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Abstract

Accurate precipitation forecasting can better reflect climate change trends, provide timely and effective environmental infor-

mation for management decisions, and prevent flood and drought disasters. In this paper, we propose a short-term regional

precipitation prediction model based on wind-improved spatiotemporal convolutional network. Among them, the improved

Graph Convolution Network (GCN) integrates the effects of wind direction and geographic location at past moments to capture

the spatial dependence, whilst the Gated Recurrent Unit (GRU) captures the temporal dependence by learning the dynamic

changes of data. The spatio-temporal memory flow module and attention module are added to capture spatial deformation and

temporal variation more accurately, thereby better matching the physical properties of precipitation. Experimental results on

real data sets show that the proposed model can handle complex spatial dependence and temporal dynamic changes, better

learn the temporal and spatial characteristics of precipitation data, and achieve better prediction results.
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Abstract16

Accurate precipitation forecasting can better reflect climate change trends, provide17

timely and effective environmental information for management decisions, and pre-18

vent flood and drought disasters. In this paper, we propose a short-term regional19

precipitation prediction model based on wind-improved spatiotemporal convolutional20

network. Among them, the improved Graph Convolution Network (GCN) integrates21

the effects of wind direction and geographic location at past moments to capture the22

spatial dependence, whilst the Gated Recurrent Unit (GRU) captures the temporal23

dependence by learning the dynamic changes of data. The spatio-temporal memory24

flow module and attention module are added to capture spatial deformation and25

temporal variation more accurately, thereby better matching the physical proper-26

ties of precipitation. Experimental results on real data sets show that the proposed27

model can handle complex spatial dependence and temporal dynamic changes, bet-28

ter learn the temporal and spatial characteristics of precipitation data, and achieve29

better prediction results.30

Plain Language Summary31

Deep learning technology has not been fully explored in regional short-term32

precipitation prediction. The traditional graph convolution neural network does not33

consider the practical significance of wind direction in precipitation. Therefore, we34

introduce a novel short-term regional precipitation prediction model based on wind35

improved spatiotemporal convolution network (ASS-TGCN). Measured data of au-36

tomatic meteorological station in Jiangsu Province, China have been utilized. The37

experimental results show that the prediction result of the proposed model is better38

than the comparative model and has higher prediction accuracy.39

1 Introduction40

Regional precipitation, as a vital component of the hydrological system, plays41

a critical role in the entire water cycle(Hawkins & Sutton, 2011). The rapid changes42

in regional precipitation that occur in a short period of time often cause severe43

droughts and floods, seriously impacting the national economy. Short-term heavy44

precipitation refers to precipitation events with rainfall of more than 20 mm within45

1 hour or 50 mm within 3 hours (Ban et al., 2015). This kind of weather process46

presents the characteristics of fierce rain, high precipitation intensity within a short47

amount of time and high disaster risk. As such, it can easily cause urban and rural48

waterlogging and traffic congestion. Furthermore, in mountainous areas, it is easy49

to lead to landslides, flash floods, debris flows, and other disasters(Henderson et50

al., 2020), that seriously threaten the safety of people’s lives and property(Yao et51

al., 2021). In light of such endangerment, proximity precipitation forecasting not52

only improves the capability of emergency response in dealing with sudden disas-53

ters, but also provides a good warning and guide for environmental protection and54

agricultural production.However, precipitation prediction has proven difficult due55

to its variability is often complex, variable, and uncertain; it is influenced by envi-56

ronmental factors such as local topography, climate, atmospheric circulation, ocean57

currents, sunspots, and human activities (Zhang et al., 2018), in addition to pos-58

sessing complex spatial and time-dependent properties. Of note, learning the higher59

order properties of spatio-temporal non-stationarity is particularly important for60

regional precipitation prediction tasks.61

• Time dependence: The water content of clouds gradually changes over time,62

which effects on the precipitation at the next moment (Konapala et al., 2020).63

Moreover, the shorter the time interval, the stronger the temporal dependence64
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reflected by precipitation. As shown in Fig.1, which demonstrates the hourly65

precipitation at a site over time, it can be seen that the current precipitation66

is influenced by the past precipitation.67

• Spatial dependence: The current precipitation is related not only to the local68

precipitation at previous moments, but also to the past precipitation in the69

surrounding area (Wu et al., 2019). As shown in Fig.2, due to the influence70

of wind, the precipitation zone moves hourly from northwest to southeast,71

eventually leaving Jiangsu Province.72
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Figure 1. Hourly precipitation of one station (mm).

Figure 2. Location of precipitation zones in Jiangsu Province over time: July 6, 2019,

4:00–18:00.

