomatal conductance directly regulates photosynthesis, water partitioning, and biosphere-

atmosphere interactions. While many studies have focused on stomatal response to stresses, the spatial variation of unstressed

stomatal conductance remains poorly determined, and is usually characterized in land surface models (LSMs) simply based

on plant functional type (PFT). Here, we derived unstressed stomatal conductance at the ecosystem-scale using observations

from 115 global FLUXNET sites. When aggregated by PFTs, the across-PFT pattern was highly consistent with the param-

eterizations of LSMs. However, PFTs alone captured only 17\% of the variation in unstressed stomatal conductance across

sites. Within the same PFT, unstressed stomatal conductance was negatively related to climate dryness and canopy height,

which explained 45\% of the total spatial variation. Our results highlight the importance of plant-environment interactions

in shaping stomatal traits. The trait-environment relationship established here provides an empirical approach for improved

parameterizations of stomatal conductance in LSMs.
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Key Points:15

• Many large-scale models represent the spatial patterns of unstressed stomatal con-16

ductance using plant functional types (PFTs)17

• PFT-averages of unstressed stomatal conductance at FLUXNET sites only cap-18

ture seventeen percent of spatial variability19

• Spatial variation of unstressed stomatal conductance is better explained using cli-20

mate dryness and canopy height21

Corresponding author: Yanlan Liu, liu.9367@osu.edu

–1–



manuscript submitted to Geophysical Research Letters

Abstract22

The spatio-temporal variation of stomatal conductance directly regulates photosynthe-23

sis, water partitioning, and biosphere-atmosphere interactions. While many studies have24

focused on stomatal response to stresses, the spatial variation of unstressed stomatal con-25

ductance remains poorly determined, and is usually characterized in land surface mod-26

els (LSMs) simply based on plant functional type (PFT). Here, we derived unstressed27

stomatal conductance at the ecosystem-scale using observations from 115 global FLUXNET28

sites. When aggregated by PFTs, the across-PFT pattern was highly consistent with the29

parameterizations of LSMs. However, PFTs alone captured only 17% of the variation30

in unstressed stomatal conductance across sites. Within the same PFT, unstressed stom-31

atal conductance was negatively related to climate dryness and canopy height, which ex-32

plained 45% of the total spatial variation. Our results highlight the importance of plant-33

environment interactions in shaping stomatal traits. The trait-environment relationship34

established here provides an empirical approach for improved parameterizations of stom-35

atal conductance in LSMs.36

Plain Language Summary37

Stomatal conductance regulates the ease with which vegetation extracts water from38

the soil and releases it to the atmosphere. It thus helps determine the total evapotran-39

spiration and plant uptake of carbon, which in turn significantly influences many aspects40

of ecosystem function, ranging from regional water resources to biodiversity and climate41

feedbacks. In particular, stomatal conductance under a stress-free condition (without lim-42

itations from water, light, or other factors) acts as the basis of all mathematical mod-43

els of stomatal dynamics. It is important to understand what causes the unstressed con-44

ductance to vary from one place to the next. Large-scale models often assume the un-45

stressed stomatal conductance is the same for all ecosystems belonging to the same plant46

functional type (for example, deciduous forests, grasslands, or croplands). However, based47

on observations at 115 sites across the globe, we showed that unstressed stomatal con-48

ductance varies significantly between sites within the same plant functional type. Sites49

located in drier climates and with taller canopies tended to have lower unstressed stom-50

atal conductance. Accounting for climate dryness and canopy height helped better ex-51

plain the spatial variation. Our results provide a useful approach to improving model52

descriptions of stomatal conductance.53
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1 Introduction54

Stomatal conductance for water vapor and carbon dioxide is a primary control on55

transpiration and photosynthesis. Many aspects of ecosystem function, including water56

resources (Fowler et al., 2019; Mankin et al., 2019), carbon sink strength (Powell et al.,57

2013; Trugman et al., 2018), tree mortality (McDowell et al., 2011; Anderegg et al., 2018),58

regional climate feedbacks (Kala et al., 2016; Green et al., 2017), and ecoclimate telecom-59

munications (Garcia et al., 2016; Stark et al., 2016), are directly regulated by the spatio-60

temporal variation of stomatal conductance. Representation of this variation has been61

recognized as the central link of biosphere-atmosphere interactions in observational and62

modeling studies (Hetherington & Woodward, 2003; Buckley & Mott, 2013; Bonan et63

al., 2014; Franks et al., 2018). Under reference conditions of low water stress and non-64

limiting radiation and temperature, the open apertures of stomata lead to unstressed stom-65

atal conductance (gs,ref). During periods of water, light, or temperature stress, stom-66

ata close, thus downregulating stomatal conductance. Over the past decades, much at-67

tention has been focused on evaluating the reduction of stomatal conductance in response68

to meteorological conditions and water stress (Powell et al., 2013; Novick et al., 2016;69

