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Abstract

The effects of precipitation (Pr) and evapotranspiration (ET) on soil moisture play an essential role in the land-atmosphere

system. Here we evaluate multimodel differences of these effects within the Coupled Model Intercomparison Project Phase 5

(CMIP5) compared to Soil Moisture Active Passive (SMAP) products in the frequency domain. The variability of surface soil

moisture (SSM), Pr, and ET within three frequency bands (7 ˜ 30 days, 30 ˜ 90 days, and 90 ˜ 365 days) after normalization is

quantified using Fourier transform. We then analyze the impact of ET and Pr on SSM variability based on a transfer function

assuming these variables with a linear time-invariant (LTI) system. For the simulated effects of ET and Pr on SSM variability,

models underestimate them in the two higher frequency bands and overestimate them in the lowest frequency band but show

better estimates in transitional zones between dry and wet climates. Besides, the effects on SSM by Pr and ET are found to be

different across the three frequency bands, and models underestimate the one of Pr and ET as the dominant factor controlling

SSM variability in each frequency band. This study identifies the spatiotemporal distribution of the CMIP5 model deficiencies

in simulating ET and Pr effects on SSM. Overcoming these deficiencies could improve the interpretability and predictability of

Earth system models in simulating interactions among the three variables.
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Key Points: 11 

• Models underestimate weekly to seasonal variability and overestimate seasonal to annual 12 

variability of external effects on soil moisture. 13 

• Simulated variability of precipitation and evapotranspiration is underestimated as being 14 

dominant factors controlling soil moisture. 15 

• Earth system models shall be improved to correctly characterize the effects of 16 

precipitation and evapotranspiration on soil moisture. 17 
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Abstract 19 

The effects of precipitation (Pr) and evapotranspiration (ET) on soil moisture play an essential 20 

role in the land-atmosphere system. Here we evaluate multimodel differences of these effects 21 

within the Coupled Model Intercomparison Project Phase 5 (CMIP5) compared to Soil Moisture 22 

Active Passive (SMAP) products in the frequency domain. The variability of surface soil 23 

moisture (SSM), Pr, and ET within three frequency bands (7 ~ 30 days, 30 ~ 90 days, and 90 ~ 24 

365 days) after normalization is quantified using Fourier transform. We then analyze the impact 25 

of ET and Pr on SSM variability based on a transfer function assuming these variables with a 26 

linear time-invariant (LTI) system. For the simulated effects of ET and Pr on SSM variability, 27 

models underestimate them in the two higher frequency bands and overestimate them in the 28 

lowest frequency band but show better estimates in transitional zones between dry and wet 29 

climates. Besides, the effects on SSM by Pr and ET are found to be different across the three 30 

frequency bands, and models underestimate the one of Pr and ET as the dominant factor 31 

controlling SSM variability in each frequency band. This study identifies the spatiotemporal 32 

distribution of the CMIP5 model deficiencies in simulating ET and Pr effects on SSM. 33 

Overcoming these deficiencies could improve the interpretability and predictability of Earth 34 

system models in simulating interactions among the three variables. 35 

Plain Language Summary 36 

Surface climate is influenced by the interactions between the land surface and atmosphere 37 

boundary, and soil moisture is a key component of these physical processes. Precipitation and 38 

evapotranspiration, as two major variables involved in these interactions, have been largely 39 

regarded as essential processes affecting soil moisture dynamics. However, Earth system models 40 

have large uncertainties in simulating these effects. This study identifies that (1) models 41 



3 

 

underestimate the total effect of precipitation and evapotranspiration on soil moisture variability 42 

at weekly to seasonal time scales and overestimate it at seasonal to annual time scales; (2) soil 43 

moisture is mainly affected by precipitation at shorter scales and by evapotranspiration at longer 44 

time scales, and models underestimate the degree of this control over the whole weekly to annual 45 

frequency band; (3) model generally have better performance in the transitional climate regions 46 

on capturing the effects of precipitation and evapotranspiration on soil moisture. This study 47 

reveals the deficiencies of Earth system models in simulating the relationships between soil 48 

moisture, precipitation, and evapotranspiration compared to satellite observations, which will 49 

help improve the quantification of soil moisture dynamics in these models. 50 

1 Introduction 51 

As one of the essential components in the Earth system, soil moisture plays an important 52 

role in land-atmosphere interactions (Green et al., 2019; Koster et al., 2004; Seneviratne et al., 53 

2006; Seneviratne et al., 2010). The exploration and quantification of land-atmosphere 54 

interactions are significant for Earth system study and climate-change projections (Santanello et 55 

al., 2018; Seneviratne et al., 2010; Suni et al., 2015). 56 

The dynamics of soil moisture (SM) depend on the interplay between variability in 57 

multiple hydrological processes, such as precipitation, interception, evapotranspiration, runoff, 58 

and drainage (Bonan, 1996). Since these processes are complex and show large heterogeneity 59 

spatiotemporally, it is hard to quantify the effects of their resulting impact on soil moisture. We 60 

here focus on the two largest fluxes: precipitation (Pr), which is the water source of soil moisture 61 

and also one of the atmospheric forcing variables for land surface processes; and 62 

evapotranspiration (ET), which is a primary water loss relative to soil moisture. 63 
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Both soil moisture-precipitation (SM-Pr) and soil moisture-evapotranspiration (SM-ET) 64 

interactions are some of the central issues in the climate research community and have been 65 

studied for a while (Berg and Sheffield, 2018; Dong et al., 2020; Koster et al., 2004; Seneviratne 66 

et al., 2010; Wang et al., 2007; Wei and Dirmeyer, 2012). Basically, soil moisture-atmosphere 67 

coupling can be separated into two parts: the coupling between SM and ET and the coupling 68 

between ET and Pr (Guo et al., 2016; Seneviratne et al., 2010; Wei and Dirmeyer, 2010). The 69 

SM-ET coupling is linked to the impact of SM on ET variability as a regulator of energy 70 

partitioning (Seneviratne et al., 2010) and is mostly a local process (Wei and Dirmeyer, 2012). 71 

On the other hand, the SM-Pr coupling, which includes the effect of SM on ET and the effect of 72 

ET on Pr, is more elusive due to the series of atmospheric processes, especially the interactions 73 

between ET and Pr (see Seneviratne et al., 2010). 74 

Studies on the effects of Pr and ET on the temporal variability of SM focused on 75 

analyzing autocorrelations of SM time series. Considering the SM dynamics as being forced by a 76 

random precipitation time series (i.e., white noise) and damped by an exponential damping term 77 

related to evapotranspiration losses, the temporal variability of SM can be reasonably governed 78 

by a first-order Markov process, which results in the SM time series to exhibiting a red noise 79 

spectrum (Delworth and Manabe, 1988). Based on this, many studies worked on characterizing 80 

these effects from a time-frequency domain. The response of SM to Pr at long time scales was 81 

investigated and revealed the amplitude decrease and the phase shift of soil hydrology with soil 82 

depth (Wu et al., 2002). This phase shift as to how SM spectra related to Pr was further explored 83 

using the integral time scale to show that SM spectra decay more rapidly than a red noise due to 84 

Pr departing from white noise at high frequency, and the damping term of ET losses was found 85 

to be bounded by the maximum of ET (Katul et al., 2007). Similarly, the integral time scale was 86 
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used to reveal the dynamics of SM memory and its correlation with Pr and ET (Ghannam et al., 87 

2016). Based on previous studies (Katul et al., 2007), the SM spectrum could not be explained 88 

only by precipitation effects on longer time scales (Nakai et al., 2014). This concept has also 89 

been used to investigate the effects of Pr on SM variability on a regional scale (Zhou et al., 90 

2020). 91 

Although the SM-Pr and SM-ET couplings have been studied for a long time, the effects 92 

of Pr and ET on soil moisture variability are still not completely understood (Seneviratne et al., 93 

2010). Even less understood is how Earth system models perform in capturing these effects 94 

globally and at different time scales. There are two major challenges. One is the lack of enough 95 

in-situ soil moisture measurements at the global scale. Nowadays, remote sensing technology, 96 

such as NASA’s Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010), provides 97 

global observation of soil moisture at a high spatiotemporal resolution that can be used to 98 

constrain land-atmosphere interaction observations over different spatiotemporal scales (Guillod 99 

et al., 2015; Tuttle and Salvucci, 2016). Additionally, although it only provides surface soil 100 

moisture (top ~5cm of the soil column), several studies have shown that surface soil moisture 101 

(SSM) and root-zone soil moisture (RZSM) have strong correlations in quantifying surface flux 102 

(Akbar et al., 2018; Ford et al., 2014; Qiu et al., 2016), indicating that SSM can be regarded as a 103 

proxy for RZSM under most conditions (McColl et al., 2019). Another challenge is that, due to 104 

the complexity and the large number of processes involved in land-atmosphere interactions, the 105 

representation of couplings between SM, Pr, and ET highly relies on parameterizations within 106 

Earth system models, which leads to large uncertainties in identifying the effects of Pr and ET on 107 

SM variability. The transfer function (Haykin and Van Veen, 2007), as a mathematical 108 

representation of the differential equation of system dynamics, can be used to describe the 109 
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relationship between the signal input and response assuming a linear time-invariant (LTI) system 110 

(Phillips et al., 2003) using a time-frequency analysis, without considering its specific structure 111 

and parameters. Therefore, it can be used to investigate the effects of Pr and ET on SM in the 112 

frequency domain, assuming they are nearly an LTI system. The spectral analysis based on the 113 

LTI system has been applied to other hydrological research like the runoff-storage relationship 114 

(Riegger and Tourian 2014) and the surface flow in the river during floods (Bailly-Comte et al., 115 

2008). 116 

The fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 117 

2012), which integrated a set of model experiments to improve our knowledge of climate change 118 

and climate variability, provides an opportunity for the multimodel assessment of land-119 

atmospheric processes and variability. Evaluation of CMIP5 has been the ongoing interest of the 120 

research community (Yuan et al., 2021). Although evaluations of land-atmosphere interactions 121 

related to soil moisture within CMIP5 have been performed earlier (e.g., Berg and Sheffield, 122 

2018; Dirmeyer et al., 2013; Levine et al., 2016), few studies have characterized the temporal 123 

behavior of SM globally in order to illustrate the model performance across frequency regimes. 124 

Therefore, this study takes advantage of the CMIP5 intercomparison project to evaluate 14 Earth 125 

system models (ESMs) in simulating the effects of Pr and ET on SSM variability. We aim to 126 

address two main objectives in this study: 1) how the effects of Pr and ET on SSM variability are 127 

at different time scales, and 2) how the ESMs within CMIP5 perform in capturing these effects. 128 

Specifically, these effects are analyzed within three frequency bands: 1) weekly to monthly time 129 

scales (1/7 ~ 1/30 day-1), 2) monthly to seasonal time scales (1/30 ~ 1/90 day-1), and 3) seasonal 130 

to annual time scales (1/90 ~ 1/365 day-1) at the global scale. Further, a Fourier analysis is 131 

conducted to determine the variability and power spectra over those various periods (Thomson 132 
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and Emery, 2014; Wilks, 2011). Similar approaches to decomposing the time series into different 133 

frequency bands have been used to understand the precipitation and soil moisture variability 134 

(Ruane and Roads, 2007; Wei et al., 2010; Xi et al., 2022). 135 

In section 2, we first describe the models and data used. Then, we detail our methodology 136 

for spectral analysis. In section 3, we show the results of observation-based data in the first part. 137 

In the second part, we perform comparative analyses to evaluate the multimodel differences 138 

within CMIP5. In the third part, we investigate uncertainties that may exist in this study. Finally, 139 

in section 4, we summarize our findings and discuss the impacts of the research. 140 

2 Methods 141 

2.1 Overview 142 

We first describe the data collection within CMIP5, SMAP observation data, and ERA5 143 

reanalysis data. Second, we detail the methodology from data preprocessing to the final 144 

multimodel comparison (Figure 1). Specifically, section 2.3 describes the preprocessing of 145 

