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Abstract

The monthly time series of carbonyl sulfide (OCS) atmospheric mole fractions measured at NOAA network stations (2000 to

2020) have been analyzed, and the long-term behaviour has been assessed based on the Empirical Mode Decomposition (EMD).

EMD is a fully non-parametric analysis of frequency modes and trends in a given series and is based on the data alone. We

have found that the OCS atmospheric mole fraction, after an increasing phase up to ˜2015, with a temporary decline around

2009, is now decreasing at all stations, reflecting a recent imbalance in its total sources and losses. Our analysis has revealed

a characteristic time scale for variation of 8-10 years. The variance associated with this long-term behaviour ranges from 15 to

40% of the total strength of the signal, depending on location. To our knowledge, this low-frequency mode is a novel result not

assessed in previous studies. Apart from this complex long-term behaviour, the OCS time series show a strong annual cycle,

which primarily results from summertime OCS uptake by vegetation. In addition, we have also found one more frequency of

minor variance intensity in the measured mole fraction time-history, which corresponds to periods in the range of 2 to 3 years.

This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation or QBO.
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Key Points: 10 

• Atmospheric Carbonyl Sulfide is decreasing at NOAA network stations  11 

• Time Series Analysis and Characteristic Scales encompassing one year to 8-10 years 12 

• Empirical Mode Decomposition shows a reach wealth of frequencies, some compatible 13 
with Quasi Biennal Oscillation 14 

  15 
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Abstract 16 

The monthly time series of carbonyl sulfide (OCS) atmospheric mole fractions measured at NOAA 17 
network stations (2000 to 2020) have been analyzed, and the long-term behaviour has been 18 
assessed based on the Empirical Mode Decomposition (EMD). EMD is a fully non-parametric 19 
analysis of frequency modes and trends in a given series and is based on the data alone. We have 20 
found that the OCS atmospheric mole fraction, after an increasing phase up to ∼2015, with a 21 
temporary decline around 2009, is now decreasing at all stations, reflecting a recent imbalance in 22 
its total sources and losses. Our analysis has revealed a characteristic time scale for variation of 8-23 
10 years. The variance associated with this long-term behaviour ranges from ~15 to 40% of the 24 
total strength of the signal, depending on location. To our knowledge, this low-frequency mode is 25 
a novel result not assessed in previous studies. Apart from this complex long-term behaviour, the 26 
OCS time series show a strong annual cycle, which primarily results from summertime OCS 27 
uptake by vegetation. In addition, we have also found one more frequency of minor variance 28 
intensity in the measured mole fraction time-history, which corresponds to periods in the range of 29 
2 to 3 years. This inter-annual variability of OCS may be linked to the Quasi-Biennial Oscillation 30 
or QBO. 31 

. 32 

Plain Language Summary 33 
Carbonyl sulfide (OCS) is the most abundant sulfur-containing trace gas in the atmosphere and 34 
accounts for a significant part of sulfur in the stratospheric aerosol. OCS has recently emerged as 35 
a putative proxy for the terrestrial photosynthetic uptake of CO2 because OCS and CO2 have the 36 
same diffusion pathway into leaves. The OCS hydration reaction in this process is irreversible. For 37 
this reason, a better understanding of its time scales of variability can improve our knowledge of 38 
the carbon cycle. The study has analyzed OCS at 14 cooperative stations, which are distributed all 39 
around the world. We have found a characteristic time scale for 8-10 years variation. To our 40 
knowledge, this low-frequency mode is a novel result not assessed in previous studies. Apart from 41 
this complex long-term behaviour, the OCS time series show a robust yearly cycle, primarily from 42 
summertime OCS uptake by vegetation. Finally, we have also found one more frequency, which 43 
corresponds to periods in the range of 2 to 3 years. This inter-annual variability of OCS may be 44 
linked to the Quasi-Biennial Oscillation, which is an almost periodic oscillation of the winds of 45 
the equatorial stratosphere. 46 
 47 

 48 

1. Introduction 49 

The importance of carbonyl sulfide in the study of terrestrial vegetative ecosystems has clearly 50 
emerged in recent studies (Campbell et al., 2008, 2017; Maseyk et al., 2014; Montzka et al., 2007). 51 
OCS is the most abundant sulfur-containing trace gas in the atmosphere and accounts for a 52 
significant part of sulfur in the stratospheric aerosol (Brühl et al., 2012). Essential sources of OCS 53 
are natural, and among them, oceans, soils, and volcanic eruptions play a dominant role. 54 
Otherwise, anthropogenic sources have been recognized as secondary contributors: biomass 55 
burning and industrial activities (Campbell et al., 2008). The main sink of OCS has been identified 56 
as vegetation uptake, whose magnitude is also influenced by seasonal trends in terrestrial 57 
vegetative photosynthesis. Conversely, in the stratosphere, the photochemical loss is the prominent 58 
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removal process, but at a substantially slower rate than vegetative uptake (Aydin et al., 2020; Berry 59 
et al., 2013; Glatthor et al., 2015; Kettle, 2002; Whelan et al., 2018). 60 

Moreover, OCS has recently emerged as a putative proxy for the terrestrial photosynthetic 61 
uptake of CO2 because OCS and CO2 have the same diffusion pathway into leaves (Campbell et 62 
al., 2008; Montzka et al., 2007), and OCS hydration reaction in this process is irreversible. In 63 
addition to these earlier studies, more recent works (Berry et al., 2013; Campbell et al., 2015) have 64 
shown that carbonyl sulfide holds great promise for studies of carbon cycle processes because it is 65 
an atmospheric tracer of photosynthetic Gross Primary Production (GPP). According to (Berry et 66 
al., 2013; Campbell et al., 2015; Montzka et al., 2007), the uptake of OCS from the atmosphere is 67 
dominated by carbonic anhydrase (CA), an enzyme abundant in leaves that also catalyzes CO2 68 
hydration during photosynthesis. However, as a continuation of previous studies, it has been shown 69 
in (Ogée et al., 2016) that soils can also effectively exchange OCS with the atmosphere, which can 70 
complicate the retrieval of GPP from atmospheric budgets for some regions and scales. Some 71 
agricultural fields can take up large amounts of OCS from the atmosphere as soil microorganisms 72 
contain CA. OCS emissions from soils have been reported in agricultural fields or anoxic soils 73 
(Ogée et al., 2016). On a global scale, uptake by vegetation and soils account for more than 90% 74 
of the removal of OCS from the atmosphere, the remaining 10% being assigned to OH oxidation 75 
and transport to the stratosphere (Aydin et al., 2020; Berry et al., 2013; Glatthor et al., 2015; Kettle, 76 
2002; Whelan et al., 2018). 77 

