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Abstract

In this study, a new lightning data assimilation (LDA) scheme using Geostationary Lightning Mapper (GLM) flash extent

density (FED) is developed and implemented in the National Severe Storms Laboratory (NSSL) Warn-on-Forecast System

(WoFS). The new LDA scheme first retrieves the pseudo relative humidity between the cloud base and a specific layer based on

the FED value. Then on each model layer, the pseudo relative humidity is converted to dewpoint temperature according to the

corresponding air temperature. Some sensitivity experiments are performed to investigate how to derive and use GLM/FED

in a best possible way. The impact of assimilating this derived pseudo dewpoint temperature on short-term severe weather

forecast is preliminarily assessed in this proof-of-concept study. A high-impact weather event over Kansas on 24 May 2021 is

used to evaluate the performance of the new scheme on analyses and subsequent short-term forecasts. The results show that

the assimilation of additional FED derived dewpoint temperature observations along with radar, satellite radiance and cloud

water can improve short-term (3-h) forecast skill. The improvement is primarily due to the direct and indirect adjustment of

dynamic and thermodynamic conditions through the LDA process. More specifically, the assimilation of FED-derived dewpoint

temperature, in addition to the other observations currently used in WoFS, tends to enhance the ingredients required for a

thunderstorm to occur, namely moisture, instability and lifting mechanism.
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Key points:

• GOES-16 derived GLM product has the potential to benefit convective scale
data assimilation and forecasts.

• A new method for assimilating pseudo dewpoint temperature as a function of
GLM flash extent density is developed.

• The short-range forecast of a severe weather event can be improved by assim-
ilating GLM data with the new method.
*Corresponding author: Jidong Gao, NOAA/National Severe Storms
Laboratory, 120 David L Boren Blvd, Norman, Oklahoma, 73072; ji-
dong.gao@noaa.gov.

Abstract

In this study, a new lightning data assimilation (LDA) scheme using Geostation-
ary Lightning Mapper (GLM) flash extent density (FED) is developed and im-
plemented in the National Severe Storms Laboratory (NSSL) Warn-on-Forecast
System (WoFS). The new LDA scheme first retrieves the pseudo relative humid-
ity between the cloud base and a specific layer based on the FED value. Then
on each model layer, the pseudo relative humidity is converted to dewpoint
temperature according to the corresponding air temperature. Some sensitivity
experiments are performed to investigate how to derive and use GLM/FED in
a best possible way. The impact of assimilating this derived pseudo dewpoint
temperature on short-term severe weather forecast is preliminarily assessed in
this proof-of-concept study. A high-impact weather event over Kansas on 24
May 2021 is used to evaluate the performance of the new scheme on analyses
and subsequent short-term forecasts. The results show that the assimilation of
additional FED derived dewpoint temperature observations along with radar,
satellite radiance and cloud water can improve short-term (3-h) forecast skill.
The improvement is primarily due to the direct and indirect adjustment of dy-
namic and thermodynamic conditions through the LDA process. More specifi-
cally, the assimilation of FED-derived dewpoint temperature, in addition to the
other observations currently used in WoFS, tends to enhance the ingredients
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required for a thunderstorm to occur, namely moisture, instability and lifting
mechanism.

Plain Language Summary

Although the high temporospatial resolution Geostationary Lightning Mapper
(GLM) from the newly launched NOAA GOES-16/17 could be beneficial for
convective-scale numerical weather prediction, only a few studies have explored
this potential. In this study, a new ensemble-based GLM data assimilation
scheme is developed to assimilate the GLM derived dewpoint temperature into
the Weather Research and Forecasting model for improving convective scale nu-
merical weather prediction. First, some sensitivity experiments are performed
to investigate how to derive and use GLM flash extent density in a best possi-
ble way. Then, the potential impacts of GLM on convective scale analysis and
short-term severe weather prediction are examined with a severe weather event.
It is demonstrated that assimilating the GLM product noticeably improves the
analysis for key model variables, especially thermodynamic variables. As a re-
sult, short-term severe weather forecasts can be improved in terms of rotational
tracks and storm strength.

1. Introduction

According to NOAA National Centers for Environmental Information (NCEI,
2021) statistics on the 2021 U.S. Billion-Dollar Weather Disasters, severe storms
have caused, on average over the past decade, about 84 fatalities and 16.8 bil-
lion economic losses each year. Scientists have made significant strides toward
improving the accuracy of convective-scale forecasts (Stensrud and Gao 2010;
Skinner et al. 2018; Zhang et al. 2019a, b; Clark et al. 2021; Hu et al. 2021).
However, the accuracy of severe weather forecasts still suffers due to the inac-
curate initial conditions for numerical weather prediction (NWP) models and
the complex non-linear interactions between processes of different length scales.
More accurate initial conditions can significantly improve convective-scale NWP,
although other reasons, such as the fidelity of microphysics schemes, that may
limit the predictability of convective scale weather events still exist (Sun and
Zhang 2016; Yano et al. 2018).

To provide better initial conditions for convection-allowing NWP models
(CAMs), data assimilation (DA) methods require observations with higher
spatial and temporal resolution. Usually, conventional observations (e.g.,
surface observing stations) may only provide information about the pre-storm
environment. They have little impact on constructing ongoing storm struc-
ture, and thus, their impact on CAMs is significantly limited by the sparser
temporospatial density of these data. Therefore, the assimilation of radar
and geostationary satellite observations with high temporospatial resolution
in DA has received more attention in the past two decades. For example,
the US Weather Surveillance Radar – 1988 Doppler (WSR-88D, Crum et al.
1993) network can provide information about wind and hydrometeors at a
resolution of approximately 1 km and a time frequency of 4 – 5 minutes. The
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Advanced Baseline Imager (ABI) on board the recently launched Geostationary
Operational Environmental Satellite – R Series (GOES-R) (Schmit et al. 2017)
can provide information on temperature, humidity and wind at 5 – 10 km
resolution and various time frequency (maximum a few minutes).

