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Abstract

Emulators of Earth System Models (ESMs) are complementary to ESMs by providing climate information at lower computational

costs. Thus far, the emulation of spatially resolved climate extremes has only received limited attention, even though it is one

of the most impactful aspects of climate change. Here, we propose a method for the emulation of local annual maximum

temperatures, with a focus on reproducing essential statistical properties such as correlations in space and time. We test

different emulator configurations and find that driving the emulations with global mean surface temperature offers an optimal

compromise of model complexity and performance. We show that the emulations can mimic the temporal evolution and spatial

patterns of the underlying climate model simulations and are able to reproduce their natural variability. The general design

and the good performance for annual maximum temperatures suggests that the proposed methodology can be applied to other

climate extremes.
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Abstract 19 

Emulators of Earth System Models (ESMs) are complementary to ESMs by providing climate 20 

information at lower computational costs. Thus far, the emulation of spatially resolved climate 21 

extremes has only received limited attention, even though it is one of the most impactful aspects 22 

of climate change. Here, we propose a method for the emulation of local annual maximum 23 

temperatures, with a focus on reproducing essential statistical properties such as correlations in 24 

space and time. We test different emulator configurations and find that driving the emulations 25 

with global mean surface temperature offers an optimal compromise of model complexity and 26 

performance. We show that the emulations can mimic the temporal evolution and spatial patterns 27 

of the underlying climate model simulations and are able to reproduce their natural variability. 28 

The general design and the good performance for annual maximum temperatures suggests that 29 

the proposed methodology can be applied to other climate extremes. 30 

 31 

Plain Language Summary 32 

Climate models are invaluable tools for studying climate change but take a very long time to run, 33 

even on modern super computers. Emulators of climate models are statistical tools that can be 34 

calibrated to mimic the behaviour of complex climate models with a much reduced 35 

computational demand. However, they are typically not made for reproducing climate extremes, 36 

despite the fact that extreme climate events belong to the most impactful aspects of climate 37 

change. In this study, we propose a method for the emulation of annual maximum temperature 38 

over time and space. This method also reproduces the natural variability of climate models, even 39 

though it is driven only by global mean surface temperature. We show that the emulations are 40 

very similar to the data created by climate models. In an example application, we use the 41 

emulator to examine the extreme temperatures for different climate scenarios. 42 

 43 

TOTAL WORDS: 3892 / 4000 44 

 45 

1 Introduction 46 

The impacts of climate change will affect the entire social and economical system (IPCC, 47 

2014, 2021). In particular, changes in climate extremes count among the most impactful 48 

consequences of climate change. Climate extremes are substantially affected by human-induced 49 

climate change (Seneviratne et al., 2021). For example, the annual average losses to weather-50 

related disasters were USD168 billions per year over 2001-2010 and have increased to USD248 51 

billions per year over 2011-2020 (Aon, 2021). Climate extremes affect numerous economical 52 

sectors, for instance agriculture (Sivakumar et al., 2005; Vogel et al., 2019) or the energy sector 53 

(Schaeffer et al., 2012; Perera et al., 2020). Not only do climate extremes have direct 54 

consequences on food or energy security (Hasegawa et al., 2021), but they may also have 55 

indirect impacts on societies due to feedbacks with societal drivers (Raymond et al., 2020). Even 56 

if climate change is limited to 1.5°C, changes in climate extremes remain a crucial issue 57 

(Seneviratne et al., 2018), and society will be impacted in many aspects (IPCC, 2018). 58 

Traditionnaly, Earth System Models (ESMs) are used to derive climate change 59 

projections and the associated climate extremes (Flato et al., 2013; Collins et al., 2013; Lee et al., 60 
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2021). These outputs are crucial to assess what consequences climate extremes would have on 61 

society (Rosenzweig et al., 2017). However, ESMs require detailed scenarios to simulate climate 62 

change and have very high computational cost, solving a very large number of equations on 63 

several grids. These requirements make ESMs expensive tools and hinder their use to explore 64 

new scenarios and to characterize the internal climate variability. 65 

ESM emulators have been developed for a quicker assessment of climate change in 66 

response to given scenario pathways. A large class of emulators, termed “simple climate models” 67 

or “reduced complexity models” provide projections of key variables of the Earth system such as 68 

global mean temperature (Nicholls et al., 2020; Nicholls et al., 2021), however they do not 69 

provide local information which is essential for studying climate impacts. A second class of 70 

emulators derives spatially resolved climate responses from global mean temperature trajectories 71 

(“spatially resolved emulators”), such as the recently developed Modular Earth System Model 72 

Emulator with spatially Resolved output (MESMER) (Beusch et al., 2020) that this work builds 73 

upon. Spatially resolved emulators usually rely on some version of pattern scaling to derive local 74 

responses from global variables (Mitchell, 2003; Fordham et al., 2012; Herger et al., 2015; 75 

Lynch et al., 2017; Alexeeff et al., 2018). While other approaches exist (Castruccio et al., 2014; 76 

Holden et al., 2014), pattern scaling shows good performances in spite of its simplicity (Tebaldi 77 

and Arblaster, 2014; Tebaldi and Knutti, 2018). For the representation of natural variability, 78 

there is no single most established method. Some emulators resample actual ESM fields 79 

(McKinnon et al., 2017; Alexeeff et al., 2018), some resample principle components with 80 

perturbed phases (Link et al., 2019), and others rely on autoregressive processes with spatially 81 

correlated innovations (Beusch et al., 2020; Nath et al., 2021). Almost all currently available 82 

spatially resolved emulation approaches have been developed to emulate mean quantities, but to 83 

better assess the impacts of climate change for diverse emission pathways, emulation of climate 84 

extremes is needed too. A first step in this direction has been made by (Tebaldi et al., 2020), 85 

using pattern scaling to emulate the average evolution of climate extremes, but does not consider 86 

natural variability. Thus, an emulator that reproduces the full distribution of the climate extremes 87 

is still lacking. 88 

In this paper, we propose a new method for the emulation of climate extremes that 89 

accounts for both the spatio-temporal structure and their internal variability. Building on the 90 