Apart from seasonal variations, the OCS atmospheric mole fraction had remained relatively 78 
stable, e.g., within 7% (Montzka et al., 2007) for the period 2000-2005, when OCS routinely began 79 
measured at the 18 NOAA stations and aircraft profiling sites. Ice core and firm air measurements, 80 
e.g., (Aydin et al., 2020) and references therein, have been used to reconstruct atmospheric 81 
carbonyl sulfide's preindustrial and industrial history. The more recent atmospheric OCS 82 
abundance surveys use a panoply of complementary ground-based, airborne, and satellite 83 
observations, e.g., (Camy-Peyret et al., 2017; Krysztofiak et al., 2015; Lejeune et al., 2017; 84 
Montzka et al., 2007).  85 

Almost all analyses of historical and contemporary data sets (Campbell et al., 2017) have 86 
been interpreted with models that simulate changes in OCS concentration according to changes in 87 
its global budget of natural and anthropogenic sources (from oceans and soils, from industry and 88 
biomass burning, respectively), and biogenic sinks (from plant photosynthesis and soils) as 89 
reviewed by (Whelan et al., 2018). Although anthropogenic emissions have exerted a dominant 90 
influence in driving secular atmospheric abundance changes since the 19th century (Aydin et al., 91 
2020; Campbell et al., 2015; Montzka et al., 2007) found that long-term changes in the 92 
observation-based OCS record were most consistent with simulations of climate and the carbon 93 
cycle that assume large growth in plant photosynthesis during the twentieth century. However, 94 
these analyses did not encompass the most recent trends in atmospheric OCS, e.g., since 2014-95 
2015. 96 

This study analyzes OCS measurements from the NOAA’s global flask network, whose 97 
observing stations are spread around the globe but are more numerous in the North Hemisphere 98 
(NH), where anthropogenic sources are localized. A qualitative inspection of these data shows that 99 
the atmospheric OCS has entered a decline phase at all stations in recent years. Overall, we will 100 
show that a long-term behaviour with a characteristic time scale of ∼8-10 years characterizes OCS 101 
time series from all sites analyzed in this study. However, over-imposed to this trend, there are 102 
cyclic behaviors with annual and inter-annual scales of variability. 103 
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The paper is organized as follows. Section 2 describes data and methods. Then, section 3 104 
is devoted to presenting and discussing results. Finally, conclusions are taken in section 4. 105 

 106 

2. Data and Methods 107 

2.1. Data 108 

For many years, OCS measurements from flasks have been obtained at approximately weekly 109 
intervals at 14 NOAA and cooperative stations (Montzka et al., 2007). The sampling process 110 
involves simultaneously pressurizing air into a pair of stainless steel or glass flasks that are 111 
subsequently shipped to the Boulder laboratory for analysis. Here we consider monthly mean mole 112 
fractions, and the data span different periods according to the station. The longest OCS time series 113 
at these sites extends from March 2000 to December 2020. Table 1 summarizes the basic 114 
information about the 14 stations, whereas Fig. 1 shows the position of the measurement stations 115 
around the globe. 116 
 117 
Table 1. NOAA stations whose OCS measurements from flasks have been analyzed in this study. The table 118 
also gives the percentage of missing data, as monthly means, for each time series. These gaps result from 119 
a lack of availability of flasks at a site and larger-than-acceptable differences in simultaneously filled 120 
flasks. 121 

Station Code Lat 
[°N] 

Lon 
[°W] 

Elevation 
[masl] 

Time Interval endpoints %  
Missing 

data 
Alert, Nunavut, Canada  ALT 82.4508 62.5072 185 May 2000-October 2020 12.60 
Point Barrow, USA BRW 71.3230 156.6114 11 March 2000-December 2020 2.40 
Cape Grim, Tasmania CGO -40.683 144.6900 94 February 2000-December 2020 3.60 
Harvard Forest, USA HFM 42.5378 72.1714 340 March 2000-December 2020 2.40 
Cape Kumukahi, USA KUM 19.7371 155.0116 0.30 March 2000-December 2020 0.80 
Park Falls, USA LEF 45.9451 90.2732 472 May 2000-December 2020 2.01 
Mace Head, Ireland MHD 53.3260 9.899 5.00 May. 2001-December 2020 7.60 
Mauna Loa, USA MLO 19.5362 155.5763 3397 March 2000-December2020 0.40 
Niwot Ridge, USA NWR 40.0531 105.5864 3523 March 2000-December 2020 3.20 
Palmer Station, Antarctica PSA -64.7742 64.0527 10 May 2000-December 2020 14.50 
Tutuila, American Samoa SMO -14.2474 170.5644 42 March 2000-December 2020 2.80 
South Pole, Antarctica SPO -89.98 24.8 2810 May 2000-December 2020 11.29 
Summit, Greenland SUM 72.5962 38.422 3209 June 2004-December2020 5.03 
Trinidad Head, USA THD 41.0541 124.151 107 April 2002-December 2020 0.44 

 122 
The time series can have occasional missing data (see also the last column in Tab. 1); when needed, 123 
gaps in the OCS sequences have been filled by cubic spline interpolation. An example is shown in 124 
Fig. 2. Because the sampling of OCS “events” is not the same at all stations and can vary at the 125 
same station, month-to-month, the event measurements are averaged to form monthly means. The 126 
analysis is then performed on these monthly time series. Also, we clarify that the gaps shown in 127 
Tab. 1 are assessed on the basis of the monthly time series. We also note that the uneven sample 128 
frequency at the same station adds a sampling noise, which the EMD methodology is capable of 129 
filtering out, as it will be shown further in the paper. 130 
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 131 
Figure 1. Location of the 14 NOAA stations considered in this work 132 

