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Abstract

While meteorology and aerosols are identified as key drivers of snow cover variability in High Mountain Asia (HMA), complex

non-linear interactions between them are not adequately quantified. Here, we attempt to unravel these interactions through a

simple relative importance (RI) analysis of meteorological and aerosol variables from ERA5/CAMS-EAC4 reanalysis against

satellite-derived snow cover from MODIS across 2003-2018. Our results show a statistically significant 7% rise in the RI of

aerosol-meteorology interactions (AMI) in modulating snow cover during late snowmelt season (June-July), notably over low

snow-covered (LSC) regions. Sensitivity tests further reveal that the importance of meteorological interactions with individual

aerosol species are more prominent than total aerosols over LSC regions. We find that the RI of AMI for LSC regions is

clearly dominated by carbonaceous aerosols, on top of the expected importance of dynamic meteorology. These findings clearly

highlight the need to consider AMI in hydrometeorological monitoring, modeling, and reanalyses.
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Key Points 9 

 10 
1. Interactions between aerosols and meteorology are significant during late snowmelt 11 

(June-July) over low snow-covered regions in HMA. 12 
2. Species related interactions drive the seasonal variability of the overall relative 13 

importance. 14 
3. Carbonaceous aerosols are more relevant than mineral dust during late snowmelt. 15 

 16 

Abstract 17 
 18 
While meteorology and aerosols are identified as key drivers of snow cover variability in High 19 
Mountain Asia (HMA), complex non-linear interactions between them are not adequately 20 
quantified. Here, we attempt to unravel these interactions through a simple relative importance 21 
(RI) analysis of meteorological and aerosol variables from ERA5/CAMS-EAC4 reanalysis against 22 
satellite-derived snow cover from MODIS across 2003-2018. Our results show a statistically 23 
significant 7% rise in the RI of aerosol-meteorology interactions (AMI) in modulating snow cover 24 
during late snowmelt season (June-July), notably over low snow-covered (LSC) regions. 25 
Sensitivity tests further reveal that the importance of meteorological interactions with individual 26 
aerosol species are more prominent than total aerosols over LSC regions. We find that the RI of 27 
AMI for LSC regions is clearly dominated by carbonaceous aerosols, on top of the expected 28 
importance of dynamic meteorology. These findings clearly highlight the need to consider AMI in 29 
hydrometeorological monitoring, modeling, and reanalyses.  30 
 31 
Plain Language Summary 32 
 33 
Understanding the changes in snow cover over glaciers in High Mountain Asia (HMA) is 34 
important yet challenging. Despite its impact on water resources, physical processes that drive 35 
these changes are complex. In particular, large-scale weather patterns, together with aerosol 36 
pollution hotspots in the vicinity, and its steep elevation strongly interact with each other. We use 37 
a statistical approach to assess the relevance of these interactions using geophysical data from 38 
present day reanalysis and observed snow cover extent from satellite products for two decades. 39 
We find that during the late snowmelt period from June to July, interactions between aerosols and 40 
meteorology are significant, specifically in low snow cover regions. Interactions of individual 41 
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aerosol species, especially carbonaceous aerosols like black carbon are more important than total 42 
aerosol concentration. This approach in quantifying the interactions of these processes can help 43 
improve the monitoring and modeling of snow hydrology. Representing these relevant interactions 44 
in current models and reanalysis of hydrometeorology can lead to more accurate predictions of the 45 
state of snow for critical regions like HMA. 46 
 47 
 48 
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 50 
 51 
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1 Introduction 54 

The High Mountain Asia (HMA) region, often termed as the Third Pole, contains the largest 55 
volume of ice outside the poles (Farinotti et al., 2019). Glaciers in HMA provide the hydrological 56 
needs of approximately 1.5 billion people via snowmelt and glacial discharge from its major rivers 57 
(e.g., Bolch et al., 2012; Pritchard, 2019). As indicators of climate change, glaciers in HMA have 58 
been studied through satellite observations to better understand the implications on the water 59 
supply in downstream inhabited regions and natural hazards. Snow cover (SC) and its extent is a 60 
widely used parameter to characterize the spatiotemporal distribution of these glaciers since it 61 
serves as a conduit between surface processes and the atmosphere over it. In fact, observational 62 
studies (Notarnicola, 2020) and future projections (Lalande et al., 2021) report that approximately 63 
86% of HMA areal extent exhibit negative trends in SC due to climate change. 64 