Sperry et al., 2017; Konings et al., 2017; Trugman et al., 2018; Y. Liu et al., 2020). How-70

ever, although gs,ref is the reference basis for downregulation of stomatal conductance71

under all meteorological conditions, its spatial variation remains poorly understood. Due72

to the direct influence of gs,ref on biosphere-atmosphere interactions during both stressed73

and non-stressed conditions, an accurate description of the spatial variation of gs,ref is74

fundamental for predictions of ecosystem dynamics in space and time.75

In-situ measurements have found a negative relationship between gs,ref and canopy76

height at the tree scale (Ryan et al., 2000; Schäfer et al., 2000; Novick et al., 2009), sup-77

porting the hydraulic limitation hypothesis (Ryan et al., 2006). This theory predicts that,78

under steady-state flow conditions, the gs,ref should be coordinated with xylem conduc-79

tance, which itself is inversely related to the soil-to-leaf path length, i.e., canopy height.80

Nonetheless, observations suggesting a positive relationship between gs,ref and canopy81

height also exist (McDowell et al., 2002). This may be because taller canopies have greater82

sapwood area per leaf area, thus contributing to a higher xylem conductance and thus83

greater gs,ref (Fischer et al., 2002). The overall balance of these two factors remains un-84

clear. Moreover, leaf-scale measurements have found that species in more arid climates85

tend to have lower stomatal density and area (Carlson et al., 2016; C. Liu et al., 2018).86
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Because gs,ref is morphologically determined at the leaf scale by these factors (Franks87

et al., 2009; Lammertsma et al., 2011; Dow et al., 2014), these measurements suggest a88

negative relationship between gs,ref and climate dryness. However, the observational stud-89

ies were based on measurements at leaf and tree scales with a limited number of species.90

It remains unclear whether these relationships explaining the spatial variation of gs,ref91

are generalizable to the ecosystem-scale. Furthermore, each of the observational stud-92

ies tested an independent correlation between gs,ref and an individual covariate. The com-93

bined effect requires further investigation.94

Addressing this gap is particularly relevant for land surface models (LSMs), which95

typically omit spatial variation of gs,ref other than that due to the distribution of plant96

functional types (PFTs). Specifically, gs,ref in LSMs corresponds to the stomatal con-97

ductance under optimal meteorological conditions and no soil moisture limitation, rep-98

resented using empirical or optimal approaches, e.g., the Jarvis, Ball-Berry and Medlyn99

models (Jarvis, 1976; Ball et al., 1987; Medlyn et al., 2011; Franks et al., 2018). The spa-100

tial pattern of gs,ref is determined by a single parameter or an equivalent parameter set101

(e.g., the slope parameter, the maximum photosynthetic carboxylation rate Vc,max, etc.)102

assigned for each PFT. However, previous studies have found many related plant traits,103

such as Vc,max and multiple hydraulic traits, vary significantly within a PFT (Anderegg,104

2015; Walker et al., 2017; Konings & Gentine, 2017; Y. Liu et al., 2021), which can in-105

cur large errors in stomatal closure modeling (Wolz et al., 2017). These variations can,106

among others, emerge from plant-environment interactions and community dynamics,107

through which the environment can be considered as a filter in shaping the community-108

average traits (Cornwell et al., 2006; Ackerly & Cornwell, 2007). Such “environmental109

filtering” has previously been applied in large-scale models to improve the parameter-110

ization of photosynthetic traits and empirical evapotranspiration parameters by map-111

ping them to climate and environmental characteristics (Verheijen et al., 2015; Walker112

et al., 2017; Wu et al., 2020). In the same way, gs,ref may also vary with ecological and113

environmental conditions as a result of plant-environment interactions.114

Our objective is to explore the extent to which information about canopy height115

and climate dryness predict spatial variation in ecosystem scale gs,ref . We use observa-116

tions at 115 FLUXNET sites to derive gs,ref and hypothesize that gs,ref varies with canopy117

height and climatic factors, including mean annual air temperature, mean annual pre-118

cipitation, and climate dryness across sites. We examine whether an environmental fil-119
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ter exists that could characterize the spatial variation of gs,ref better than the PFT-based120

approach widely used in LSMs. Our analysis aims to parsimoniously explain the spatial121

variation of gs,ref within PFTs using readily available datasets, thus providing a tractable122

approach to better parameterize stomatal conductance in LSMs.123

2 Methods124

2.1 Sites and datasets125

The 115 global FLUXNET sites covered seven PFTs and a wide range of climates.126

Among the sites included in the FLUXNET2015 Tier1 dataset (FLUXNET, 2016), we127

analyzed only those with ET and relevant meteorological data available, and for which128

there were at least 100 valid observations satisfying the quality control filters described129

in Section 2.2. The PFT of each site is determined based on the International Geosphere-130