There are many methods used for spatio-temporal forecasting in the field73

of computing, some of which consider temporal dependence, including the sup-74

port vector regression machine model (Cai et al., 2018), the Kalman filter model75

(Nerini et al., 2019), the autoregressive integrated moving average (ARIMA) model76

(H. R. Wang et al., 2014), the K-nearest neighbor model (Huang et al., 2017) and77

Bayesian model (Ji et al., 2019) The above methods predict future data via histori-78
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cal data, only considering the dynamic changes in the data and ignoring the spatial79

dependence; as such, they cannot achieve satisfactory results if directly used for the80

prediction of regional short- term intense precipitation. A number of methods have81

been developed for describing the spatial characteristics by introducing convolutional82

neural networks(CNN) (Barra et al., 2020) (Ran et al., 2021) for spatial modeling.83

However, CNN is typically employed for Euclidean data (Defferrard et al., 2016),84

such as images and regular grids. This is incompatible with the distribution of au-85

tomatic weather stations in both urban and rural regions, and hence is irrelevant to86

this problem.87

To improve the accuracy and stability of precipitation forecasting, we pro-88

pose a short-term regional precipitation prediction model based on wind-improved89

spatiotemporal convolutional network(ASS-TGCN) based on the data of national90

automatic stations.Our contribution is divided into the following three points:91

• Meteorological data are processed to build a dataset for automatic stations in92

Jiangsu province. The adjacency matrix between stations based on distance93

and Pearson correlation coefficients is calculated to construct the topology94

and capture the spatial correlation.95

• The ASS-TGCN model integrates the improved Graph Convolution Network96

(GCN) and Gated Recurrent Unit (GRU). The improved GCN is used to cap-97

ture the spatial correlation modeling of the topological structure, taking into98

account the effects of the wind direction at past moments and geographical99

location; whilst GRU is used to capture the dynamics of the data in order100

to modele temporal correlation. The Spatiotemporal memory flow module101

and attention module are added to capture spatial deformation and temporal102

variation more accurately. Thus, the proposed model is more in line with the103

physical characteristics of precipitation and thus more suitable for precipita-104

tion prediction tasks that require higher accuracy of prediction.105

• We applied the proposed model to the established dataset and conducted a se-106

ries of comparison experiments with related models. On the self-built dataset,107

the experimental results show that the model improves the TS score by 0.14108

and 0.19 points and reduces the MSE by about 16 and 22 points with respect109

to the GRAPES and T639, respectively, proving that the model has better110

performance for the precipitation prediction task.111

The rest of the paper is organized as follows: Section II reviews the related studies112

on precipitation prediction; Section III presents the details of our model, including113

the creation of the dataset, the reasons for selecting the basic model and its im-114

provement; Section IV evaluates the prediction performance of ASS-TGCN in real-115

world operations; and Section V presents some conclusions and recommendations for116

further study.117

2 Related Work118

In recent years, there are two main models for precipitation prediction(Zhang119

et al., 2017): Section 2.1 presents the traditional physical statistical model and Sec-120

tion 2.2 presents the data-driven model.121

2.1 Physical statistical models122

The main tool for current rainfall forecasting is the numerical weather predic-123

tion (NWP) model. The NWP models used in China are mainly the European Cen-124

tre for Medium-Range Weather Forecasting (ECMWF) (Molteni et al., 1996), the125

Japan Meteorological Agency numerical weather prediction model (JAPAN) (Honda126
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et al., 2005), and the Global/Regional Assimilation Forecasting System (GRAPES)127

(D. Chen et al., 2008). The NWP model first analyzes the existing weather data to128

determine the degree of correlation between various weather attributes, and then129

processes them using relevant mathematical principles (Bauer et al., 2015). This130

process mainly includes the Kalman filter method (Yang, 2019)and, the regression131

analysis method (Hoolohan et al., 2018) (H. R. Wang et al., 2014), and eventually132

obtaining more accurate prediction formulas; thus, these physical statistical mod-133

els have stringent data quality criteria. Since the NWP model uses various means134

(Powers et al., 2017) (conventional observations (Wahl et al., 2017), radar observa-135

tions (Thomas et al., 2020), ship observations (Petty, 2020), satellite observations136

(Hagelin et al., 2021), etc.) to obtain meteorological data, they must be adjusted,137

processed, and objectively analyzed appropriately. Also, regional factors have a great138

impact on prediction accuracy (Xie et al., 2020). Since the computational data of139

NWP is so large, it is difficult to process by hand or with small computers (Xiaolong140

et al., 2019), therefore, a mainframe is necessary. However, due to the limitation of141

the whole discipline level, it is very difficult to accurately predict urban rainfall and142

its temporal and spatial distribution before the rainstorm. Therefore, In terms of ac-143

tual application, these models are not flexible enough and vulnerable to the influence144

of unstable factors, and cannot stably predict rainfall in different regions.145

2.2 Data-driven models146

To overcome the aforementioned limitations, data-driven models have been uti-147

lized for precipitation forecasting. Such models use system state variables as input148

and output to establish the correspondence between state variables (Abouie et al.,149