MESMER emulator, the presented approach is referred as MESMER-X. The statistical 91 

framework of the method is introduces in Section 3. We use annual maximum temperature data 92 

from the 6th phase of the Coupled Model Intercomparison Project (CMIP6, (Eyring et al., 2016))  93 

to illustrate our method (Section 4). Finally, we discuss the potential of this method for extension 94 

to other climate extremes (Section 5). 95 

 96 

2 Data 97 

Simulations from 18 ESMs contributing to Scenario Model Intercomparison Project 98 

(ScenarioMIP, (O'Neill et al., 2016)) of CMIP6 are considered (listed in Supplementary table 99 

S.1). We use the ESMs which provide data for concentration-driven historical (Meinshausen et 100 

al., 2017) and for at least two of the five scenarios SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and 101 

SSP5-8.5 (Meinshausen et al., 2020). As another condition, we retain only the ESMs providing 102 

the daily maximum near-surface air temperature, the near-surface air temperature and the 103 

downward surface sensible heat flux over the ocean. 104 
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All simulations are interpolated to the same 2.5° x 2.5° grid using second-order 105 

conservative remapping for the two temperatures and inverse distance-weighted average 106 

remapping for the heat flux (Brunner et al., 2020a). Spatially resolved local annual maximum 107 

temperature (TXx) is calculated as the annual maximum of the daily maximum temperature. The 108 

anomaly of the local annual maximum temperature is defined by substracting the 1850-1900 109 

mean.The global mean surface air temperature (GSAT) is derived by first averaging annual mean 110 

near-surface temperature, then its anomaly is also calculated by subtracting the 1850-1900 mean. 111 

The same operations are performed to obtain the global downward heat flux in sea water 112 

(HFDS). 113 

In Section 4, both the global trend and global variability of GSAT and HFDS are used to 114 

identify adequate drivers for the emulations. These two components are decomposed using a 115 

locally weighted scatterplot smoothing, accounting for volcanic eruptions as explained in 116 

(Beusch et al., 2020). For the sake of clarity, this paper shows mostly results with the global 117 

trend of GSAT, but the full results are shown in supplementary information. 118 

In this paper, some results are aggregated to sub-continental regions defined for the 6th 119 

Assessment Report of IPCC regions (Iturbide et al., 2020). 120 

 121 

3 A method for the emulation of climate extremes 122 

3.1 Statistical distribution of local climate extremes 123 

Climate variables can be characterized by stochastic processes, and climate extremes are 124 

rare values or events of these climate variables, in the tail of their probability distribution (Wilks, 125 

2011; Storch and Zwiers, 1999). This definition implies that changes in the distribution of 126 

climate variables will also affect the distribution of climate extremes. For instance, if the local 127 

annual surface temperature increases, it is likely that the local annual maximum surface 128 

temperature will increase as well. Regional anomalies of climate extremes have been found to 129 

scale linearly with anomalies in GSAT (Seneviratne et al., 2016; Wartenburger et al., 2017; 130 

Seneviratne et al., 2018; Tebaldi et al., 2020). Here, the principle is extended: instead of having 131 

the regional mean anomalies of climate extremes scaled with anomalies in GSAT, we scale the 132 

distribution of the local anomalies of climate extremes with anomalies in GSAT. 133 

 For clarity, this method is explained for TXx, but this method is designed to be applicable 134 

to other climate extremes as discussed in Section 5. We write Δ𝑋𝑠,𝑡 the local anomaly of TXx at 135 

each point in space 𝑠 and timestep 𝑡. We assume here that Δ𝑋𝑠,𝑡 follows a Generalized Extreme 136 

Value (GEV) distribution, because TXx is a block maxima (Coles, 2001; Wilks, 2011) and we 137 

note that the GEV has been successfully used to model TXx elsewhere (Hauser et al., 2016; 138 

Huang et al., 2016; Kim et al., 2020). We further assume that the location, scale and shape 139 

parameters of the GEV are point- and timestep-dependent, written as 𝜇𝑠,𝑡, 𝜎𝑠,𝑡 and 𝜉𝑠,𝑡. More 140 

precisely, we disentangle these dependencies by assuming that these parameters follow the 141 

functions 𝑓𝑠, 𝑔𝑠 and ℎ𝑠, taking a matrix of covariates ∆𝑽𝒕 as input. This matrix is defined as 142 
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timeseries of the anomalies in global climate variables such as GSAT. We define the emulator 143 

configuration 𝐸 as the set of equations (1). Examples are shown in Section 4.1. 144 

𝐸:

{
 
 

 
 Δ𝑋𝑠,𝑡 ~ 𝐺𝐸𝑉(𝜇𝑠,𝑡, 𝜎𝑠,𝑡, 𝜉𝑠,𝑡)

𝜇𝑠,𝑡 = 𝑓𝑠(∆𝑽𝒕)

𝜎𝑠,𝑡 = 𝑔𝑠(∆𝑽𝒕)

𝜉𝑠,𝑡 = ℎ𝑠(∆𝑽𝒕)

 (1) 145 

For each ESM, the coefficients in the functions 𝑓𝑠, 𝑔𝑠 and ℎ𝑠 are estimated by minimizing 146 

the negative log likelihood over scenarios and available ensemble members. To ensure the 147 

convergence of the fit, the local first guess of the coefficients for the parameters is optimized 148 

using an adapted method of moments as described in the supplementary information. 149 