 133 
 134 

 135 
Figure 2. Example of a monthly OCS time series showing the gap-filling with cubic spline 136 
interpolation. The case shown in the figure refers to the HFM station. 137 
 138 

2.2. Methods: trends identification 139 

The long-term behaviours or trends in data are identified through the empirical mode 140 
decomposition (EMD) technique, developed to process nonlinear and nonstationary data (Huang 141 
et al., 1998) and successfully applied in many different fields, e.g., (Capparelli et al., 2013; 142 
Coughlin & Tung, 2004; Echeverría et al., 2001; Laurenza et al., 2012; Lee & Ouarda, 2011, 2012; 143 
Loh, 2004; Y. Wu & Shen, 2016). EMD decomposes a time series into a finite number of intrinsic 144 
mode functions (IMFs) and a residual by using an adaptive basis derived from the time series 145 
through a so-called “sifting” process, namely,  146 
 147 
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𝑋𝑋(𝑡𝑡) = �𝑐𝑐𝑗𝑗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)
𝑚𝑚

𝑗𝑗=1

                                                               (1) 148 

 149 
where 𝑡𝑡 is the time, m the number of modes, and 𝑋𝑋(𝑡𝑡) denotes a generic time series; 𝑐𝑐𝑗𝑗 is 𝑗𝑗-th IMF, 150 
and finally, 𝑟𝑟 is the residual, which can be either the mean trend or a constant. Because the series 151 
𝑋𝑋 is sampled at discrete time 𝑡𝑡 = 𝑗𝑗∆𝑡𝑡, 𝑗𝑗 = 1, … ,𝑁𝑁, with 𝑁𝑁 the total number of discrete 152 
measurements, we have that the whole time span of the series is 𝑁𝑁∆𝑡𝑡. In our case, ∆𝑡𝑡 =1 month. 153 
Furthermore, to simplify notation, hereafter, we will write 𝑗𝑗  for 𝑗𝑗∆𝑡𝑡 and 𝑁𝑁 for 𝑁𝑁∆𝑡𝑡. 154 
 155 

In conventional trend analysis, it is often assumed, e.g., that the trend is linear, and 156 
therefore, it can be extracted with formal regression analysis (e.g. Gardiner et al., 2008; Lejeune 157 
et al., 2017). Furthermore, in non-parametric methods, the trend is analyzed through digital 158 
filtering techniques, e.g., the Fourier transform and low‐pass filters to smooth the selected data 159 
and separate the low-frequency components from the seasonal cycle (e.g. Thoning et al., 1989). 160 
 161 

In the present analysis, the trend is defined by considering all the components of the signal 162 
which show frequency modes lower than a given threshold frequency 𝑓𝑓𝑡𝑡ℎ; in this study, the default 163 
value is 𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁, that is the frequency corresponding to a period equal to 𝑁𝑁/3. Because in our 164 
analysis, the OCS time series is 17 to 20 years long, 𝑁𝑁/3 yields approximately 5–7 years. The 165 
threshold has been selected by trial and error and has been checked to provide a consistent analysis 166 
for the various stations. Also, OCS has a tropospheric lifetime of ~2–7 years (Blake, 2004), 167 
therefore frequencies lower than 𝑓𝑓𝑡𝑡ℎ characterizes long-term behaviour with timescales longer than 168 
the finite lifetime of OCS. 169 
 170 

With this in mind, the trend, 𝜏𝜏 is defined according to, 171 
 172 

𝜏𝜏(𝑡𝑡) = �𝑐𝑐𝑗𝑗(𝑡𝑡) + 𝑟𝑟(𝑡𝑡)
𝑚𝑚

𝑗𝑗=𝑙𝑙

                                                                                      (2) 173 

with 𝑓𝑓𝑚𝑚 < ⋯ . < 𝑓𝑓𝑙𝑙 ≤ 𝑓𝑓𝑡𝑡ℎ. Again, this definition is consistent with the idea that the trend has to 174 
capture the low-frequency variability of the signal. 175 
 176 

The characteristic frequency of a given mode, 𝑐𝑐𝑗𝑗(𝑡𝑡) can be identified with the usual 177 
computation of the classical Fourier variance spectrum analysis or Power Spectral Density (PSD). 178 
Later in this study (see section 3.2), we will show examples of how the frequency components 179 
within each IMF can be analyzed through the Hilbert transform (Huang et al., 1998). However, in 180 
case we are interested in determining the dominant frequency of each mode, we can resort to the 181 
classical PSD.  182 
 183 
This work uses the EMD algorithm included in Matlab distribution 2020b, which implements all 184 
prescriptions  and stopping criteria, as suggested by (Wang et al., 2010), to avoid the 185 
decomposition to run endlessly toward the limit with many infinite iterations of sifting, e.g., (Z. 186 
Wu & Huang, 2010). However, the black-box usage of the tool is not recommended. Even with 187 
the stopping criteria, there is no way to prevent the code from decomposing part of the trend in the 188 
lower frequency modes. Therefore there are at least three aspects that need to be carefully 189 
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addressed when using the Matlab software package: a) how to fix the number of modes, 𝑚𝑚; b) how 190 
to prevent mode splitting and mode mixing; c) how to handle problems with the boundaries or end 191 
effects because of the finiteness of the series. 192 
 193 

For issue a), we limit the number of modes to m=4, which is based on physical insights. 194 
We know that the observations are affected by noise; therefore, the first mode will fit the high 195 
oscillatory component of the noise. The second IMF or mode is expected to fit the annual cycle. 196 
The third is devoted to representing inter-annual variability, which is likely to be found in the 197 
series. Finally, the fourth last mode is to model possible lower frequency oscillations and, 198 
therefore, long-term trend structures. For this reason, by default, we have the threshold criterion 199 
𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁 in defining the trend: everything with frequency lower than 𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁 is moved to the 200 
trend. The threshold 𝑓𝑓𝑡𝑡ℎ can be changed in case we are interested in looking at EMD reconstruction 201 
of the signal, which includes specific frequencies. 202 
 203 