2017).This kind of approach is more popular because it focuses more on character-150

istics between historical data. For example, (Seo & Kim, 2012) used support vector151

machine and KNN based on steady-state genetic algorithm to study the genetic fea-152

ture selection method based on wrapper, which is used to predict very short-term153

rainstorm in the south of the Korean Peninsula. With the development of neural154

networks (Ghazvinian et al., 2020), many researchers have used Recurrent neural155

networks to implement prediction. However, due to the defects of Recurrent Neural156

Network (RNN), such as gradient disappearance and gradient explosion, the tradi-157

tional RNN has limitations in long-term prediction(Fang et al., 2021). The GRU158

network (Che et al., 2018) is a variant of recurrent neural networks based on the159

long and short-term memory network (SHI et al., 2015) that has been shown to160

solve the above problems. Through the integration of forgetting gate and input gate161

in LSTM network and the change of cell state, it optimizes the overall structure of162

the network, so as to improve the network solution speed while retaining the ad-163

vantages of LSTM network. The problems of long time dependence and gradient164

explosion are optimized. (Salehin et al., 2020) proposed an amount of rainfall pre-165

diction model with LSTM, which is applied to memory sequence data measurement166

and calculate the prediction result promptly. However, this kind of method only con-167

siders the historical information of the current location and ignores the spatial infor-168

mation, resulting in poor performance in practice. Many scholars have introduced169

convolutional neural networks (CNN) into their models(Yin et al., 2021)(L. Chen170

et al., 2020) to demonstrate spatial dependence of the precipitation. (Manokij et171

al., 2019) proposed a network combined of CNN and GRU to perform multi-step172

rainfall forecasting in Thailand, where CNN aims to capture relationship between173

various sensors and GRU aims to capture time-series information. (SHI et al., 2015)174

introduced convolution structure to improve the fully connected LSTM, proposed175

convolution LSTM (ConvLSTM) model for precipitation prediction. On this basis,176

Trajectory Gru (TrajGRU) model (Shi et al., 2017) is proposed, which can actively177

learn the position variation structure of recursive connection. Most of the above178

algorithms use CNN, which require radar echoes or satellite images as input, and179
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Figure 3. Distribution map of national meteorological automatic stations

these data are not easily available in remote mountainous or poor areas. Compared180

with CNN, the Graph Convolutional Networks(GCN) can process arbitrary graph181

structure data by using the property that convolution is essentially filtering on the182

frequency domain(Ni et al., 2021). At present, it has been widely used in traffic183

flow prediction(Zhao et al., 2019)(Bai et al., 2021), pedestrian prediction(Liu et184

al., 2021), wind speed prediction(Stańczyk & Mehrkanoon, 2021) and so on. GE-185

STDGN(Ni et al., 2021) proposed a graph structure learning algorithm and an186

optimization method based on evolutionary multi-objective optimization (EMO)187

algorithm to improve the ability of the model to analyze the correlation of complex188

nodes.189

Considering that the distribution of automatic meteorological stations in China190

is consistent with the topological network of GCN, and they are widely used in191

China, as of July 31, 2020, 1,185 automatic meteorological stations have been es-192

tablished in poor townships across the country that are operational as scheduled193

(Zong et al., 2021), as shown in Fig.3. These weather stations can be used for all-194

weather on-site monitoring of wind speed, wind direction, rainfall, air temperature,195

air humidity, light intensity, evaporation, atmospheric pressure, and many other me-196

teorological elements(Ioannou et al., 2021). The data obtained will be transmitted197

to the meteorological database for statistical analysis and processing, which is an198

important way to fill the gap of meteorological detection data on these areas. There-199

fore, we carry out short-term precipitation prediction tasks through an improved200

spatio-temporal convolution model based on automatic station data.201

3 Data and Methodology202

3.1 Construction of dataset203

The initial data set was obtained from the National Automatic Station numer-204

ical files, covering a total of 16 months from June to September between 2016 and205

2019. The process was as follows: First, according to the Chinese automatic station206

number table, all station numbers in Jiangsu Province were selected. Then, the ini-207

tial file was read and the various meteorological data of the stations were extracted208

in the order of stations according to the filtered numbers, which were saved in csv209

format for subsequent reading and sorting. Then, we extracted the precipitation,210

hourly wind speed and wind direction data according to the field table, and saved211
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them as a month table in the order of station number and time. We found that the212

extracted precipitation data had some missing data; some of the data were missing213

for a single moment at some stations, and some were missing for all stations at a214

particular moment. Since we need continuous time-series data to capture the tem-215

poral dynamics of precipitation, we interpolated the missing data by referring to the216

data at the previous and next moments.217

There are five kinds of precipitation data contained in the automatic station218

file: cumulative precipitation within the past 1 hour, 3 hours, 6 hours, 12 hours and219