 150 

3.2 Spatio-temporal coherent sampling of climate extremes 151 

The first step of our emulation method provides the local statistical properties of the 152 

climate extremes and their evolution with external covariates. For approximating internal climate 153 

variability, we aim at devising a stochastic model that produces spatially and temporaly 154 

correlated samples of TXx. To this end, we follow previous work which parameterizes internal 155 

climate variability in annual mean temperature anomalies using a local auto-regressive processes 156 

with spatially correlated innovations (Beusch et al., 2020). A key assumption of this approach is 157 

that the variability is stationary in time and approximately normally distributed. This is however 158 

not the case for residuals of the model mentioned in equation (1). Instead, we propose an 159 

approach that exploits the model to transform TXx to a standard normal distribution using the 160 

probability integral transform (Angus, 1994; Gneiting et al., 2007; Gudmundsson et al., 2012). 161 

For the emulator configuration defined in Section 3.1, the GEV of TXx and its cumulative 162 

distribution function ℱ𝐺𝐸𝑉(Δ𝑋𝑠,𝑡|∆𝑽𝒕, 𝑓𝑠 , 𝑔𝑠, ℎ𝑠) are known over the full training dataset. We 163 

define ℱ𝒩
−1 as the quantile function of the standard normal distribution. Using these two 164 

functions, we transform Δ𝑋𝑠,𝑡 to a standard normally distributed transformed TXx, that we write 165 

as Φ𝑠,𝑡. 166 

Φ𝑠,𝑡 = ℱ𝒩
−1 (ℱ𝐺𝐸𝑉(Δ𝑋𝑠,𝑡|∆𝑽𝒕, 𝑓𝑠, 𝑔𝑠, ℎ𝑠)) (2) 167 

While Δ𝑋𝑠,𝑡 follows a non-stationary GEV distribution, Φ𝑠,𝑡 has a normal distribution 168 

stationary in time, thus respecting the required conditions (Humphrey and Gudmundsson, 2019; 169 

Beusch et al., 2020). Note that no information is lost in this transformation, because the GEV 170 

associated with Φ𝑠,𝑡 is known at each point 𝑠 and timestep 𝑡, which will be used in Section 3.3. 171 

We train on Φ𝑠,𝑡 a local auto-regressive process of order 1 with parameters 𝛾𝑠,0 and 𝛾𝑠,1, with 172 

spatially correlated innovations 𝜐𝑠,𝑡. These innovations are sampled from a multivariate normal 173 
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distribution deduced from an empirically estimated and localized covariance matrix that 174 

represents spatial dependence between points as explained in (Beusch et al., 2020). 175 

Φ𝑠,𝑡 = 𝛾𝑠,0 + 𝛾𝑠,1Φ𝑠,𝑡−1 + 𝜐𝑠,𝑡 (3) 176 

 177 

 3.3 Emulating spatio-temporally correlated climate extremes 178 

The two steps described in section 3.1 and 3.2 form the full training of the emulator. 179 

Here, we explain how to emulate TXx under different scenarios. Any scenario can be emulated if 180 

it provides the covariates ∆𝑽𝒕 that are timeseries of anomalies in global climate variables. 181 

Thanks to this scenario, the distribution of TXx is a direct result from equation 1.  182 

Using the auto-regressive processes with spatially correlated innovations, we draw 183 

realizations Φ𝑠,𝑡,𝑒 for all points 𝑠, timesteps 𝑡, and index of emulation 𝑒. These realizations are 184 

transformations of TXx onto a standard normal distribution, and independent from the scenario 185 

so far. Because the probability integral transformation can be reversed, we transform back the 186 

realizations Φ𝑠,𝑡,𝑒 onto the distribution of TXx using its quantile function ℱ𝐺𝐸𝑉
−1 (𝑝|∆𝑽𝒕, 𝑓𝑠 , 𝑔𝑠, ℎ𝑠), 187 

𝑝 being here a probability and the cumulative distribution function of the standard normal 188 

distribution ℱ𝒩, leading to the emulations of TXx written Δ𝑋𝑠,𝑡,𝑒: 189 

Δ𝑋𝑠,𝑡,𝑒 = ℱ𝐺𝐸𝑉
−1 (ℱ𝒩(Φ𝑠,𝑡,𝑒)|∆𝑽𝒕, 𝑓𝑠 , 𝑔𝑠, ℎ𝑠 ) (4) 190 

 191 

4 Emulating extreme temperatures under climate change 192 

4.1 Evaluating and selecting emulator configurations 193 

The method of Section 3 is applied and we test a set of different configurations (Figure 194 

1), looking for a good compromise between simplicity and accuracy. For each of the 18 ESMs, 195 

we use its historical period over 1850-2014 and all available scenarios over 2015-2100 to 196 

calibrate the emulator configuration (Section 3.1) and the auto-regressive process with spatially-197 

correlated innovations (Section 3.2). We then draw 1000 realizations that we back-transform into 198 

emulations of all available scenarios. (Section 3.3). For each ESM and emulator configuration, 199 

we evaluate the ability of the emulations to reproduce the ESM’s TXx anomaly distribution 200 

using the Continuous Rank Probabiliy Score (CRPS) and the CRPS Skill Score (CRPSS), 201 

commonly used in climate sciences (Wilks, 2011; Jolliffe and Stephenson, 2012). The CRPS 202 

measures the quadratic discrepancy between the cumulative distribution function of the 203 

emulations to the one of the ESM. We calculate this score for each point of the sample. The 204 