For issue b), we use the EEMD (Ensemble Empirical Mode Decomposition, e.g., (Z. Wu 204 
& Huang, 2009)) strategy of adding noise to the observations. For a given sample of observations, 205 
𝑋𝑋(𝑗𝑗), 𝑗𝑗 = 1, … ,𝑁𝑁 we build up the noise sample 𝑋𝑋�(𝑗𝑗) = 𝑋𝑋(𝑗𝑗) + 𝑤𝑤(𝑗𝑗), with 𝑤𝑤 a Gaussian noise term 206 
with zero mean and standard deviation, 𝜎𝜎𝑤𝑤. 𝑋𝑋�(𝑗𝑗) is EMD decomposed, and the operation is 207 
repeated 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 time. Finally, the four IMF and the residual are taken by considering the 208 
average over the corresponding 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. However, before performing EMD on 𝑋𝑋�(𝑗𝑗), we first 209 
extend the signal to account for possible boundary effects. 210 
 211 

To this end, - issue c) -, we use the strategy proposed by (Stallone et al., 2020). The series 212 
𝑋𝑋�(𝑗𝑗) is symmetrically extended outside the boundaries, producing, on both sides, an extended 213 
signal 𝑋𝑋�𝑒𝑒𝑒𝑒𝑡𝑡(𝑗𝑗) which is, on each side, N times longer than the original one. Then, 𝑋𝑋�𝑒𝑒𝑒𝑒𝑡𝑡(𝑗𝑗) is 214 
multiplied by a function 𝜒𝜒(𝑗𝑗), which is one for the original signal 𝑋𝑋�(𝑗𝑗) and tends smoothly to zero 215 
as we approach the two left and right ends of the extended signal. In this way, the signal 𝑋𝑋�𝑒𝑒𝑒𝑒𝑡𝑡(𝑗𝑗) 216 
is periodic at the boundaries. 217 
 218 

For completeness, the last word has to be said for 𝜎𝜎𝑤𝑤. We know that the observation noise 219 
of the OCS measurement is below 2 ppt or less than 0.5% on average. Therefore, 𝜎𝜎𝑤𝑤 is taken equal 220 
to 1.5 ppt to preserve the original structure of the series.  221 
 222 

For the benefit of the reader, we summarize the algorithm we have devised to apply EMD to 223 
the OCS time series. 224 
 225 

1. Set 𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁 (default value, 3/𝑁𝑁) and 𝜎𝜎𝑤𝑤(default value, =1.5 ppt) 226 
2. Set the maximum number of modes (default,  𝑚𝑚 = 4) 227 
3. Set the number of random samples, (default, 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000) 228 
4. Generate the noisy series 𝑋𝑋�(𝑗𝑗), 𝑗𝑗 = 1, … ,𝑁𝑁  229 
5. Generate the extended series 𝑋𝑋�𝑒𝑒𝑒𝑒𝑡𝑡(𝑗𝑗), 𝑗𝑗 = 1, … , 3𝑁𝑁 230 
6. EMD the series 𝑋𝑋�𝑒𝑒𝑒𝑒𝑡𝑡(𝑗𝑗) 231 
7. Store the IMFs and the residual over the original range of the signal, 𝑗𝑗 = 𝑁𝑁 + 1, … ,2𝑁𝑁 232 
8. Repeat steps 4 to 7 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 times 233 
9. Compute the final IMFs and residual by considering the average over the 𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 of 234 

the corresponding functions calculated at step 7. 235 
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10. Compute the pdf or power density function of the four IMF (we use the tool 𝑛𝑛𝑐𝑐𝑝𝑝𝑝𝑝 in the 236 
Matlab distribution 2020b). 237 

11. Compute the frequency peak of each IMF and related uncertainty 238 
12. Compute the trend according to Eq. (2). 239 

 240 
It should be stressed that the above procedure has been finalized, and the sensitivity of the 241 

procedure to the various parameters checked by trial and error, simulations, and applications to the 242 
time series at hand. 243 

To explain how the EMD decomposition is applied and used in this study, we show its 244 
application to the MLO series (monthly averages from March 2000 to December 2020 (𝑁𝑁 =245 
250 months). The decomposition consists of 4 modes, and a residual and is shown in Fig. 3, and 246 
it is possible to see that the higher mode numbers are associated with lower frequency variability. 247 

 248 
Figure 3. Exemplifying the EMD analysis applied to MLO monthly mean mole fractions measured 249 
for OCS (in ppt). Top to bottom, signal, IMFs and residual. 250 
  251 

As expected, the first IMF extracts the high oscillatory component of the noise. The second 252 
component is an almost perfect harmonic of the constant period, although the amplitude can 253 
change with time. To better understand the relevant frequencies in the third and fourth modes, the 254 
PDFs of the four IMFs in Fig. 3 are shown in Fig. 4.  255 
 256 
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 257 
Figure 4. MLO station. Power density functions of the four IMF corresponding to the EMD 258 
decomposition of the MLO monthly time series; a) IMF1; b) IMF2; 3) IMF3; d) IMF4. The figure 259 
also shows the peak frequency of IMF2-4. 260 

 261 
From Fig. 4, we see that the first IMF has a flat spectrum as expected for white noise, and 262 

its spectral density is two orders of magnitude lower than the sharp power of the annual cycle 263 
(there is a ratio 100:1 in the y-axis scale of IMF2 vs IMF1). Compared with Fig. 3, it is possible 264 
to see that the EMD methodology can filter out the random component in the data.  265 
 266 

The second IMF extracted from the MLO record yields a frequency peak almost exactly at 267 
1/12 ≅ 0.0833 in units of 1/month. IMF2 has the most prominent spectral density, and in fact, 268 
from Fig. 3, we see that the mode is close to a pure harmonic with a period equal to 12 months. 269 
We also see that the amplitude is not exactly the same from year-to-year, suggesting the presence 270 
of interannual variability. To perform an assessment of how close IMF2 is to a pure harmonic, we 271 
have fitted it with the model  272 
 273 