Recent studies have attributed this decline to atmospheric teleconnections (e.g., Wang et al., 2021), 65 
solar radiation, temperature, precipitation, and their seasonal fluctuations (e.g., Bhattacharya et al., 66 
2021; Johnson & Rupper, 2020; Sahu & Gupta, 2020 and references therein). In addition, there 67 
are topographic controls on SC variability and associated runoff due to HMA’s steep and complex 68 
terrain (Gurung et al., 2017; Jain et al., 2009; She et al., 2015). However, the response of glaciers 69 
to climate is not strictly linear and often complex. For example, increase in temperature is followed 70 
by snowmelt and decrease in snow albedo (reflectivity) which further continues snowmelt. 71 
Decrease in precipitation (that fall as snow) associated with warming maintains this feedback. 72 
Although temperature and snowmelt decrease with elevation, glaciers at higher elevations are more 73 
susceptible to changes in temperature and precipitation (Pepin et al., 2015; Rangwala & Miller, 74 
2012). Spatial heterogeneity in SC variability is thus a common observation over HMA because 75 
of these non-linear processes, which often makes it more difficult to estimate the sensitivity of SC 76 
to different climatic factors. 77 

Atmospheric aerosols and their deposition, particularly light absorbing particles (LAPs) like dust 78 
and black carbon (BC) also add to the complexity in snow-climate processes by accelerating 79 
snowmelt (e.g., He et al., 2014; Lee et al., 2017; Li et al., 2022; Xu et al., 2016). Deposition of 80 
LAPs onto snow causes snow darkening which reduces snow albedo and subsequently enhances 81 
snowmelt. This continues as the underlying darker surface beneath the snow remains exposed. 82 
This aerosol-induced snow albedo effect is identified as one of the primary but highly uncertain 83 
agents affecting climate change in addition to greenhouse gases (Shindell and Faluvegi, 2009; 84 
Skiles et al., 2018 and references therein). Among LAPs, most studies have placed importance on 85 
BC deposition rather than dust, owing to its absorption efficiency and proximity of HMA to 86 
regions with strong combustion activities (Bond et al., 2013 and references therein; Das et al., 87 
2022; Gul et al., 2021; Schmale et al., 2017). Other studies, however, report the importance of dust 88 
radiative effects on snowmelt, mostly arising from large-scale meteorological transport and high 89 
elevation (Hu et al., 2020; Kaspari et al., 2014; Sarangi et al., 2019, 2020). This points to the 90 
uncertainty in determining the comparative effects between different LAPs as such studies have 91 
been limited by far. 92 
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While these studies have elucidated the contribution of both meteorology and aerosols, albeit 93 
separately, there is a compelling need to quantify their relative importance and the interactions 94 
between different drivers of SC evolution. Here, we analyze the relevance of these factors by 95 
conducting a statistical analysis of hydrometeorological variables from the European Centre for 96 
Medium-Range Weather Forecasts (ECMWF) reanalysis onto satellite-derived snow cover 97 
fraction (SCF) from Moderate Resolution Imaging Spectroradiometer (MODIS). Although these 98 
complex interactions can be studied through modeling experiments (e.g., using the Regional 99 
Climate Model (RegCM4.6) coupled with Snow, Ice and Aerosol Radiation (SNICAR) (Usha et 100 
al., 2022)), such an approach is often computationally expensive and entails rigorous assessment. 101 
Instead, we use a multivariate regression method with non-linear interaction terms of reanalysis 102 
state variables onto observed SCF to quantify the relative contribution of these interactions. From 103 
these analyses, we aim to unravel these interactions that are otherwise already embodied in these 104 
observationally constrained models. In Section 2, we described the methodology and datasets used. 105 
We discuss our results of our relevance analysis in Section 3 and highlight implications in Section 106 
4. 107 

2 Methodology 108 

2.1 Study Region 109 

A total of 6 glacier regions (GRs) are defined for HMA following the classification in Randolph 110 
Glacier Inventory version 6 (Pfeffer et al., 2014). This comprises a total of 15 glacier basins that 111 
are aggregated into 6 major GRs for this study. We show in Figure 1a the geographical extent of 112 
the glacier basins over HMA. GRs marked in red (blue) denote regions of high snow cover or HSC 113 
(low snow-covered or LSC) based on spatiotemporal mean of SCF which ranges from 4% to 20% 114 
(1 to 12%) across the most recent 16-year period from 2003 to 2018.  115 