CRPSS is defined as one minus the ratio of the CRPS to another CRPS used as a reference, thus 205 

expressing the decrease in the CRPS relative to the reference. Both scores are then averaged 206 

globally for the sake of clarity. 207 

We show a selection of emulator configurations in Figure 1, using the decomposition of 208 

the GSAT anomaly into the global trend Δ𝑇𝐺𝑇 and the global variability Δ𝑇𝐺𝑉 (Beusch et al., 209 
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2020). The global trend Δ𝑇𝐺𝑇 is meant to capture the signal from global warming while the 210 

global variability Δ𝑇𝐺𝑉 would rather capture interannual variability processes. We use here 211 

linear evolutions of covariates, for simplicity and given their observed linearity with global mean 212 

temperature (Seneviratne et al., 2016; Wartenburger et al., 2017; Tebaldi et al., 2020). In Figure 213 

1, the configurations are distinguished into two groups: the first row corresponds to a primitive 214 

configuration, with no covariates, used for benchmarking of the second group. 215 

 216 

Figure 1. Selection of an emulator configuration. The first row shows the CRPS (lower is better) 217 

for the emulator configuration E0 used as a reference. On the following rows, the CRPSS (higher 218 

is better) with reference to the emulator configuration E0 show the respective global performance 219 

of the different emulator configurations for different ESMs. 220 

On the first row of Figure 1, the emulator configuration has its GEV with constant 221 

parameters over time, despite a changing climate. On the second row of Figure 1, the 222 

configuration 𝐸1 has only its location covarying linearly with Δ𝑇𝐺𝑇. Compared to 𝐸0, it reduces 223 

the CRPS on average by about 28%. The ESMs with a low CRPS in 𝐸0 (eg FGOALS-g3) have 224 

their TXx less influenced by climate change than those with a higher CRPS such as HadGEM3-225 

GC31-LL, HadGEM3-GC31-MM and UKESM1-0-LL. Those ESMs with a low CRPS have a 226 

low CRPSS as well, because the new emulator configuration brings little improvement. 227 

However, those with a higher CRPS benefit from a stronger reduction in their CRPS by 228 

including a dependency of the GEV to climate change. 229 

On the following rows, different combinations are tried to further improve 𝐸1. However, 230 

these more complex models have only marginal gains, or even lead to a reduction in the 231 

performances (e.g. 𝐸2). These results are confirmed by comparing the global distribution of  232 

CRPS using Mann-Whitney U tests: adding additional terms for the emulation of TXx either 233 

brings no significant improvement, or slightly reduces the quality of the emulations. It would 234 

suggest that it would only overfit the data. 235 

We observe that the emulator configurations 𝐸2 to 𝐸6 bring improvement only in some 236 

regions of the Earth (not shown), while they hamper the fit in many others, which is consistent 237 

with (Kharin and Zwiers, 2005; Kim et al., 2020). In our framework, 𝐸1 is sufficient to capture 238 

the evolution of the distribution of TXx in a changing climate. We observe that with the 239 



manuscript submitted to replace this text with name of AGU journal 

 

combination of Δ𝑇𝐺𝑇 and the emulated Δ𝑇𝐺𝑉, the location and scale parameters vary over 240 

broader domains than those of the ESM, and the scale parameters may even become negative. 241 

Because Δ𝑇𝐺𝑉 can be characterized as an independent stochastic process, using it as a covariate 242 

hinders the emulation. 243 

In Figures S.1 to S.7, we show other emulator configurations. We use Δ𝐻𝐺𝑇, the global 244 

trend of the anomaly in HFDS, to disentangle contributions with different timescales (Geoffroy 245 

et al., 2013; King et al., 2020). It shows that Δ𝐻𝐺𝑇 does not bring the desired improvement: the 246 

differences in transient and equilibrium TXx appear mostly at the end of low-warming scenarios. 247 

Using the extensions of scenarios up to 2300 may help the algorithm in seizing this signal. A 248 

logistic regression is also tried on the shape parameter, to limit the range of its evolution and to 249 

account for changes in albedo, for instance due to reduction in snow cover. 250 

This analysis shows that the emulator configuration 𝐸1 provides the best compromise of 251 

simplicity and quality for emulations of TXx. The results in the rest of the paper will therefore 252 

use 𝐸1, i.e. with the only the location parameter of the GEV varying linearly with Δ𝑇𝐺𝑇. 253 

 254 

4.2 Example of emulations 255 

Figure 2 shows an example of our results for MPI-ESM1-2-HR, one of the 18 trained 256 

ESMs. We compare the maps of the anomaly in TXx of the ESM (topmost row) with 3 of the 257 

1000 emulations for this ESM. We show the years 2014 and 2100, the end of the historical 258 
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scenario and the end of SSP5-8.5 to illustrate the performance under current and high warming 259 

conditions. 260 

  261 

Figure 2. Example of emulations. The local anomalies in TXx are shown for MPI-ESM1-2-HR 262 

and three emulations for the years 2014 and 2100, in columns (a) and (b), respectively. The 263 

transient regional response from 2014 to 2100 is shown in column (c) for selected regions and 264 

points. The 1st and 2nd rows of column (c) are respectively the regions West & Central Europe 265 

and the South-East of South America. The 3rd and 4th rows of column (c) are two points located 266 

in the United States and in China respectively. It features the values from MPI-ESM1-2-HR, the 267 

same three emulations shown in maps and the density of the 1000 emulations drawn for this 268 

emulator configuration.  269 

The emulations capture the general spatial features in TXx well, be it in 2014 or in 2100, 270 

but no exact match to the ESM simulation can be expected since they include a representation of 271 

natural variability. For example, both the emulations and the ESM simulate the positive anomaly 272 

over Eastern Europe and the center of South America or the lower anomaly over Central Africa. 273 

Because each emulation includes natural variability, some features are more pronounced than 274 
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others, such as the high anomaly in the center of North America. The strongest differences to 275 

MPI-ESM1-2-HR are in the South-East of South America and in the center of North America. 276 

To further investigate the similarities and discrepancies, we represent the transient 277 

response in two specific regions and two specific points as detailed in Figure 2. Overall, the 278 

emulations show a good agreement with the ESM. The ensemble of emulations correctly 279 

encompasses the realization by MPI-ESM1-2-HR.  280 

Figures S.8 to S.25 show the same results for the 17 other ESMs employed in this study. 281 