𝐴𝐴𝑛𝑛𝐴𝐴𝑛𝑛 �2𝜋𝜋(𝑡𝑡−𝜏𝜏)
𝑇𝑇

�  (3) 274 

 275 
with the time 𝑡𝑡 in units of months and 𝑇𝑇 = 12 months; the amplitude and delay 𝐴𝐴, 𝜏𝜏 are fit 276 
parameters. A Least Squares fitting procedure of the model of Eq. (3) to the IMF2 data shown in 277 
Fig. 3 (to phase the harmonic with the calendar year, the fit considers the data from January 2001, 278 
(𝑡𝑡 = 1) up to December 2020 (𝑡𝑡 = 240)) yields, 𝐴𝐴 = 17.27 ppt, with a 95% confidence interval 279 
of [16.51, 18.03] ppt and, 𝜏𝜏 = 1.93 months, with a 95% confidence interval of [1.85, 2.02] months. 280 
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The goodness of the fit has been assessed through the correlation coefficient, and we found 𝑅𝑅2 =281 
0.90. The delay 𝜏𝜏~2 months says that the peak value is attained in May, whereas the trough is in 282 
November. Finally, on average, the annual cycle's peak-to-peak amplitude is equal to ~34 ppt in 283 
the MLO measurement record. 284 
 285 

The third IMF is close to 2 years, although its uncertainty is as large as ∼6 months, and its 286 
spectral density is 1-2 order of magnitude lower than that of the annual cycle. However, although 287 
of less intensity, the IMF3 power maximizes at a value which is in good agreement with the QBO 288 
(Quasi Biennal Oscillation) mean cycle, which has a periodicity of 28-29 months, or ~0.4 per year, 289 
e.g., see (Ray et al., 2020). Finally, the fourth mode is more peaked than the third. It has a larger 290 
density but corresponds to a period close to 10 years. Therefore this mode is moved to the trend or 291 
long-term behaviour, which is shown in Fig. 5. In passing, we note that the frequency uncertainty 292 
shown in Fig. 4 is computed as the Half-Width at Half-maximum of the corresponding spectral 293 
line. 294 
 295 

According to the definition of Eq. (2), the EMD trend, 𝜏𝜏 is prescribed to show time scales 296 
larger than those corresponding to the threshold frequency, 𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁, which for the MLO station 297 
corresponds to ~ seven years. From Fig. 5 we see that on time scales larger than 7 years, the decline 298 
of the OCS in recent years is clearly seen. Again in Fig. 5, the EMD trend is compared with the 299 
other two smoothing, non-parametric and non-linear, algorithms. These are the lowess, 𝜏𝜏𝑙𝑙 (an 300 
acronym of locally weighted scatter plot smoothing, e.g., (Cleveland and Devlin, 1988) and the 301 
moving average,  𝜏𝜏𝑚𝑚𝑚𝑚. They are both prescribed with a span of 𝑁𝑁/3 to properly compare with the 302 
time scales designed for the EMD trend. The lowess smoothing is based on a local least-squares 303 
fitting and generalizes the smoothing average method, which is also shown in Fig. 5. It is seen that 304 
the moving average filter shows a high-frequency ringing close to the boundaries of the signal, 305 
where it tends to collapse on the data points. In contrast, the lowess, 𝜏𝜏𝑙𝑙 is much more consistent at 306 
the boundaries, although it provides a smoother version than the EMD, 𝜏𝜏. Nevertheless, the 307 
comparison exemplifies how EMD yields a methodology to determine and control the 308 
characteristic scales we want to include in the reconstruction of the signal.  309 
 310 
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 311 
Figure 5. OCS monthly averages (2000 to 2020) for the MLO station and trend analysis according 312 
to EMD, lowess and moving average filters (e.g., see Eq. (2) and the text in the paper).  313 
 314 

To exemplify this aspect, Fig. 6 provides a reconstruction of the signal, which also includes 315 
the IMF3. Therefore, this is equivalent to using a threshold  𝑓𝑓𝑡𝑡ℎ = 1/12, in order to remove the 316 
annual cycle from the original data. Based on the pdf analysis in Fig. 4, the EMD reconstruction 317 
in Fig. 6 includes all characteristics scales larger than ~ 2 years. For comparison, Fig. 6 also shows 318 
the representation of the data after their smoothing with a moving average filter with a span of 12, 319 
24, and 36 months, respectively. From Fig. 6, we see that the moving average still retains a high 320 
oscillatory component, likely due to the observation noise. Conversely, EMD reconstruction 321 
appears smoother because the noise has been filtered through the IMF1, which is not included in 322 
the reconstruction. EMD clearly identifies the very large peak-to-peak variation across 2004-2005 323 
and the relative trough in 2009-2010. These features are attenuated in the moving average filters. 324 
Finally, the distance among peaks of the EMD reconstruction suggests variability scales of 2 – 4 325 
years, which, as discussed above, could be linked to QBO. 326 
 327 
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 328 
Figure 6. OCS monthly averages (2000 to 2020) for the MLO station and trend analysis according 329 
to the EMD reconstruction with the removal of the annual cycle. For comparison, the figure also 330 
shows the results with a moving average filter with three different time spans, 12, 24 and 36 331 
months, respectively.  332 
 333 

