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Abstract

The ability of global climate models to reproduce recurrent regional atmospheric circulation types is introduced as an overarching

concept to explore potential dependencies between these models. If this approach is applied on a sufficiently large spatial domain,

the similarity of the resulting error pattern can be compared from one model to another. By computing a pattern correlation

matrix for a large multi-model ensemble from the Coupled Model Intercomparison Project, groups of comparatively strong

correlation coefficients are obtained for those models working with similar atmospheric components. Thereby, frequent shared

error patterns are found within in the ensemble, which also occur for nominally different atmospheric component models.
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Key Points:6

• Global Climate Models have common regional atmospheric circulation errors.7

• Clusters of similar error patterns are obtained if the models are grouped accord-8

ing to their atmospheric sub-model.9

• Common error patterns also occur for nominally different atmospheric sub-models.10
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Abstract11

The ability of global climate models to reproduce recurrent regional atmospheric circu-12

lation types is introduced as an overarching concept to explore potential dependencies13

between these models. If this approach is applied on a sufficiently large spatial domain,14

the similarity of the resulting error pattern can be compared from one model to another.15

By computing a pattern correlation matrix for a large multi-model ensemble from the16

Coupled Model Intercomparison Project, groups of comparatively strong correlation co-17

efficients are obtained for those models working with similar atmospheric components.18

Thereby, frequent shared error patterns are found within in the ensemble, which also oc-19

cur for nominally different atmospheric component models.20

As the number of nominally different Global Climate Models (GCMs) participat-21

ing in the Coupled Model Intercomparison Project (CMIP) increases (Taylor et al., 2012;22

Eyring et al., 2016), so does the need to explore the degree to which they have been de-23

veloped independently. This effort is important because the spread of the multi-model24

ensemble is assumed to provide reliable uncertainty estimates of the climate system’s re-25

sponse to external forcing (Masson-Delmotte et al., 2021). Thus, similar development26

strategies, such as shared parametrization schemes or reference datasets used for model27

verification, would weaken the ensemble’s suitability for uncertainty estimation and also28

compromise the use of unweighted multi-model mean averages (Masson & Knutti, 2011;29

Knutti et al., 2013).30

Due to the complexity of the models’ source code and also due to code availabil-31

ity restrictions, such model dependencies are commonly derived from model output data32

in scientific practice. One possible approach is to feed the inter-model distances of var-33

ious field variables into a clustering algorithm, which then identifies shared error struc-34

tures that are assumed to point to inter-model dependencies (Brunner et al., 2020).35

Here it is shown that the GCMs’ spatial error patterns correlate considerably if they36

are diagnosed in terms of their ability to reproduce the observed climatological frequency37

of the 27 regional atmospheric circulation types defined by Lamb (1972) and Jenkinson38

and Collison (1977), which can be computed for any region of the Northern Hemisphere39

mid-to-high latitudes (Jones et al., 2013). Calculated upon instantaneous sea-level pres-40

sure values, these Lamb Weather Types (LWTs) are known to be linked with a number41

of key variables in atmospheric physics and chemistry (Trigo & DaCamara, 2000; Her-42

tig et al., 2020), and can thus be considered an overarching concept to describe regional-43

scale climate variability (Maraun et al., 2017).44

The present study makes use of the 6-hourly instantaneous LWT sequences com-45

puted in Brands (2022). These time series cover the period 1979 to 2005 and are pro-46

vided on a regular 2.5◦ grid covering a zonal belt between 35◦ and 70◦N. They have been47

calculated for 2 distinct reanalyses and 56 nominally different coupled model configu-48

rations contributing historical experiments to CMIP5 and 6. For the present study, this49

catalogue has been extended by the ECMWF ERA5 reanalysis (Hersbach et al., 2020),50

here used as reference dataset, and by 4 additional GCMs, namely GFDL-ESM2G (Dunne51

et al., 2012), GFDL-ESM4 (Dunne et al., 2020), INM-CM5 (Volodin et al., 2017) and52

KACE1.0-G (Lee et al., 2019); the former participating in CMIP5 and the latter three53

in CMIP6, respectively. All applied LWT catalogues were permanently stored at https://54

doi.org/https://doi.org/10.5281/zenodo.4452080. An exhaustive metadata archive,55

including the exact run specifications and reference articles for the GCMs used here, is56

provided in the get historical metadata.py function stored at https://doi.org/10.5281/57

zenodo.5564150. Note that the results of the present study are almost insensitive to in-58

ternal model variability arsing from initial conditions uncertainty, which is illustrated59

in Brands (2022), Figure 12.60
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At each box of the aforementioned Northern Hemisphere grid, the Mean Absolute61