SMAP products and CMIP5 simulations. Section 2.4 defines the normalized variability of SSM, 146 

Pr, and ET and how to get them within the three frequency bands. Next, section 2.5 introduces 147 

two ratios used to investigate the effects of Pr and ET on SSM based on the normalized 148 

variability defined in section 2.4. Section 2.6 describes the spectral slopes of SSM, Pr, and ET 149 

time series and how to depict them as the color of noise. Finally, section 2.7 describes how the 150 

models are compared with the observation-based data and illustrates the significance test. 151 

2.2 Data Organizing 152 

CMIP5 integrated a set of model experiments to improve our knowledge of climate 153 

variability from past to present to future (Taylor et al., 2012). Here we use the daily simulations 154 
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of 14 ESMs from the historical experiment within CMIP5. The models are selected based on the 155 

availability of daily outputs required for the spectral analysis within the same temporal coverage 156 

from 01/01/1950 to 12/31/2005 (Table S1). To evaluate the effects of Pr and ET (i.e., 157 

atmospheric water supply and loss) on SSM variability, we analyze the simulated SSM (top 10 158 

cm), Pr, and ET (variable mrsos, pr, and hfls in the CMIP5 archive, respectively). We use only 159 

one ensemble member – “r1i1p1” (where r for realization, i for initialization, and p for physics). 160 

Observation data of SSM are taken from SMAP (Entekhabi et al., 2010). For Pr and ET, 161 

we use reanalysis data from ERA5 (Copernicus Climate Change Service (C3S), 2017), the fifth-162 

generation reanalysis of ECMWF (European Centre for Medium-Range Weather Forecasts) as 163 

the next generation of representative satellite-observational data, as a reference to compare with 164 

CMIP5 simulations on the global scale. To ensure that the data are consistent, we use datasets 165 

from SMAP and ERA5 with the same temporal coverage, spanning 1 April 2015 to 31 December 166 

2020. 167 

The NASA SMAP satellite was launched in January 2015 and has been measuring SSM 168 

(moisture in the top ~5 cm of the soil column) globally every 2~3 days (Entekhabi et al., 2010). 169 

SMAP soil moisture matches well in situ SSM observations (Chan et al., 2016, 2018; Colliander 170 

et al., 2017, 2021) and shows higher accuracy measured by a global average anomaly correlation 171 

over the majority of available land pixels compared to two other satellite products (Chen et al., 172 

2018). Additionally, SMAP has been shown to have high information content relative to four 173 

other retrieval products of soil moisture (Kumar et al., 2018). In this study, we use its Level 3 174 

Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7 (O’Neill et al., 2020) with 175 

the retrievals from both 6 am descending passes and 6 pm ascending passes. Although its 6 pm 176 

retrievals show more degradation than its 6 am retrievals due to the required vertical thermal 177 
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equilibrium assumption in its algorithm, this degradation was shown to be small (Chan et al., 178 

2018; O’Neill et al., 2018). Therefore, we use both retrievals to best use the observational 179 

information. The Level 3 product of SMAP was developed based on geophysical parameters 180 

derived from its Level 1 and Level 2 products. It was spatiotemporally re-sampled to the global 181 

cylindrical EASE-Grid 2.0 to make each grid cell has a nominal size of approximately 36×36 182 

km2 regardless of longitude and latitude (Brodzik et al., 2012). 183 

The reference observation-based data of precipitation (Pr) and evapotranspiration (ET) 184 

are collected from ERA5. ERA5 reanalysis is achieved by data assimilation, which combines 185 

weather forecasts with observations in an optimal way every few hours to produce the best 186 

estimate of the state of the atmosphere. In this way, ERA5 combines model data and 187 

observations into a globally complete and consistent dataset. ERA5 reanalysis has been 188 

evaluated extensively on regional and global scales and shows great improvements over its 189 

popular predecessor ERA-Interim and is a potential reference as proxies for observations for the 190 

hydrological process modeling (Jiao et al., 2021; Martens et al., 2020; Rivoire et al., 2021; Tarek 191 

et al., 2020). In this study, we use “total precipitation” (units: m) and “evaporation” (unit: m of 192 

water equivalent) estimates on single levels as the observation-based Pr and ET, respectively 193 

(Copernicus Climate Change Service (C3S), 2017). This dataset has a spatial resolution of 194 

0.25°×0.25° for the atmosphere, spanning 1979 to the present, with an hourly temporal 195 

resolution. We collect the ERA5 hourly data within the same period as SMAP. Then we convert 196 

them into daily total precipitation and evapotranspiration (units: m) based on (Copernicus 197 

Climate Change Service (C3S), 2017): 198 

 𝑃𝑟𝑑 = ∑ 𝑃𝑟ℎ𝑟

23

ℎ𝑟=1

+ 𝑃𝑟𝑑+1 00𝑈𝑇𝐶 (1) 
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 𝐸𝑇𝑑 = ∑ 𝐸𝑇ℎ𝑟

23

ℎ𝑟=1

+ 𝐸𝑇𝑑+1 00𝑈𝑇𝐶 (2) 

where ℎ𝑟 is hour and 𝑑 is the day of interest (𝑑 + 1 is the next day). This means that we need 199 

two days of data to get total precipitation and evapotranspiration per day. For example, to 200 

calculate total precipitation for 1 April 2015, we need hourly data on 1 April 2015 with time = 01 201 

– 23 to cover 00 – 23 UTC for 1 April 2015 and the hourly data on 2 April 2015 with time = 00 202 

to cover 23 – 24 UTC for 1 April 2015. In this way, we get daily precipitation and 203 

evapotranspiration time series (i.e., 𝑃𝑟𝑑 and 𝐸𝑇𝑑) for further analysis. We also use the same 204 

subset of ERA5 datasets and the same method to collect daily potential evaporation (PE) data 205 

(units: m) with the same temporal coverage for comparison with ET. 206 

2.3 Data Preprocessing 207 

The data in this study are preprocessed before the spectral analysis, as described in our 208 

previous study (Xi et al., 2022). Basically, since the global SSM retrievals from SMAP are 209 

temporally discontinuous on a daily time scale, we first perform a gap-filling to make it a daily 210 

dataset. For the model estimations within CMIP5 that span decades, there might be long-memory 211 

fluctuations on such time scales (Mudelsee, 2013). To avoid such long-memory trends from 212 

introducing errors into the power spectrum when performing Fourier analysis, we detrend the 213 

CMIP5 data to obtain a stationary signal by subtracting an optimal (least squares) fitted linear 214 

regression from original data. In this way, the time series after detrending has a mean value of 215 

zero, and we focus on their intra-annual fluctuations. 216 
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2.4 Normalized variability of SSM, Pr, and ET 217 

Normalized variability of SSM (𝑆𝑆𝑀𝑛), Pr (𝑃𝑟𝑛), and ET (𝐸𝑇𝑛) of CMIP5 models and 218 

observation-based data are both calculated for comparison. We aim to use 𝑆𝑆𝑀𝑛, 𝑃𝑟𝑛, and 𝐸𝑇𝑛 to 219 

indicate the proportion of the temporal variability over different frequency bands. These 220 

normalized variabilities are further used to evaluate the effects of Pr and ET on SSM variability 221 

in section 2.5. The procedures to get 𝑆𝑆𝑀𝑛, 𝑃𝑟𝑛, and 𝐸𝑇𝑛 from time series of SSM (𝑠𝑠𝑚(𝑡)), Pr 222 

(𝑝𝑟(𝑡)), and ET (𝑒𝑡(𝑡)), are shown in Figure 1 (for a detailed version, see Figure S1). The details 223 

of the steps to process 𝑆𝑆𝑀𝑛 are explained in a previous study (Xi et al., 2022). The processing 224 

of 𝑃𝑟𝑛 and 𝐸𝑇𝑛 follows a similar procedure. Here we give a basic idea of the strategy used to 225 

process 𝑋𝑛. 226 

 227 

Figure 1. Steps to get the normalized variability (𝑋𝑛1
, 𝑋𝑛2

, and 𝑋𝑛3
, hereafter collectively referred to as 228 

𝑋𝑛) and the spectral slope (𝑋𝑘𝑤1
, 𝑋𝑘𝑤2

, and 𝑋𝑘𝑤3
, hereafter collectively referred to as 𝑋𝑘𝑤) of the 229 

variable 𝑋 from its time series (𝑋(𝑡)). 𝑋 here means SSM, Pr, and ET, since the procedure to deal with 230 

𝑠𝑠𝑚(𝑡), 𝑝𝑟(𝑡), and 𝑒𝑡(𝑡) is the same. The number “1”, “2”, and “3” (hereafter being referred as 𝑖) 231 
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represent three frequency bands in the order of weekly to monthly (7 ~ 30 days), monthly to seasonal (30 232 

~ 90 days), and seasonal to annual (90 ~ 365 days) time scales. 𝑥(𝑛) is the discrete series sampled from 233 

𝑥(𝑡). 𝐹𝑋(𝑘) is the amplitude spectrum of 𝑋 from 𝑥(𝑛) using Fast Fourier Transform (FFT). 𝐸𝑋(𝑘) is the 234 

power spectrum of 𝑋 as the square of the absolute value of its amplitude. 𝐸𝑋(𝑘)′ is the filtered 𝐸𝑋(𝑘) to a 235 

frequency band within 7 to 365 days. 𝐸𝑋(𝑘)′
𝑖 is 𝐸𝑋(𝑘)′ being “separated” into the three frequency bands: 236 

weekly to monthly (𝑖 = 1), monthly to seasonal (𝑖 = 2), and seasonal to annual (𝑖 = 3). The sum of 237 

spectral amplitudes of 𝑋 (𝑋∑𝑖
) and 𝑋𝑘𝑤𝑖

 is gotten from 𝐸𝑆𝑆𝑀(𝑘)′
𝑖
 based on “sum over amplitude” and 238 

“linear regression” within the ith frequency band, respectively. 𝑋𝑛𝑖
 is gotten from 𝑋∑𝑖

 based on 239 

normalization across the three frequency bands, and then 𝐻𝑆𝐸𝑃𝑖
 and 𝐻𝐸𝐸𝑃𝑖 are two ratios used to analyze 240 

the effects of Pr and ET on SSM defined in section 2.5. 241 

The computation of 𝑋𝑛 for models and observations is the same. It is based on the Fast 242 

Fourier Transform (FFT), a faster algorithm for the Discrete Fourier Transform (DFT). They 243 

decompose the time series into orthogonal sinusoidal frequency components so that the 244 

variability within each component can be investigated separately. In this way, the oscillations of 245 

time series (𝑥(𝑡)) can be identified through the spectra in the frequency domain. All 246 

computations and statistical analyses in this study are programmed in MATLAB 247 

(http://www.mathworks.com/). 248 

First, we use FFT to get the amplitude spectrum of X (𝐹𝑋(𝑘)) from 𝑥(𝑛), which is the 249 

discrete series sampled from 𝑥(𝑡) based on the sampling number (𝑁) (i.e., the number of days). 250 

Then we get the power spectrum of X from its amplitude spectrum as 𝐸𝑋(𝑘) = |𝐹𝑋(𝑘)|2. We 251 

only keep 𝐸𝑋(𝑘) with the frequency ranges from 1/2 to 1/𝑁 day-1 since the spectrum is 252 

symmetrical about the Nyquist frequency (𝑓𝑠 2⁄ , where 𝑓𝑠 is sampling frequency). For all time-253 

series data (i.e., CMIP5 simulations, SMAP, and ERA5 references), we use 1 day-1 as the 254 

sampling frequency from 𝑥(𝑡) to 𝐹𝑋(𝑘) since they are all with daily resolution. 255 

http://www.mathworks.com/
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Then, we restrict our investigation within a weekly to annual frequency band by using a 256 

low-pass filter and a high-pass filter with the cutoff frequency as 1/7 day-1 and 1/365 day-1, 257 

respectively. Next, we separate the filtered 𝐸𝑋(𝑘) (𝐸𝑋(𝑘)′) into three frequency bands: weekly to 258 

monthly time scales (7 ~ 30 days), monthly to seasonal time scales (30 ~ 90 days), and seasonal 259 

to annual time scales (90 ~ 365 days). Finally, we define the normalized variability of X as the 260 

spectral power of each frequency band divided by the total spectral power of 𝐸𝑋(𝑘)′: 261 