2.2 Data 116 

2.2.1 MODIS Snow Cover (Predictand) 117 

We use daily snow cover fraction (SCF) or extent maps at a spatial resolution of 0.05o as the 118 
predictand in our regression analysis. These SCF datasets, which are obtained from the National 119 
Snow and Ice Data Center (NSIDC), are satellite derived SCFs based on the Normalized 120 
Difference Snow Index (NDSI) (Hall & Riggs, 2007). Specifically, we use MODIS (Terra and 121 
Aqua) Daily Level 3 (L3) Global 0.05 Deg Climate Modeling Grid (CMG) Version 6 product with 122 
pixels having only recommended quality flags of 0. These products have been used in previous 123 
studies where they reported promising results and high accuracy over HMA (Immerzeel et al., 124 
2009; Li et al., 2018; Pu et al., 2007). 125 
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2.2.2 ECMWF Reanalyses (MET and AER Predictors) 126 

ERA5. We use select hydrometeorological state variables from ERA5 reanalysis (Hersbach et al., 127 
2020) at a spatial resolution of 0.25o as one group of predictors in our regression. Considering the 128 
scarcity of observations across HMA, its remote location and complex terrain, reanalyses such as 129 
ERA5, which is a fifth-generation reanalysis from ECMWF, provide a suitable option for long-130 
term study of this region. ERA5 are used for glacier related studies and as atmospheric forcing for 131 
regional downscaling efforts (e.g., Arndt et al., 2021; Azam & Srivastava, 2020; Khanal et al., 132 
2021; Sahu & Gupta, 2020). The meteorological variables, defined hereafter as MET, are 133 
aggregated from hourly to daily resolution to match MODIS SCF temporal resolution. These MET 134 
variables include a) temperature (2-m temperature, skin temperature), b) cloud cover (total, low, 135 
mid, and high-level cloud), c) dynamic circulation (mean sea level pressure, geopotential height 136 
at 500 hPa and 300 hPa, 10-m zonal and meridional winds), d) radiation related surface fluxes 137 
(sensible and latent heat), and e) moisture (2-m specific humidity, sum of large-scale and 138 
convective rain rate). We note that temperature, precipitation, surface radiative fluxes along with 139 
cloud cover are considered to be the most important factors in glacier mass balance studies 140 
(Armstrong & Brun, 2008; Ohmura et al., 1992; Pepin & Norris, 2005). The dynamic circulation 141 
variables are chosen considering the association of wind-driven processes and atmospheric 142 
teleconnections on SC (Mott et al., 2018; Yuan et al., 2008). ERA5 uses a single-layer snow model 143 
(Dutra et al., 2010), where snow related parameters are calculated using thermodynamic variables 144 
to estimate the land surface response to atmospheric forcing. Notably, aerosol related 145 
parameterizations are absent in the scheme, which could be relevant given previously described 146 
interactions between aerosols and the cryosphere. 147 

CAMS-EAC4. We use the chemical and aerosol reanalysis from Copernicus Atmosphere 148 
Monitoring Service (CAMS) ECMWF Atmospheric Composition (EAC4) for aerosol related 149 
variables in our predictors. CAMS-EAC4 uses the up-to-date version of the Integrated Forecast 150 
System (IFS) and assimilates space-based aerosol optical depths (AOD) including MODIS. 151 
CAMS-EAC4 provides 3-hourly 0.75o resolution data which we aggregate into daily data to match 152 
MODIS SCF. It uses an aerosol module that simulates major tropospheric aerosol species (Inness 153 
et al., 2019). Aerosol variables, defined as AER hereafter,  consists of both AOD at 550 nm and 154 
surface mass mixing ratios (SMXR) that we grouped according to species; i.e., a) carbonaceous 155 
(black carbon or BC and organic matter or OC AOD, hydrophilic and hydrophobic BC and OC 156 
SMXR), b) dust (DU) (AOD and the sum of three types of DU SMXRs at three size bins), c) 157 
sulphate (SU) (AOD and SMXR), d) others (sea salt or SS AOD and the sum of three types of SS 158 
SMXRs at three size bins). Several evaluation studies over HMA and other regions have used 159 
CAMS-EAC4 successfully albeit with some biases (e.g., Fu et al., 2022; Gueymard & Yang, 2020)  160 