24 hours. Through comparison, it was found that 1-hour cumulative precipitation220

reflects a small amount of time-dependent characteristics, and can reflect a certain221

spatial distribution. Also, some temporal correlations can be seen from the 3-hour222

cumulative precipitation data. As the interval of time increases, the temporal cor-223

relation of the data increases and the spatial correlation decreases. Considering the224

timeliness of the forecast and the definition of short-term heavy precipitation, we225

eventually selected 1-hour cumulative precipitation as the raw data.226

3.2 Construction of Adjacency Matrix227

3.2.1 Correlation matrix based on distance228

In order to generate the correlation matrix based on distance, we calculated229

the geographical distance between automatic weather station sensors according to230

longitude and latitude, and used Gaussian kernel with a threshold(Li et al., 2018).231

Wij = exp
(
−
(
dist (vi, vj)

2
)
/δ2

)
, (1)

if dist (vi, vj) ≤ k, otherwise 0.

where vi, vj are automatic weather stations; dist is the geographical distance be-232

tween vi and vj ; δ is the standard deviation of the distance; Wij is the edge weight233

between the stations; and k is the threshold.234

3.2.2 Correlation matrix based on correlation of data235

In order to represent the correlation of precipitation between several sites at236

the same time, we utilize the Pearson coefficient (Schober et al., 2018).237

R (X,Y ) =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 , (2)

where X̄ and Ȳ represent the mean values of X and Y respectively. The range of238

R (X,Y ) is [−1, 1]. When R (x, y) = 1 or − 1, it means that the two samples are239

completely related. When R (x, y) = 0, it means that the two samples are completely240

independent.241

3.2.3 Constructing a new adjacency matrix242

In line with the actual problem, the positive part of the matrix are isolated ,243

and the rest are set to 0.244

3.3 Improved spatiotemporal convolution network245

(Zhao et al., 2019) presented a spatiotemporal forecasting model, Temporal246

Graph Convolutional Network (TGCN), for traffic flow forecasting. In light of the247
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fact that our task is comparable to traffic flow prediction in the following two as-248

pects:249

• Similar objectives: predict future values by analyzing the temporal and spatial250

relationship between the data of local and surrounding stations;251

• Similar data composition: spatial relationship of multiple stations and their252

equal interval numerical data.253

Therefore, we chose to make improvements on this model to make it more254

adequate for precipitation forecasting tasks.255

3.3.1 Spatial dependence model256

Due to the spatial dependence of rainfall, the precipitation in a region has257

a certain relationship with the surrounding areas. Therefore, obtaining complex258

spatial correlations is a key problem in precipitation prediction.259

GCN is a first-order local approximation of spectral graph convolution, i.e., a260

multilayer graph convolutional neural network where each convolutional layer only261

deals with first-order neighborhood information. By superimposing several convo-262

lutional layers, GCN can achieve multi-order neighborhood information transfer in263

order to extract spatial features between nodes, defining the specific formula of the264

layer l in the convolutional network as follows:265

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (3)

where Ã = A + I denotes the sum of the adjacency matrix A and the unit ma-266

trix I. Specifically, each vertex in the graph and itself plus an edge is able to learn267

the attribute features of its own nodes when the model is learned. D̃ denotes the268

degree matrix of the adjacency matrix Ã, which can be specifically expressed as269

D̃ii =
∑

j Ãij . H
(l) denotes the output of the layer l. when l = 0, H0 equals the270

X-feature matrix, and W (l) is the parameter matrix of the layer l. σ denotes the271

sigmoid activation function of the nonlinear model. Generally, a GCN model can be272

expressed as follows:273

f (X,A) = σ
(
ÃXW l

)
, (4)

Â=D̃− 1
2 ÃD̃− 1

2 , (5)

where Ã denotes the symmetric normalization of the Laplace matrix, X̃ denotes the274

feature matrix composed of the data of each node, W̃ denotes the parameter ma-275

trix of the layer l of the neural network, H̃ denotes the number of hidden units, and276

f (X,A) denotes the output data of each observation predicting the length of t.277

3.3.2 Time dependence model278

Since rainfall is time-series correlated over a short period of time, obtaining279

complex temporal correlations is another key issue in precipitation prediction. GRU280

network has significant advantages in sequence modeling and is often used to solve281

time series prediction problems. Through the integration of forgetting gate and in-282

put gate in LSTM network and the change of cell state, the GRU model optimizes283

the overall structure of the network, so as to improve the network solution speed284

while retaining the advantages of LSTM network. GRU model includes two door285

control units: update door and reset door. It is calculated as follows:286

zt = σ (Wz · [ht−1, xt]) , (6)

rt = σ (Wr · [ht−1, xt]) , (7)
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h̃t = tanh (W · [rt ∗ ht−1, xt]) , (8)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (9)

where zt and rt are the outputs of the update and reset gates respectively; σ denotes287

the sigmoid activation function; Wz and Wr are the weight coefficient matrices of288

the update and reset gates respectively, obtained from the model training; ht−1 is289

the state information of the previous time step in the GRU neural network; xt is290

the input of the current time step. h̃t and ht are the pre-output is the output and291

output, respectively, of time step t.292

3.3.3 Improved GCN model293

In the traditional GCN, since the graph is undirected, the adjacency matrix294

is a symmetric matrix; that is Aij = Aji, as in Fig.4. In the precipitation problem,295

which is affected by the wind direction, the interactions between sites are different,296

as in Fig.5. Under the influence of the northeast wind, the precipitation at site i will297

affect site j, while the precipitation at site j will not affect site i; that is Aij > 0 and298

Aji = 0, so Aij ̸= Aji.