In recent years, considerable studies have been made to assess the impact of
DA methods that incorporate radar and satellite observations into CAMs (e.g.,
Dowell et al. 2011; Gao and Stensrud 2014; Gao et al. 2004; Johnson et al. 2015;
Wang and Wang 2017; Wheatley et al. 2015; Aksoy et al. 2009; Polkinghorne
and Vukicevic 2011; Jones et al. 2015, 2016; Zhang et al. 2016; Minamide and
Zhang 2019; Honda et al. 2018; Zhang et al. 2018, 2019a,b). These studies
have shown the key advantages of assimilating radar and satellite observations
on improving the prediction of high-impact weather events, ranging from severe
thunderstorms (e.g., Jones et al. 2016; Zhang et al. 2019b) to tropical cyclones
(e.g., Honda et al. 2018; Zhang et al. 2019a). The assimilation of radar obser-
vations, especially radial velocity and reflectivity, enables construction of the
three-dimensional internal storm structure (Dowell and Wicker 2009; Gao et al.
2004; Gao and Stensrud 2014; Clark et al. 2021). The assimilation of satel-
lite observations can also play an important role in improving the prediction
of storms over the areas where surface and radar observations are very limited,
such as oceans or regions where the terrain is relatively high and can block radar
beams (Fierro et al. 2016, 2019; Jones et al. 2013, 2015, 2016, 2020; ).

The NSSL’s Warn-on-Forecast System (WoFS, Jones et al. 2020), one of the ex-
perimental systems that focus on short-term forecasting applications, provides
reasonable estimates of the initial conditions by optimally combining forecast
backgrounds and observations. In the 2021 NOAA Hazardous Weather Testbed
(HWT) Spring Forecast Experiment (SFE, Clark et al. 2021), the assimilation
of radar observations from WSR-88D and satellite observations from GOES-
R helped to establish the foundation for good performance of the WoFS. The
satellite observations used in HWT/SFE 2021 include information for nonprecip-
itating clouds and environmental conditions for all-sky. Thus far, however, the
benefits of assimilating lightning data provided by the GOES-R series to the
accuracy of WoF predictions has been limited. The GLM lightning product is
widely recognized as a proxy for systematically identifying the occurrence of
deep moist convection (Schultz et al. 2011). In particular, prior studies found
that total lightning flash rates are indicative of convective cores having >10
m s-1 updraft velocity and graupel (MacGorman et al. 1989; Carey and Rut-
ledge 1998; MacGorman et al. 2005; Wiens et al. 2005; Deierling and Petersen
2008; MacGorman et al. 2011). Therefore, assimilating lightning observation
into the WoFS is expected to help improve the forecast of severe thunderstorms,
especially for the convection initiation phase.

Most previous studies focused on LDA, utilized lightning observations from
ground-based platforms to promote convection at the observed lightning loca-
tions within convective parameterization schemes by employing empirical rela-
tionships. However, this approach is not appropriate for CAMs that can par-
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tially resolve convective features without parameterization schemes. Following
the operational availability of GOES-16/17 GLM products since 2018, only a
few studies have been performed on the assimilation of real GLM products into
convective scale NWP models. Fierro et al. (2019) and Hu et al. (2020) im-
plemented an LDA method in a variational framework by assimilating pseudo
water vapor content. Basically, their study showed the potential ability of
LDA to achieve improvement of short-range forecasts for a specific set of severe
weather events. However, they also underscored that (i) the added value of
LDA to forecast remains minor in areas with good coverage of radar observa-
tions and (ii) LDA typically produces overestimation of >30-dBZ reflectivities
or over-prediction biases. This is because the treatment of areal coverage of
non-zero flash densities in their LDA scheme does not change significantly with
time lapse, resulting in progressive enhancement of convection.

Compared to the variational DA method with a deterministic member forecast,
use of the ensemble Kalman Filter (EnKF) has obvious advantages from two
aspects. First, the EnKF technique introduces flow-dependent background error
covariances, which allow more accurate spatial and cross-variable correlations
between model states and directly observed variables. Second, an ensemble of
forecasts is able to generate probabilistic guidance for severe weather events
(Skinner et al. 2018; Flora et al. 2019). Only a few studies, namely Kong et
al. (2020, K20 hereafter) and Gan et al. (2021), attempted to assimilate light-
ning observations from spaceborne sensors for real data application using an
EnKF framework. K20 adopted an empirical relationship between flash extent
density (FED) and graupel mass or volume, and demonstrated the potential
benefit of the LDA to short-term severe weather forecasts using the Commu-
nity Gridpoint Statistical Interpolation (GSI, Kleist et al. 2009) EnKF system.
They highlighted that the positive correlations between FED and model state
variables, especially temperature and moisture, are the most important factors
leading to a better forecast. Although more intense convective updrafts were
produced by positive correlations between FED and vertical velocity, those up-
drafts had little influence on the forecast. In Gan et al. (2021, G21 hereafter),
the LDA scheme adopted an empirical relationship between flash rate and max-
imum vertical velocity. They suggested a similar conclusion, that convective
scale short-term forecasts have been improved because of increased convergence
and divergence of wind fields in the low and upper levels, respectively.

None of aforementioned studies examined the impact of LDA on the forecast
of a tornadic supercell event. The present study adopts the assumption used
in Fierro et al. (2019) but improves on three aspects. These aspects include:
(i) using FED instead of “flash origin density”, which does not consider the
areal extent of the flashes; (ii) extending the LDA algorithm to use flash rate
information to create pseudo- dewpoint temperature observations for the pur-
pose of suppressing overestimation in forecast; (iii) combining the assimilation
of FED with other observations used by the WoFS. The primary motivation of
this research is to leverage the potential for GLM FED to aid the development
of convection with minimal overestimation in NWP models.
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Although the new LDA scheme developed here is designed for real-time appli-
cation for future SFEs, as a proof-of-concept, this study will first focus on a
single case study: the 24 May 2021 severe weather event over northwest Kansas,
where a large, multi-vortex tornado was not well predicted by the WoFS. This
type of severe weather event is different from that in K20 and G21, which are
usually considered as MCSs rather than supercells. Our initial focus here is on
how to derive and use of GLM/FED in a best possible way through sensitivity
experiments. The preliminary results show that the assimilation of FED, using
the GSI-EnKF system, improves the short-term forecast of tornadic and nontor-
nadic supercells. Section 2 describes the WoFS system, the FED observations,
and the LDA scheme. Section 3 introduces the experiment configurations and
verification method used in this study. In section 4, sensitivity experiments ex-
amine the impact of assimilating GLM FED observations using different spatial
resolutions, accumulation windows and cutoff radii of FED observation. Sec-
tion 5 describes qualitative and quantitative comparisons of forecast quality for
each assimilation experiment under a quasi-real time situation, followed by the
conclusions in section 6.