They highlight that the emulator captures the spatial and temporal features of these models as 282 

well, even though the ESMs present different mean warming, internal variability, and spatial 283 

patterns of TXx anomalies. 284 

 285 

4.3 Evaluation of regional performance 286 

We have selected the emulator configuration on the basis of its global performance in 287 

Section 4.1, and verified that the emulations are visually convincing at different spatial scales  in 288 

Section 4.2. Here, we want to quantify the performance on a regional level. To do so, we 289 

compare regional percentiles of the emulations to the ESMs following the same approach as 290 

(Beusch et al., 2020). For each ESM and each emulation, the anomalies in TXx are averaged 291 

over the AR6 regions. Next, we calculate the 95%, 50% and 5% percentiles of the regional 292 

emulations. We count how often the regional values of the ESM exceed these thresholds. We 293 

determine the deviations of the ESM to the percentiles of the emulation, hence how well we 294 

reproduce the dispersion of the ESM. 295 

Figure 3 shows the regional deviation in the quantiles. Panel (a) shows that the 95% 296 

quantile of the emulations is generally too low, while panel (c) shows that the 5% quantile of the 297 

emulations is mostly too high. This means that the emulation is underdispersive, a feature 298 

expected for emulations (Beusch et al., 2020). The performance of the emulator is lowest in 299 

South-East Asia and in the Sahara, but overall the performance remains good: the regional 300 

deviations are below 5% in most of the cases (for 93%, 99% and 92% of the model-region 301 

combinations for the quantiles 95%, 50% and 5%, respectively). The average of the regional 302 

deviations across regions and ESMs is -2.4%, -0.3% and 2.9%. 303 

  304 
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 305 

Figure 3. Regional deviations of ESMs from the 5%. 50%, 95% quantiles of the emulations, 306 

respectively in panels (a), (b) and (c). Red (blue) indicates that the quantile of the emulations is 307 

higher (lower) than the one of ESM, because the ESM is more frequently below (above) the 308 

quantile than expected.  309 
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 310 

4.4 Example application 311 

In Sections 4.1 to 4.3, we evaluate the performance of the emulator using training data. 312 

However, this method is not only meant to reproduce training data, but also to emulate other 313 

scenarios. For instance, some ESMs run only a subset of the scenarios SSP1-1.9, SS1-2.6, SSP2-314 

4.5, SSP3-7.0 and SSP5-8.5, which hinders the evaluation of a distribution of anomalies in TXx 315 

based on all ESMs. Here, for each ESM, we use the emulator trained on available scenarios from 316 

Sections 4.2 to 4.3 to calculate all these SSPs. 317 

In the selected configuration, MESMER-X can emulate scenarios if timeseries of the 318 

smoothed anomaly in GSAT (Δ𝑇𝐺𝑇) are provided. For each of the scenarios (Section 2), we 319 

average Δ𝑇𝐺𝑇 over all ESMs that have run the scenario. These averaged Δ𝑇𝐺𝑇 are used as 320 

common drivers to create emulations for all ESMs for every scenario. For each of the 18 ESMs, 321 

we calculate an ensemble of 1000 realizations which combines two sources of dispersion: the 322 

local variability in TXx modeled by the ESM and the uncertainty in this modeling by ESMs, also 323 

termed “regional climate sensitivity” (Seneviratne and Hauser, 2020). Yet, it does not encompass 324 

the global uncertainty due to the different global climate sensitivities of the ESMs. Additionally, 325 

we are not weighting ESMs according to their performances nor accounting for ESM-326 

interdepencies (Abramowitz et al., 2019; Brunner et al., 2020b). Here, we solely aim to show the 327 

capacity of this emulator by synthetizing differences in the modeling of TXx in the ESMs. Using 328 

the emulations, we calculate the distributions of the anomaly in TXx for any point in space and 329 

time, as illustrated in the right panel of Figure 4. From these emulations, we deduce the return 330 

periods in 2100 for each ESM and scenario. Then we deduce the mean and standard deviation of 331 
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these return periods, corresponding to the uncertainty induced by the different ESMs’ different 332 

representation of natural variability, as shown in left panel of Figure 4. 333 

 334 

Figure 4. Illustration of the ensemble formed by 1000 emulations of the 18 trained ESMs, 335 

applied over common scenarios. The return periods in 2100 in West & Central Europe of each 336 

ESM are shown in panel (a) through their mean and one standard deviation range. In the legend, 337 

the anomaly in GSAT in 2100 of each scenario is provided. Panel (b) shows the local 5%, 50% 338 

and 95% quantiles in 2100, all ESMs being pooled together. Each row corresponds to a different 339 

scenario. 340 

In the left panel of Figure 4, we notice that in West & Central Europe, an anomaly of 5°C 341 

would happen about once in 40 years in 2100 under SSP1-1.9, but every 10 years under SSP1-342 

2.6 and every 1 or 2 years under SSP2-4.5. This result is consistent with how climate extremes 343 

are projected for 1.5°C (Seneviratne et al., 2018) and the change from 1.5°C to 2°C (Hoegh-344 

Guldberg et al., 2018). 345 

In the right panel of Figure 4, we show the maps in 2100 for selected quantiles. Here, all 346 

emulations and ESMs are pooled together, which implies that both the natural local variability in 347 

TXx and the uncertainty in this modeling by ESMs contribute to this range. For the median, the 348 

regions with the highest anomalies of TXx are Central North America, Central South America 349 

and the Meditarenean region. Those with the lowest anomalies are Greenland, South Asia and 350 

Central Africa. These results are even more distinct when considering the 95% quantile. The 351 