Figure 4. General GCN node relationship

Figure 5. Node relationship affected by wind direction in precipitation problem

299
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Figure 6. Impact of site i on site j

Figure 7. Left: GRU network model with spatiotemporal memory(Y. Wang et al., 2017),

right: traditional GRU model

Therefore, as shown in Fig.6, we define the influence of wind direction on site i300

and site j at a certain time as follows:301

Rij = cos (αwind − αgeo) (10)

The influence of distance between site i and site j is:302

Wij = exp

(
−dist (si − sj)

δ2

)
(11)

Therefore,303

Ãij = FC (Rij) + FC (Wij) + I (12)
304

f(X,A) = σ
(
ÂReLU

(
ÂXW0

)
W1

)
(13)

where Â = D̃− 1
2 ÃD̃− 1

2 denotes the preprocessing step, W0 and W1 denote the305

weights. f(X,A) represents the output of prediction length t and ReLU() represents306

the rectified linear unit.307
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3.3.4 Improved spatiotemporal convolution network combined with308

wind direction309

To capture the spatial and temporal characteristics of precipitation data, we310

propose an improved spatiotemporal convolution network combined with GCN and311

GRU, and consider the influence of wind direction on the results (ASS-TGCN), as312

shown in Fig.8:313

Xt

ASS-GC

ChannelAttention

Ht_in

A cell of 

ASS-

TGCN 

model

SpatialAttention

utrt ct

δ tanh

Ht_o

YtXt

H't × +

× ×1-

Input feature F

MaxPool

AvgPool Shared MLP

Channel Attention

C

+

Output feature 

F’

Channel Attention

Input feature F’

Conv 

layer

Spatial Attention

S

Output feature 

O

Spatial Attention

Figure 8. Improved residual spatiotemporal convolution network

The specific calculation process is as follows: f(X,A) represents the result af-314

ter ASS-GCN processing, W and b represent the weights and biases, respectively, at315

training.316

ul=1
t = δ

(
Wu ·

[
hl=4
t−1, f (A, xt)

]
+ bu

)
(14)
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rl=1
t = δ

(
Wr ·

[
hl=4
t−1, f (A, xt)

]
+ br

)
(15)

cl=1
t = tanh

(
Wc ·

[
rl=1
t ∗ hl=4

t−1, f (A, xt)
]
+ bc

)
(16)

hl=1
t = ul

t ∗ hl=4
t−1 +

(
1− ul

t

)
∗ clt (17)

ul ̸=1
t = δ

(
Wu ·

[
hl−1
t , f

(
A,

(
xt + hl−1

t

))]
+ bu

)
(18)

rl ̸=1
t = δ

(
Wr ·

[
hl−1
t , f

(
A,

(
xt + hl−1

t

))]
+ br

)
(19)

cl ̸=1
t = tanh

(
Wc ·

[
rlt ∗ hl−1

t , f
(
A,

(
xt + hl−1

t

))]
+ bc

)
(20)

hl ̸=1
t = ul

t ∗ hl−1
t +

(
1− ul

t

)
∗ clt (21)

In summary, the proposed model can handle complex spatial dependencies317

and temporal dynamics. On the one hand, the improved GCN is used to learn the318

complex topology in order to capture the spatial dependencies based on distance and319

wind direction, and GRU is used to learn the dynamic changes in the data in order320

the data to capture the temporal dependencies. The temporal memory flow mod-321

ule and attention module are added to capture spatial deformation and temporal322

variation more accurately. The residual module makes the network with short con-323

nections more capable of fitting high-dimensional functions than the network with324

normal connections.325

4 Experiments and discussions326

4.1 Data introduction327

4.1.1 Meteorological element data328

Considering the original data set, the 1-hour cumulative precipitation is of329

more practical significance, and the wind direction with 1-hour extreme wind speed330

can better reflect the impact of wind direction on regional short-term precipita-331

tion. Therefore, to serve as the original dataset, we selected the hourly precipitation332

and the wind direction of 1-hour extreme wind speed of 67 automatic stations in333

Jiangsu Province (excluding three remote stations) from June to September between334

2016 and 2019. The data interval is 1 hour, for a total of 9720 × 67 respectively.335

To address data loss and distortion caused by missing measurements and failures of336

automatic stations, the following process was performed: First, we remove the points337

with values of 99999 and 99990 (representing missing and omitted measurements).338

Then we use the isolated forest algorithm to filter out the abnormal points. Finally,339

we use the method of linear interpolation to assign values to all missing values.340

There are many moments in this dataset with almost no precipitation over341

the whole Jiangsu province; therefore, we further processed the dataset in order to342

avoid biased fitting of the network predictions in the direction of no precipitation.343