2. Warn-on-Forecast System (WoFS) and LDA scheme

a. Overview

The WoFS system is an on-demand ensemble DA and forecasting system de-
signed to provide guidance of hazardous weather events, such as tornadoes,
damage winds, large hail and flash flooding. The current WoFS uses a cus-
tomized Advanced Research Weather Research and Forecasting Model (WRF-
ARW) based on version 3.8.1 (Skamarock et al. 2008), coupled with the GSI-
based EnKF system (Jones et al. 2016, 2020; Yussouf et al. 2019, 2020). The
GSI-EnKF system assimilates radar radial velocity and reflectivity data (John-
son et al. 2015; Wang and Wang 2017), satellite cloud water path (CWP, Jones
et al. 2013) and GOES-16 ABI radiance (Jones et al. 2020). This research
extends the system to include an LDA method that assimilates FED as an
indicator of strong ongoing convection.

As mentioned in the first section, one advantage of the EnKF method is that the
flow dependent error covariances can be estimated so that prognostic variables,
including three-dimensional wind fields, temperature, humidity, pressure, dia-
batic heating and hydrometeors can be updated without using forward operators
that directly link model variables with observations. The configurations used
in this research are the same as those used in the real-time WoFS run during
the SFE 2021 but with the additional assimilation of GLM FED observations,
which are described later. The WoFS DA cycles start from 1500 UTC, and end
at 0300 UTC with assimilation of available conventional, radar and satellite
observations every 15 minutes. All observations are assimilated into the WRF
model with a regional domain using 3-km horizontal resolution and 51 vertical
levels. The regional domain covers an area of 300 × 300 grid points (900 km ×
900 km), and its center is determined by the Day 1 Convective Outlook from
NOAA Storm Prediction Center. The initial and boundary conditions for the
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WoFS 36-member ensemble are provided by an experimental 36-member HRRR
ensemble (HRRRE, Benjamin et al. 2016). The initial conditions use 1-hour
forecasts from 1400 UTC HRRRE analyses, and the boundary conditions are
generated by using forecasts of the analyses of first 9 HRRRE members at 1200
UTC. A 6-h and a 3-h forecast are launched at the top and the bottom of each
hour, respectively. For more details about parameterization schemes, the au-
thors suggest audiences to see Skinner et al. (2018); Wheatley et al. (2015);
Mansell et al. (2010). A comprehensive description of the inflation methods to
maintain diversity between members in the WoFS can be found in Dowell and
Wicker (2009); Anderson (2009) and Hu et al. (2019).

b. Description of observations used in the WoFS for SFE 2021

This study evaluates added values of a LDA scheme to the WoFS real-time per-
formance. Therefore, observations used in the WoFS real-time experiments are
also adopted in this study. The WoFS system for SFE 2021 assimilates conven-
tional observations hourly, radial velocity and radar reflectivity, CWP and all
sky radiance at 15-min intervals. The conventional observations contained in
hourly prepbufr files include temperature, dewpoint, winds and pressure avail-
able at the surface and upper levels. For real-time application, the prepbufr
conventional observations are assimilated using a 15-min lag, e.g., using the
conventional data available at 1500 UTC into the 1515 UTC analysis. Okla-
homa and west Texas Mesonet observations (Brock et al. 1995) that have a
denser spatial resolution are assimilated as a complement to traditional prep-
bufr observations.

Radial velocity observations are used within a range of 150 km from the radar
and are thinned to a 5-km resolution Cartesian space using Cressman objective
analysis (Cressman 1959) prior to DA procedure. For the reflectivity observa-
tions, the NSSL provides an alternative three-dimensional quality-controlled op-
tion, called Multi-Radar Multi-Sensor (MRMS) reflectivity (Smith et al. 2016),
which has horizontal resolution at 0.01° (approximately 1 km) and vertical res-
olution ranging from 250 m to 1 km from sea level surface to 20 km mean sea
level. Akin to radial velocity observations, MRMS reflectivities are thinned to
5-km horizontal resolution.

The satellite observations assimilated into the WoFS include radiances from
6.2 �m and 7.3 �m infrared bands, respectively measuring upper- and low-level
water vapor content of atmosphere, and CWP that is one of cloud property
products from GOES-16/17 representing vertically aggregated information of
hydrometeors. These observations are analyzed to the same MRMS 5-km space
for cloudy areas and a 15-km space for clear sky. A parallax correction is applied
to satellite data for cloudy pixels defined by the L2 cloud height product. More
detailed descriptions about all assimilated observations, their associated errors
and localization radii in SFE 2021 can be found in Jones et al. (2020), except
that vertical localization radii for conventional observations is ranging from 0.8
to 0.85 in natural log pressure [− ln (𝑃/𝑃0)]. Here 𝑃0 is the reference pressure
1000 hPa.
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c. GLM flash extent density and the assimilation scheme

The GLM instruments carried by GOES-16/17 are able to measure optical sig-
nals emitted by lightning discharges over most of the Americas and central east-
ern Pacific Oceans. It has a variable pixel pitch that prevents the horizontal
resolution of ground samples from exceeding 14 km over the CONUS, and makes
most of ground samples having horizontal resolution less than 10 km (Bruning
et al. 2019). The detection efficiency of the GLM is highly dependent on the
time of day. An expected flash detection efficiency exceeds 70% for daytime and
exceeds 90% for nighttime. A detection, also called an event in GLM datasets,
is recorded at individual pixels exceeding background within the 2-ms integra-
tion period once non-lightning artifacts are recognized and eliminated. A single
event and simultaneous events at adjacent pixels are clustered into a group that
could be considered as a single lightning pulse. Finally, groups that are located
within 16.5 km and occurred within 330 ms from a GLM flash that may contain
multiple strokes. More details about non-lightning artifacts filtering and GLM
products can be found in Rudlosky et al. (2019) and Mach (2020).

In this study, the method and the open-source python package called glmtools,
developed by Bruning et al. (2019), is adopted to derive FED observations.
Instead of simply accumulating flashes on each grid, this method considers a
connection between events, groups and flashes because GLM events are not
sampled with even spacing. It takes into account the actual spatial footprint of
each GLM event and is able to fill the gaps between pixels. Considering unevenly
distributed observed events, it finally makes super-resolution remapping of GLM
FED onto a finer resolution space (e.g., 3 km resolution), which is superior to
regular image remapping technique such as linear interpolation. By applying
this method to raw 20-s GLM data, it is possible to derive FED observations
with any spatial resolution or accumulated over any time length. This also
allows sensitivity experiments to examine the impact of assimilating derived
FED data with different resolutions and accumulation windows.