 𝑋𝑛𝑖
=

∑ 𝐸𝑋𝑖
(𝑘𝑗)

′
𝑗

∑ ∑ 𝐸𝑋𝑖
(𝑘𝑗)

′
𝑗

3
𝑖=1

 (3) 

where 𝐸𝑋𝑖
(𝑘𝑗)

′
 represents the spectral power of X for the jth frequency in the ith frequency band, 262 

i is the ordinal number representing the three frequency bands from high to low, and j is the 263 

ordinal number of each frequency within each frequency band. Thus, we denote 𝑋𝑛𝑖
 as the 264 

normalized variability of X in the ith frequency band. In this way, 𝑋𝑛𝑖
, as a value between 0 and 265 

1, indicates the proportion of the temporal variability of 𝑥(𝑡) in the ith frequency band. 266 

2.5 Analysis of the Effects of Pr and ET on SSM Variability 267 

Both Pr and ET affect SSM variability. Pr is the water source of SSM, while ET is the 268 

water loss term affecting SSM. Thus, increasing Pr will increase SSM while increasing ET will 269 

decrease SSM (without considering the saturation condition), which can be expressed as 270 

(neglecting other processes): 271 

 
d𝑠𝑠𝑚(𝑡)

d𝑡
= 𝑝𝑟(𝑡) − 𝑒𝑡(𝑡) (4) 

Here we aim at examining the effects of ET and Pr on SSM variability within the three frequency 272 

bands based on the transfer function of a conceptual LTI system. The related theory of the LTI 273 

system and transfer function can be found in Appendix A. 274 
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 275 

Figure 2. Diagram of the conceptual LTI system with the excitations as 𝑒𝑡(𝑡) and 𝑝(𝑡), the response as 276 

𝑠𝑠𝑚(𝑡), and the transfer function as ℎ𝑠𝑒𝑝(𝑡) in the time domain. The form in the time domain is shown in 277 

the blue box. By performing Fourier transform, the corresponding form of the LTI system in the 278 

frequency domain is shown in the red box, where 𝐹𝐸𝑇(𝑘), 𝐹𝑃𝑟(𝑘), and 𝐹𝑆𝑆𝑀(𝑘) is the Fourier transform 279 

(amplitude spectrum) of 𝑒𝑡(𝑡), 𝑝(𝑡), and 𝑠𝑠𝑚(𝑡), and 𝐻𝑆𝐸𝑃(𝑘) is the Fourier transform of the transfer 280 

function ℎ𝑠𝑒𝑝(𝑡). 𝐻𝐸𝐸𝑃 is the fraction of ET variability to the sum of ET and Pr variability in the 281 

frequency domain. 282 

To capture the total effects of ET and Pr on the SSM variability, we use a conceptual LTI 283 

system with the excitation as 𝑒𝑡(𝑡) and 𝑝(𝑡) together and the response as 𝑠𝑠𝑚(𝑡) (Figure 2). 284 

Since ET and Pr have different spectral characteristics in the frequency domain (Katul et al., 285 

2007; Nakai et al., 2014; also from Figure 3 in section 3.1), here we separate their effects on 286 

SSM as two inputs and determine the total effects as an identical transfer function. Regarding 287 

this system as a “black-box” model, we can focus on the relationship between excitation (i.e., ET 288 
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and Pr) and response (i.e., SSM) without caring about the internal variations of the system. In 289 

this way, the relationship between 𝑠𝑠𝑚(𝑡), 𝑒𝑡(𝑡), and 𝑝(𝑡) can be expressed : 290 

 𝑠𝑠𝑚(𝑡) = 𝑒𝑡(𝑡) ⊗ ℎ𝑠𝑒𝑝(𝑡) + 𝑝𝑟(𝑡) ⊗ ℎ𝑠𝑒𝑝(𝑡) (5) 

where ℎ𝑠𝑒𝑝(𝑡) is the transfer function of the LTI system shown in Figure 2. Then, equation (2) 291 

can be expressed as spectrum analysis in the frequency domain: 292 

 𝐹𝑆𝑆𝑀(𝑘) = 𝐹𝐸𝑇(𝑘) ∙ 𝐻𝑆𝐸𝑃(𝑘) + 𝐹𝑃𝑟(𝑘) ∙ 𝐻𝑆𝐸𝑃(𝑘) (6) 

where 𝐻𝑆𝐸𝑃(𝑘) is the Fourier transform of the transfer function ℎ𝑠𝑒𝑝(𝑡). Thus, the variations of 293 

the excitation and response spectra of the LTI system are determined by the transfer function 294 

𝐻𝑆𝐸𝑃(𝑘) as: 295 

  𝐻𝑆𝐸𝑃(𝑘) =
𝐹𝑆𝑆𝑀(𝑘)

𝐹𝐸𝑇(𝑘) + 𝐹𝑃𝑟(𝑘)
 (7) 

where 𝐹𝐸𝑇(𝑘), 𝐹𝑃𝑟(𝑘), and 𝐹𝑆𝑆𝑀(𝑘) is the Fourier transform (amplitude spectrum) of 𝑒𝑡(𝑡), 296 

𝑝(𝑡), and 𝑠𝑠𝑚(𝑡). 297 

In order to characterize the total effects of ET and Pr on SSM variability within the three 298 

frequency bands, we process equation (5) based on the normalized variability (𝑆𝑆𝑀𝑛𝑖
, 𝐸𝑇𝑛𝑖

, and 299 

𝑃𝑟𝑛𝑖
) defined in section 2.4: 300 

 𝐻𝑆𝐸𝑃𝑛𝑖
=

𝑆𝑆𝑀𝑛𝑖

𝐸𝑇𝑛𝑖
+ 𝑃𝑟𝑛𝑖

 (8) 

where 𝐻𝑆𝐸𝑃𝑛𝑖
 is the fraction of SSM variability to the sum of ET and Pr variability (i.e., demand 301 

and supply) in the ith frequency band. The higher this ratio, the stronger influences on the 302 

temporal variability of SSM by ET and Pr. We also aim to define the dominant factor on SSM 303 

variability (i.e., whether ET or Pr) within the three frequency bands. Therefore, we define 304 

another ratio: 305 
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 𝐻𝐸𝐸𝑃𝑛𝑖
=

𝐸𝑇𝑛𝑖

𝐸𝑇𝑛𝑖
+ 𝑃𝑟𝑛𝑖

 (9) 

where 𝐻𝐸𝐸𝑃𝑛𝑖
 is the fraction of ET variability to the sum of ET and Pr variability in the ith 306 

frequency band. This ratio is greater than one-half means that ET has larger variability than Pr 307 

and thus a greater impact on the temporal variability of SSM and vice versa. In this way, we use 308 

𝐻𝑆𝐸𝑃𝑛𝑖
 and 𝐻𝐸𝐸𝑃𝑛𝑖

 as two indicators to characterize the effects of ET and Pr on SSM variability 309 

in the three frequency bands – 𝐻𝑆𝐸𝑃𝑛𝑖
 measures the total effect of ET and Pr on SSM variability 310 

and 𝐻𝐸𝐸𝑃𝑛𝑖
 determines which process is dominant. A detailed procedure to get 𝐻𝑆𝐸𝑃𝑛𝑖

 and 311 

𝐻𝐸𝐸𝑃𝑛𝑖
 can be found in Figure S1. 312 

2.6 Analysis of Spectral Slope of SSM, Pr, and ET 313 

The spectral slope exhibits characteristics of the soil moisture’s physical behavior. This 314 

factor can explain how ET and Pr variability contribute to the spectrum of soil moisture (Katul et 315 

al., 2007). Being considered power-law noise signals, the spectral densities of time series vary as 316 

proportional to 1 𝑓𝛽⁄  (i.e., inverse frequency), where 𝛽 is the inverse number of the spectral 317 

slope (Bourke, 1998). In this way, the color of the noise, which is related to the power spectrum 318 

of noise signals, can be used to indicate the spectral slopes of SSM, Pr, and ET. The basic theory 319 

of the color of noise can be found in Text S2. 320 

The noise colors can be divided into several types according to the slope of their power 321 

spectral density. We use white noise and five main colored noises (violet, blue, pink, red, and 322 

black noise) to characterize the spectral slopes for SSM (𝑆𝑆𝑀𝑘𝜔𝑖
), Pr (𝑃𝑟𝑘𝜔𝑖

), and ET (𝐸𝑇𝑘𝜔𝑖
) in 323 

the ith frequency band. The corresponding spectral slope (equal to 𝛽 in inverse power law 1 𝑓𝛽⁄ ) 324 

of violet, blue, white, pink, and red noise (or Brownian noise) is 2, 1, 0 (i.e., the spectral density 325 
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of white noise is flat), -1, and -2, respectively, and the spectral slope of black noise is smaller 326 

than -2. The smaller the spectral slope in the frequency domain, the longer the memory of the 327 

signals represented as different colors of noise (excluding violet and blue noise). For example, a 328 

signal with its spectrum shown as white noise means the contribution to its variance is equal 329 

across all frequencies, while a signal with its spectrum shown as red noise means low-frequency 330 

periodic components dominate the contribution to its variance. Therefore, we use 𝑆𝑆𝑀𝑘𝜔, 𝑃𝑟𝑘𝜔, 331 

and 𝐸𝑇𝑘𝜔 to characterize the memory of SSM, Pr, and ET. The steps to get these variables can 332 

also be found in Figure 1. 333 

2.7 Analysis of Differences between Models and Observational references 334 

We evaluate two multimodel differences within CMIP5 compared to SMAP and ERA5 335 

data: 1) differences in 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

; and 2) differences in 𝑆𝑆𝑀𝑘𝜔, 𝐸𝑇𝑘𝜔, and 𝑃𝑘𝜔, by 336 

subtracting observation-based data from model averages. In addition, we calculate the coefficient 337 

of variation across 14 models to show the degree of the statistical dispersion of the quantities. 338 

The spatial resolution and the land cover between CMIP5 models and observational 339 

references (i.e., SMAP and ERA5), as well as among models themselves, are different. Here we 340 

re-grid all products with the same spatial resolution (36 km×36 km) and land cover as SMAP 341 

based on the nearest neighbor binning so they can be compared with each other (details on the 342 

spatial resolution projection see previous work (Xi et al., 2022)). In addition, we perform a 343 

significance test on these differences to avoid that multimodel differences in some regions may 344 

be caused by only a few models or even one model. This significance test is depicted on the 345 

maps using stippling, showing the regions that pass the 100% (i.e., all 14 models agree on the 346 

sign of average differences) and 75% (i.e., 11 of the 14 models agree on the sign of average 347 

differences) significance test. Since the variation of soil moisture in dry regions is usually very 348 
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small (Koster et al., 2009), we remove regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 0.1 (shown as dark gray on 349 

the maps), where 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 is defined as the observational mean SSM after spatiotemporal 350 

normalization (Figure S3). 351 

3 Results and Discussion 352 

3.1 Temporal Variabilities of Soil Moisture, Precipitation, and Evapotranspiration from SMAP 353 

and ERA5 Data 354 

The temporal variability of SSM (𝑆𝑆𝑀𝑛) concentrates more in the seasonal to annual 355 

frequency band in most regions, with a smaller proportion in the two higher frequency bands, 356 

indicating that SSM has a large variability on time scales longer than the seasonal time scale 357 

(Figure 3a-3c). 358 

The temporal variability of precipitation (𝑃𝑟𝑛) shows different regional distributions over 359 

the three frequency bands (Figure 3d-3f). The variability is larger in the lowest frequency band 360 

for most tropical regions where the seasonal cycle can be large, and is larger in the highest 361 

frequency band for other regions, especially non-tropical regions. The reason is that, in most 362 

tropical regions, especially regions with tropical wet and dry climate, like Brazil, India, Northern 363 