Following (Trebing et al., 2021), we select samples with more than 20% of the to-344

tal number of stations with precipitation at each moment on average. Although345

the number of filtered samples is much smaller than the initial data set, they are346

more suitable for regional precipitation forecasting. (SHI et al., 2015) did something347

similar by selecting the first 97 rainy days for training in their 3-year dataset. Fur-348

thermore, due to the nature of rainfall maps where rainfall dominates, the model349

may be biased towards predicting more rainfall. In the experiment, the input data is350

normalized to the interval [0,1]. 80% of the data is set as the training dataset, whilst351

the remaining 20% serves as the test dataset. In this way, we use the past 12 hours352

of precipitation and wind direction as the historical data to predict the next 3-hours353

of precipitation.354
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4.1.2 Adjacency matrix data355

From the original data, we filtered out 67 station numbers in Jiangsu province,356

extracted the latitude and longitude of the stations based on the numbers, and used357

them to build a distance matrix. Then we calculate the correlation between stations358

based on the correlation between precipitation at the same time at different stations359

in the training set. Finally, in line with the actual problem, we isolated the positive360

part of the data correlation matrix and the distance correlation matrix, and set the361

other parts to 0. In this way, we obtained the required adjacency matrix.362

4.2 Evaluation metrics363

We use the following four metrics to evaluate the performance of different364

forecasting models:365

4.2.1 Mean Squared Error (MSE)366

MSE =
1

MN

M∑
j=1

N∑
i=1

(
yji − ŷji

)2

, (22)

4.2.2 Mean Absolute Error (MAE)367

MAE =
1

MN

M∑
j=1

N∑
i=1

∣∣∣yji − ŷji

∣∣∣, (23)

4.2.3 Threat Score (TS)368

TS =
(TP + TN)

(TN + FP + FN + TP )
, (24)

MSE and MAE are used to provide a measure of forecast error: the smaller the369

value, the better the prediction result. TS(Wang & Chung-Chieh, 2014) is a quanti-370

tative test of forecast accuracy and is used to detect the degree of forecast accuracy371

for precipitation greater than a certain level: the larger the value, the better the372

prediction result.373

4.3 Model parameter setting374

To train the model, we had to select appropriate model parameters for the375

experiments. The hyperparameters in the ASS-TGCN model include learning rate,376

batch size, number of training epochs, and number of hidden units. We set the377

learning rate to 0.008, the batch size to 50, and the training epochs to 100. The378

number of hidden units in the ASS-TGCN model is an important parameter which379

has a significant impact on prediction accuracy. To determine the optimal value, we380

set the number of hidden units to 8,16,32,64,128 to test and analyze the prediction381

results by comparing MSE values, as shown in Fig.9 Through this process, the best382

number of hidden units was determined to be 64.383

–13–



manuscript submitted to Earth and Space Science

Figure 9. Comparison of prediction performance with different numbers of hidden units

4.4 Experimental results384

First, we compared the 3-hour cumulative precipitation values predicted by385

the following models: GCN(Verma et al., 2018), GRU(Che et al., 2018), and T-386

GCN(Zhao et al., 2019).
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Figure 10. Forecast results of 3-hour cumulative precipitation using different models:ground

truth (blue), GCN forecasts (green), GRU forecasts (red), TGCN forecasts (purple), ASS-TGCN

forecasts (orange). The left figure shows the results of all test samples, and the right figure shows

the results (enlarged) of samples No.180 to No.250).

387

Table1 shows the prediction of the proposed model and other models on the388

cumulative precipitation in the next three hours. It can be seen from the table that389

the MSE and MAE values of GCN and GRU are high, and those of the other two390

models are similar to each other. Most models exhibit good accuracy under the indi-391

cators of TS 0.1 and TS 1.5, but GCN and GRU perform poorly on TS 3.0, TS 7.0392

and TS 10.0. Only TS 15.0 and TS 20.0 of the proposed model are greater than 0.1,393

and the rest are less than 0.01. Thus the proposed model has good performance ac-394

cording to most evaluation metrics, especially in long-term medium and high-grade395

precipitation.396

From the comparison between the predicted value and the real value of a sin-397

gle site, GCN produces poor results in a single site because it does not take into398
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Table 1. Comparison of 3-hour cumulative precipitation forecast values for each model.