Error (MAE) of the n = 27 relative LWT frequencies for a given GCM, denoted m, is62

calculated with respect to the respective frequencies from the reanalysis, denoted o (Brands,63

2022):64

MAE =
1

n
Σn

i=1|mi − oi| (1)

, thereby obtaining 60 spatial error patterns (one for each GCM) covering the North-65

ern Hemisphere mid-to-high latitudes. The corresponding maps can be found in the sup-66

plementary material to this article and an illustrative example displaying the results for67

two nominally different GCMs in shown in Figure 1. Then, the correlation matrix of these68

patterns is calculated in order to detect common error patterns (see Figure 2). Using the69

metadata collected in get historical metadata.py, those coupled model configurations70

sharing the same atmospheric general circulation model (AGCM ), or versions thereof,71

are put into the same group and placed next to each other in the correlation matrix. This72

way, 12 distinct AGCM groups can be distinguished, each one containing at least 2 GCMs73

(see Table 1). Within each of these groups, the pairwise pattern correlation coefficients74

(rho,×100 hereafter) do not fall below 65, except for one single pair: FGOALS-g2 and75

g3, pertaining to the GAMIL AGCM group (rho = 47). The remaining 11 AGCM groups76

exceed the aforementioned correlation threshold and will hereafter be referred to as AGCM77

clusters or families. For ease of understanding, GCM configurations are printed normal78

and the AGCMs used therein are printed cursive along the article.79

Concerning the pattern correlation between different AGCM families, the ECAM80

cluster correlates comparatively strong with the HadGAM/UM, LMDZ, GSMUV/MRI-81

AGCM and INM-AGCM clusters, yielding correlation coefficients in the range of 66–82

75, 60–79, 59–75 and 63–82, respectively, and even stronger associations with the GFDL-83

AM family (58–89). The ECHAM cluster is also closely associated with CanAM4, i.e.84

the AGCM used in CanESM2 (73–82). The HadGAM/UM cluster yields correlation co-85

efficients in the range of 66–80 and 62–73 with the LMDZ and GFDL-AM clusters, ex-86

cept for the somewhat weaker links with the GFDL-AM version used in KIOST-ESM87

(55–62). HadGAM/UM is also strongly linked with CanAM4 (70–77) and with the INM-88

AGCM version used in INM-CM5 (73–80). The two BCC-CSM versions are here assigned89

to the CAM family because BCC-CSM’s atmospheric component BCC-AGCM was orig-90

inally developed from CAM3 (Wu et al., 2010). The CAM family correlates compara-91

tively strong with one half of the ECHAM family (MPI-ESM-LR, MPI-ESM-MR, MPI-92

ESM1.2-LR and MPI-ESM1.2-HR, 61–81), as well as with GFDL-CM3 and GFDL-ESM2G93

(62–82), and with GISS-E2.1-G (73–81). The IFS family is only moderately correlated94

with the remaining AGCM clusters, except for EC-Earth2.3 correlating relatively strongly95

with the ECHAM family. The lowest pattern correlations with the other clusters are ob-96

tained for the MIROC-AGCM/CCSR-AGCM family, with the exception of MIROC-ESM.97

With rho < 40 on average (see axis labels in Figure 2), MIROC-ES2L, MIROC598

and FGOALS-g2 are the most independent coupled model versions considered here, whereas99

MPI-ESM-LR, MPI-ESM-MR and MPI-ESM-1.2-LR are the most dependent or, if seen100

the other way around, most influential GCMs (rho > 70). Among the institutions con-101

tributing a single model, IITM-ESM constitutes a rather independent GCM that relies102

on GFS in the atmosphere, which is not used by any other GCM. CSIRO-MK3.6 is also103

relatively poorly correlated with the other GCMs, but has not been further developed104

since CMIP5. As stated above, CanESM2’s average correlation coefficient with the re-105

maining GCMs is comparatively large.106

In summary, 55 out of the 60 GCMs considered here can be grouped into 11 model107

families using two straightforward criteria: a common origin of the atmospheric submodel108

and a sufficiently large error pattern correlation with the other members of the same group.109
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The thereby obtained AGCM clusters yield within-group pattern correlation coefficients110

generally in excess of 70, which do not fall below 65 in any case. The error patterns of111

distinct AGCM families yield a comparable degree of agreement in some cases (e.g. for112

the ECHAM and GFDL-AM families), potentially indicating unexpected model depen-113

dencies that have not been reported so far.114

Making use of the metadata archive available at https://doi.org/10.5281/zenodo115