95% quantile of SSP1-1.9 seems overall only slightly higher than the 5% quantile of SSP5-8.5. 352 
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Broadly speaking, it would suggest that anomalies in TXx that had only 5% of chances to occur 353 

or be exceeded in SSP1-1.9 in 2100, would have their probability increase to 95% in SSP5-8.5. 354 

 355 

5 Discussion and conclusions 356 

This paper has introduced a method for the emulation of climate extremes under climate 357 

change, used to extend the MESMER emulator (Beusch et al., 2020) to MESMER-X. This 358 

method does not only reproduce the mean evolution of climate extremes but also their 359 

distribution. Besides, it accounts for their spatial and temporal features.  360 

Fits of non-stationnary GEV for TXx have already been performed using different 361 

covariates on the location (Zwiers et al., 2011; Hauser et al., 2016; Wehner et al., 2020; Wehner, 362 

2020). Here, we leverage this approach to model the distribution of TXx at each point 363 

conditional on global covariates. The proposed method is improved in its greater versatility in 364 

the use of covariates and in its sampling of stochastic realizations of timeseries fields. We show 365 

that the emulator mimics well the local annual maximum temperature of the ESMs, with an 366 

underdispersion below 5% for most regions and ESMs. 367 

This method is designed to be directly applied to other indicators of climate extremes, as 368 

long as their distribution can be parametrized by a GEV. Moreover, the framework can be easily 369 

adapted to different distributions which be more appropriate for other indicators, such as a 370 

Poisson distribution for counting extreme events (Wilks, 2011) or a generalized Pareto 371 

distribution for climate extremes based on peak-over-threshold exceedances (Coles, 2001; 372 

Naveau et al., 2005). The parameters of these distributions may vary with any combination of 373 

global drivers to improve the quality of the emulator configuration. 374 

Similar to MESMER (Beusch et al., 2022a; Beusch et al., 2022b), MESMER-X could be 375 

coupled to a SCM in future work to gain the ability to transform any emission scenario into local 376 

annual climate extremes in a fast and probabilistic way. Such an emulator chain could be used to 377 

provide detailed climate information into integrated assessment models, for instance to 378 

assess how climate extremes affect different transformation pathways. 379 

(All figures and tables should be cited in order.  For initial submission, please embed figures, tables, and their 380 

captions within the main text near where they are cited.  At revision, figures should be uploaded separately, as we 381 

need separate files for production. Tables and all captions should be moved to the end of the file.) 382 
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ESM Simulations available Ensemble member used 

ACCESS-CM2 historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

ACCESS-ESM1-5 historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

AWI-CM-1-1-MR historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

CanESM5 historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

CMCC-CM2-SR5 historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

CNRM-CM6-1 historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f2 

CNRM-CM6-1-HR historical, ssp126, ssp585 r1i1p1f2 

CNRM-ESM2-1 historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f2 

FGOALS-g3 historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

HadGEM3-GC31-LL historical, ssp126, ssp245, ssp585 r1i1p1f3 

HadGEM3-GC31-MM historical, ssp126, ssp585 r1i1p1f1 

IPSL-CM6A-LR historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

MPI-ESM1-2-HR historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

MPI-ESM1-2-LR historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

MRI-ESM2-0 historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

NESM3 historical,  ssp126, ssp245, ssp585 r1i1p1f1 

NorESM2-MM historical, ssp126, ssp245, ssp370, ssp585 r1i1p1f1 

UKESM1-0-LL historical, ssp119, ssp126, ssp245, ssp370, ssp585 r1i1p1f2 

 

Table S.1: ESMs selected for emulation, based on the availability of data. 

  



Optimization of the first guess for the fit of the GEV with covariates: 

In section 3.1 of the main text of this paper, we describe how a distribution is fitted for the 

climate extreme, using covariates on parameters. As written in section 3.1, Δ𝑋𝑠,𝑡 corresponds 

to the sample of the climate extreme and 𝚫𝑪𝒕,𝒌 to the vector of covariates. We assume 

immediately that we are on a given gridpoint 𝑠 to drop the index. In this section, we note Δ𝑋𝑡 

the full sample of the climate extreme, historical and scenarios together. 

The objective is to identify coefficients for the emulator configuration. We illustrate this 

method with a GEV here of location 𝜇, scale 𝜎 and shape 𝜉. We write in equation (A.1) the 

objective. The coefficients 𝜇0, 𝜎0 and 𝜉0 are constant terms. We separate the 𝑖 coefficients 𝜇𝑙𝑖𝑛,𝑖 

on linear covariates from the 𝑗 coefficients 𝜇𝑜𝑡ℎ𝑒𝑟,𝑗 on non-linear covariates, for all parameters. 

{

(𝜇0, … 𝜇𝑙𝑖𝑛,𝑖… ,…𝜇𝑜𝑡ℎ𝑒𝑟,𝑗 …)

(𝜎0, … 𝜎𝑙𝑖𝑛,𝑘 … ,…𝜎𝑜𝑡ℎ𝑒𝑟,𝑙 …)

(𝜉0, … 𝜉𝑙𝑖𝑛,𝑚… ,…𝜉𝑜𝑡ℎ𝑒𝑟,𝑛…)

 (𝐴. 1) 

The general idea of this method is to propose a first guess of the constant terms for the 

location, scale and shape of the distribution using the analytical expressions of the mean, 

variance and skewness. By optimizing a first evaluation of these constant terms to the observed 

moments of the distribution, we obtain an optimized first guess. 

 

Step 1: 

To begin with, the sample of the climate extreme Δ𝑋𝑡 is detrended using ordinary least 

squares, and only with the terms on the location that were assumed linear in the emulator 

configuration. The constant term is noted 𝜇𝑓𝑔1,0, while the coefficients on the 𝑖 linear terms are 

written 𝜇𝑓𝑔,𝑙𝑖𝑛,𝑖. 