The derived GLM FED observations are assimilated into the WRF simulations
using the following procedure: whenever a FED is greater than 0 at a given
latitude-longitude coordinate, pseudo dewpoints are provided for model levels
(between cloud base to 650 hPa) associated with the location of the observed
FED based on Lawrence (2005) Eq. 8:

𝑇𝑑 =
𝐵 [ln (RH

100 ) + 𝐴𝑇air
𝐵+𝑇air

]
𝐴 − ln (RH

100 ) − 𝐴𝑇air
𝐵+𝑇air

Based on Teten’s suggestions, the values of 𝐴 and 𝐵 are 17.269 and 237.3 re-
spectively. 𝑇air is the temperature in Celsius, and RH is the pseudo relative
humidity (RH) calculated via a sigmoid equation that is a function of the FED
observation:

7



𝑅𝐻 = (𝑋 + 𝑌
1 + 𝑒𝐶−𝐷∗𝐹𝐸𝐷 ) %

The philosophy behind the equation is very similar to Reisner and Jeffery (2009).
The Sigmoid function is monotonic, continuous and differentiable and widely
used in machine-learning related research (Gagne et al. 2019). This function
is used to eliminate possible discontinuities associated with step function to
prevent LDA scheme from generating discrete pseudo observations at adjacent
points. With the sigmoid function, it is convenient to select the asymptotic
value (through 𝑋, 𝑌 and 𝐶), and the slope (through 𝐷) of the function. The
red line in Fig. 1 gives a more intuitive perception of the relationship between
pseudo RH and FED observations used in this study. C, D, X, and Y are
specified to 5.25, 2.85, 65, and 30 respectively. These values are chosen to
make the sigmoid function shift to the right and have a steeper changing rate.
The value of pseudo RH within a layer between cloud base and 650 hPa is
proportional to the value of FED. It is minimized when FED is approximate
to 0 and is approaching maximum for FED greater than 4 flashes per unit
area per minute (hereafter fl area-1 min-1). The derived pseudo RH value is
between 65% and 95%. By combining a steeper RH slope with such asymptotic
values, it is expected that the possibility of isolated convection initiation and
its ensuing development will be increased, while limited spurious convection
will be generated. The observation error of derived dewpoint temperature was
described by Lin and Hubbard (2004).

3. Experimental Design and Verification

a. Experiment configuration

The experiment configurations are the same as the configurations used in SFE
2021, except that the assimilation of radar and satellite observations starts from
1800 UTC, 24 May 2021 and the assimilation cycles end at 2200 UTC, the same
day. The EnKF DA cycles between 1500 and 1800 UTC only assimilate conven-
tional observations, and this is considered as a spin-up process. All experiments
have exactly the same initial and boundary conditions at 1800 UTC. This allows
the evaluation of the impact of LDA on the forecast of severe weather events
with minimum computational resources. Little differences have been found in
the subjective comparison between forecasts from this setup and those from the
real-time runs for the 24 May 2021 event (not shown).

As mentioned in section 2c, the FED observations could be derived with any spa-
tial resolution and time period by using raw 20-s GLM data. The performance
of LDA could be sensitive to the spatial resolution or accumulation strategy for
FED observations. Therefore, two sets of sensitivity experiments using FED
observations with different spatial resolution, accumulation window, and hori-
zontal and vertical localization radius are considered by this study (Table 1).
These sensitivity experiments only assimilate GLM FED observations using the
WoFS configuration described above.

8



The first set of experiments are named RES_12km_5min, RES_6km_5min,
RES_3km_5min, RES_3km_1min, RES_3km_3min, and RES_3km_10min,
respectively, based on spatial resolution and accumulation window used for FED
derivation. The frequency of the FED observations valid at 2030 UTC is also
shown in Fig. 1. As expected, more observations are generated with higher
spatial resolution using the super-resolution remapping technique. On the other
hand, observations are more likely concentrated around lower values when the ac-
cumulation window is greater. This is because peak values are smoothed by the
time. Additionally, the number of FED > 3 fl area-1 min-1 in RES_3km_1min
is much less than that in RES_3km_3min and RES_3km_5min due to infor-
mation loss using such a short accumulation window. The optimal resolution
and accumulation window is determined by the object-based verification method
(Skinner et al. 2018; Flora et al. 2019) that is briefly described in the following
subsection.

The second set of sensitivity experiments examine the impact of the localization
radius for GLM FED assimilation. The horizontal radius ranges from 6 km
to 12 km and the vertical radius ranges from 1.0 to 0.7 in the log pressure
unit. So four more experiments are performed and named as RADII_h12v1.0,
RADII_h12v0.7, RADII_h6v1.0 and RADII_h6v0.7 (Table 1). Experiments
in this set are based on the configuration of RES_3km_5min that has the best
performance in the first set of sensitivity experiments.

The final set of three experiments (Table 2) are performed to evaluate any value
added from the assimilation of FED observations, once the optimal parameters
(i.e., spatial resolution and accumulation window for FED derivation, horizontal
and vertical localization) are determined by the two previous sensitivity experi-
ments. The first one is the “Control” experiment, which only assimilates conven-
tional observations. The second is the “Retro” experiment, which assimilates
conventional observations from hourly prepbufr file and Oklahoma Mesonet,
radar radial velocity and reflectivity observations, and GOES-16 CWP, 6.2 �m
and 7.3 �m infrared radiances. This experiment acts as a retrospective run to
match the performance of the WoFS system in its real-time runs. The final
experiment is called “RetroFED”. It assimilates pseudo dewpoint temperature
observations derived from FED observations, in addition to satellite, radar and
conventional observations. In section 4, we further describe the analyses and
3-h forecasts initialized at 2030 UTC, as well as object-based verification.

b. Verification

To quantitatively evaluate the quality of ensemble forecasts in each experiment,
this study adopts the object-based verification technique developed by Skinner
et al. (2018, S18 hereafter). Strong mid-level rotations that are highly related to
severe weather were identified as objects and were used for evaluation. Similar to
S18, single thresholds based on the 99.95th percentile value in both the forecasts
of SFE 2021 and MRMS verification dataset were used to identify objects for this
case. Observed mid-level rotation objects are identified by determining locations
where 2 – 5 km MRMS azimuthal wind shear is greater than 0.0025 s-1, while
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WoFS mid-level rotation objects are defined as the locations where predicted 2
– 5 km updraft helicity (UH) is greater than 40.74 m2 s-2. Objects are created
every 5 minutes starting from 15 minutes into the forecast by collecting ± 15
minutes azimuthal wind shear or UH. Once isolated objects are identified, they
are merged if the distance between objects is less than 10 km.