2.2.3 GMTED 2010 Elevation (ELEV Predictor) 161 

We use the Global Multi-resolution Terrain Elevation Data (GMTED 2010) for the elevation 162 
variable as one of our predictors. This is a global digital elevation model with elevation data given 163 
at three resolutions: 1000, 500 and 250 m (Danielson & Gesch, 2011) with reported uncertainty of 164 
about 4 m over HMA (Carabajal et. al., 2011; Grohmann, 2016). The dataset was downloaded 165 
from temis.nl where several coarser resolutions are also available (e.g., 0.75o, 0.50o among others).  166 
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SCF, MET and ELEV are regridded to a resolution of 0.75o to match the spatial resolution of AER 167 
variables. Figure 1 shows the spatial distribution of multi-year averaged SCF and key relevant 168 
meteorology and aerosol variables over HMA. We see an overestimation of SCF in ERA5 (Figure 169 
1b) compared to MODIS SCF. The large positive bias for ERA5 SCF has been observed in a 170 
previous study which has been attributed to excessive snowfall (Orsolini et al., 2019). The mean 171 
spatial patterns of these meteorological and aerosol variables qualitatively reflect the non-linear 172 
relationships between SCF, MET, and AER which we will further quantify in our regression 173 
analysis. 174 

2.3 Relative Importance Analysis  175 

For each GR, a multiple linear regression (MLR) model of daily 0.75o MODIS SCF for each month 176 
across all years (2003-2018) is formulated using AER, MET, and ELEV as predictors. We also 177 
considered second-order product interaction terms between AER, MET, and ELEV to account for 178 
non-linear relationships between these geophysical variables and SCF (Cortina, 1993; Jaccard et 179 
al., 1990). A similar approach on using second-order terms is used in previous studies by Ho Park 180 
et al. (2021) and Guo et. al. (2014). The MLR model is expressed in Equation 1 as: 181 

 
 

                                      (1) 

where y is the standardized daily MODIS SCF, xi are the standardized predictor variables, and xixi’ 182 
are the two-way product interaction terms using the standardized values of xi. Standardization 183 
refers to rescaling a variable to a mean of 0 and a standard deviation of 1. The partial coefficients 184 
α1...., α378 represent the relative importance of each term in the MLR model. The first 27 terms on 185 
the right-hand side of Equation 1 comprise of main effects depicted by the individual AER, MET, 186 
and ELEV variables while the rest of 351 terms consist of interaction effects shown as product 187 
terms among the individual predictors. We then classify the interaction terms into 5 groups: 1) 188 
AER-AER (between speciated AOD and SMXR), 2) AER-MET (between aerosol and 189 
meteorological variables), 3) AER-ELEV (between elevation and aerosol variables), 4) MET-190 
ELEV (between elevation and meteorological variables), and 5) MET-MET (between 191 
meteorological variables themselves). 192 

We use the relative importance (RI) analysis introduced by Johnson (2000) and further described 193 
by Tonidandel & LeBreton (2011) to minimize multi-collinearity between the explanatory 194 
variables. This algorithm quantifies the proportion of the explained variance in SCF. The relative 195 
importance or weight is estimated by transforming the original predictors to their orthogonal 196 
equivalent before calculating the regression coefficients. Each relative weight is interpreted to be 197 
the independent contribution of the predictor terms as a fraction of the explained variance in SCF. 198 
Details of the algorithm are provided in Supplementary Information. Finally, we implement a 199 
bootstrapping procedure with 1000 iterations as suggested by Efron & Tibshirani (1986) to 200 
estimate confidence intervals for these weights.  201 
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3 Results and Discussions 202 