 

Step 2: 

From the detrended climate extremes, we deduce the residuals. From these residuals, we 

calculate the mean 𝑀, the variance 𝑉 and the skewness 𝑆 of the full sample. 

 

Step 3: 

The support of a GEV is defined as shown in equation (A.2). In our data, we observe that 

the shape is mostly negative, pointing at an upper limit in Δ𝑋𝑡. 

{

Δ𝑋𝑡 ∈  [𝜇 − 𝜎 𝜉⁄ ,+∞[   𝑤ℎ𝑒𝑛 𝜉 > 0

Δ𝑋𝑡 ∈  ]−∞,+∞[   𝑤ℎ𝑒𝑛 𝜉 = 0

Δ𝑋𝑡 ∈  ]−∞, 𝜇 − 𝜎 𝜉⁄ ]   𝑤ℎ𝑒𝑛 𝜉 < 0

 (𝐴. 2) 



An initial value 𝜉𝑟𝑎𝑤 for the shape is calculated using this support and an ad-hoc value, as 

shown in equation (A.3). This value will not be the first guess for the shape of the GEV. This 

𝜉𝑟𝑎𝑤 is meant to ensure that all points of the sample are within the support of the GEV. 

𝜉𝑟𝑎𝑤 = 𝑚𝑎𝑥 (−0.25,
𝑉

𝑀 −max( Δ𝑋𝑡)
+ 0.1) (𝐴. 3) 

 

Step 4: 

We write a first set of coefficients, shown in equation (A.4). The coefficients 𝜇𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑗 are 

written so that the ensuing evolutions would be small compared to the constant. For instance, 

using notations from Figure 1, the logistic terms are set to 𝜉𝜆,1= 0.1 𝑦𝑟−1 and 𝜉𝛿,1 = 0.01 𝜉0. 

{

(𝑀,…𝜇𝑓𝑔,𝑙𝑖𝑛,𝑖 … ,…𝜇𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑗 …)

(√𝑉,…0… ,…𝜎𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑙…)

(𝜉𝑟𝑎𝑤, … 0… ,… 𝜉𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑛…)

 (𝐴. 4) 

The mean 𝑀𝐺𝐸𝑉, the variance 𝑉𝐺𝐸𝑉 and the skewness 𝑆𝐺𝐸𝑉 of a GEV of location 𝜇, scale 𝜎 

and shape 𝜉 can be written as shown in equations (A.5). We write 𝛾 as the Euler’s constant, Γ 

as the Gamma function, 𝑠𝑔𝑛 as the sign function and 𝜁 as the Riemann’s zeta function. 

{
 
 
 
 
 

 
 
 
 
 

𝑀𝐺𝐸𝑉 = {
 𝜇 + 𝜎 (𝑔1 − 1) 𝜉⁄   𝑤ℎ𝑒𝑛 𝜉 ≠ 0, 𝜉 < 1

𝜇 + 𝜎𝛾  𝑤ℎ𝑒𝑛 𝜉 = 0
∞  𝑤ℎ𝑒𝑛 𝜉 ≥ 1

𝑉𝐺𝐸𝑉 = {

𝜎2 (𝑔2 − 𝑔1
2) 𝜉2⁄   𝑤ℎ𝑒𝑛 𝜉 ≠ 0, 𝜉 < 1/2

𝜎2 𝜋2 6⁄   𝑤ℎ𝑒𝑛 𝜉 = 0
∞  𝑤ℎ𝑒𝑛 𝜉 ≥ 1/2

𝑆𝐺𝐸𝑉 = {
𝑠𝑔𝑛(𝜉)

𝑔3 − 3𝑔2𝑔1 + 2𝑔1
3

(𝑔2 − 𝑔1
2)
3
2

  𝑤ℎ𝑒𝑛 𝜉 ≠ 0, 𝜉 <
1

3

12√6𝜁(3) 𝜋3⁄   𝑤ℎ𝑒𝑛 𝜉 = 0

𝑔𝑘 = Γ(1 − 𝑘𝜉)

 (𝐴. 5) 

We optimize now the constant coefficients (𝜇𝑐 , 𝜎𝑐 , 𝜉𝑐) with starting values (𝑀, √𝑉, 𝜉𝑟𝑎𝑤) 

from (A.4), by minimization of the differences to the moments of the GEV deduced from (A.5). 

This process is illustrated in equation (A.6), and the solution is noted (𝜇𝑓𝑔2,0, 𝜎𝑓𝑔,0, 𝜉𝑓𝑔,0). 

(𝜇𝑓𝑔2,0, 𝜎𝑓𝑔,0, 𝜉𝑓𝑔,0) =  𝑚𝑖𝑛(𝜇𝑐,𝜎𝑐,𝜉𝑐)
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (

(𝑀𝐺𝐸𝑉(𝜇𝑐, 𝜎𝑐 , 𝜉𝑐) − 𝑀)
2

+(𝑉𝐺𝐸𝑉(𝜇𝑐, 𝜎𝑐 , 𝜉𝑐) − 𝑉)2

+(𝑆𝐺𝐸𝑉(𝜇𝑐, 𝜎𝑐 , 𝜉𝑐) − 𝑆)2
) (𝐴. 6) 

Equation (A.6) shows that the minimization is performed with constraints. For every set of 

values (𝜇𝑐, 𝜎𝑐 , 𝜉𝑐), the evolutions of the parameters (𝜇𝑡, 𝜎𝑡 , 𝜉𝑡) of the GEV are computed. To 

do so, the covariates are used along the coefficients from equation (A.4), although values 



(𝑀, √𝑉, 𝜉𝑟𝑎𝑤) are replaced by the current values (𝜇𝑓𝑔1,0 + 𝜇𝑐, 𝜎𝑐 , 𝜉𝑐). We pinpoint that the 

actual mean for the calculation of the evolution of the coefficients was 𝜇𝑓𝑔1,0 + 𝜇𝑐, not only 

𝜇𝑐. This is due to the dependency of the mean of the GEV to its scale and shape, as shown in 

equation (A.5), and the linear detrend used in step 1. 