Predicted and observed objects are matched using the total interest score (Davis
et al. 2006; also see Eq. (1) in S18), which takes into account spatial and timing
displacement. To remove edge artifacts, the object-based verification is calcu-
lated over a 286 × 286 gridpoint domain. A qualified match must have a total
interest score greater than 0.2, which the maximum searching distance is 40 km
and the maximum searching time is 15 minutes. The matching procedure allows
predicted objects to be classified as four performance metrics “hits”, “misses”,
“false alarms”, and “correct nulls”, allowing calculation of contingency table
statistics for comparing forecast skills between experiments.

4. Sensitivity Experiments

a. Sensitivity experiments for the FED observations

The first set of sensitivity experiments only assimilates FED observations with
different spatial resolutions and accumulation windows. Figure 2 gives an ex-
ample of assimilated FED observations at 2030 UTC. Since the super-resolution
resampling takes into account the actual spatial footprint of GLM events and
fills the gaps between consecutive flash events, resampling at higher resolution
should not significantly change the FED values but it will change the observation
density (as shown in Fig. 2 a – c). Conversely, a greater accumulation window
may smooth small time-scale features, and a smaller accumulation window may
lose information about consecutive flash events while using the 15-min assimila-
tion cycles. Therefore, an inappropriate accumulation window may eventually
lead to lower peak values of FED observations. This conclusion is proved by
comparing the FED observations accumulated over different time lengths (Fig.
2a, d – f). Compared with RES_3km_5min, RES_3km_10min provides a
wider coverage and a smaller peak value (blue circle in Fig. 2d vs 2a). On the
other hand, RES_3km_1min provides a limited coverage and a smaller peak
value (blue circle in Fig. 2f vs 2a). The FED observations of RES_3km_5min
and RES_3km_3min (Fig. 2a vs 2e) are comparable.

While the qualitative comparison of FED observations using different derivation
strategies shows significant differences, it is important to quantify the different
impact of assimilation of these observations and to determine the skill of sub-
sequent forecasts. The FED observations are assimilated into the WoFS with
15-min assimilation cycles since 1800 UTC, followed by 3-h forecasts initiating
from 2000, 2030, 2100, 2130 and 2200 UTC. The localization radius used here
is initially set to 9 km horizontally and 0.85 log pressure vertically. The quality
of predicted rotation objects is assessed using contingency table statistics and
performance diagrams related to probability of detection (POD), false alarm
rate (FAR), critical success index (CSI) and frequency bias. The closer the val-
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ues of POD and CSI are to 1, the better the forecast. The perfect prediction
score is located in the upper right corner of the chart. Figure 3 shows 30 – 180-
min aggregated forecast performance for each experiment that assimilates FED
with various spatial resolutions. The overall quality of 1-h rotation forecasts
from experiments assimilating observations with various resolutions is fairly
reasonable, as evidenced by CSI values exceeding 0.3, except RES_12km_5min.
RES_3km_5min performs better than RES_6km_5min and RES_12km_5min
in terms of CSI or frequency bias for the first 2h forecast (Fig. 3 a – d). On
average, RES_3km_5min produces CSI less than 0.2 and frequency bias ap-
proximately 1.2 comparable to RES_6km_5min and RES_12km_5min for the
forecast later than 2.5h (Fig. 3 e – f), although RES_12km_5min produces
some individual forecasts associated with CSI greater than 0.3. The performance
resulting from the assimilation of observations with different accumulation win-
dows is mixed. The differences among these experiments are relatively small
and the skills are gradually decreasing as a function of forecast time (Fig. 4).
RES_3km_5min performs best at the 1.5h (Fig. 4c) and 2.5h (Fig. 4e), while
RES_3km_3min outperforms RES_3km_5min at 0.5h (Fig. 4a) and 2h (Fig.
4d) and 3h (Fig. 4f). RES_3km_1min generally performs the worst among
all experiments due to the narrow accumulation window and the limited cov-
erage. Overall, RES_3km_3min or RES_3km_5min performs better against
the other two experiments. Thus, 3-km spatial resolution and 5-min accumu-
lation window will be selected as the optimal parameters for generating FED
observations in the following experiments.

b. Sensitivity experiments to ensemble covariances localization

The second set of sensitivity experiments aim to select the optimal localization
radius for assimilating FED derived pseudo dewpoint temperature. In order
to construct multiple assimilation configurations with different horizontal and
vertical localizations, each horizontal radius selected from 6 km, 9 km and 12
km is combined with each vertical radius selected from 0.7, 0.85 and 1.0 in
the log pressure unit. So a total of 9 experiments can be performed. But for
simplicity, only 5 experiments are discussed here, named as RES_3km_5min
(that uses 9 km and 0.85), RADII_h12v1.0, RADII_h12v0.7, RADII_h6v1.0
and RADII_h6v0.7, so that the impact of changing horizontal and vertical
localization on the forecast can be easily separated.

By comparing experiments using the same vertical localization (Fig. 5, purple
vs green, or blue vs pink), we see that larger horizontal localization leads to
slightly worse rotation predictions. However, larger vertical localization (repre-
sented by a smaller value) leads to slightly better rotation predictions (Fig. 5,
purple vs blue, or green vs pink). Assimilation using smaller horizontal or larger
vertical localization typically increases the POD or decreases the FAR. The 2-h
forecast launched from 2000 UTC (Fig. 6) provides an example of how different
localization combinations affect short-term forecast of convection. Among the
five experiments, improvements of POD and FAR are observed when a smaller
horizontal and a larger vertical localization are applied. Objects associated with
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south bias are partially corrected and an additional object is generated (red box
in Fig. 6). In addition, prediction of the northernmost rotation object in Kansas
is not good in all experiments, and the performance among all experiments is
quite close. Generally speaking, RADII_h6v0.7 slightly outperforms other ex-
periments. Thus, the combination of the horizontal localization of 6 km and
the vertical localization of 0.7 is selected as the configuration for the following
case study.