.4555367, GCMs can be alternatively ordered according to their submodels for other cli-116

mate system components, using appropriate alternative error measures. This effort, as117

well as the use of the proposed atmospheric circulation error to constrain future climate118

projections (Eyring et al., 2019), is left open for future studies.119

Open Research120

The LWT catalogues applied here have been stored at https://doi.org/https://121

doi.org/10.5281/zenodo.4452080, updated to version 4 for the present study. The un-122

derlying Python code, and particularly the get historical metadata.py function contain-123

ing an extensive GCM metadata archive, has also been updated at https://doi.org/124

10.5281/zenodo.4555367. The error maps underlying Figure 2 and the exact numer-125

ical values of the correlation matrix are provided with the supplementary material to this126

article, available at https://doi.org/10.6084/m9.figshare.19596535.v2127
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Table 1. Atmospheric general circulation model groups and coupled model configurations they

are used in. GCMs belong to the same cluster if their AGCM is from the same group and if the

pattern correlation coefficients with the remaining members of this group exceeds 65 (see Figure

2). Only 5 of the 60 considered GCMs cannot be grouped this way, either because their within-

group pattern correlations are too low (this is the case for FGOALS-g2 and g3) or because their

AGCM is unique within the multi-model ensemble considered here (this is the case for CanESM2,

IITM-ESM and CSIRO-MK3.6).

AGCM group Coupled model configurations

GCMs fulfilling the grouping criteria (55)

HadGAM/UM ACCESS1.0, ACCESS1.3, ACCESS-CM2, ACCESS-ESM1, HadGEM2-CC, HadGem2-ES, Hadgem3-GC31-MM, KACE1.0-G
ECHAM MPI-ESM-LR, MPI-ESM-MR, MPI-ESM1.2-LR, MPI-ESM1.2-HR, MPI-ESM-1-2-HAM, AWI-ESM-1-1-LR, NESM3, CMCC-CM
CAM CMCC-CM2-SR5, CMCC-ESM2, CCSM4, NorESM1-M, NorESM2-LM, NorESM2-MM, SAM0-UNICON, TaiESM1, BCC-CSM1.1, BCC-CSM2-MR
ARPECHE CNRM-CM5, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1
IFS EC-Earth2.3, EC-Earth3, EC-Earth3-Veg, EC-Earth3-Veg-LR, EC-Earth3-AerChem, EC-Earth3-CC
GFDL-AM GFDL-CM3, GFDL-ESM2G, GFDL-CM4, GFDL-ESM4, KIOST-ESM
GISS-E2 GISS-E2-H, GISS-E2-R, GISS-E2.1-G
LMDZ IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM6A-LR
MIROC-AGCM/CCSR AGCM MIROC5, MIROC-ESM, MIROC6, MIROC-ES2L
GSMUV/MRI-AGCM MRI-ESM1, MRI-ESM2.0
INM-AM INM-CM4, INM-CM5

GCMs not fulfilling the grouping criteria (5)

GAMIL FGOALS-g2, FGOALS-g3
CSIRO-AGCM CSIRO-MK3.6
CanAM CanESM2
GFS IITM-ESM

–7–
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3

a) MPI-ESM1.2-LR b) GFDL-ESM4

0 0.4 0.8 1.2 1.6

MAE of relative LWT frequencies (%)

Figure 1. Spatial pattern of the Mean Absolute Error (MAE) in the relative frequencies

of the 27 Lamb Weather Types in the Northern Hemisphere mid-to-high latitudes for a) MPI-

ESM1.2-LR and b) GFDL-ESM4 over the period 1979-2005. Model errors are with respect to

ERA5. The pattern correlation coefficient (×100) for this GCM pair is 79.
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Figure 2. Spatial correlation of the Northern Hemisphere pattern of the Mean Absolute

Error (MAE) in the relative frequencies of the 27 Lamb Weather Types for 60 distinct GCMs

from CMIP5 and 6. The corresponding maps are provided in the supplementary material. The

acronym, CMIP generation and average spatial correlation coefficient (×100) of each GCM are

provided along the axes. The boxplot to the right of the colorbar describes the distribution of

the correlation coefficients for one half of the matrix and excluding the unity values along the

diagonal. The boxplot is constructed with the median, interquartile range (IQR) and whiskers

of this sample, the latter placed at the 25th percentile - 1.5 × IQR and at the 75th percentile +

1.5 × IQR. Model errors are with respect to ERA5.
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