Australia, and regions between the Sahara Desert and the equator in Africa, although the 364 

variation of temperature and radiation are small over a year, rainfall exhibits a strong seasonal 365 

cycle – the days with and without rainfall are concentrated so that the boundaries of the wet 366 

season and dry season are more distinct. So, precipitation in these regions shows a large seasonal 367 

variability. However, in tropical regions with a very wet climate, such as the Democratic 368 

Republic of the Congo, Indonesia, and the Philippines, there is no such seasonality because of 369 

the more steady rainfall pattern in these regions. On the other hand, there is not an obvious wet 370 
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and dry season distinction for most non-tropical regions. The occurrence of rainfall is typically 371 

more random over a whole year and close to a white noise signal at high frequencies (Katul et 372 

al., 2007; Nakai et al., 2014). Therefore, precipitation variability in non-tropical regions is almost 373 

all high-frequency variability, except for regions with a Mediterranean climate and monsoonal 374 

regions where the monsoon distributes rainfall in a few months, imposing a strong seasonal 375 

cycle. 376 

The largest temporal variability of ET (𝐸𝑇𝑛) in the lowest frequency band means that ET 377 

variability is large on time scales longer than seasonal over most regions (Figure 3g-3i), except 378 

in regions with a tropical wet climate. The reason is that ET in most regions is driven by either 379 

radiation or moisture limitation with high seasonality, except in the wet tropics where the 380 

seasonality of radiation and moisture is small but the daily variability can be large. In this way, 381 

the results in tropical wet regions, such as in the Amazon Rainforest, Africa’s Equator, Indonesia, 382 

and the Philippines, are the opposite of other regions in terms of frequency distribution, showing 383 

ET variability concentrates on time scales shorter than monthly. This high-frequency radiation 384 

variability is mainly due to the variability of clouds on daily to weekly time scales which causes 385 

a large variability of ET on these short time scales (Anber et al., 2015). Moreover, this 386 

mechanism has the largest influence on regions near the equator because these regions receive 387 

more radiation than other regions over a year. Therefore, in these regions, ET variability is 388 

mostly located in the highest frequency band. In addition, ET in very dry regions (e.g., desert) 389 

does not have a clear seasonal cycle as well due to the strong limitation of moisture. 390 
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 391 

Figure 3. 𝑆𝑆𝑀𝑛 (Figure a-c), 𝑃𝑟𝑛 (Figure d-f), and 𝐸𝑇𝑛 (Figure g-i) based on SMAP and ERA5 data over 392 

the three frequency bands. 𝑆𝑆𝑀𝑛, 𝑃𝑟𝑛, and 𝐸𝑇𝑛 is the normalized variability of SSM, Pr, and ET, 393 

respectively, defined in section 2.5. Dark grey parts in Figure a-c are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 (observational 394 

mean SSM after spatiotemporal normalization) less than 0.1. For all subsequent results, including Figure 395 

3, the three columns from left to right represent the weekly to monthly frequency band (𝑛 = 1), the 396 

monthly to seasonal frequency band (𝑛 = 2), and the seasonal to annual frequency band (𝑛 = 3). 397 

The temporal variability of Pr and ET both show an apparent regional distribution (Figure 398 

3). For Pr, the variability in tropical and non-tropical regions is opposite across the three 399 

frequency bands – the variability in tropical regions concentrates in the seasonal to annual 400 

frequency band, and the variability in non-tropical regions concentrates in the weekly to monthly 401 
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frequency band. For ET, the variability in most regions concentrates in the seasonal to annual 402 

frequency band except for the dry regions and regions near the equator where the variability 403 

concentrates in the weekly to monthly frequency band. However, compared to Pr and ET, the 404 

temporal variability of SSM is more diverse spatially on a global scale. 405 

Figure 4 shows the global distribution of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

 based on SMAP and ERA5 406 

data over the three frequency bands (the corresponding values of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

 in each 407 

frequency band see Table S4). In the weekly to monthly frequency band, the total effect of ET 408 

and Pr on SSM variability is less than it in the other two frequency bands. Compared to Pr, 409 

which is the dominant driver of SSM variability in this frequency band, the fluctuation of ET has 410 

limited effects on SSM as ET is a slower process, in part regulated by soil moisture itself 411 

(Figures 4a and 4d). On time scales longer than monthly, ET and Pr together have more effects 412 

on SSM variability. In the monthly to seasonal frequency band where the total effect of ET and 413 

Pr on SSM reaches its largest magnitude, although the proportion of ET variability becomes 414 

larger, Pr is still the dominant factor of SSM variability (Figures 4b and 4e). In the seasonal to 415 

annual frequency band, the total variability of ET and Pr decreases but is still larger than it in the 416 

weekly to monthly frequency band. However, in this frequency band, ET becomes the dominant 417 

factor on SSM, especially in the middle and high latitudes. Therefore, Pr variability alone in 418 

these regions is no longer able to explain the SSM dynamics, and the seasonality of ET has to be 419 

considered (Figures 4c and 4f). Since 𝐻𝐸𝐸𝑃𝑛
 represents the proportion of ET variability to the 420 

total variability of ET and Pr, similar to 𝐸𝑇𝑛 shown in Figure 3, 𝐻𝐸𝐸𝑃𝑛
 patterns are different in 421 

tropical wet regions, where ET variability has more effects on SSM on the two higher frequency 422 

bands (Figures 4d and 4e), and Pr becomes the dominant factor on the lowest frequency band 423 

due to the strong seasonality in rainfall (Figure 4f). 424 
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 425 

Figure 4. 𝐻𝑆𝐸𝑃𝑛
 (Figure a-c) and 𝐻𝐸𝐸𝑃𝑛 (Figure d-f) based on SMAP and ERA5 data over the three 426 

frequency bands. 𝐻𝑆𝐸𝑃𝑛
 is the ratio of 𝑆𝑆𝑀𝑛 to the sum of 𝐸𝑇𝑛 and 𝑃𝑟𝑛, and 𝐻𝐸𝐸𝑃𝑛 is the ratio of 𝐸𝑇𝑛 to 427 

the sum of 𝐸𝑇𝑛 and 𝑃𝑟𝑛, defined in section 2.6. The values within each frequency band are normalized to 428 

between zero and one across the three frequency bands. Dark grey parts are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 429 

0.1. 430 

To further identify the Pr and ET effects on SSM variability, we evaluate the relationships 431 

between their spectral slopes. Figure 5 shows the global distribution of 𝑆𝑆𝑀𝑘𝑤, 𝑃𝑟𝑘𝑤, and 𝐸𝑇𝑘𝑤 432 

expressed in terms of noise color in the three frequency bands based on SMAP and ERA5 data. 433 

We also evaluate the spectral slope of potential evaporation (𝑃𝐸𝑘𝑤) from ERA5 to compare it 434 

with 𝐸𝑇𝑘𝑤. 435 

From a previous study (Xi et al., 2022), we have found that the low-frequency periodic 436 

components dominate the contribution to the variance of SSM, and it has more randomness on 437 

time scales shorter than monthly and more memory on time scales longer than seasonality. From 438 

Figure 5a-5f, we further find that there is a phase shift between SSM and Pr spectra in the two 439 
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higher frequency bands, especially the highest one, which implicates how Pr variability 440 

propagates into the soil moisture system (Katul et al., 2007). In the weekly to monthly frequency 441 

band where Pr is the dominant factor on SSM (according to Figure 4d), regions with smaller 442 

𝑃𝑟𝑘𝑤 lead to SSM spectra decay more rapidly. In most regions where Pr is similar to a white 443 

noise, SSM exhibits a pink noise in the corresponding regions, indicating longer memory 444 

induced by soil moisture (Salvucci and Entekhabi, 1994). In regions where Pr exhibits a pink 445 

noise, like eastern Africa, Brazil, India, and northern Australia, SSM has a red noise spectrum 446 

(Figures 5a and 5d). A similar relationship between SSM and Pr spectra can also be found in the 447 

monthly to seasonal frequency band (Figures 5b and 5e), such as in southern North America, 448 

southern and north-central Asia, and regions around the Mediterranean, but it is not as evident as 449 

that in the highest frequency band since the effect of Pr on SSM variability decreases in this 450 

frequency band (according to Figure 4e). In the seasonal to annual frequency band, ET performs 451 

more effects on SSM variability than Pr for most regions (according to Figure 4f), so there are no 452 

strong correlations between Pr and SSM spectra. In previous studies, soil moisture was found to 453 

be similar to a red or black noise corresponding to precipitation having a white or pink noise at 454 

high frequency (Katul et al., 2007; Nakai et al., 2014). The 𝑆𝑆𝑀𝑘𝑤 here is a little larger (Figure 455 

5a). A possible reason is the effect of runoff. Since the only function of runoff is to prevent large 456 

positive abnormalities in soil moisture, it may cause the time scale for soil moisture variability to 457 

shorten (Delworth and Manabe, 1988). This mechanism will mainly affect the soil moisture 458 

variability at high frequency and thus lead to less “redness” of soil moisture spectra. 459 

Unlike between 𝑆𝑆𝑀𝑘𝑤 and 𝑃𝑟𝑘𝑤, there is no such relationship between 𝑆𝑆𝑀𝑘𝑤 and 460 

𝐸𝑇𝑘𝑤, even at the highest frequency band where ET is dominant on SSM variability (Figures 5a-461 

5c and 5g-5i). It has been found that the sensitivity of soil moisture to precipitation and radiation 462 
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uncertainty performs differently in seasonality (Wei et al., 2008). Here we also find that Pr and 463 

ET exert strong effects on SSM variability in different ways across different time scales. In 464 

previous studies, unlike Pr serving as a forcing term, ET was shown to be related to the damping 465 

term of soil moisture spectra (Delworth and Manabe, 1988; Katul et al., 2007; Nakai et al., 466 

2014), which modulates potential evaporation (PE). The differences between 𝐸𝑇𝑘𝑤 and 𝑃𝐸𝑘𝑤 are 467 

mainly due to the variability of soil moisture. PE is an estimate of the maximum evaporation rate 468 

from a surface of pure water for given meteorological conditions (Delworth and Manabe, 1988). 469 

Weather fluctuations introduce a white or pink noise PE. However, unlike PE, ET is closely 470 

related to soil moisture, emphasizing that soil moisture limits and regulates the supply of 471 

moisture to the atmosphere on longer time scales. So the SSM dynamics influence ET spectra – 472 

leading to a more red noise than PE spectra because SSM has a longer memory. This influence is 473 

especially more visible in dry regions. The reason is that, compared to SSM in dry regions, SSM 474 

in wet regions mostly tracks the variability of PE. So ET in wet regions will not be strongly 475 

affected by SSM variability and thus still shows pink noise. On longer time scales, both ET and 476 

PE show obvious seasonality that the low-frequency periodic components dominate the 477 

contribution to the variance of signals (Figures 5i and 5l). 478 

To summarize, the effects of Pr and ET on SSM variability are different across time 479 

scales. In the two higher frequency bands (especially the weekly to monthly frequency band), Pr, 480 

acting as a forcing by averaging the large oscillations to limit high-frequency components, has 481 

more effects on SSM variability. In the seasonal to annual frequency band, ET, acting as the 482 

dissipative process that prevents SSM anomalies from persisting indefinitely, has more effects on 483 

SSM variability. 484 
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 485 

Figure 5. Noise color of SSM (Figure a-c), Pr (Figure d-f), ET (Figure g-i), and PE (Figure j-l) over the 486 

three frequency bands according to 𝑆𝑆𝑀𝑘𝑤, 𝑃𝑟𝑘𝑤, 𝐸𝑇𝑘𝑤, and 𝑃𝐸𝑘𝑤 based on SMAP and ERA5 data. The 487 

colors in each figure represent the corresponding color of noise, referring to the power spectra of SSM, 488 