NO. 58037

MSE MAE TS 0.1 TS 1.5 TS 3.0 TS 7.0 TS 10.0 TS 15.0 TS 20.0

GCN 64.344 4.645 0.668 0.472 0.333 0.084 0.042 0.000 0.000
GRU 40.383 3.575 0.660 0.562 0.544 0.370 0.313 0.276 0.000
TGCN 38.473 3.473 0.664 0.607 0.536 0.408 0.373 0.257 0.050

ASS-TGCN 29.222 3.162 0.671 0.600 0.541 0.526 0.483 0.389 0.348

All

MSE MAE TS 0.1 TS 1.5 TS 3.0 TS 7.0 TS 10.0 TS 15.0 TS 20.0

GCN 52.574 3.963 0.545 0.368 0.285 0.115 0.058 0.000 0.000
GRU 38.706 3.270 0.543 0.473 0.335 0.266 0.266 0.133 0.049
TGCN 33.727 2.949 0.580 0.543 0.514 0.418 0.348 0.212 0.088

ASS-TGCN 32.548 2.929 0.569 0.535 0.515 0.432 0.359 0.259 0.162

account the time correlation. The trend of the predicted value of GRU is consistent399

with the real value, but there is a serious timing delay because only the time cor-400

relation is considered. T-GCN comprehensively considers the correlation between401

time and space, and exhibits certain optimization in peak value and timing delay402

compared with the first two algorithms. ASS-TGCN considers the influence of past403

wind direction and geographical location on the basis of T-GCN. The spatiotempo-404

ral memory flow module and attention module make the spatial deformation and405

temporal change captured by the network more accurate, and the residual module406

increases the fitting ability to high-dimensional functions. Therefore, the prediction407

result is closest to the real value, and the timing delay is the smallest. Overall, it408

produces the best prediction of 3-hour cumulative precipitation values.409

Fig.11 shows the mean distribution of MSE of different models on the test set.410

Blue indicates small MSE and red indicates large MSE. It can be seen that for all411

models, the error is mainly concentrated in the southwest of Jiangsu, but the error412

level of the proposed model is obviously better than other models. We suspect that413

the reason is that the precipitation here is affected by the water vapor generated414

by the Yangtze River in the north and Taihu Lake in the southeast; in addition,415

the model only uses the precipitation of the station as the data input (although the416

proposed model introduces the wind direction as a reference), which can not solve417

this problem completely. Compared with TGCN, the proposed model has smaller418

MSE and more uniform overall error distribution for stations around latitude 32.7°N,419

reflecting the advantages of the model.420

Fig.12 shows that given the same batch size and learning rate, ASS-TGCN can421

master the law of precipitation zone movement faster during the learning process be-422

cause it considers more geographical and practical information. Therefore, compared423

with other models, ASS-TGCN exhibits faster convergence speed and can reach the424

optimal value faster.425

Next, we compared the predictions of the proposed model with two numerical426

weather prediction models.427

• T639 L60(Zheng et al., 2019): T639 L60 global medium range numerical pre-428

diction model possesses high model resolution, reaching a global horizontal429

resolution of 30 km, a vertical resolution of 60 layers, and a model upper limit430

of 0.1 HPA. In addition, this model produces a higher vertical resolution of431
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(a) GCN (b) GRU

(c) TGCN (d) ASS-TGCN

Figure 11. Distribution of MSE of different models on the test set

boundary layers and a more detailed description of boundary layer process,432

which is more suitable for supporting short-term proximity prediction. After433

comparison in operational practice, it is considered that the prediction accu-434

racy of basic elements such as H, T, and P of the situation field of T639 is435

improved. The operational application of T639 global medium range numer-436

ical forecast assimilation forecast system has greatly improved the weather437

forecasting capability in China, with increased forecast.438

• GRAPES MESO (Liping et al., 2017): The GRAPES MESO model has439

shown good forecasting performance for precipitation. To investigate the cor-440

rectness and effectiveness of the GRAPES system, a series of standard tests441

and application simulations have been conducted, including the application of442

conventional data analysis together with direct analysis of radar and satellite443

unconventional data. The system has been operated in national and regional444

meteorological operation centers, and has played an important role in actual445

meteorological operations. The model has certain forecasting capability for446

strong weather processes such as heavy precipitation; in particular, the high447

spatial and temporal resolution products can better describe the development448

of the process to a certain extent.449

Table2 shows the prediction of the proposed model and two numerical models450

for the 3-hour cumulative precipitation. It can be seen that ASS-TGCN and TGCN451

perform similarly in the terms of MSE and MAE, for both optimal and suboptimal452

values. GRAPES and T639 perform well on the low-level TS score (TS 0.1, TS 2.5453

and TS 3.0), GRAPES and ASS-TGCN performis similarly on the middle-level TS454

score(TS 7.0 and TS 10.0), and ASS-TGCN achieves the best performance in the455

high-level TS score(TS 15.0 and TS 20.0). Thus, the proposed model performs well456

in medium and high grade precipitation. Compared with NWP models, the low-level457
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Figure 12. Convergence speed of different models

Table 2. Comparison of 3-hour cumulative precipitation forecast values with two NWP models

MSE MAE TS 0.1 TS 1.5 TS 3.0 TS 7.0 TS 10.0 TS 15.0 TS 20.0

GRAPE 39.118 3.081 0.758 0.717 0.610 0.508 0.482 0.423 0.227
ASS-TGCN 23.446 2.698 0.617 0.598 0.586 0.596 0.584 0.434 0.362