Biosphere Programme (IGBP) classification system. The sites include 31 evergreen needle-131

leaf forests, 12 deciduous broadleaf forests, 11 evergreen broadleaf forests, 10 shrublands,132

12 savannas, 25 grasslands, and 14 croplands. Leaf area index was extracted from the133

closest 500 m pixel from the MODIS (Moderate Resolution Imaging Spectroradiometer)134

product (MCD15A3H.006) using Google Earth Engine (Myneni et al., 2015) with a 4-135

day temporal resolution. It was then smoothed using the Savitzky–Golay filter to remove136

high-frequency noise and linearly interpolated to the same temporal resolution (half-hourly137

or hourly, depending on the site) as the flux measurements. Canopy height was obtained138

from the Biological, Ancillary, Disturbance and Metadata (BADM) associated with the139

FLUXNET2015 dataset.140

2.2 Derivation of unstressed stomatal conductance141

Ecosystem conductance (Gs) was calculated by inverting the Penman-Monteith equa-142

tion (Penman, 1948; Monteith, 1965) using ET and relevant meteorological conditions143

at a half-hourly or hourly scale, including net radiation, air temperature, relative humid-144

ity, wind speed, and friction velocity. To control the uncertainty in the estimated con-145

ductance, only measurements taken between 10 am and 3 pm that satisfy the following146

filters were used: no rainfall in the previous two days, net radiation greater than half of147

the annual maximum, vapor pressure deficit greater than 0.6 kPa, and wind speed greater148

than 1 m/s. More details on the inversion method are described in Zhang et al. (2019).149
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We note that Gs estimated by inverting the Penman-Monteith equation is subject to bias,150

which remains challenging to accurately quantify due to biased or unmeasured energy151

budget components (Wehr & Saleska, 2021). While this bias has been shown to cause152

skewed down-regulation sensitivities of stomatal conductance to light and moisture stresses153

(Wehr & Saleska, 2021), we only analyze stomatal conductance under close-to-optimal154

conditions at all sites here. Notably, for sites with available observations of energy bud-155

get components, we tested only using the data when the energy closure error is below156

average and found the main results remained fundamentally unchanged (Fig. S1). Thus,157

this uncertainly will likely contribute to unexplained residuals but not qualitatively change158

the derived relationships.159

The ecosystem conductance was then partitioned into soil conductance and canopy160

conductance using a data-driven approach that generalizes Leuning’s and Medlyn’s mod-161

els of stomatal conductance (C. Lin et al., 2018; X. Li et al., 2019):162

Gs = G0 +G1
GPP

VPDm (1)

where GPP is the gross primary production; VPD is the vapor pressure deficit; and G0,163

G1, and m are parameters fitted by minimizing the root-mean-square error. As discussed164

in more detail below, we assume that, at the ecosystem scale, G0 is dominated by soil165

conductance. One set of fitting parameters was estimated for each site using all avail-166

able data from the growing season, which was identified based on LAI being greater than167

its median. Because G0 can vary with soil moisture, the parameters were fitted using168

data binned by the quartiles of soil moisture measurements at each site for which soil169

moisture measurements were available, and using all valid data otherwise (at 16 sites).170

The accuracy of Eq. 1 was evaluated at each site. We subtracted the fitted constants171

G0 at different soil moisture levels from the hourly/half-hourly ecosystem conductance172

Gs to approximate canopy conductance, which preserves the original variation of Gs and173

reduces the uncertainty introduced by fitting errors.174

The canopy conductance was then scaled to stomatal conductance (gs) at leaf-scale175

using LAI as follows.176

gs =
(Gs −G0)

min(LAI, 6)
(2)