Pr, ET, and PE. The legend shows the color referring to each noise, and the number in brackets is the 489 

inverse number of the spectral slope of power-law noise corresponding to each noise color. 490 

3.2 Comparison between CMIP5 simulations and SMAP and ERA5 references 491 

Figure 6a-6c shows the average differences for 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

 of model simulations 492 
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within CMIP5 compared to SMAP and ERA5 data. A significance test is performed and depicted 493 

using stippling. Here, the “+” stippling means the region passes a 100% significance test, and the 494 

“.” stippling means the region passes a 75% significance test. Therefore, we only focus on the 495 

regions with stippling. For most regions, the multimodel differences of 𝐻𝑆𝐸𝑃𝑛
 are negative in the 496 

two higher frequency bands and they are positive in the lowest frequency band, which means that 497 

the CMIP5 simulations of the total effect of ET and Pr on SSM variability are smaller on time 498 

scales shorter than seasonal and are larger on time scales longer than seasonal, compared to 499 

SMAP and ERA5 data (Figure 6a-6c). The average difference of 𝐻𝑆𝐸𝑃𝑛
 is largest in the monthly 500 

to seasonal frequency band (-0.6792 and -0.4492 with 100% and 75% significance) and smallest 501 

in the weekly to monthly frequency band (-0.3365 and -0.2871 with 100% and 75% significance) 502 

(Table 1). For all three frequency bands, the average differences of 𝐻𝑆𝐸𝑃𝑛
 are larger in Central 503 

and Northern North America, Central and Eastern Europe, and regions near the equator. 504 

Significance 100% significance test 75% significance test 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

BCC-CSM1.1 -0.2755 -0.5409 0.5554 -0.2249 -0.2797 0.4720 

BNU-ESM -0.3221 -0.6096 0.4718 -0.2740 -0.4001 0.4002 

CanESM2 -0.3565 -0.7277 0.5245 -0.3057 -0.4523 0.4311 

CNRM-CM5 -0.3323 -0.8718 0.5380 -0.2808 -0.6494 0.4492 

CSIRO-Mk3.6 -0.3695 -0.8166 0.4851 -0.3220 -0.5809 0.4208 

GFDL-CM3 -0.3262 -0.6595 0.4189 -0.2785 -0.4436 0.3417 

GFDL-ESM2G -0.3243 -0.6493 0.4494 -0.2762 -0.4388 0.3693 

GFDL-ESM2M -0.3250 -0.6566 0.4615 -0.2767 -0.4423 0.3796 

MIROC5 -0.3330 -0.5357 0.3897 -0.2846 -0.2995 0.3119 

MIROC-ESM -0.3374 -0.6061 0.4011 -0.2884 -0.3794 0.3257 

MIROC-ESM-

CHEM 
-0.3383 -0.6064 0.4021 -0.2893 -0.3814 0.3271 
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MRI-CGCM3 -0.3812 -0.8297 0.5968 -0.3321 -0.5989 0.5227 

MRI-ESM1 -0.3804 -0.8293 0.5971 -0.3315 -0.5974 0.5225 

NorESM1-M -0.3089 -0.5702 0.4245 -0.2547 -0.3453 0.3421 

Average (± 

1 SD) 

-0.3365 ±

0.0274 

-0.6792 ±

0.1110 

0.4797 ±

0.0692 

-0.2871 ±

0.0280 

-0.4492 ±

0.1121 

0.4011 ±

0.0685 

Observation 0.4734 1.1492 0.4161 0.4305 0.9550 0.4741 

Table 1. Observational and multimodel differences of 𝐻𝑆𝐸𝑃𝑛
 within CMIP5. The observational 𝐻𝑆𝐸𝑃𝑛

 505 

here is the original value without normalization across the three frequency bands. 506 

From section 3.1, we know that Pr dominates SSM variability in the two higher 507 

frequency bands, and ET dominates it in the seasonal to annual frequency band. From Figure 6e-508 

6f, we find that in each frequency band, the effect of the corresponding dominant factor (i.e., Pr 509 

or ET) on SSM simulated within the CMIP5 models tends to be smaller than that from ERA5 510 

data. Specifically, in the two higher frequency bands where Pr is the dominant factor, models 511 

overestimate the proportion of ET variability to the total variability of ET and Pr. Thus, the effect 512 

of Pr on SSM is underestimated by models (Figure 6d-6e). In the lowest frequency band where 513 

ET is the dominant factor, models underestimate the effects of ET on SSM. Unlike 𝐻𝑆𝐸𝑃𝑛
, the 514 

multimodel difference of 𝐻𝐸𝐸𝑃𝑛
 is largest in the weekly to monthly frequency band (-0.1259 and 515 

-0.0770 with 100% and 75% significance) and smallest in the monthly to seasonal frequency 516 

band (-0.0677 and -0.0515 with 100% and 75% significance) (Table 2). From Figure 6 (also 517 

Table 1 and 2), CMIP5 simulations show larger differences on 𝐻𝑆𝐸𝑃𝑛
 than 𝐻𝐸𝐸𝑃𝑛

, which means 518 

that these CMIP5 models perform relatively well in capturing the proportion of ET and Pr 519 

variability to their total variability, while they exhibit larger differences in simulating the total 520 

effect of ET and Pr on SSM variability compared to SMAP and ERA5 data. 521 

Significance 100% significance test 75% significance test 
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Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

BCC-CSM1.1 0.1826 0.1089 -0.1059 0.1374 0.0992 -0.0579 

BNU-ESM 0.1818 0.0927 -0.1414 0.1303 0.0751 -0.1141 

CanESM2 0.1119 0.1245 -0.0800 0.0675 0.1146 -0.0524 

CNRM-CM5 0.0891 0.0235 -0.0732 0.0493 0.0089 -0.0402 

CSIRO-Mk3.6 0.0863 0.0575 -0.0793 0.0372 0.0386 -0.0517 

GFDL-CM3 0.1216 0.0656 -0.0959 0.0738 0.0519 -0.0693 

GFDL-ESM2G 0.1654 0.0988 -0.1087 0.1169 0.0866 -0.0833 

GFDL-ESM2M 0.1637 0.0992 -0.1061 0.1133 0.0871 -0.0784 

MIROC5 0.0778 0.0028 -0.0553 0.0159 -0.0272 -0.0249 

MIROC-ESM 0.1110 0.0429 -0.0743 0.0542 0.0218 -0.0523 

MIROC-ESM-

CHEM 
0.1100 0.0418 -0.0750 0.0527 0.0215 -0.0524 

MRI-CGCM3 0.1126 0.0700 -0.0633 0.0715 0.0542 -0.0407 

MRI-ESM1 0.1109 0.0711 -0.0624 0.0699 0.0550 -0.0392 

NorESM1-M 0.1386 0.0492 -0.1003 0.0880 0.0336 -0.0792 

Average (± 

1 SD) 

0.1259 ± 

0.0336 

0.0677 ± 

0.0332 

-0.0872 ± 

0.0227 

0.0770 ± 

0.0347 

0.0515 ± 

0.0374 

-0.0597 ± 

0.0222 

Observation 0.2406 0.4182 0.7747 0.2236 0.3756 0.7618 

Table 2. Observational and multimodel differences of 𝐻𝐸𝐸𝑃𝑛 within CMIP5. The observational 𝐻𝐸𝐸𝑃𝑛 522 

here is the original value without normalization across the three frequency bands. 523 
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 524 

Figure 6. Average differences of 𝐻𝑆𝐸𝑃𝑛
 (Figure a-c) and 𝐻𝐸𝐸𝑃𝑛 (Figure d-f) between CMIP5 models and 525 

the observation-based data in the three frequency bands. Dark grey parts are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 526 

0.1. For each figure, “+” and “.” stippling represents the region that passes a 100% significance test and a 527 

75% significance test, respectively. 528 

In addition to multimodel differences compared to SMAP and ERA5 data, the coefficient 529 

of variation (CV) of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

 across models are also investigated to estimate their 530 

statistical variance (Figure S4). For both 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

, the intermodel spread is larger in the 531 

weekly to monthly and monthly to seasonal frequency band and smaller in the seasonal to annual 532 

frequency band (also see Table S6). Therefore, for CMIP5 estimations of Pr and ET effect on 533 

SSM variability, there is a more extensive intermodel spread on time scales shorter than seasonal 534 

and a lower variance among models on time scales longer than seasonal time scale, suggesting an 535 

individual deficiency in representing the short-term variability and a systematic deficiency of 536 

these CMIP5 models in representing the long-term variability. 537 

The multimodel differences of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛

 are further analyzed with the mean SSM 538 
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on a global scale. To make a trade-off between high significance and the size of samplings, we 539 

use the differences that pass a 75% significance test. Figure S3 shows the global distribution of 540 

the mean SMAP SSM after spatiotemporal normalization (𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛). For 𝐻𝑆𝐸𝑃𝑛

 (Figure 7a-7c), 541 

models achieve their best estimates in transitional zones between dry and wet climates, where 542 

there is both a strong coupling between soil moisture and Pr (Koster et al., 2004) as well as 543 

between soil moisture and ET (Seneviratne et al., 2010). No matter whether 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 increases or 544 

decreases from the intermediate transitional zones, the differences of 𝐻𝑆𝐸𝑃𝑛
 increase. Therefore, 545 

when considering the Pr and ET effect on SSM variability, the CMIP5 models can perform better 546 

in regions with strong coupling between these variables, and the differences compared to 547 

observation-based data tend to be more apparent in wet and dry regions where interactions are 548 

weaker. This finding is particularly evident in the highest and lowest frequency bands where 549 

observation-based 𝐻𝑆𝐸𝑃𝑛
 is smaller. On the other hand, from Figure 7d-7f, 𝐻𝐸𝐸𝑃𝑛

 differences 550 

basically increase with the decrease of 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 except for extremely dry regions, indicating that the 551 

CMIP5 models have difficulties in estimating the interaction between Pr and ET in regions with 552 

less soil moisture. When soil moisture is limited, ET is also limited, although sensitive to SSM. 553 

Under this condition, ET variation is too small to impact climate variability, and the impact of Pr 554 

variation on climate variability is almost independent on SSM as drier soils will lead to lower 555 

precipitation likelihood (Seneviratne et al., 2010). Therefore, it is hard for models to capture 556 

correct interactions between Pr and ET, shown as larger differences of 𝐻𝐸𝐸𝑃𝑛
 in drier regions. In 557 

regions where 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 is extremely low (less than 10%), models tend to correctly capture the 558 

proportion of Pr and ET variability. 559 



31 

 

 560 

Figure 7. Comparison of average differences of 𝐻𝑆𝐸𝑃𝑛
 (Figure a-c) and 𝐻𝐸𝐸𝑃𝑛 (Figure d-f) between 561 

CMIP5 models and observation-based data with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 in the three frequency bands. The red shading 562 

represents +/− one standard deviation. 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 is separated into 20 bins of equal size (i.e., 0.05 for each 563 

bin), then the mean of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 differences located in each bin (corresponding to the range of 564 

𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛) were separately calculated for each frequency band. Differences in this figure are the values 565 

passing a 75% significance test. All values in the regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 0.1 are removed. 566 

Finally, we evaluate multimodel differences of the spectral slopes (𝑆𝑆𝑀𝑘𝜔, 𝑃𝑟𝑘𝜔, and 567 

𝐸𝑇𝑘𝜔) compared to the SMAP and ERA5 data (Figure 8). Negative differences mean that 568 

modeled spectra decay more rapidly and vice versa. Compared to SMAP SSM spectra, CMIP5 569 

SSM spectra decay more rapidly in the two higher frequency bands and less rapidly in the 570 

seasonal to annual frequency band in most regions (Figure 8a-8c), indicating that these models 571 

underestimate the short-term variability and overestimate the long-term variability of SSM in a 572 
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non-linear way. For 𝑃𝑟𝑘𝜔 (Figure 8d-8f) and 𝐸𝑇𝑘𝜔 (Figure 8g-8i), positive differences with high 573 

significance in most regions indicate that CMIP5 models underestimate their memory, implying 574 

land surface models may not be able to reproduce the correct intensity of Pr and ET variability, 575 

especially on time scales longer than seasonal. Our findings are aligned with previous studies 576 