Before closing this section, we also note that a conventional Fourier analysis of the signal 334 
does not detect all of the modes evidenced for OCS by the EMD analysis. Figure 7 shows the PDF 335 
of the MLO time series, whose EMD composition has been exemplified through Fig. 3 to Fig. 4. 336 
It is seen that the Fourier analysis is capable of extracting the annual cycle. In contrast, the 337 
remaining modes, which EMD identifies in Fig. 3, are lost in a broad low pass spectrum with a 338 
zero-frequency peak. Figure 7 also shows, for comparison, the PDF of the second IMF, which 339 
extracts the annual cycle from the original signal. It can be seen that the PDF of the second IMF 340 
exactly matches the peak of the annual cycle in the PDF signal, which allows us to stress the 341 
property of EMD to extract the relevant modes from the signal. An analysis based solely on the 342 
PDF of the signal would conclude the presence of a single dominant mode and a low-pass 343 
component with a peak at zero frequency, which parallels the EMD residue and IMF4. In contrast, 344 
EMD can correctly identify the annual cycle but can also reveal cyclic mode in the lower frequency 345 
range with a characteristic time of ~10 years (IMF4). In addition, EMD reveals an intermediate 346 
mode that can be linked to inter-annual variability of characteristic time scales of 2-3 years, which, 347 
in turn, may be associated with influences from the QBO, e.g. (Ray et al., 2020). 348 
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 349 
Figure 7. Power Density Function of the whole signal derived from a Fourier analysis of the MLO 350 
OCS monthly mean mole fraction time series over the past 20 years (“Signal PDF”), and the second 351 
IMF extracted through the EMD analysis. 352 

 353 

3. Results for the NOAA network: OCS measurements for the year range 2000-2020 354 

3.1. The long-term EMD component, 𝜏𝜏 355 

 The OCS monthly mole fraction time series from the NOAA and cooperative sampling 356 
stations listed in Tab. 1 has been processed to identify EMD analysis trends computed according 357 
to Eq. (2). The EMD trend, 𝜏𝜏, results for the North-Hemisphere stations north of 30°N are shown 358 
in Fig. 8. The EMD 𝜏𝜏 yields the long-range behaviour with frequency lower than the threshold  359 
𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁. The decomposition is shown in Fig. 8. All Northern stations consistently show a 360 
decreasing atmospheric OCS mole fraction from 2015-2020.   361 

 362 
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 363 
Figure 8. EMD-derived trend determination, 𝜏𝜏 component (Eq. (2)), for the NOAA stations in the 364 
Northern Hemisphere at latitudes greater than 30N. 365 

 366 
 The long-term component is always relevant in terms of explained variance, as shown in 367 
Tab. 2. In terms of standard deviation, the trend 𝜏𝜏 explains more than ∼15% of the variability of 368 
the whole signal, 𝑋𝑋(𝑗𝑗), 𝑗𝑗 = 1, … ,𝑁𝑁. We stress that the long-term components' variability in Fig. 8 369 
reflects a good general agreement with original data. The overall mean is not distorted and long-370 
term local features at the scale of the threshold frequency are well reproduced. This is exemplified 371 
in Fig. 9 for the case of the NWR station. In Fig. 9 we also show a comparison with the lowess 372 
trend, 𝜏𝜏𝑙𝑙, which as for the case of the MLO station smooths the features at the scale of the threshold 373 
frequency, 𝑓𝑓𝑡𝑡ℎ = 3/𝑁𝑁. For the sake of brevity, the comparison between 𝜏𝜏and 𝜏𝜏𝑙𝑙 is not shown in 374 
the paper for all stations. However, the supplemental material has provided this comparison for 375 
the interested reader. Here we stress that the lowess smoothing agrees with EMD in detecting a 376 
decline in OCS atmospheric column amount since 2015-2016. 377 
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 378 
Figure 9. OCS monthly averages (2000 to 2020) for the NWR station and trend analysis according 379 
to EMD (Eq. (2) and the non-parametric lowess approach (see text in the paper).  380 

 381 
 The results for the stations between 30N and 30S are shown in Fig. 10. Consistent with 382 
what has been shown for the Northern Hemisphere, we see a decreasing trend for the three stations 383 
since 2015-2016. 384 

 385 

 386 
Figure 10. EMD-derived trend determination, 𝜏𝜏 component (Eq. (2))  for the NOAA stations 387 
between 30°N and 30°S. 388 
 389 

Finally, Fig. 11 shows the results for the three stations in the Southern Hemisphere. Also 390 
in this case, we have that the three stations show a negative trend since 2015-2016, which is 391 
strongly consistent with the findings we have shown for the other NOAA stations after these years.  392 

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

460

480

500

520

540

560

O
C

S 
m

on
th

ly
 m

ea
ns

 (p
pt

)

Original Signal

EMD trend

Lowess trend

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Year

440

450

460

470

480

490

500

510

520

530

O
C

S 
tre

nd
, 

 (p
pt

)

MLO

KUM

SMO



manuscript submitted to Journal of Geophysical Research 

 

 393 

Figure 11. Trend analysis for the NOAA stations in the Southern Hemisphere. We note that for 394 
PSA, the trend seems to have reversed from a decreasing one since about 2010. However, it is 395 
likely that the trend at PSA may be influenced by contamination in sampling equipment used at 396 
that site in the first half of the record (2000-2010). The record is certainly quite a bit noisier prior 397 
to 2010 than after it.  398 

 399 
 400 
 An essential aspect of the analysis we have shown with the 20-year long time series is 401 
the presence of a relatively large variance of the OCS signal at frequencies below the threshold  402 

𝑓𝑓𝑡𝑡ℎ = 3
𝑁𝑁

 which may reflect scales of the general atmospheric circulation, the climate forcing or 403 

even the long-term changes in the magnitude of overall or total OCS emissions, e.g, (Zumkehr et 404 
al., 2018).  405 
 406 
 The low-frequency variability is shown in Tab. 2 in terms of the standard deviation, i.e., 407 
the variability strength, of the EMD trend 𝜏𝜏 (computed according to Eq. (2) ) and the original 408 
monthly observations, 𝑋𝑋(𝑗𝑗), 𝑗𝑗 = 1, … ,𝑁𝑁. 409 
 410 
Table 2. Variability (in terms of standard deviation) of the EMD trend 𝜏𝜏 (Eq. (2)) and the original signal, 411 
𝑋𝑋(𝑗𝑗), 𝑗𝑗 = 1, … ,𝑁𝑁, for the 20 year-long time series analyzed in this paper. 412 

Station Code Lat 
[°N] 

Lon 
[°W] 

Elevation 
[masl] 

Variability 
[ppt] 