The cut-off point of LAI = 6 was used to account for the nonlinear scaling between stom-177

ata and canopy conductances due to shading in dense canopy (Granier et al., 2000; Novick178

et al., 2009; Alam et al., 2021). Lastly, the unstressed stomatal conductance (gs,ref) was179
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quantified as the 90th percentile of the gs time series satisfying all the filters described180

above at each site. The 90th percentile was used to approximate the maximum stom-181

atal conductance while minimizing the impact of outliers due to observational noise. We182

note that because the optimal temperature, saturated radiation, and minimal water stress183

rarely co-occur, gs,ref is expected to be lower than but correlated to the maximum stom-184

atal conductance, as also found in leaf-scale measurements (Dow et al., 2014; McElwain185

et al., 2016). Thus, through this work, the term “unstressed conductance” may not rep-186

resent the truly maximum conductance, but rather the conductance observed under en-187

vironmental conditions that are reasonably close to optimal.188

We adopted several approaches to evaluate the uncertainties inherent to our ap-189

proach. First, we tested the robustness of our method to errors in the separation of soil190

and canopy conductance, such as in the case where there is an intercept in the stomatal191

conductance-GPP relationship due to cuticular conductance, incompletely closed stom-192

ata, or other reasons (Medlyn et al., 2011; Duursma et al., 2019). In this case, G0 also193

represents part of the canopy conductance. In the extreme case (i.e., no soil conductance194

contribution to G0), instead of Eq. 2, gs could be calculated as gs = Gs/min(LAI, 6).195

Combined with gs derived from Eq. 2, these two estimates span the possible range of196

zero to large contributions of stomatal conductance to G0, allowing us to test the robust-197

ness of our results to Gs partitioning uncertainty. Second, we tested different thresholds198

for the cut-off point (LAI = 4, 6, and 8) used to scale the canopy conductance to stom-199

atal conductance. Finally, while gs,ref represents stomatal conductance under close-to-200

optimal conditions at all sites, the hydroclimatic conditions when gs,ref was achieved could201

be farther away from the optima at some sites than others. For example, in most sites,202

gs close to gs,ref was found around VPD of 1 kPa, as expected theoretically (Oren et al.,203

1999); however, in extremely dry sites, it was only found when VPD exceeded 1.5 kPa204

(Fig. S2). To better understand whether this difference is attributable to real variations205

or to the methodological choice to surrogate gs,ref to the 90th percentile of gs,ref , we cal-206

culated an alternative gs,ref as the envelope (90th quantile) of gs under VPD = 1 kPa207

using a quantile regression (Fig. S3) (Koenker, 2005).208

2.3 Baseline model and scaled model estimating gs,ref variation209

Two models for estimating spatial variation of gs,ref were compared: a ‘baseline model’210

that is an analogy of the PFT-based approach used in land models and a ‘scaled model’211
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that parsimoniously accounts for relations with canopy height and climate conditions,212

i.e., environmental filters. The baseline model was derived by calculating the average of213

gs,ref for all FLUXNET sites, and can be written as:214

yji = cj + δi (3)

where yji is the gs,ref at the ith site belonging to the jth PFT; cj is the jth PFT-specific215

parameter, equal to the average gs,ref of the jth PFT; and δi is the model error.216

To test whether an environmental filter could better estimate gs,ref variation, a scaled217

model was used, which describes gs,ref as a fixed linear combination of explanatory vari-218

ables that is multiplicatively scaled by a PFT-specific factor.219

yji = αj(βTXi) + δi (4)

where Xi is a vector containing z-scores of a set of explanatory variables for the ith site,220

and β contains the corresponding coefficients. Z-scores rather than the original magni-221

tudes of explanatory variables were used in Xi so that βT reflects the relative sensitiv-222

ities. Note that the vector βT is independent of PFT j, maintaining the same ratio of223

sensitivity to each of the possible explanatory variables Xi. By maintaining this consis-224

tency, the number of necessary variables is reduced significantly, preserving the parsi-225

monious nature of the model and preventing over-fitting. The PFT-specific parameter226

αj accounts for different scalings across PFTs. For Xi, we explored widely-available vari-227

ables (to ensure a large dataset and tractability of the resulting model as an environmetal228

filter) of three categories: long-term average precipitation and air temperature, dryness229

index, and canopy height (Table 1). Mean annual air temperature (MAT) and precip-230

itation (MAP) were calculated using the FLUXNET2015 dataset as averages across the231

entire record of each site. We considered six different metrics to quantify climate dry-232

ness based on actual evapotranspiration (ET), potential evapotranspiration (PET) and233

MAP. PET was calculated using the Penman-Monteith equation, and ET was calculated234

as the average of the observations across the entire record period. The inverse of canopy235

height (1/Hc), rather than canopy height itself, was used because the inverse linearly con-236

trols the xylem conductance from the root to the leaf, which affects stomatal conduc-237

tance through hydraulic coordination (Brodribb & Jordan, 2011; Manzoni et al., 2013).238