5. Results

a. The event overview

Four long-lived supercells developed in west Kansas on 24 May 2021. Composite
radar reflectivity at 2200 UTC shows all these supercells, along with warnings
issued and severe weather reports collected by National Weather Service (Fig.
7a). The first supercell appeared in central west Kansas (Storm 1) between 1830
and 2300 UTC. The second supercell (Storm 2) was located southwest of Storm
1 between 1900 and 2230 UTC. The third one (Storm 3), which was located
north to Storm 1 between 1930 UTC and 0000 UTC and produced several tor-
nadoes during this period, was not forecasted in the real-time WoFS run. The
last supercell started to develop between the Storm 1 and the Storm 2 since 2030
UTC, split around 2215 UTC and was continually developing and propagating
to the south until 0500 UTC. At 2200 UTC, Storm 3 already produced several
tornadoes and was associated with reflectivity greater than 50 dBZ. Correspond-
ing FED observations at 2200 UTC (Fig. 7b) show that Storm 3 generated the
highest FED values (~ 8 fl area-1 min-1) compared to the other thunderstorms
(~ 6 fl area-1 min-1). It is usually true that more frequent flash events can be
regarded as an indicator of strong convection.

b. Comparisons of the experiment results

By 2030 UTC 24 May, Storm 3 was well-organized and produced multiple tor-
nadoes in the past half hour. It continued to produce tornadoes until 2330
UTC, followed by its dissipating stage. However, the realtime WoFS run initi-
ated from 2000 and 2030 UTC failed to predict this long-lived supercell. The
forecasts launched after 2100 UTC also claimed a rather low probability less
than 40% of generating strong rotation. To assess the impact of assimilating
additional GLM FED data on the forecast of thunderstorms, the evolutions of
the rotation objects for all ensemble members during 3-h forecast period start-
ing from 2030 UTC as well as its initial storm environment are generated. An
examination of Figure 8 shows significant differences in predicting rotation ob-
jects among three experiments. Since Storm 2 entered its dissipating stage after
2200 UTC, it is not discussed in the following paragraph.

Obvious differences between Control and Retro can be found in the forecast
of Storm 1, Storm 3 and Storm 4. For the first hour prediction, the Control
experiment predicts widely distributed rotation objects in west Kansas (Fig. 8a).
Some ensemble members place the supercells between observed Storm 1 and
Storm 3/4, and some ensemble members place the supercells further south to
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observed Storm 4 (Fig. 8a). Although Control successfully predicts convection
near Storm 3 by 2130 UTC in 1/3 of the ensemble members, the locations are
dispersedly distributed and deviate from the observed object to a certain degree.
Retro generates a more concentrated distribution of Storm 1 and Storm 4 around
their actual locations, but appears to miss the Storm 3 in most of the ensemble
members (Fig. 8b). RetroFED maintains the concentrated distribution for the
forecasts of Storm 1 and Storm 4, while generating more instances of Storm 3
in northwest Kansas (Fig. 8c). Compared to the observed object, the coverage
of Storm 3 in this forecast is further extended eastward. Transitioning to the
second and the third hour forecasts, all experiments exhibit similar biases as
the 1-h forecast. Control still generates chaos ensemble forecasts (Fig. 8 d,
g), while Retro generates discrete convections surrounding Storm 3 for 3 – 6
ensemble members (Fig. 8 e, h). The members of RetroFED that successfully
predict Storm 3 place the convection to the south of the observed object at 2230
UTC (Fig. 8f), and a little east to the object at 2330 UTC (Fig. 8i). Compared
to the other experiments, RetroFED also produces fewer instances of Storm 1
at 2330 UTC, which should start to dissipate from 2300 UTC. It is worth noting
that all experiments predict an eastward propagation of Storm 4 which is not
agreed with the observation.

By focusing on 0 – 3-h forecasts of UH greater than 60 m2 s-2, we find that
all experiments generate a long swath of greater 50% probabilities associated
with Storm 4 (Fig. 9). The high probability values in all experiments initially
correspond well with the observed mid-level azimuthal shear track, but have a
misplacement at a later time due to the faster storm propagation in the ensem-
ble forecasts for the southernmost storm (Storm 4). Because of the dispersive
distribution of convection among the ensemble members, Control produces a
wider swath of probability for Storm 4 compared to Retro and RetroFED (Fig.
9 a, d, g). However, there is no probability swath near Storm 1, and a rather
low-probability (10% - 20%) swath existing south to the Storm 3 that was associ-
ated with several tornadoes. While Retro does not generate any UH probability
swath close to the observed track of Storm 3 at 2030 UTC, it does forecast high
UH probabilities greater than 80% associated with Storm 1. This storm did
not produce any tornadoes but did produce a few hail events at a later time
(Fig. 9b). Retro also generates two separated UH probability swaths associated
with Storm 3 for the forecasts initiated at 2100 and 2130 UTC. However, the
maximum probability values for these two swaths do not exceed 50% (Fig. 9 e,
h). With respect to RetroFED, all three UH probability swaths are generated
(Fig. 9 c, f, i). The southern two swaths (i.e., Storm 1 and Storm 4) match
well with corresponding azimuthal shear tracks, hail and tornado reports (not
shown). Similar to Control and Retro, fast movement of Storm 4 still exists
in RetroFED. The swath of Storm 3 has a maximum probability greater than
60% in the forecast from 2030 UTC, and around 80% in the forecasts from 2100
and 2130 UTC. The only defect of RetroFED is that the swath is slightly south
biased, compared to the observations. Later forecasts with more assimilation
cycles fail to correct this spatial displacement error.
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To understand the reason for improvements to the prediction of the Kansas
supercells in RetroFED, an assessment of the impact of assimilating radar and
satellite observations in Retro, and additional FED observations in Retro FED
is needed. The analyzed ensemble mean precipitable water valid at 2030 UTC
shows several significant differences in the vertically accumulated moisture (Fig.
10). Both Retro and RetroFED successfully create moist air with precipitable
water greater than 1.5 inches at the locations of the ongoing convection at the
analysis time. Conversely, Control only creates such an amount of moisture for
storm 4, and its coverage is relatively small. A water vapor band with more
than 1.3 inches precipitable water in southwest-northeast direction is shown
in all experiments. However, the water vapor content values between Storm
1 and Storm 3 are somewhat decreased in Retro. Since water vapor is mostly
concentrated at lower levels, the boundary layer inflow from south and southeast
(see hodograph in Fig. 11) transports less water vapor and less latent heat into
the area that Storm 3 should be initiated, leading to very low probability of
generating strong convection.

To further evaluate the environment in which Storm 3 initiated, the skew-T
diagrams at the location at 2030 UTC just south to the Storm 3 are analyzed
for all three experiments (Fig. 11). Compared with Control, the dewpoint tem-
perature in the troposphere in Retro is overall lower as expected, especially at
the layer between 500 hPa and 700 hPa and the layer around 800 hPa (Fig. 11b
vs 11a). At the same time, the assimilation of additional FED alleviates this
problem to some degree, and even adds more water vapor to these layers. In ad-
dition to changes in moisture, the air temperature in Retro has also changed. In
Retro, the air temperature between the surface and 800 hPa is clearly increased
compared with Control. Increased temperature above surface raises the level of
free convection from 850 hPa to 800 hPa in Control, increases the convection
inhibition value from -24.3 J kg-1 to -79.1 J kg-1, decreases the convective avail-
able potential energy from 1996.7 J kg-1 to 1116.4 J kg-1, and eventually leads
to a more stable boundary layer. Assimilation of additional FED observations
is able to restore the atmospheric instability to the level in Control (Fig. 11c).
As a result, RetroFED likely sustains Storm 3 in its corresponding region owing
to an environment more favorable to thunderstorm development compared to
the other two experiments.