     Trend, 𝜏𝜏 Signal, 𝑋𝑋(𝑗𝑗) % Ratio 
Trend/Signal 

Alert, Nunavut, Canada ALT 82.4508 62.5072 185 5.38 39.64 13.6 
Point Barrow, USA BRW 71.3230 156.6114 11 6.34 40.87 15.5 

Cape Grim, Tasmania CGO -40.683 144.6900 94 4.26 14.76 28.8 
Harvard Forest, USA HFM 42.5378 72.1714 340 8.34 49.53 16.8 

Cape Kumukahi, USA KUM 19.7371 155.0116 0.30 6.10 22.48 27.1 
Park Falls, USA LEF 45.9451 90.2732 472 9.62 44.77 21.4 

Mace Head, Ireland MHD 53.3260 9.899 5.00 7.00 33.35 20.9 
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Mauna Loa, USA MLO 19.5362 155.5763 3397 6.98 17.90 38.9 
Niwot Ridge, USA NWR 40.0531 105.5864 3523 7.65 19.91 38.4 

Palmer Station, Antarctica PSA -64.7742 64.0527 10 8.52 20.03 42.5 
Tutuila, American Samoa SMO -14.2474 170.5644 42 5.80 12.85 45.1 

South Pole, Antarctica SPO -89.98 24.8 2810 2.65 14.69 6.40 
Summit, Greenland SUM 72.5962 38.422 3209 8.24 34.19 24.1 
Trinidad Head, USA THD 41.0541 124.151 107 9.95 41.40 24.0 

 413 
From Tab. 2, we see that the trend or long-term variability is in between ∼15-40% of the 414 

total power of the signal. Therefore, this component is not negligible with respect to the yearly 415 
cycle. In effect, from Fig.s 8-11, we see that the variability has consistently increased in the last 416 
few years, which leads us to conclude that the OCS mole fraction has entered a worldwide phase 417 
of decline. These findings suggest a recent broad-scale atmospheric decline that is captured by 418 
measurements at all of the NOAA sites. 419 

In conclusion, we can say that the twenty-year OCS record at all sites shows a consistent 420 
low-frequency component, which yields a complex behaviour with a generally increasing trend up 421 
to 2015, a temporary decrease during 2009, and finally a decline in the last 6-7 years.  422 
 423 

3.2. Oscillatory modes 424 

 425 
Although this study focuses mainly on assessing low-frequency components in NOAA’s 426 

OCS records over the past twenty years, EMD also extracts other relevant modes in the time series. 427 
Throughout the paper, we have already noticed the strong presence of the annual cycle, which is 428 
due to the summer OCS drawdown by vegetation. However, EMD analysis has also revealed 429 

modes of frequency >3
𝑁𝑁

 . In principle, this rich variability could be associated with climate 430 

characteristic scales such as the QBO (~2 years), (El-Nino (~2 − 7 years), or simply interannual 431 
variability linked to biogenic activities. The in-depth analysis of these modes is not the present 432 
study's focus. However, we highlight them here for the benefit of the reader and to incite further 433 
studies. The peak frequencies of the IMF 2 to 4 are shown in Fig. 12 as a function of the station. 434 
From Fig. 11, we see a great consistency among the various stations. The IMF2 represents the 435 

annual cycle, with frequency 𝑓𝑓𝑜𝑜 = 1
12

= 0.0833 month-1, and we see that IMF2 at all stations is 436 

peaked at this frequency. In Fig. 11, we have also drawn the sub-tone frequency, 𝑓𝑓𝑜𝑜/2, 𝑓𝑓𝑜𝑜/4 and 437 
𝑓𝑓𝑜𝑜/10 to help to identify where the observed peak frequencies accumulate. 438 
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 439 
Figure 12. Peak frequencies of the IMF from 2 to 4 as a function of the station. The figure also 440 
shows the subtone frequencies of the annual cycle 𝑓𝑓𝑜𝑜 , that is 𝑓𝑓𝑜𝑜/2, 𝑓𝑓𝑜𝑜/4 and 𝑓𝑓𝑜𝑜/10 to identify where 441 
the observed peak frequencies accumulate. The grey area gives the range of the QBO mean cycle, 442 
which has a periodicity of 28-29 months. 443 
 444 

It is seen that the IMF4 tends to accumulate at the frequency 𝑓𝑓𝑜𝑜/10, which is lower than 445 
the threshold frequency, 𝑓𝑓𝑡𝑡ℎ. In effect, the IMF4 has been moved to the trend 𝜏𝜏, according to its 446 
definition of Eq. (2). Much more interesting is the behavior of the IMF3. This is the faintest among 447 
the three shown in Fig. 11 and shows good consistency with the QBO mean cycle, potentially 448 
related to its influence on atmospheric mixing processes (Ray et al., 2020), or on the natural the 449 
balance of OCS sources and sinks. The presence of this frequency within the range 𝑓𝑓𝑜𝑜/4, 𝑓𝑓𝑜𝑜/2 is 450 
consistent with the IMF3 being linked to QBO. 451 

Before ending this section, we also show examples of the Huang-Hilbert transforms or hht 452 
used to check for time-dependence of the frequency. The transform is exemplified in Fig. 13 for 453 
the second mode or IMF2 related to the EMD decomposition of the MLO OCS time series. The 454 
transform gives the frequency as a function of the time (expressed in months in Fig. 12), and each 455 
(𝑡𝑡,𝑓𝑓) pair has assigned an instantaneous strength or amplitude (in ppt) according to the color bar. 456 
In the case of a pure sine wave of frequency, 𝐴𝐴 𝑛𝑛𝐴𝐴𝑛𝑛(2𝜋𝜋𝑓𝑓𝑡𝑡), the hht would give a flat line equal to 457 
𝑓𝑓 and a constant amplitude equal to 𝐴𝐴. To clarify the meaning of the transform, in Fig. 13 we also 458 
show the flat line corresponding to the annual cycle, that is 1/12 month-1 459 
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 460 
Figure 13. The plot shows the hht transform which represents the instantaneous frequency 461 
spectrum of the IMF2 component decomposed from the original mixed signal for the MLO station. 462 
For comparison, the plot also shows the line corresponding to the annual cycle. 463 
 464 