The computation of the evolutions of the parameters allow the verification of conditions, as 

shown in equation (A.7). The first condition verifies that the sample falls within the support of 

the current tested GEV, and is a direct consequence of equation (A.2). The second condition is 

meant to avoid problematic values on the shape. The low and high thresholds on the shape were 

respectively set to −∞ and 1 3⁄ , to avoid an infinite skewness, as shown in equation (A.5). The 

third condition simply answers to obvious mathematical and physical grounds. The fourth 

condition is meant to avoid spurious evolutions of coefficients in ill-defined emulator 

configurations, causing a trend in coefficients, almost compensating in the evolutions of 

parameters. This second low threshold were set to -2, this value were observed to provide good 

results. The last condition actually corresponds to other mathematical conditions on 

coefficients, such as the time constant in logistic evolutions that are meant to be positive. 

{
  
 

  
 {
Δ𝑋𝑡 ∈  [𝜇𝑡 − 𝜎𝑡 𝜉𝑡⁄ ,+∞[   𝑤ℎ𝑒𝑛 𝜉𝑡 > 0

Δ𝑋𝑡 ∈  ]−∞, 𝜇𝑡 − 𝜎𝑡 𝜉𝑡⁄ ]   𝑤ℎ𝑒𝑛 𝜉𝑡 < 0

𝜉𝑡  ∈ [𝜉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑙𝑜𝑤, 𝜉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,ℎ𝑖𝑔ℎ]

𝜎𝑡 > 0
𝜉𝑐 > 𝜉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑙𝑜𝑤,2 

𝜉𝜆 > 0,…

 (𝐴. 7) 

 

Step 5: 

Thanks to the former optimization, better values for the constant terms have been found. By 

feeding the result of (A.6) in (A.4), we calculate the negative log likelihood of the current 

solution, a first optimized first guess. 

Then we repeat step 4, although by removing the term on the mean. The second optimized 

first guess is then used to calculate the negative log likelihood. 

We deduce the first guess by taking the one with the lower negative log likelihood. Equation 

(A.8) shows the optimal first guess used for the fit of the distribution from section 3.1. We 

pinpoint that the conditions (A.7) are used as well during the fit of the distribution. 

{

(𝜇𝑓𝑔1,0 + 𝜇𝑓𝑔2,0, … 𝜇𝑓𝑔,𝑙𝑖𝑛,𝑖 … ,…𝜇𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑗 …)

(𝜎𝑓𝑔,0, … 0… ,…𝜎𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑙 …)

(𝜉𝑓𝑔,0, … 0… ,… 𝜉𝑓𝑔,𝑜𝑡ℎ𝑒𝑟,𝑛…)

 (𝐴. 8) 



Comparison of emulator configuration over each scenario individually: 

 

Figure S.1. Emulator configurations over historical and all scenarios. The first row shows 

the CRPS (lower is better) for E0 used as a reference. On the following rows, the CRPSS (higher 

is better) with reference to the emulator configuration E0 show the respective global 

performance of the different emulator configurations for different ESMs. 

 

 

Figure S.2. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the historical (1850-2014). 



 

Figure S.3. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the ssp119 (2015-2100). 

 

 

Figure S.4. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the ssp126 (2015-2100). 



 

Figure S.5. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the ssp245 (2015-2100). 

 

 

Figure S.6. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the ssp370 (2015-2100). 



 

Figure S.7. Same as Figure S.1, with training over all available scenarios, but evaluation 

solely over the ssp585 (2015-2100). 

  



Examples of emulations under each ESM: 

 

Figure S.8. Example of emulations for ACCESS-CM2 and three of its emulations in 2014 

and 2100, in columns (a) and (b), respectively. The transient regional response from 2014 to 

2100 are shown in column (c) for selected regions and grid points. It features the values from 

ACCESS-CM2, the same three emulations shown in maps and the density of the 1000 

emulations drawn for this emulator configuration. 



 

Figure S.9. Same as Figure S.8, but with ACCESS-ESM1-5. 



 

Figure S.10. Same as Figure S.8, but with AWI-CM-1-1-MR. 



 

Figure S.11. Same as Figure S.8, but with CanESM5. 

 



 

Figure S.12. Same as Figure S.8, but with CMCC-CM2-SR5. 

 



 

Figure S.13. Same as Figure S.8, but with CNRM-CM6-1. 

 



 

Figure S.14. Same as Figure S.8, but with CNRM-CM6-1-HR. 

 



 

Figure S.15. Same as Figure S.8, but with CNRM-ESM2-1. 

 



 

Figure S.16. Same as Figure S.8, but with FGOALS-g3. 

 



 

Figure S.17. Same as Figure S.8, but with HadGEM3-GC31-LL. 

 



 

Figure S.18. Same as Figure S.8, but with HadGEM3-GC31-MM. 

 



 

Figure S.19. Same as Figure S.8, but with IPSL-CM6A-LR. 

 



 

Figure S.20. Same as Figure S.8, but with MPI-ESM1-2-HR. 

 



 

Figure S.21. Same as Figure S.8, but with MPI-ESM1-2-LR. 

 



 

Figure S.22. Same as Figure S.8, but with MRI-ESM2-0. 

 



 

Figure S.23. Same as Figure S.8, but with NESM3. 

 



 

Figure S.24. Same as Figure S.8, but with NorESM2-MM. 

 



 

Figure S.25. Same as Figure S.8, but with UKESM1-0-LL. 

 

 