To identify the most informative variables, we conducted model selection by choosing239

at most one variable within each of the three categories. The performance of models with240

different variable combinations was evaluated using the coefficient of determination (R2)241
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and the Akaike information criteria (AIC). We analyzed the top ten scaled models (based242

on AIC) and compared their AIC and R2 to the baseline model. We further examined243

the relation between gs,ref and the selected independent variables as reflected by β. The244

uncertainty of β of the best-performing model was estimated using seven-fold bootstrap-245

ping (Efron, 1992).246

Table 1. Candidate variables considered in the scaled model

Candidate variables

Canopy height 1/Hc

Dryness index PET/MAP PET–MAP PET/ET PET–ET ET/MAP ET–MAP

Mean climate MAP MAT

2.4 Unstressed stomatal conductance within land surface models247

We compared the baseline model derived here from FLUXNET sites to the actual248

parameterizations used in land surface models and a global modeling system. The Global249

Land Data Assimilation System (GLDAS) (Rodell et al., 2004), the Community Land250

Model Version 4.5 (CLM4.5) (Oleson et al., 2013) and Version 5 (CLM5) (Lawrence et251

al., 2019) were used as examples. The land model Noah v3.3 in GLDAS prescribes un-252

stressed stomatal conductance per PFT, and these values were directly compared with253

gs,ref here. CLM4.5 and CLM5 describe stomatal conductance using the Ball-Berry model254

and the Medlyn model respectively; in these two models, the unstressed stomatal con-255

ductance is not directly prescribed but primarily determined by the maximum rate of256

Rubisco carboxylase activity Vcmax and the slope parameter g1, which are specified by257

PFT. We calculated the equivalent unstressed stomatal conductance of each PFT using258

the PFT-specific parameters as in Oleson et al. (2013) and Lawrence et al. (2019) un-259

der reference conditions, i.e., net radiation of 600 W/m2, air and leaf temperature of 25260

◦C, VPD of 0.6 kPa, and without soil moisture limitation. The maximum rate of pho-261

tosynthetic electron transport (Jmax) and the photorespiration rate were approximated262

as 1.97 and 0.015 times Vc,max, respectively (Oleson et al., 2013).263
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3 Results and Discussion264

3.1 Unstressed stomatal conductance across sites265

Across sites, the ecosystem conductance model (Eq. 1) captures on average 43%266

and up to 82% of subdaily variation of the derived ecosystem conductance Gs (Fig. 1a).267

This is on par with an R2 of 0.52 at one site reported in C. Lin et al. (2018). The model268

R2 does not exhibit clear spatial clusters (Fig. 1a) and does not significantly differ for269

sites with and without soil moisture measurements (p > 0.1 using a Kolmogorov–Smirnov270

test). At sites with available soil moisture measurements, G0 increases with soil mois-271

ture as expected. The across-sites medians of G0 are 0.043, 0.059, 0.066, and 0.080 mol/m2/s272

under soil moisture within the first to the fourth quartiles, respectively (Fig. 1b). The273

mid-50% of the slope (G1) and the exponent (m) parameters range from 0.075 to 0.121274

(kPam mol µmol−1), and from 0.240 to 0.584, respectively (Fig. 1c, d). The values of275

all three parameters estimated here are consistent with those in previous studies (C. Lin276

et al., 2018; X. Li et al., 2019).277

The derived gs,ref spans a wide range from 0.022 to 0.409 mol/m2/s (Fig. 1e) and278

is not clustered by PFT or climate type. Each of the tropical, temperate and boreal re-279

gions and all of the PFTs include both small (below the 25th percentile across all sites)280

and large (above the 75th percentile) values of gs,ref . The large spatial variability of gs,ref281

highlights the need for its appropriate characterization.282

3.2 Cross-PFT pattern and connection to parameterization of LSMs283

The PFT-averaged gs,ref is highest in croplands (0.186 mol/m2/s), followed by grass-284

lands (0.135 mol/m2/s), and is lowest in evergreen broadleaf forests (0.083 mol/m2/s).285

This cross-PFT pattern is largely consistent with the parameterization of LSMs (Fig.286

2). The equivalent gs,ref from GLDAS, CLM4.5 and CLM5 are correlated with the site-287

averaged gs,ref per PFT with Pearson correlation coefficients of 0.76, 0.83, and 0.88 re-288

spectively (p < 0.01 for all), though these correspondences are in large part attributable289

to high gs,ref in croplands. When excluding croplands, the correlations degrade to 0.78,290