GCN 51.087 3.921 0.600 0.449 0.326 0.199 0.114 0.000 0.000
GRU 27.849 2.931 0.593 0.574 0.510 0.484 0.489 0.254 0.073
TGCN 23.856 2.569 0.617 0.592 0.583 0.565 0.575 0.361 0.214

MSE MAE TS 0.1 TS 1.5 TS 3.0 TS 7.0 TS 10.0 TS 15.0 TS 20.0

T639 44.991 3.314 0.654 0.434 0.349 0.076 0.049 0.041 0.014
ASS-TGCN 22.794 2.539 0.608 0.591 0.537 0.455 0.427 0.323 0.228

GCN 41.474 3.477 0.578 0.448 0.355 0.178 0.063 0.000 0.000
GRU 28.733 2.874 0.579 0.564 0.529 0.393 0.314 0.130 0.038
TGCN 23.121 2.427 0.627 0.636 0.547 0.449 0.406 0.278 0.054

TS score is close, the medium and high-level TS score is better, and the MSE is sig-458

nificantly improved; Compared with other models, TS score is generally better and459

MSE is close to the best.460

Fig.13-14 show prediction results from the NWP models and the proposed461

model at different time points of large-scale medium-grade precipitation in Jiangsu462

Province. As can be seen from figures, compared with other models, the precipita-463

tion zone predicted by the proposed model is closer to the real one, demonstrating464

certain prediction ability for medium-and-high-intensity precipitation.465

Fig.15-16 show the actual error between the predicted value and the real value466

of each model in Fig.13-14. Blue indicates the part where the predicted value is less467

than the real value and red indicates the part where the predicted value is greater468

than the real value; the darker the color is, the greater the difference is. It can be469

seen that in Fig.15, the predicted values of GCN and GRU in central Jiangsu is rela-470

tively small, whilst the predicted values of TGCN and GRAPES in southern Jiangsu471

are relatively large. Compared with the above models, the error of the proposed472

model over the whole Jiangsu Province is relatively small and the error distribution473

is relatively average; In Fig.16, almost all models have low predicted values in the474

area of latitude 32 °N to 33 °N, and the precipitation at station No.58269 has not475
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(a) Ground Truth (b) GRAPES (c) GCN

(d) GRU (e) TGCN (f) ASS-TGCN

Figure 13. Comparison of forecast results with GRAPES at 2016/09/16 0:00-3:00

(a) Ground Truth (b) T639 (c) GCN

(d) GRU (e) TGCN (f) ASS-TGCN

Figure 14. Comparison of forecast results with T639 at 2016/09/15 20:00-23:00
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(a) Ground Truth (b) GRAPES (c) GCN

(d) GRU (e) TGCN (f) ASS-TGCN

Figure 15. The actual error between the predicted value and the real value of each model in

Fig.13

(a) Ground Truth (b) T639 (c) GCN

(d) GRU (e) TGCN (f) ASS-TGCN

Figure 16. The actual error between the predicted value and the real value of each model in

Fig.14
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been accurately predicted. It can also be seen that the proposed model demonstrates476

a lower error level and more uniform error distribution.477

5 Conclusion478

In this paper, a short-term regional precipitation prediction model based on479

wind-improved spatiotemporal convolutional network is proposed. Among them,480

the improved GCN comprehensively considers the influence of past wind direction481

and geographical location in order to capture spatial dependence; whilst GRU is482

used to learn the dynamic changes in the data in order to capture time dependence.483

Spatio-temporal memory flow module and attention module are added to more ac-484

curately capture spatial deformation and temporal changes, thereby better matching485

the physical properties of precipitation. According to the results of a series of exper-486

iments, the proposed model can handle complex spatial dependence and temporal487

dynamic changes, understand the temporal and spatial characteristics of precipita-488

tion data, and achieve better prediction results.489

For further study, we will incorporate more meteorological elements into the490

model as a priori knowledge, so that the model can better learn the impact of differ-491

ent meteorological elements at different distances and times on the future precipita-492

tion at the current station, improve the prediction accuracy of extreme values, and493

realize end-to-end grid.494
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6 Open Research495

The data of the automatic weather station is provided by the Beijing Me-496

teorological Bureau and is required to be kept confidential. However, the hourly497

observation data of China’s surface meteorological stations can also be downloaded498

from: http://data.cma.cn/data/cdcdetail/dataCode/A.0012.0001.html499

Acknowledgments500

This work is granted by National Natural Science Foundation of China(61773220)501

and Key program of National Natural Science Foundation of China(U20B2061).502

References503

Abouie, A., Darabi, H., & Sepehrnoori, K. (2017). Data-driven comparison between504

solid model and pc-saft for modeling asphaltene precipitation. Journal of Nat-505

ural Gas Science and Engineering , 45 , 325–337.506

Bai, J., Zhu, J., Song, Y., Zhao, L., Hou, Z., Du, R., & Li, H. (2021). A3t-gcn: At-507

tention temporal graph convolutional network for traffic forecasting. ISPRS In-508

ternational Journal of Geo-Information, 10 (7), 485.509
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