(Katul et al., 2007; McColl et al., 2019; Nakai et al., 2014) but with different methods and 577 

models. We also find the differences characterizing the memory are not the same across 578 

frequencies and are most prominent in the seasonal to annual frequency band. This again 579 

suggests that models exhibit deficiency in representing long-term transpiration and soil moisture 580 

dynamics. 581 

 582 
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Figure 8. Average differences of 𝑆𝑆𝑀𝑘𝜔 (Figure a-c), 𝑃𝑟𝑘𝜔 (Figure d-f), and 𝐸𝑇𝑘𝜔 (Figure g-i) between 583 

CMIP5 models and the observation-based data in the three frequency bands. Dark grey parts in Figure a-c 584 

are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 0.1. For each subfigure, “+” and “.” stippling represents the region that 585 

passes a 100% significance test and a 75% significance test, respectively. 586 

3.3 Uncertainty analysis 587 

Two parts during the data processing could introduce uncertainties to our analysis in this 588 

study. First, since the SMAP data is non-continuous on the daily time scale, we fill the missing 589 

values before performing Fourier analysis. The gap-filling process is the same as our previous 590 

analysis and has been carefully validated using in-situ soil moisture data from International Soil 591 

Moisture Network (Xi et al., 2022). Second, the interpolation during intermodel computation 592 

may induce uncertainties since the spatial resolution of all these CMIP5 models are much coarser 593 

than the “standard” spatial resolution (36 km×36 km, see section 2.7). Apart from comparing the 594 

re-gridded results with an intermediate resolution (1°×1°) and finding that the differences are 595 

very small (Xi et al., 2022), we also conduct a significance test to constrain the potential 596 

uncertainties as much as possible. All statistical correlation analyses in this study are based on 597 

the multimodel differences passing a high significance test (more than 75%), ensuring that a 598 

systematic performance in land surface models is shown. 599 

Apart from these technical issues, some other aspects may also cause uncertainties. One 600 

issue is related to the potential biases of the SMAP data. This study conducts comparative 601 

evaluations of ESMs within CMIP5 and uses SMAP products as the observations of SSM. 602 

However, even though SMAP meets its performance target and has better performance than other 603 

satellite products, its retrievals have been shown to exhibit potential errors in heavily vegetated 604 

areas such as forests, with the presence of water bodies, and in frozen soil such as in the Arctic 605 
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tundra environment (Entekhabi et al., 2014; McColl et al., 2017; Wrona et al., 2017). Therefore, 606 

when performing comparative assessments with model simulations, the biases in SMAP data 607 

themselves should also be taken into consideration. 608 

Another issue is the linear and time-invariant assumption of the interactions among SSM, 609 

Pr, and ET. In this study, we assumed an LTI system of SSM, Pr, and ET and then performed the 610 

Fourier analysis based on it. However, the relationships among them may not be linear and time-611 

invariant. For example, in regions with plenty of vegetation, precipitation is first intercepted by 612 

the canopy, and then throughfall is further partitioned into surface runoff and infiltration water, 613 

which directly affects SSM instead of precipitation. A previous study has also shown that there is 614 

a higher linear relationship between soil moisture and precipitation in less-vegetated regions 615 

(Sehler et al., 2019). Snow is another factor related to this issue. When the precipitation is snow, 616 

it will not interact with SSM immediately. Instead, there is a snow accumulation and melting 617 

process, which could take days, weeks, and even months. Thus, the relationship between SSM 618 

and Pr may not be time-invariant in high-latitude regions. 619 

Although we have mentioned that there are many complex physical processes involved in 620 

the effects on SSM dynamics, and this study aims to only focus on the two elementary variables 621 

related to SSM (i.e., Pr and ET), we still want to try to analyze the uncertainties from this aspect 622 

and see how much confidence we could have under this LTI assumption. A feasible first step is to 623 

mask the regions that could be most affected by these issues and see how the results will change. 624 

This approach can also be used to quantify the uncertainties induced by SMAP data mentioned 625 

above. We identify the regions with potential uncertainties as dense vegetation cover (vegetation 626 

water content > 5 kg/m2), frozen landscapes (surface temperature < 0°C), and the presence of 627 

water bodies (water body fraction > 5% coverage of a pixel) (see Figure S5), which is similar to 628 
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a previous study (McColl et al., 2017). Then, we recalculate the observation-based 𝐻𝑆𝐸𝑃𝑛
 and 629 

𝐻𝐸𝐸𝑃𝑛
, multimodel differences of 𝐻𝑆𝐸𝑃𝑛

 and 𝐻𝐸𝐸𝑃𝑛
, and the CV of 𝐻𝑆𝐸𝑃𝑛

 and 𝐻𝐸𝐸𝑃𝑛
 across the 630 

CMIP5 models with these regions being masked (Table S4, S5, and S6). We find that, although 631 

being quantitively inconsistent, these results are all qualitative across the three frequency bands, 632 

illustrating the feasibility of our analysis on a global scale. 633 

4 Conclusions 634 

This study uses satellite-based observations to evaluate 14 Earth system models within 635 

CMIP5 in simulating the effects of Pr and ET on SSM variability across three frequency bands. 636 

We find that these models generally underestimate the total effects of Pr and ET on SSM in the 637 

high-frequency bands (weekly to monthly and monthly to seasonal) and overestimate it in the 638 

low-frequency band (seasonal to annual). Additionally, based on the findings that Pr dominates 639 

weekly to seasonal SSM variability and ET dominates seasonal to annual SSM variability, these 640 

models underestimate the effects on SSM by Pr or ET that is a dominant factor in each frequency 641 

band. Across the three frequency bands, models perform better estimations in regions with strong 642 

land-atmosphere interactions between the three variables. For the metrics investigated here, 643 

models show an individual deficiency in representing short-term variability and a systematic 644 

deficiency of long-term variability. 645 

This study also identifies systematic metrics that can be used to assess model 646 

performance and help refine process representation across time scales. Our results highlight that 647 

the Earth system models within CMIP5 should improve their representation of precipitation and 648 

evapotranspiration effects in modeling soil moisture. 649 

 650 
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Appendix A: Conceptual LTI systems representing the ET and Pr effects on SSM variability. 651 

A transfer function (also known as system function) (Haykin and Van Veen, 2007) 652 

mathematically represents the relationship between the input and output of a system (black-box 653 

model). It can usually be used to describe the relationship between the signal excitation and 654 

response of a linear time-invariant (LTI) system (Phillips et al., 2003) with the time-frequency as 655 

a variable. For an LTI system, even if its specific structure and parameters are not known, its 656 

model in the frequency domain can be regarded as a rational polynomial form. Then the 657 

properties of the system can be determined by analyzing the input and output of the system. 658 

LTI systems are subject to constraints of linearity and time invariance. The constraint of 659 

linearity means that when multiple excitation signals act on the LTI system simultaneously, the 660 

total response is equal to the sum of the corresponding individual effects of each excitation. 661 

Besides, when the excitation increases by a specific multiple, the response also increases by the 662 

same multiples. The constraint of time-invariance means that the response of the LTI system is 663 

independent of the time the excitation acts on the system. This means that, regardless of the time 664 

sequence of the input signal acting on the system, the output signals are the same. The only 665 

difference is the time of their appearances. The constraint of linearity on the LTI system can be 666 

expressed as: 667 

 𝑇[𝑎𝑥1(𝑛) + 𝑏𝑥2(𝑛)] = 𝑎𝑦1(𝑛) + 𝑏𝑦2(𝑛) (A1) 

where T represents the computational relationship of the system, 𝑥1(𝑛), 𝑦1(𝑛) and 𝑥2(𝑛), 𝑦2(𝑛) 668 

are two pairs of excitation and response, respectively. Besides, the constraint of time-invariance 669 

on the LTI system can be expressed as: 670 

 𝑦(𝑛 − 𝑚) = 𝑇[𝑥(𝑛 − 𝑚)] (A2) 

which means that when the excitation is delayed for a period of time m, the corresponding 671 
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response is also delayed for time m. 672 

Subject to the constraints of linearity and time-invariance, if the signal applied to the LTI 673 

system is decomposed (as an impulse signal), the response caused by the original excitation 674 

signal is obtained by summing the responses generated by each component acting on the system. 675 

In this way, the LTI system produces an output signal from any input signal, which can be 676 

expressed as (considering the default system as a causal system): 677 

 𝑦(𝑡) = ∫ 𝑥(𝜏)ℎ(𝑡 − 𝜏)
+∞

0

= 𝑥(𝑡) ⊗ ℎ(𝑡) (A3) 

where 𝑥(𝑡) and 𝑦(𝑡) are the input and output of the LTI system, respectively, and ℎ(𝑡) is the 678 

transfer function of the LTI system. According to the Convolution theorem, the convolution of 679 

two signals in the time domain is equivalent to multiplying their corresponding spectra in the 680 

frequency domain: 681 

 𝑥(𝑡) ⊗ ℎ(𝑡) = 𝑋(𝑘) ∙ 𝐻(𝑘) (A4) 

where 𝑋(𝑘) and 𝐻(𝑘) are the spectra of 𝑥(𝑡) and ℎ(𝑡), respectively. 682 

In the time domain, the terrestrial water balance can be simply expressed as: 683 

 
d𝑠𝑠𝑚(𝑡)

d𝑡
= 𝑝𝑟(𝑡) − 𝑒𝑡(𝑡) − 𝑞(𝑡) (A5) 

where 𝑠𝑠𝑚 is surface soil moisture, 𝑝𝑟 is precipitation, 𝑒𝑡 is evapotranspiration, and 𝑞 is 684 

drainage and runoff. Neglecting drainage and runoff (𝑞 = 0), this water balance can be further 685 

simplified as: 686 

 
d𝑠𝑠𝑚(𝑡)

d𝑡
= 𝑝𝑟(𝑡) − 𝑒𝑡(𝑡) (A6) 

where precipitation is the climate input to soil moisture, and evapotranspiration is the water 687 

losses relative to soil moisture. 688 

Any system that can be simulated as homogeneous linear differential equations with 689 
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constant coefficients can be regarded as an LTI system. In this way, the relationships between 690 

SSM, ET, and Pr can be described assuming two conceptual LTI systems, where the inputs are 691 

𝑒𝑡(𝑡) and 𝑝𝑟(𝑡), respectively, and the outputs are both 𝑠𝑠𝑚(𝑡) (Figure S2). Since the two 692 

systems are both single-input and single-output (SISO) systems (Partington, 2004), we can focus 693 

on the relationship between their excitations and responses without caring about the internal 694 

variations of the systems. In this way, the relationships between excitation and response of the 695 

two LTI systems can be expressed as: 696 

 𝑠𝑠𝑚(𝑡) = 𝑒𝑡(𝑡) ⊗ ℎ𝑠𝑒(𝑡) (A7) 

 𝑠𝑠𝑚(𝑡) = 𝑝𝑟(𝑡) ⊗ ℎ𝑠𝑝(𝑡) (A8) 

where ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡) are the transfer function of the “ET-SSM” LTI system (Figure S2(a)) 697 

and “Pr-SSM” LTI system (Figure S2(b)), respectively. 698 

It is hard to investigate these two transfer functions in the time domain. However, by 699 

applying the convolution operator, equations (A4) and (A5) in the time domain can be converted 700 

into the frequency domain as a product: 701 

 𝐹𝑆𝑆𝑀(𝑘) = 𝐹𝐸𝑇(𝑘) ∙ 𝐻𝑆𝐸(𝑘) (A9) 