0.55, and 0.31 for the three model parameterizations, respectively. While the cross-PFT291

patterns derived here and the parametrization of LSMs are largely consistent, significant292

differences also remain. These may be attributable to the limited number of sites in each293
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Figure 1. (a) Temporal variation of ecosystem conductance Gs explained by the ecosystem

conductance model (Eq. 1) for all investigated FLUXNET sites. Model accuracy was evaluated

using the coefficient of determination (R2) between fitted Gs and that derived from observa-

tions. (b) Probability density function (pdf) of the fitted soil conductance (G0) across sites under

measured soil moisture in the four quartiles separated by the 25th (q25), the 50th (q50), and

the 75th (q75) quantiles of each site, and under all soil moisture conditions at sites without soil

moisture measurement (no SM). (c) The pdf of the slope parameter G1. (d) The pdf of the VPD-

sensitivity parameter m. (e) The unstressed stomatal conductance (gs,ref) derived for FLUXNET

sites.
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PFT in this study and similarly, the small number of (possibly different) sites typically294

used to tune parameters in LSMs.295

Figure 2. Relations between PFT-averaged unstressed stomatal conductance (gs,ref) of

FLUXNET sites and the equivalent gs,ref calculated using the parameterizations of (a) Noah

v3.3 in GLDAS, (b) the Ball-Berry model in CLM4.5, and (c) the Medlyn model in CLM5. Black

dashed lines denote the regression lines. Colored dots represent the seven PFTs, including ev-

ergreen needleleaf forests (ENF), deciduous broadleaf forests (DBF), evergreen broadleaf forests

(EBF), shrublands (SHB, including both open and closed shrublands), savannas (SAV, including

both savannas and woody savannas), grasslands (GRA), and croplands (CRO). Different symbol

shapes denote parameterizations specific for tropical, temperate and boreal biomes. Each panel

only shows available PFTs and biomes in the corresponding model.

On average, the cross-PFT variation of observed gs,ref is only half of that seen within296

each of the seven PFTs (Fig. 3a). As a result, the PFT-averages of gs,ref only explain297

17% of the total observed variation across all sites (Fig. 3b). This suggests that repre-298

senting the unstressed stomatal conductance via PFT alone ignores significant sources299

of spatial variation, which may result in spatial errors of simulated biosphere-atmosphere300

interactions in LSMs.301

3.3 Improved spatial estimation of unstressed stomatal conductance302

The most informative variable in explaining the spatial variation of gs,ref is the dry-303

ness index, calculated as the long-term averaged deficit between potential evapotranspi-304

ration and the actual evapotranspiration (PET–ET), followed by canopy height. Using305

these two variables, the scaled model (Eq. 4) explains 45% of the variation of gs,ref across306

all sites (Fig. 4), which more than doubles the R2 of 0.17 using PFT-averages (Fig. 3).307
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Figure 3. (a) The coefficient of variation of gs,ref across- and within-PFTs. (b) Relation be-

tween PFT-averaged gs,ref (the baseline model) and the gs,ref across sites. Acronyms of PFTs are

noted in the caption of Fig. 2.

Despite requiring more parameters, the best scaled model is also more informative (AIC=308

−328.52) than the baseline model (AIC= −279.74). The gs,ref is negatively related to309

PET–ET and positively related to 1/Hc, with greater sensitivity to PET–ET (−0.198±310

0.018) than to 1/Hc (0.046± 0.011), where the sensitivity coefficients were calculated311

using the variables’ z-scores. We note that multiple variable combinations and the cor-312

responding regression coefficients yield similar model accuracies (Table S1). However,313

both 1/Hc and the dryness index are selected in the majority of the top ten models. Across314

models, the signs of the relationships between both 1/Hc and the dryness index to gs,ref315

are also consistent. Mean annual temperature and precipitation are also selected in eight316

out of the ten top models, although gs,ref is less sensitive to mean climate conditions than317

to the dryness index. These findings are robust with respect to the alternative approx-318

imations and thresholds for deriving gs,ref described in Section 2.2. Climate dryness and319

canopy height are still the most informative variables explaining 38% to 45% of gs,ref vari-320

ation, in contrast to 13% to 16% using PFT averages (Fig. S4–S7).321

Our results indicate that accounting for climate dryness and canopy height explains322

more than two times the gs,ref variation explained by PFT alone. This suggests that a323

simple and tractable equation can enable significantly more accurate gs,ref assumptions324

for use in LSMs. Plants in drier climates tend to exhibit lower gs,ref , which provides the325
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Figure 4. Performance of the best scaled model in estimating gs,ref using canopy height and

climate dryness across sites. Acronyms of PFTs are noted in the caption of Fig. 2.