Figure 2a shows the seasonality of SCF for both HSC and LSC regions, where HSC regions show 203 
a higher degree of SCF variability with an interquartile range (IQR) of 9% while LSC regions have 204 
lower variability (IQR of 4%). The results of the monthly RI analysis of the predictors and their 205 
interactions for HSC and LSC regions are shown in Figure 2b-j. We grouped the relative weights 206 
of predictors from the monthly MLR models based on their interactions (defined in Section 2.2). 207 
Aerosol interactions with meteorology (AMI) are grouped as AER-MET + AER-AER + AER 208 
while sole meteorology interactions are defined as MET-MET + MET. Interactions with elevation 209 
were treated separately. For LSC regions, RI of AMI shows a statistically significant 7% increase 210 
from June to July as seen in Figure 2d, compared to HSC regions where the RI remains relatively 211 
stable for all months. Meteorology interactions for LSC regions show a corresponding statistically 212 
significant 13% decrease in RI from June to July. The period of May to June over HMA is 213 
attributed to accelerated snowmelt along with high aerosol loading. The increase in AMI during 214 
the late snowmelt period (June-July) is consistent with studies demonstrating the radiative impact 215 
of LAPs that in turn increase tropospheric temperature inducing convection, moisture transport, 216 
and cloud formation over the Himalayas and the Tibetan Plateau (Lau et al., 2010; Sharma et al., 217 
2022; Usha et al., 2020). Elevation related interactions show higher degree of variability in their 218 
relevance for both HSC and LSC regions which are dominated by elevation interactions with 219 
meteorology (MET-ELEV) with a maximum of 20% in RI (Figure 2g-j). While AER-ELEV 220 
interactions are relatively negligible, its monthly variability in RI for HSC regions is significant. 221 
We note that there is increasing evidence of amplified warming with elevation in mountainous 222 
regions of HMA that supports our results (Dimri et al., 2022; Ghatak et al., 2014; Guo et al., 2021; 223 
Li et al., 2020). Complex processes between cloud cover, radiation, and moisture as well as 224 
aerosols at higher elevations have also been associated with elevation dependent warming. 225 
Carbonaceous aerosols like BC have prominent snowmelt effects at lower elevations, while dust-226 
induced snowmelt dominates at higher elevations (Sarangi et al., 2020; Xu et al., 2016). 227 

We then performed a series of sensitivity tests (as described in Table S1) by eliminating certain 228 
variables from each MLR model and comparing the RI of interactions in LSC regions with the 229 
“control” model results shown in Figure 2.  Monthly RI of AMI are shown in Figure 3a. Cases 2-230 
4 show a maximum of 24% decrease in RI compared to Cases 0 and 1. The characteristic peak in 231 
aerosol interactions as observed in Figure 2c-d during June and July are not noticeable when 232 
interaction terms containing individual aerosol species are removed (Case 2). This clearly suggests 233 
that species-related interactions are more relevant for SC variability in LSC regions than 234 
interactions related to total aerosol loading. Except Case 2, the characteristic peak is still observed 235 
for AMI. This confirms the significance of the increase in RI of aerosols for SC variability during 236 
late snow melt season. For meteorology related interactions, elevation appears to play an important 237 
role as observed in Case 1 of Figure 3b. Removing elevation from the MLR model decreases the 238 
RI of meteorology interactions by up to 19% suggesting the high sensitivity of SC variability to 239 
MET-ELEV interactions. As previously described, past studies have pointed out the sensitivity of 240 
SC to elevation over HMA in addition to trends in temperature and precipitation, which is 241 
consistent with our findings (Jain et al., 2009; Li et al., 2018; Rangwala & Miller, 2012; She et al., 242 
2015; Wang et al., 2019). For HSC regions, our sensitivity tests show similar results as to LSC 243 
regions but with no significant change in RI of aerosol or meteorology interactions, confirming 244 
the sensitivity of aerosol and meteorology related interactions in LSC regions. 245 
 246 
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We present in Figure 4 the decomposition of the aerosol and meteorology related interactions for 247 
LSC regions into different predictor types. Among aerosol related interactions, we find that the RI 248 
of carbonaceous aerosols is the highest across all months with the characteristic peak in the late 249 
snowmelt season as observed in Figure 2. In addition, carbonaceous aerosols show the highest 250 
month-to-month variability of maximum 6% in RI compared to other aerosol types (Figure 4b). 251 
During this period, carbonaceous aerosols show the maximum rise (3%) in RI. A possible 252 
explanation could be that carbonaceous aerosols are particularly high in abundance from April to 253 
May (pre-monsoon) over South and East Asian regions surrounding HMA, which could lead to 254 
significant interactions with meteorology in June to July (Das et al., 2022; Kumar et al., 2011; Lau 255 
et al., 2006; Zhao et al., 2017). Specifically, Zhao et al. (2017) reported high BC loading during 256 
pre-monsoon over the Tibetan Plateau. Springtime crop-residue burning in northern India has also 257 
been shown to increase black carbon and AOD levels in the central Himalayas by ~145% and 258 
~150%, respectively (Kumar et al., 2011). Among meteorological interactions shown in Figure 4a, 259 
we see that circulation related variables have the highest RI followed by cloud cover and 260 
temperature, with the characteristic dip in RI during late snow melt (June and July). Thus, 261 
interactions related to circulation contribute significantly to the SC variability in LSC regions 262 
followed by cloud cover and temperature. Circulation related variables account for large-scale 263 
atmospheric dynamics that can influence the surface energy budget and snow mass balance. We 264 
hypothesize that dynamical variables contribute to the relatively higher importance across all 265 
months, as studies have reported the possible relationships between glaciers in HMA and the 266 
relevant atmospheric teleconnections that influence the Asian monsoon system (Arndt et al., 2021; 267 
Forsythe et al., 2017; Priya et al., 2017; Wu et al., 2012; Yuan et al., 2008; Zhao et al., 2007). 268 