Beside thermodynamic conditions, dynamic mechanisms are also the key factors
for triggering strong convection. An examination of the hodographs in Fig. 11
show that all experiments produce strong wind speed shear and strong wind
directional shear, which are conditions favorable to producing a rotating updraft.
The strong speed shear can tilt a storm and vertically displace updraft from
downdraft, allowing the storm to sustain for a longer lifetime. On the other
hand, strong directional shear in the lower troposphere typically generates high
values of helicity and is important to tornadogenesis. Although Control has a
thunderstorm-favorable environment in terms of instability and wind shear, it
dispersedly places the lifting process in different locations. This is the reason
why Control produces unorganized tracks among ensemble members, as seen in
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Fig. 8.

To examine the lifting process of Storm 3, vertical cross sections of wind, specific
humidity, temperature and vertical vorticity for the DA analysis at 2030 UTC
are compared among all experiments. The cross sections in Fig. 12 are made
along the propagation direction of Storm 3. Obviously, Control fails to generate
any lifting mechanism, including both vertical motion and vertical vorticity at
2030 UTC (Fig. 12a), and within the ensuing forecasts. The specific humidity
and temperature are rarely changed in horizontal direction for Control. Retro
somehow produces weak vertical motion associated with weak vertical vorticity
and large gradient of specific humidity (Fig. 12b), likely due to the assimilation
of radar observations. Although the assimilation of radar and satellite obser-
vations enforces the lifting mechanism at the right location, unfortunately, the
surrounding environment does not support the development of thunderstorms.
The analyzed reflectivity will dissipate immediately once the forecast is launched
(not shown). By assimilating additional FED observations, RetroFED not only
improves the environment, but also strengthens internal vertical motion (Fig.
12c). RetroFED also generates more abundant water vapor accompanied with
the bulge of isotherms near the center of Storm 3, indicating that warm moist
air is being transported from surface to upper air by the updraft. As a result of
abundant moisture, moderate instability condition, strong vertical speed and di-
rectional wind shear, and appropriate lifting mechanism, RetroFED eventually
gives the best forecast of rotation object among all experiments (Fig.8, 9).

c. Object-based verification

Similar to the sensitivity experiments, the previously discussed differences and
the forecast skills among various experiments are evaluated in a quantitative
manner by using the object-based verification method. Figure 13 shows 0.5 – 3-h
forecast performance for rotation objects accumulated over all forecasts launched
from 2000, 2030, 2100, 2130, and 2200 UTC. The overall quality of rotation
object forecasts from Retro and RetroFED is significantly better than that from
Control. The CSI score exceeds 0.55 for 0.5-h forecast (Fig. 13a) and exceeds 0.5
for 1-h forecast (Fig. 13b), for both Retro and RetroFED. Control generates the
lowest skill throughout the whole 3-h forecast period. For Retro and RetroFED,
the increase of FAR, with nearly the same level of POD, is the reason for the
slight decrease of CSI between 0.5 and 1-h forecasts. After the 1-h forecast, the
POD values for both Retro and RetroFED also start to decrease as a function
of forecast time (Fig. 13c - 13e). The decreasing rate of POD for RetroFED
is approximately 0.05 per 30 minutes and is faster than that for Retro which
is approximately 0.035 per 30 minutes. However, the increasing rate of FAR
for RetroFED is slower than that for Retro. This evolution of POD and FAR
is consistent with the instance shown in the previous section, where Storm 3 is
predicted by RetroFED with the slight south bias, and Storm 1 is overpredicted
by Retro at a later forecast time. In general, RetroFED outperforms Retro for
predicting rotation objects at all forecast times, primarily through the improved
forecast for Storm 1 and Storm 3. This indicates that assimilation of FED
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observations via pseudo dewpoint temperature has the potential to improve the
skill of model forecasts.

6. Summary and conclusions

In this study, a simple DA scheme that indirectly assimilates FED observa-
tions into a convection-allowing NWP model is developed and examined. Since
the raw 20-s GOES-16 GLM data provides three different matrices “flashes”,
“groups” and “events”, the FED observation is derived by considering the rela-
tionship between flashes, groups and events within a specified period prior to
the analysis time. Then, the actual footprint of each GLM event is remapped
onto a target grid with a custom resolution. To alleviate the possible inaccuracy
of the derived FED observations, sensitivity experiments are conducted by using
various accumulation windows and spatial resolution during the data deriving
process. The optimal combination of parameters for deriving FED observations
is obtained by evaluating the 0 – 3-h forecast of rotation objects. In general,
the experiment assimilating dense FED observations (3 km) clearly benefits the
rotation forecast for most of the forecast times, compared to those assimilating
sparse observations (6 km and 12 km). The combination of a higher resolution of
3 km and a moderate accumulation window of 5 minutes (i.e., RES_3km_5min)
gives the overall best performance of forecast among the experiments. Thus, this
combination is selected for the other experiments conducted in this research.

Additional sensitivity experiments are conducted in which different horizontal
and vertical localization radii are applied to FED observations. The results show
that the use of narrower horizontal localization and broader vertical localization
in assimilation of FED partially alleviates the misplacement error of rotation
object in the forecast. Additionally, it can generate individual predicted ob-
jects that match well with the observed objects in ensemble members. These
improvements may slightly increase the POD and decrease the FAR. Among
the sensitivity experiments, RADII_h6v0.7 uses 6 km and 0.7 as the horizon-
tal and vertical localization radius respectively and produces a slightly better
performance for 0 – 3-h forecast.