first ecosystem-scale evidence consistent with leaf scale measurements suggesting species326

in drier climates tend to have lower stomatal density and area and thus lower unstressed327

stomatal conductance (Carlson et al., 2016; C. Liu et al., 2018). Based on leaf-level gas328

exchange, Y.-S. Lin et al. (2015) also found drier climates were correlated with higher329

marginal water use efficiency, indicating low stomatal conductance under unstressed con-330

ditions.331

To our knowledge, our study is the first to present evidence on the coordination332

between unstressed stomatal and xylem conductances (evidenced here through canopy333

height) at the ecosystem scale. Previous studies have found strong coordination between334

xylem and stomatal vulnerabilities to water stresses (Martin-StPaul et al., 2017; Bro-335

dribb et al., 2017; Pivovaroff et al., 2018), and identified positive 1/Hc - gs,ref relation-336

ships based on tree-scale measurements for each species (Schäfer et al., 2000; Ryan et337

al., 2000; Phillips et al., 2003; Delzon et al., 2004). Our study extends these results by338

showing that, even without distinguishing species within a PFT, canopy height explains339

gs,ref variations at the ecosystem-scale. It further suggests that the direct effect of canopy340

height on xylem conductance (which suggests a positive relationship between 1/Hc and341

gs,ref) outweighs the influence of xylem conductance’s dependence on the sapwood-to-342

leaf area (which by itself suggests a negative relationship between 1/Hc and gs,ref). Nev-343
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ertheless, these competing influences may explain why, at stand-scale, gs,ref is less sen-344

sitive to canopy height than to climate dryness.345

4 Conclusions and implications346

This study investigated the spatial variation of stomatal conductance under un-347

stressed conditions (gs,ref) derived from FLUXNET sites across the globe. Differences348

between PFTs only account for a limited fraction of the total spatial variance. This high-349

lights the uncertainties introduced by PFT-based parameterization schemes commonly350

used in LSMs. In contrast, using PFT, canopy height and climate dryness significantly351

contribute to explaining the spatial variation of gs,ref , even in the absence of any infor-352

mation about species composition, competition, soil type (which may affect rooting prop-353

erties), or other factors. Note that the predictive capabilities of this relationship are not354

obvious a priori from the existence of analogous univariate species-scale relationships.355

The large range of other factors varying at ecosystem-scale could have prevented the ex-356

istence of a tractable relationship for gs,ref with climate dryness and canopy height. In-357

deed, for water use efficiency (WUE) – another stomatal trait – it has been shown that358

the WUE aridity index relationship is very different between leaf and ecosystem scales359

(H. Li et al., 2022). Greater gs,ref is associated with lower canopy height and more mesic360

climates, which is supported by ecophysiological theory and is qualitatively consistent361

with previous evidence observed at leaf and tree scales. Our findings suggest that ex-362

plicitly considering canopy height and climate dryness can contribute to a more accu-363

rate description of unstressed stomatal conductance and its ecohydrological consequences364

in models. Additionally, an increasing number of land models have started to incorpo-365

rate plant hydraulics and therefore a mechanistic impact of canopy height on the equiv-366

alent gs,ref (Kennedy et al., 2019; Eller et al., 2020; L. Li et al., 2021). The sensitivity367

of gs,ref to canopy height estimated here can provide an observation-based diagnostic bench-368

mark for examining such parameterizations. Overall, the fact that climate and ecolog-369

ical state explain gs,ref highlights the importance of plant-environment interactions and370

ecological dynamics in shaping community-average traits. Our findings motivate further371

studies accounting for these impacts to improve prediction of biosphere-atmosphere in-372

teractions.373
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Table S1. Accuracies and selected variables of the top ten scaled models based on AIC.

The coefficients in front of the selected variables are the regression coefficients (β in Eq. 4 of

the main text) of the normalized variables (z-scores), representing the sensitivities of gs,ref to the

selected variables. gs,ref of each site is the 90th percentile of stomatal conductance derived using

gs = (Gs −G0)/min(LAI, 6).