We see that the frequency oscillates around the annual cycle, showing that just one 465 
dominant harmonic governs the time dependence of IMF2. For IMF3, see Fig. 14, we have that 466 
the intensity of the amplitude is fainter and again is close to the peak frequency. For IMF3, we see 467 
an amplitude increase around 2005 (~58 months in Fig. 14). The frequency tends to increase, and 468 
in fact, if we go back to Fig. 3, it appears that around 2005, the frequency of the oscillations of the 469 
3rd mode tends to increase. However, for IMF3 the hht transform is close to the frequency 0.042 470 
1/month, computed with the PDF analysis shown in Fig. 4. 471 
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 472 
Figure 14. As Fig. 12 but for IMF3. For comparison, the plot also shows the flat line corresponding 473 
to frequency 0.042 month-1, which the PDF analysis has extracted from the mode IMF3. 474 
 475 

Note that the slight bump we see at around 2005 (month 58) is a transient phenomenon, 476 
which seems to relax back to a stationary behaviour in a time span of the basic period of 1 year. 477 

 478 

4. Discussion and Conclusions 479 

In this study, monthly average time series of OCS have been analyzed using data from the 480 
NOAA/GML network covering 2000 to 2020. The analysis has been performed by using the 481 
Empirical Mode Decomposition, which decomposes a given time series in its primary cycles plus 482 
a trend. The method is non-parametric, and there is no need to specify a trend model as generally 483 
done with other approaches.  484 
 485 

EMD is more suitable than traditional methods for the analysis of nonlinear and 486 
nonstationary signals. However, the straightforward applications of the technique could lead to 487 
misuse if its known limitations and basic assumptions are not carefully considered. EMD still has 488 
some open issues about its formal characterization when operating on a broadband signal, such as 489 
white noise, e.g., (Z. Wu & Huang, 2010). In our analysis, this issue has been minimized by 490 
resorting to decomposition, which, while non-exact, still provides an approximation of the given 491 
signal (Wang et al., 2010). The EMD method we use to calculate the decomposition has been 492 
implemented with the two basic stopping criteria recommended by (Wang et al., 2010) to obtain 493 
physically meaningful results. The stopping rules include a Cauchy criterion, e.g., (Wang et al., 494 
2010) to stop the iteration from getting a given IMF and an Energy ratio criterion, e.g., (Wang et 495 
al., 2010) to stop the EMD decomposition. In this way, as stressed by (Wang et al., 2010), the 496 
EMD implementation yields an approximation with respect to the cubic spline basis but avoids 497 
resulting in IMFs that have no physical significance. 498 
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 499 
In addition, we remark that other problems could affect EMD performance in practice 500 

(Huang et al., 1998, 2003), especially in measurement noise. One limitation is the difficulty of 501 
carrying out a clean separation in IMFs when their local frequencies are too close, e.g., (Stallone 502 
et al., 2020). In some cases, this separation could be improved by applying the so-called Ensemble 503 
Empirical Mode Decomposition (EEMD) (Z. Wu & Huang, 2009), an approach taken in this paper, 504 
which adds random noise the observations.  505 
Finally, we constrain EMD by specifying the maximum number of modes and a frequency 506 
threshold to separate lower frequencies from the annual cycle. In effect, the stopping criteria 507 
(Wang et al., 2010) embedded in the most updated EMD software tool by Matlab (we used the 508 
release 2020b in this study) do not provide a reliable strategy to separate the trend from pure 509 
modes. Therefore, we have shown that frequency thresholding and a suitable limitation of modes 510 
are best practices for the successful use of Empirical Mode Decomposition. 511 
 512 

With this in mind, the decomposition in cyclic modes of the OCS series has shown the 513 
presence of low-frequency time scales of ∼ 10 years. Furthermore, the low-frequency component 514 
yields a long-range time evolution, indicating a decline in OCS concentration in the atmosphere in 515 
the last 6-7 years. The reduction is seen in data obtained from all stations examined in the present 516 
work, consistent with a recent imbalance in total global OCS sources and losses. Moreover, we 517 
have shown that the OCS records exhibit a cyclic mode between 2-4 years, which may be linked 518 
to the Quasi Biennal Oscillation (QBO)).  519 
 520 

In conclusion. a decreasing trend of OCS mole fraction has been observed in the last 6-7 521 
years at all NOAA/GML measurement sites. No matter the origin of the present OCS decay, the 522 
carbonyl sulfide atmospheric budget is currently unbalanced. We think that further analysis with 523 
global transport models could yield new insights in light of these most recent changes that we have 524 
identified and assessed in this study. 525 
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Introduction 

The supplemental material compares the OCS monthly times series (flask measurements), 
the lowess trend, and the EMD trend for the 14 stations examined in the present work. The 
list of the 14 stations and related acronyms can be found in Tab. 1 of the paper. 
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Figure S1.: ALT station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 

 

 
Figure S2: BRW station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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Figure S3: CGO station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 

 
Figure S4: HFM station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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Figure S5: KUM station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 
 

 
Figure S6: LEF station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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Figure S7: MHD station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 

 
Figure S8: MLO station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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Figure S9: NWR station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 

 
Figure S10: PSA station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 
 
 
 
 

2000 2005 2010 2015 2020 2025

Year

440

460

480

500

520

540
O

C
S 

m
on

th
ly

 m
ea

n 
(p

pt
)

Station NWR

Original Data
Lowess 

l

EMD, 

2000 2005 2010 2015 2020 2025

Year

460

480

500

520

540

560

580

O
C

S 
m

on
th

ly
 m

ea
n 

(p
pt

)

Station PSA

Original Data
Lowess 

l

EMD, 



 
 

7 
 

 
Figure S11: SMO station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 

 
Figure S12:SPO station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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Figure 13: SUM station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 

 
 

 
Figure S14: THD station: Original OCS time series, lowess trend, 𝜏𝜏𝑙𝑙 and EMD trend 𝜏𝜏. 
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