4 Summary and Implications 269 

We estimated the monthly relative importance (RI) of AER and MET interactions (AMI) from 270 
ECMWF reanalyses in driving MODIS SC over six HMA glacier regions. We find that snow cover 271 
fraction is particularly sensitive to AMI during snowmelt period, especially in low snow-covered 272 
(LSC) regions. MET interactions on the other hand exclusively dominate the RI for SC variability 273 
in both high (HSC) and LSC regions. We also find that the interactions related to carbonaceous 274 
aerosols are the highest in their relevance to SC compared to other aerosol species like dust. More 275 
importantly, our sensitivity tests show that species-related interactions matter more than the total 276 
aerosol loading in association to SC variability, while MET-ELEV interactions matter more during 277 
snowmelt season. These findings appear to be very consistent with literature. Albeit simplified 278 
relative to machine/deep learning (ML/DL) approaches, this RI estimation using interaction terms 279 
offers a useful and explainable diagnostic tool in unraveling complex non-linear interactions that 280 
could otherwise be quantified through more expensive global sensitivity analyses using Earth 281 
system models (ESM). Our results on the importance of AMI during snowmelt highlights the need 282 
to: 1) improve observing system on snow hydrology in this region by augmenting with in-situ and 283 
remotely sensed aerosol and meteorological monitoring; and 2) represent these interactions in 284 
coupled ESMs and reanalyses like ERA5 to improve the predictive capability of snow hydrology. 285 
While this study only examines interactions embodied in ERA5/CAMS-EAC4, we view this to be 286 
a useful starting point in unfolding non-linear interactions in ESMs. We note however that future 287 
studies on associating these interactions with snow albedo, snow depth or snow water equivalent, 288 
as well as investigating other modeling/reanalysis systems like NASA MERRA-2 are essential to 289 
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corroborate our findings. Application of promising ML/DL algorithms on estimating relevance 290 
should also be considered.  291 
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Figure 1. Time average (2003-2018) of daily geophysical products over HMA with geographical 
outlines from RGI v6. (a and b): snow cover fraction from MODIS Level 3 data and ERA5 
reanalysis, respectively. Regions marked in red denote high snow cover (HSC) regions while those 
in blue denote low snow cover (LSC) regions. (c and d): 2-m temperature and total cloud cover 
fraction from ERA5 reanalysis. (e): sum of organic matter and black carbon surface mass mixing 
ratios from CAMS-EAC4 reanalysis. (f): dust surface mass mixing ratios from CAMS-EAC4 
reanalysis. 
 