Once the optimal parameters for retrieving and assimilating FED observations
have been determined, three additional experiments, named as Control, Retro
and RetroFED are performed to assess the value of assimilating FED observa-
tions into the WoFS. Control only assimilates conventional observations, while
Retro assimilates radar and satellite observations in addition to conventional
observations. The third experiment, RetroFED assimilates FED observations
in addition to conventional, radar and satellite observations. By comparing fore-
casts from Control and Retro, assimilation of radar and satellite data into the
WoFS does improve supercell forecasts compared to assimilation of only con-
ventional observations. Similar results were reported by Wheatley et al. (2015)
and Jones et al. (2016, 2020). Although significant improvements are observed
in Retro compared with Control, the forecast can further be improved when
additional FED observations are assimilated. Qualitatively, three positive as-
pects are found in RetroFED. The most important one is the abundant water
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vapor content that accompanies the boundary layer inflow. It allows the inflow
to transport more latent heat into the storm, thus helping to initiate or sustain
convection in the appropriate area. The second aspect is related to the indi-
rect adjustment of the lower troposphere temperature. Compared with Retro,
RetroFED slightly cools the atmosphere above the surface, resulting in a steeper
lapse rate as well as an unstable environment. Finally, the assimilation of FED
observations also indirectly intensifies the updraft via flow-dependent error co-
variances. The rich moisture in the lower troposphere, increased instability and
enhanced updraft ultimately leads to a better development of the tornadic su-
percell in northwest Kansas and the best forecast skill of both tornadic and
nontornadic supercells.

Overall, this study demonstrates a new method for the potential for the as-
similation of FED observations, via pseudo dewpoint temperature, to improve
the prediction of the tornadic supercells on 24 May 2021. However, because
our initial focus is on how to derive and use GLM/FED in a best possible way
through sensitivity experiments, only one case was examined. So the findings
in this study are preliminary. Many hazardous weather events may occur in
various synoptic- and meso-scale environments. Future work will focus on the
inclusion of more cases with different atmospheric conditions, such as frontal
systems, dry line systems, and weak forcing situations.
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Experiment Spatial Resolution of GLM FED Accumulation Window of GLM FED Horizontal Localization Vertical Localization
RES_12km_5min 12 km 5 min 9 km 0.85
RES_6km_5min 6 km 5 min 9 km 0.85
RES_3km_5min 3 km 5 min 9 km 0.85
RES_3km_1min 3 km 1 min 9 km 0.85
RES_3km_3min 3 km 3 min 9 km 0.85
RES_3km_10min 3 km 10 min 9 km 0.85
RADII_h12v1.0 3 km 5 min 12 km 1.0
RADII_h12v0.7 3 km 5 min 12 km 0.7
RADII_h6_1.0 3 km 5 min 6 km 1.0
RADII_h6v0.7 3 km 5 min 6 km 0.7

Table 1 Experiment configurations for different sensitivity experiments.

Experiment Conventional Observations (PrepBUFR+Mesonet) Radial Velocity + Reflectivity GOES-16 Radiance + CWP GOES-16 GLM FED
Control Y N N N
Retro Y Y Y N
RetroFED Y Y Y Y

Table 2 Assimilated observation types for three different experiments Control,
Retro, RetroFED.
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Figure 1 Frequency of the FED (fl area-1 min-1) observations using different
accumulation strategies (blue bars) at 2030 UTC, 24 May 2021. The red line
represents pseudo relative humidity as a function of FED value.

23



Figure 2 Derived FED observations at 2030 UTC, 24 May 2021 from the raw
FED data for (a) 3-km resolution and 5-min window, (b) 6-km resolution and
5-min window, (c) 12-km resolution and 5-min window, (d) 3-km resolution and
10-min window, (e) 3-km resolution and 3-min window, and (f) 3-km resolution
and 1-min window. The blue circles highlight the huge difference between the
experiments using different accumulation windows.
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Figure 3 Performance diagram of (a) 30-min, (b) 60-min, (c) 90-min, (d)
120-min, (e) 150-min, (f) 180-min forecasts for the sensitivity experiments
RES_12km_5min (blue), RES_6km_5min (green), and RES_3km_5min
(red) aggregated over 2000 UTC, 2030 UTC, 2100 UTC, 2130 UTC and
2200 UTC, 24 May 2021. Small dots represent scores of individual ensemble
members, and large dots represent the ensemble mean from each experiment.
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Figure 4 Same as Fig. 3, but for the sensitivity experiments RES_3km_1min
(purple), RES_3km_3min (green), RES_3km_5min (red), and RES_3km_10min
(blue).
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Figure 5 Same as Fig. 3, but for the sensitivity experiment RADII_h12v1.0
(purple), RADII_h12v0.7 (blue), RADII_h6v1.0 (green), RADII_h6v0.5 (pink)
and the reference experiment RES_3km_5min (red).

Figure 6 Predicted rotation objects derived from the ensemble forecasts valid
at 2200 UTC for 2-h forecasts initiated at 2000 UTC 24 May 2021 for differ-
ent localization radius. Each ensemble member is plotted as a different color,
and the gray shades represent observed MRMS rotation objects at the same
time. Red boxes highlight the improvement of experiments using less horizontal
localization radius.
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Figure 7 MRMS mid-level reflectivity and flash extent density valid at 2200
UTC for 24 May 2021. Storm Prediction Center’s severe weather event reports
(red triangle for tornadoes, green dot for hail) and warning (red polygon for
tornadoes and blue polygon for severe thunderstorms) issued by NWS at this
time are shown.

Figure 8 Similar to Fig. 6, but for predicted rotation objects for 1 – 3-h forecasts
initiated at 2030 UTC for three experiments. The left, middle and right columns
are corresponding to Control, Retro, and RetroFED, respectively.
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Figure 9 Probability of 2 – 5 km UH greater than 60 m2 s-2 over 3-h forecasts
initiated at 2030 UTC (a - c), 2100 UTC (d - f) and 2130 UTC (g - i), 24 May
2021 for each experiment (each column). MRMS 2 – 5 km azimuthal shear
tracks during this period (black shades) are overlaid over the probability plots.
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Figure 10 Analyzed ensemble mean precipitable water for (a) Control, (b) Retro
and (c) RedtroFED valid at 2030 UTC, 24 May 2021. The red dot represents
the location for the sounding plot in Fig. 11. The red dot is the location of the
skew-T profiles shown in Fig. 11. The purple line represents the location for
the cross section plot in Fig. 12.
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Figure 11 Skew-T profile from analyzed ensemble mean for (a) Control, (b)
Retro, and (c) RetroFED valid at 2030 UTC, 24 May 2021. The location of the
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skew-T profile is marked in Fig. 10 by red dot.

Figure 12 Vertical cross section from analyzed ensemble mean of wind (vectors),
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specific humidity (color shades, in g kg-1), temperature (green contours, in F),
and vertical vorticity (blue contours in s-1) for (a) Control, (b) Retro, and (c)
RetroFED valid at 2030 UTC, 24 May 2021. The blue dashed lines represent
negative vertical vorticities.
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Figure 13 Same as Fig. 3, but for experiments Control (blue), Retro (green),
and RetroFED (red).
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