 𝐹𝑆𝑆𝑀(𝑘) = 𝐹𝑃𝑟(𝑘) ∙ 𝐻𝑆𝑃(𝑘) (A10) 

where 𝐻𝑆𝐸(𝑘) and 𝐻𝑆𝑃(𝑘) are the Fourier transforms of the transfer functions ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡), 702 

respectively. The two LTI systems change the spectra of the input signal by weighting each of its 703 

frequency components. This change is completely determined by the transfer functions 𝐻𝑆𝐸(𝑘) 704 

and 𝐻𝑆𝑃(𝑘), which serve as a weighting function transforming the excitation with the spectrum 705 

of 𝐹𝐸𝑇(𝑘) and 𝐹𝑃𝑟(𝑘) into the response with the spectrum of 𝐹𝑆𝑆𝑀(𝑘). 706 

Assuming the input of the two systems is a power signal (i.e., signal power is finite), 707 

equations (A6) and (A7) can be read in terms of the power spectrum as: 708 
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 𝐸𝑆𝑆𝑀(𝑘) = 𝐸𝐸𝑇(𝑘) ∙ |𝐻𝑆𝐸(𝑘)|2 (A11) 

 𝐸𝑆𝑆𝑀(𝑘) = 𝐸𝑃𝑟(𝑘) ∙ |𝐻𝑆𝑃(𝑘)|2 (A12) 

In this way, the effects of ET and Pr variability on SSM variability can be identified by 709 

|𝐻𝑆𝐸(𝑘)|2 and |𝐻𝑆𝑃(𝑘)|2, respectively. 710 

 To consider both ET and Pr effects on SSM, subject to linearity constrains, the two 711 

conceptual LTI systems can be combined as (Figure S2(c)): 712 

 𝑠𝑠𝑚(𝑡) = 𝑒𝑡(𝑡) ⊗ ℎ𝑠𝑒(𝑡) + 𝑝𝑟(𝑡) ⊗ ℎ𝑠𝑝(𝑡) (A13) 

If we use an identical transfer function to replace the two cascaded transfer functions as the 713 

internal mechanism to capture the total effects of ET and Pr on SSM: 714 

 𝑠𝑠𝑚(𝑡) = 𝑒𝑡(𝑡) ⊗ ℎ𝑠𝑒𝑝(𝑡) + 𝑝𝑟(𝑡) ⊗ ℎ𝑠𝑒𝑝(𝑡) (A14) 

where ℎ𝑠𝑒𝑝(𝑡) is the transfer function of the LTI system shown in Figure 2 and can be performed 715 

by spectral analysis as the two SISO systems discussed above. 716 
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Introduction  

This supplement includes additional figures, tables, and texts to provide more information about 

the contents shown in the main text. 

Specifically, Figure S1 gives a detailed version of Figure 1 shown in the main text. Figure S2 gives 

diagrams of two conceptual linear time-invariant (LTI) systems supporting Figure 2 shown in the 

main text. Figure S3 shows the global mean surface soil moisture content based on the SMAP 

product (Entekhabi et al., 2010) after spatiotemporal normalization. Figure S4 shows the global 

distribution of the coefficient of variation (CV) for 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 across CMIP5 models in 

the three frequency bands. Figure S5 shows the display of the regions that have potential errors 

in the “uncertainty analysis” discussed in the main text. 

Table S1 provides specific information on the models from CMIP5 (Taylor et al., 2012) used in 

this study. Table S2 and S3 give additional specific information on the Fourier transform 

provided in Text S1. Table S4 gives the observational value of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 defined in the 

main text in the three frequency bands. Table S5 gives quantitative differences of 𝐻𝑆𝐸𝑃𝑛
 and 

𝐻𝐸𝐸𝑃𝑛 between CMIP5 models and observation-based data. Table S6 gives the quantitative 

coefficient of variation (CV) of 𝐻𝑆𝐸𝑃𝑛
 and 𝐻𝐸𝐸𝑃𝑛 across the models within CMIP5. 

Text S1 provides more detailed information on Fourier transform, including an overview, 

descriptions of Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), and spectrum 

analysis. Text S2 provides the background of the color of noise and its application based on the 

spectral slope. 



3 
 

 

Figure S1. Processes to get the normalized variability of SSM (𝑆𝑆𝑀𝑛1
, 𝑆𝑆𝑀𝑛2

, and 𝑆𝑆𝑀𝑛3
), ET 

(𝐸𝑇𝑛1
, 𝐸𝑇𝑛2

, and 𝐸𝑇𝑛3
), and Pr (𝑃𝑟𝑛1

, 𝑃𝑟𝑛2
, and 𝑃𝑟𝑛3

), and further the two ratios to analyze 

the effects of ET and Pr on SSM (i.e., 𝐻𝑆𝐸𝑃, 𝐻𝐸𝐸𝑃) from the original time series of SSM, ET, and 

Pr (i.e., 𝑆𝑆𝑀(𝑡), 𝐸𝑇(𝑡), 𝑃𝑟(𝑡)). The left column shows six plots obtained by each 
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corresponding step on the right (take SSM as an example). This example is based on the data 

located at (51.57°N, 1.25°E) of the "GFDL-ESM2M" model within CMIP5 from January 1, 2001, to 

December 31, 2005. 

 

 

 

Figure S2. Conceptual diagrams of the assumed “ET-SSM” LTI system (a) and “Pr-SSM” LTI 

system (b) and a combination of them (c). The excitations (i.e., input) of the system (a) and (b) 

are 𝑒𝑡(𝑡) and 𝑝𝑟(𝑡), respectively. The responses (i.e., output) of the two systems are all 

𝑠𝑠𝑚(𝑡). The transfer functions of the system (a) and (b) are ℎ𝑠𝑒(𝑡) and ℎ𝑠𝑝(𝑡), respectively. 

For figure(c), the inputs are 𝑒𝑡(𝑡) and 𝑝𝑟(𝑡) together, and the output is 𝑠𝑠𝑚(𝑡). The grey 

dashed box includes the two transfer functions of system (a) and (b) and represented by an 

identical transfer function ℎ𝑠𝑒𝑝(𝑡). 

 

 

 

Figure S3. The observational mean SSM (surface soil moisture) after spatiotemporal 

normalization (𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛). More than five years’ data from the SMAP Level-3 product, spanning 1 
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April 2015 - 31 December 2020, are used. We first use original data to get the daily average SSM 

(𝑆𝑆𝑀̅̅ ̅̅ ̅̅ ) for each pixel and then normalize them between zero and one based on the min-max 

normalization as: 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 = (𝑆𝑆𝑀̅̅ ̅̅ ̅̅ − 𝑆𝑆𝑀̅̅ ̅̅ ̅̅

𝑚𝑖𝑛) (𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑚𝑎𝑥 − 𝑆𝑆𝑀̅̅ ̅̅ ̅̅

𝑚𝑖𝑛)⁄  . 

 

 

 

Figure S4. The coefficient of variation (CV) of HSEPn
 (Figure a-c) and HEEPn (Figure d-f) across 

all models in the three frequency bands. Similar to the CV of SSMn (Figure 5d – 5f), for each 

model, the CV of HSEPn
 and HEEPn are calculated as their standard deviation divided by their 

mean values for each frequency band, and we then normalize CV values between zero and one 

across the three frequency bands. The dark grey parts are regions with 𝑆𝑆𝑀̅̅ ̅̅ ̅̅
𝑛 less than 0.1. 
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Figure S5. Display of the regions where have potential errors in the “uncertainty analysis”. Grey 

parts are land surface coverage analyzed in this study. Black parts are regions where being 

masked due to potential uncertainties. 
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Model version Center Forcing 
Spatial 

Resolution 

BCC-CSM1.1 
Beijing Climate Center, China 

Meteorological Administration 

Nat Ant GHG SD Oz Sl Vl SS 

Ds BC OC 
128*64 

BNU-ESM 

College of Global Change and 

Earth System Science, Beijing 

Normal University 

Nat, Ant 128*64 

CanESM2 
Canadian Centre for Climate 

Modeling and Analysis 

GHG, Oz, SA, BC, OC, LU, Sl,Vl 

(GHG includes CO2, CH4, 

N2O, CFC11, effective 

CFC12) 

128*64 

CNRM-CM5 

Centre National de Recherches 

Meteorologiques / Centre 

Europeen de Recherche et 

Formation Avancees en Calcul 

Scientifique (CNRM/CERFACS) 

GHG, SA, Sl, Vl, BC, OC 256*128 

CSIRO-Mk3.6 

Commonwealth Scientific and 

Industrial Research 

Organization/Queensland 

Climate Change Centre of 

Excellence (CSIRO-QCCCE) 

Ant, Nat (all forcings) 192*96 

GFDL-CM3 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SA, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

GFDL-ESM2G 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SD, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

GFDL-ESM2M 
Geophysical Fluid Dynamics 

Laboratory 

GHG, SD, Oz, LU, Sl, Vl, SS, 

BC, MD, OC (GHG includes 

CO2, CH4, N2O, CFC11, 

CFC12, HCFC22, CFC113) 

144*90 

MIROC5 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, SS, 

Ds, BC, MD, OC (GHG 

includes CO2, N2O, 

methane, and fluorocarbons; 

Oz includes OH and H2O2; 

LU excludes change in lake 

fraction) 

256*128 
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MIROC-ESM 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, MD, 

BC, OC 
128*64 

MIROC-ESM-

CHEM 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), National 

Institute for Environmental 

Studies, and Japan Agency for 

Marine-Earth Science and 

Technology 

GHG, SA, Oz, LU, Sl, Vl, MD, 

BC, OC (Ozone is predicted) 
128*64 

MRI-CGCM3 
Meteorological Research 

Institute 

GHG, SA, Oz, LU, Sl, Vl, BC, 

OC (GHG includes CO2, CH4, 

N2O, CFC-11, CFC-12, and 

HCFC-22) 

320*160 

MRI-ESM1 
Meteorological Research 

Institute 

GHG, SA, Oz, LU, Sl, Vl, BC, 

OC (GHG includes CO2, CH4, 

N2O, CFC-11, CFC-12, and 

HCFC-22) 

320*160 

NorESM1-M 
Norwegian Climate Centre 

(NorClim) 
GHG, SA, Oz, Sl, Vl, BC, OC 144*96 

Table S1. Fourteen CMIP5 models used in this research and some of their specific information. 

The model simulations have the same temporal coverage from 01/01/1950 to 12/31/2005. 

 

 

Form of Fourier Transform Time Domain Frequency Domain 

Fourier Transform (FT) aperiodic, continuous aperiodic, continuous 

Fourier Series (FS) periodic, continuous aperiodic, discrete 

Discrete Time Fourier Transform 

(DTFT) 

aperiodic, discrete periodic, continuous 

Discrete Fourier Transform (DFT) periodic, discrete periodic, discrete 

Table S2. Four different forms of Fourier transform. 
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Algorithm Complex multiplication (#) Complex addition (#) 

DFT 𝑁

2
log2 𝑁 

𝑁 log2 𝑁 

FFT 𝑁2 𝑁(𝑁 + 1) 

Table S3. Computation complexity comparison between DFT and FFT. 

 

 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 0.4127 (0.3733) 0.8708 (0.7883) 0.5129 (0.5662) 

𝐻𝑬𝐸𝑃𝑛 0.2064 (0.1966) 0.3393 (0.3601) 0.7586 (0.7622) 

Table S4. Observational-based 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 in the three frequency bands. 𝑯𝑺𝑬𝑷𝒏

 and 

𝑯𝑬𝑬𝑷𝒏 here are original values without normalization across the three frequency bands. The 

numbers in brackets are corresponding values masked by regions with potential uncertainties 

(see main text). 

 

 

Significance 100% significance test 75% significance test 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 

-0.3365 

(-0.2816) 

-0.6792 

(-0.5898) 

0.4797 

(0.4168) 

-0.2871 

(-0.2366) 

-0.4492 

(-0.3797) 

0.4011 

(0.3402) 

𝐻𝐸𝐸𝑃𝑛
 

0.1259 

(0.1471) 

0.0677 

(0.0532) 

-0.0872 

(-0.0919) 

0.0770 

(0.0899) 

0.0515 

(0.0449) 

-0.0597 

(-0.0628) 

Table S5. Multimodel average differences of 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 within CMIP5. The numbers 

in brackets are corresponding values masked by regions with potential uncertainties (see main 

text). 