 
 

 
Figure 2. (a): Snow cover fraction averaged over high and low snow-covered (HSC and LSC) 
regions for each month. The shaded regions refer to the range of monthly snow cover for both 
HSC and LSC regions. (b): Monthly relative importance (RI) of different groups of interactions 
(MET-MET+MET in green, AER+AER-AER+AER-MET in blue, MET-ELEV in orange and 
AER-ELEV in red). RI for elevation (ELEV) not shown as it is negligible. (c-d): Monthly RI of 
aerosol (green) and meteorology (blue) interactions over high and low snow-covered regions. (e-
f): Gradient of monthly relevance for aerosol and meteorology interactions. (e-h): Monthly RI of 
aerosol (red) and meteorology (orange) interactions with meteorology. (i-j): Gradient of monthly 
RI of elevation interactions. Shaded regions show the interquartile range (75th to 25th percentile) of 
RI based on 1000 bootstrap iterations. The gradient for a particular month is based on a forward 
difference between that month and the prior month.  
 
 



 
 
 

 
Figure 3. Monthly relative importance (RI) of aerosol (a) and meteorology (b) interactions for 
different sensitivity tests outlined in Table S1. 
 
 
  



 

 
Figure 4. Monthly relative importance (RI) for meteorology (a) and aerosol (b) interactions 
decomposed to different types of variables outlined in Section 2 (Data).  
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Introduction Here, we outline the algorithm for relative importance analysis used in

our study in Text S1. A summary of the sensitivity tests used for our study is in Table

S1. Figure S1 consists of a graphical overview of various geophysical drivers that regulate

snow cover over glacial regions.
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Text S1. Relative Weight Analysis

We define a matrix X of dimensions N ⇥ P such that columns correspond to P pre-

dictors and the rows to N samples of space and time, with standardized values (cen-

tered by subtracting the mean from each column and dividing each column by its stan-

dard deviation). We also define the column vector Y of dimensions N ⇥ 1 as the out-

come/response/dependent variable containing standardized values of N samples of space

and time.

Step 1: We then perform a singular value decomposition on X as follows,

X
N⇥P

= U
N⇥R

⌃
R⇥R

VT

R⇥P
(1)

where R  min {N,P}, U is the eigenvector matrix associated with XXT
, V

is the eigenvector matrix associated with XTX and ⌃ is a diagonal matrix with

values equal to the square roots of the eigenvalues of XXT
and XTX.

Step 2: Then we find the orthogonal approximation of X by

Z
N⇥P

= U
N⇥R

VT

R⇥P
(2)

where Z is related to the original X with a new set of P predictors that are

uncorrelated with each other.

Step 3: We regress the response/outcome Y on the new set of predictors Z and estimate

the regression coe�cients �p where p = 1, 2, . . . , P

�
P⇥1

= (ZTZ)�1

P⇥P

ZT

P⇥N
Y

N⇥1 (3)

Y
N⇥1

=

PP
p=1

�p Zp
N⇥1

(4)
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Step 4: As Z is an approximation of X, we also regress the original X on the orthogonal

Z and estimate the regression coe�cient �p0p where p and p0 = 1, 2, . . . , P as

⇤
P⇥P

= (ZTZ)�1

P⇥P

ZT

P⇥N
X

N⇥P (5)

Xp
N⇥1

=

PP
p0=1

�p0p Zp
N⇥1

(6)

Step 5: We combine the regression coe�cients �p and �p0p from both regressions to esti-

mate the normalized relative importance of the original predictors X by,

RWp
P⇥1

= ⇤[2]�[2]
=

PP
p0=1

�2
p0p�

2
p

PP
p=1

 
PP

p0=1
�2
p0p�

2
p

! (7)

where ⇤[2]
and �[2]

refer to squared column elements of the regression coe�cient

matrices ⇤ and �. The property of the normalized relative importance is such

that

PP
p=1

RWp = 1
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Table S1. Summary of the sensitivity tests. Case 0 refers to the original MLR model (‘control’) 
used in our study to estimate monthly relevance. Aerosol interactions are defined for each 
sensitivity test in reference to the groups of interaction terms used in our MLR model. 

Cases  Comment Aerosol Interactions 
Case 0  Control Case  AER-MET + AER-AER + AER 
Case 1 No elevation and associated interactions AER-MET + AER-AER + AER 
Case 2 Aggregating species AOD and SMXR to 

total AOD and SMXR with their interactions 
AER-MET + AER-AER + AER 

Case 3 No aerosol – meteorology interactions AER-AER + AER 
Case 4 Only individual aerosol variables, no aerosol 

related interactions 
AER 

 
 



 
Figure S1. Graphical summary of various drivers behind snow cover in High Mountain Asia. 
 