Selected variables
Model R2 AIC Canopy height Dryness index Mean climate

1 0.45 −328.52 +0.046/Hc −0.198(PET − ET)
2 0.44 −328.50 −0.201(PET − ET)
3 0.44 −326.72 −0.212(PET − ET) −0.016MAP
4 0.45 −326.63 +0.047/Hc −0.208(PET − ET) −0.007MAT
5 0.43 −326.62 −0.229(PET − ET) +0.026MAT
6 0.45 −326.47 +0.043/Hc −0.209(PET − ET) −0.015MAP
7 0.40 −320.53 −0.155PET/ET −0.071MAT
8 0.41 −319.56 +0.063/Hc −0.139PET/ET −0.053MAT
9 0.39 −316.12 −0.155PET/ET −0.039MAP
10 0.40 −315.69 +0.051/Hc −0.149PET/ET −0.030MAP
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Figure S1. Comparison between gs,ref derived from observations (y-axis) and those estimated

using (a) the baseline model (PFT-averages) and (b) the best scaled model, color coded by

PFTs. Here, gs,ref is derived as described in the main text, but using only data when the energy

closure error is below a threshold of 18%, which is the average across time and sites. The energy

closure error is calculated as the difference between net radiation and the summation of latent,

sensible, and ground heat fluxes, normalized by the net radiation. Only sites with available

downward and upward longwave and shortwave radiation and ground heat flux observations

and with at least 100 observations satisfying all quality-control filters are analyzed. The βT X

in Eq. (4) of the best scaled model is 0.64 − 0.108 (PET − ET) − 0.062 MAT, followed by

0.63 + 0.050/Hc − 0.088 (PET − ET) − 0.057 MAT, where 1/Hc, PET − ET, and MAT are z-

scores of the corresponding variables.
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Figure S2. Relation between dryness index (long-term averaged annual PET-ET) and vapor

pressure deficit (VPD) when the stomatal conductance gs is close to gs,ref , i.e., within the range

of 85th and 95th percentiles. Each black dot shows the mean and each horizontal blue line shows

the standard deviation of VPD when gs is close to gs,ref at each site.
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Figure S3. An example of deriving unstressed stomatal conductance (gs,ref) as the 90th

percentile of stomatal conductance (gs) at all times and as the envelope at VPD of 1 kPa,

respectively, at the AR-Vir site. Grey dots are gs derived from half-hourly observations satisfying

the filters (described in Section 2.2.) across the entire record. The purple line shows the upper

envelope of gs, calculated using a quantile regression (Koenker, 2005) that estimates the 90th

quantile of gs in response to VPD using the cvxpy software in Python. The blue and red dashed

lines denote the 90th percentile of gs and the envelope at VPD of 1kPa, respectively.
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Figure S4. Comparison between gs,ref derived from observations (y-axis) and those estimated

using (a) the baseline model (PFT-averages) and (b) the best scaled model, color coded by PFTs.

Here, gs,ref is the 90th percentile of stomatal conductance (gs) at all times, which was derived

assuming ecosystem conductance Gs represents canopy conductance, i.e., replacing Eq. (2) in

the main text with gs = Gs/min(LAI, 6). The βT X in Eq. (4) of the best scaled model is

0.76+0.075/Hc−0.221(PET−ET)−0.053MAP, where 1/Hc, PET−ET, and MAP are z-scores

of the corresponding variables.
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Figure S5. Comparison between gs,ref derived from observations (y-axis) and those estimated

using (a) the baseline model (PFT-averages) and (b) the best scaled model, color coded by PFTs.

Here, gs,ref is the 90th percentile of stomatal conductance (gs) at all times, which was derived

using a LAI cut-off of 4, i.e., gs = (Gs−G0)/min(LAI, 4). The βT X in Eq. (4) of the best scaled

model is 0.66 + 0.038/Hc − 0.223(PET − ET) + 0.036MAT, where 1/Hc, PET − ET, and MAT

are z-scores of the corresponding variables.
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Figure S6. Same as Fig. S4 except that a LAI cut-off of 8 was used, i.e., gs = (Gs −

G0)/min(LAI, 8). The βT X in Eq. (4) of the best scaled model is 0.81 − 0.230(PET − ET) −

0.033MAP. The βT X of the second best (AIC = -270.93, R2 = 0.42) scaled model is 0.75 +

0.077/Hc − 0.213(PET − ET) − 0.028MAP, where 1/Hc, PET − ET, and MAP are z-scores of

the corresponding variables.
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Figure S7. Comparison between gs,ref derived from observations (y-axis) and those estimated

using (a) the baseline model (PFT-averages) and (b) the best scaled model, color coded by PFTs.

Here, gs,ref is the envelope of stomatal conductance when VPD = 1 kPa, estimated using quantile

regression as illustrated in Fig. S2. The stomatal conductance was derived using Eq.(2) in the

main text. The βT X in Eq. (4) of the best scaled model is 0.71 + 0.041/Hc− 0.197(PET−ET),

where 1/Hc and PET − ET are z-scores of the corresponding variables.

April 27, 2022, 3:16am


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4