 

 

Significance 100% significance test 75% significance test 

Frequency band 

(day-1) 
1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 1/7 ~ 1/30 1/30 ~ 1/90 1/90 ~ 1/365 

𝐻𝑆𝐸𝑃𝑛
 

0.5120 

(0.4648) 

0.4409 

(0.4029) 

0.2325 

(0.2174) 

0.5148 

(0.4690) 

0.4489 

(0.4032) 

0.2370 

(0.2261) 

𝐻𝐸𝐸𝑃𝑛
 

0.3352 

(0.3335) 

0.2287 

(0.2153) 

0.0894 

(0.0877) 

0.3474 

(0.3507) 

0.2558 

(0.2466) 

0.0966 

(0.0922) 
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Table S6. Coefficient of variation (CV) of 𝑯𝑺𝑬𝑷𝒏
 and 𝑯𝑬𝑬𝑷𝒏 across the 14 CMIP5 models. 

Values here are original values without normalization across the three frequency bands. The 

numbers in brackets are corresponding values masked by regions with potential uncertainties 

(see main text). 
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Text S1. Fourier Transform 

1. Overview 

Fourier transform is a linear integral transform. The basic idea was first systematically put 

forward by French mathematician and physicist Joseph Fourier in 1822. The purpose of the 

Fourier transform is to establish a specific transformation relationship between the signal with 

time as the independent variable and the frequency spectrum function with frequency as the 

independent variable, that is, to realize the transformation from the time domain to the 

frequency domain. Considering various types of signals (periodic, aperiodic, continuous, 

discrete), there can be four different forms of Fourier transform. Their corresponding periodicity 

and continuity in the time domain and frequency domain are shown in Table S2. 

Generally speaking, the Fourier transform is referred to the first form in Table S2, which can 

be expressed as: 

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 (1) 

 𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡
∞

−∞

𝑑𝑡 (2) 

where 𝑥(𝑡) is the signal in the time domain, and 𝑋(𝑓) is the spectrum function of 𝑥(𝑡) in 

the frequency domain. 𝑥(𝑡) and 𝑋(𝑓) form a transform pair. 

For the first three forms of Fourier transform in Table S2 (i.e., FT, FS, and DTFT), since there 

is always a variable that is continuous in either time or frequency domain, they are not suitable 

for the calculation by computer. Compared to the first three forms, DFT can be applied on the 

computer since its transform pairs are discrete in both time and frequency domains. 

2. Discrete Fourier Transform (DFT) 

Discrete Fourier Transform (DFT) is a discrete form of continuous Fourier transform in both 

time and frequency domains. DFT is aimed at a finite-length sequence, and its essence is to 

discretize the continuous Fourier transform of the sequence and transform the sampling of the 

signal in the time domain into the sampling of DTFT in the frequency domain. In this way, the 

discretization of the frequency domain results in a periodic time domain, so the Fourier series is 

limited to one cycle. The transformation pair in the form of DFT series can be expressed as: 

 𝑋(𝑘𝑓1) = ∑ 𝑥(𝑛𝑇𝑠)𝑒−𝑗
2𝜋
𝑁

𝑛𝑘

𝑁−1

𝑛=0

 (3) 

 𝑥(𝑛𝑇𝑠) =
1

𝑁
∑ 𝑋(𝑘𝑓1)𝑒𝑗

2𝜋
𝑁

𝑛𝑘

𝑁−1

𝑘=0

 (4) 

where 𝑋(𝑘𝑓1) is the periodic discrete time function in the time domain, 𝑥(𝑛𝑇𝑠) is the periodic 

discrete frequency function in the frequency domain. Here, the time interval 𝑇𝑠 of the discrete 

time function and the repetition period 𝑓𝑠 of the frequency function satisfy: 𝑓𝑠 =
1

𝑇𝑠
, and the 
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interval 𝑓1 of the discrete frequency function and the period 𝑇1 of the time function satisfy: 

𝑓1 =
1

𝑇1
. Besides, there are the following relationships in each cycle of the time domain and the 

frequency domain: 

 
𝑇1

𝑇𝑠
= 𝑁 or 

𝑓𝑠

𝑓1
= 𝑁 (5) 

that is there are N sampling points in each cycle. 

The discrete Fourier series is commonly used for periodic sequence analysis. Actually, the 

periodic sequence only has a finite number of meaningful sequence values, so the finite-length 

sequence 𝑥(𝑛) of length N can be regarded as a period of the periodic sequence of period N, 

and the DFT of a finite sequence can be calculated by the Fourier series of the periodic 

sequence. The transform pair of DFT of a finite sequence can be expressed as: 

 𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1 (6) 

 𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑊𝑁

−𝑛𝑘

𝑁−1

𝑛=0

, 0 ≤ 𝑘 ≤ 𝑁 − 1 (7) 

where 𝑊𝑁 = 𝑒−𝑗
2𝜋

𝑁 . 

3. Fast Fourier Transform (FFT) 

Because DFT calculation is relatively cumbersome, DFT has not been widely used for a long 

time, until 1965, Curry and Atlas proposed a fast DFT algorithm (Cooley & Tukey, 1965). This 

method and a series fast of DFT algorithms later are collectively referred to as Fast Fourier 

Transform (FFT) (Cochran et al., 1967; Gentleman & Sande, 1966). There are two commonly 

used FFT methods, one is decimation-in-time (DIT), another one is decimation-in-frequency 

(DIF). FFT is not a new transformation but a fast algorithm to implement DFT. 

Recall the equation of DFT for N-point sequence, generally, 𝑥(𝑛) and 𝑊𝑁
𝑛𝑘 are plural. 

Each calculation of an 𝑋(𝑘) value requires N complex multiplications and (𝑁 − 1) complex 

additions. Therefore, for an N-point sequence, DFT needs to do 𝑁2 complex multiplications 

and 𝑁(𝑁 − 1) complex additions, which is a very large amount of computation. 

FFT utilizes the periodicity and symmetry of 𝑊𝑁
𝑛𝑘 to decompose the DFT operation with a 

length of N points into a shorter sequence of DFT operations. Specifically, the periodicity of 

𝑊𝑁
𝑛𝑘 can be expressed as: 

 𝑊𝑁
𝑛𝑘 = 𝑊𝑁

((𝑛𝑘))𝑁  (8) 

where ((𝑛𝑘))𝑁 is the value for 𝑛𝑘 modulo of N, and the symmetry of 𝑊𝑁
𝑛𝑘 can be expressed 

as: 

 𝑊𝑁

(𝑛𝑘+
𝑁
2

)
= −𝑊𝑁

𝑛𝑘 (9) 



13 
 

The N-point DFT can be decomposed into two sets of 
𝑁

2
-point DFT, and then take the sum of 

them, which can be expressed as: 

 𝑋(𝑘) = ∑ 𝑥(2𝑟)𝑊𝑁
2

𝑟𝑘

𝑁
2

−1

𝑟=0

+ 𝑊𝑁
𝑘 ∑ 𝑥(2𝑟 + 1)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

 (10) 

 𝑋 (
𝑁

2
+ 𝑘) = ∑ 𝑥(2𝑟)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

− 𝑊𝑁
𝑘 ∑ 𝑥(2𝑟 + 1)𝑊𝑁

2

𝑟𝑘

𝑁
2

−1

𝑟=0

 (11) 

where 𝑘 = 0,1, … ,
𝑁

2
− 1, 2𝑟 represents even numbers, and 2𝑟 + 1 represents odd numbers. 

Equation (10) and equation (11) give the value of the first 
𝑁

2
 points and the last 

𝑁

2
 points of 

𝑋(𝑘), respectively. 

By performing FFT, the computation complexity can be reduced from 𝑂(𝑛 ∗ 𝑛) to 𝑂(𝑛 ∗

𝑙𝑜𝑔𝑛). The computation complexity comparison between DFT and FFT is shown in Table S3. 

4. Spectrum analysis 

Spectrum (including amplitude spectrum and phase spectrum) describes signal 

characteristics in the frequency domain. Spectrum reflects the distribution of the amplitude and 

phase of the components contained in the signal with frequency. Spectrum analysis is the 

process of obtaining the frequency structure of the signal by calculating the amplitude and 

phase of the signal at each frequency (Kay & Marple, 1981). 

For computer applications, an analog signal 𝑥(𝑡) is usually converted into a discrete-time 

signal 𝑥(𝑛) through sampling in the time domain, and then use DFT and FFT for spectrum 

analysis, which can be expressed as: 

 𝑋(𝑘) = 𝐷𝐹𝑇[𝑥(𝑛)] = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

= 𝑋𝑅(𝑘) + 𝑗𝑋𝑙(𝑘) (12) 

The amplitude and phase corresponding to each frequency value are as follows: 

 |𝑋(𝑘)| = √𝑋𝑅
2(𝑘) + 𝑋𝑙

2(𝑘) (13) 

 𝜃(𝑘) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑋𝑙(𝑘)

𝑋𝑅(𝑘)
 (14) 

where 𝑘 = 0,1, … , 𝑁 − 1, equation (13) and (14) are the amplitude and phase for k frequency, 

respectively. 

Besides, the power spectrum can also be used to describe the signal, which indicates the 

energy of the signal varying with frequency in the frequency domain. The energy of the signal is 

based on its amplitude and can be expressed as: 

 𝐸(𝑘) = |𝑋(𝑘)|2 = 𝑋𝑅
2(𝑘) + 𝑋𝑙

2(𝑘) (15) 
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Text S2. Color of noise 

Noise is a stochastic process. The power spectrum, which describes the variance as a sum of 

sinusoidal waves of different frequencies, is an important characteristic of environmental noise 

(Vasseur and Yodzis, 2004). There are many ways to characterize different noise sources. Noise 

distributed in the whole frequency domain and with the form that variance scales with frequency 

according to an inverse power law, 1 𝑓𝛽⁄ , can be used to describe noise in nature, and is called 

power-law noise (Mandelbrot, 1982). For power-law noise, its spectrum can be used to 

characterize different noise and categorize noise into different “colors”. The color of the 

environmental noise has been investigated for some time. For instance, it was brought to 

attention in ecology by Steele, who proposed the color of terrestrial and marine noise should be 

different (Steele, 1985). Based on this, a wide range of studies examined different climatological 

and hydrological variables based on various colored noise and their influence on population 

dynamics (Vasseur and Yodzis, 2004). In this paradigm, white noise (𝛽 = 0) is a special case with 

the same variance at all frequencies. Therefore, the power spectral density of white noise is flat, 

and its corresponding spectral slope is zero. The spectrum of precipitation sets was assumed as 

white noise in previous studies (Delworth and Manabe, 1988; Katul et al., 2007; Nakai et al., 2014). 

Compared to white noise, colored noise refers to noise whose power spectral density function is 

not flat, which is dominated by frequencies in a certain band. 

According to the slope of the power spectral density (i.e., 𝛽 in inverse power law 1 𝑓𝛽⁄ ), 

the colored noise can be mainly divided into five types: violet noise, blue noise, pink noise, red 

noise (also known as Brownian noise (Gilman et al., 1963)), and black noise. In a limited frequency 

band, the spectral density of blue and violet noise increases with the increase of frequency by 3dB 

and 6dB per octave, and the spectral density of pink and red noise decreases with the increase of 

frequency by 3dB and 6dB per octave. In other words, the spectral density of blue and violet noise 

is proportional to the frequency and the square of the frequency, respectively, while the spectral 

density of pink and red noise is inversely proportional to the frequency and the square of the 

frequency, respectively. Therefore, the spectral slopes of violet, blue, pink, and red noise are 2, 1, 

-1, and -2, and the spectral slope of black noise is less than -2 (Nakai et al., 2014). 
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