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Abstract

Discrimination between tectonic earthquakes and quarry blasts is important for accurate earthquake cataloging and seismic

hazard analysis. However, reliable classification is challenging with raw waveforms and no prior knowledge of source parameters.

Here we apply deep learning to perform this task in southern California and eastern Kentucky, which differ significantly in

available labelled data, class imbalance and waveform characteristics. Accordingly, we adopt different strategies for the two

regions. First, we directly train a convolutional neural network (CNN) for southern California due to its data abundancy. To

alleviate class imbalance, the blast data are augmented by randomly shifting waveform windows. The model for California

yields an accuracy of 91.97% for single-station classification and 97.54% for network-averaged classification. Second, as eastern

Kentucky has a much smaller data size, we fine-tune the pretrained California model to fit the Kentucky data. The fine-tuned

model yields an accuracy of 97.35% for single-station classification and 99.46% for network-averaged classification. The fine-

tuned model outperforms the model trained from scratch. Finally, we use occlusion test and gradient-weighted class activation

mapping to illuminate which parts of waveforms are important for model prediction. Our results demonstrate that deep learning

can achieve high accuracy in seismic event discrimination with raw waveforms and that transfer learning is effective and efficient

to generalize deep learning models across different regions.

1



 1 

Deep learning and transfer learning of earthquake and quarry-blast 1 

discrimination: Applications to southern California and eastern Kentucky 2 

 3 

Jun Zhu1, Lihua Fang2, Fajun Miao3, Liping Fan2, Ji Zhang1, and Zefeng Li1,4* 4 

1. Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and 5 

Space Sciences, University of Science and Technology of China, Hefei, 230026, China 6 

2. Institute of Geophysics, China Earthquake Administration, Beijing, 100081, 7 

China 8 

3. Jiangsu Earthquake Administration, China Earthquake Administration, Nanjing, 9 

210014, China 10 

4. Mengcheng National Geophysical Observatory, University of Science and 11 

Technology of China, Mengcheng, 233500, China 12 

  13 

*Corresponding author: Zefeng Li (zefengli@ustc.edu.cn) 14 

  15 

Submitted to Journal of Geophysical Research: Solid Earth 16 

Date: 26 April 2022 17 

 18 

 19 

 20 

Key Points: 21 

1. We train deep learning and transferred models to classify local earthquakes and 22 

quarry blasts in southern California and eastern Kentucky. 23 

2. These models directly take inputs of minimally processed waveforms and have 24 

potential to operate in real time. 25 

3. We show that transfer learning is effective and efficient to generalize deep 26 

learning models across different regions. 27 

  28 
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Abstract 29 

 Discrimination between tectonic earthquakes and quarry blasts is important for 30 

accurate earthquake cataloging and seismic hazard analysis. However, reliable 31 

classification is challenging with raw waveforms and no prior knowledge of source 32 

parameters. Here we apply deep learning to perform this task in southern California and 33 

eastern Kentucky, which differ significantly in available labelled data, class imbalance 34 

and waveform characteristics. Accordingly, we adopt different strategies for the two 35 

regions. First, we directly train a convolutional neural network (CNN) for southern 36 

California due to its data abundancy. To alleviate class imbalance, the blast data are 37 

augmented by randomly shifting waveform windows. The model for California yields 38 

an accuracy of 91.97% for single-station classification and 97.54% for network-39 

averaged classification. Second, as eastern Kentucky has a much smaller data size, we 40 

fine-tune the pretrained California model to fit the Kentucky data. The fine-tuned model 41 

yields an accuracy of 97.35% for single-station classification and 99.46% for network-42 

averaged classification. The fine-tuned model outperforms the model trained from 43 

scratch. Finally, we use occlusion test and gradient-weighted class activation mapping 44 

to illuminate which parts of waveforms are important for model prediction. Our results 45 

demonstrate that deep learning can achieve high accuracy in seismic event 46 

discrimination with raw waveforms and that transfer learning is effective and efficient 47 

to generalize deep learning models across different regions. 48 

 49 

  50 
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Plain Language Summary 51 

Discrimination between tectonic earthquakes and quarry blasts is needed to 52 

properly evaluate seismic hazards. In this study, we build two deep learning models to 53 

automatically discriminate them in southern California and eastern Kentucky. As 54 

California has more seismic data than Kentucky, we first train a deep learning model 55 

for California and then fine tune it for Kentucky. Using minimally processed seismic 56 

waveforms as input, both the California and the Kentucky models achieve classification 57 

accuracy of 91.97% and 97.35%, respectively. In Kentucky, we compare the 58 

performances of the fine-tuned California model and the one trained with the Kentucky 59 

data from scratch, and find that the fine-tuned model outperforms the other by 2.99%. 60 

This demonstrates that transfer learning is an economic way to build a high-quality deep 61 

learning model with small data sets. Our results show that deep learning can achieve a 62 

high accuracy in seismic event discrimination with raw waveforms. 63 

  64 
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1 Introduction 65 

Modern seismic networks have improved considerably over the past decades and 66 

increasingly recorded diverse seismic signals other than earthquakes. These signals 67 

have natural origins such as landslides and debris flow, or anthropogenic origins such 68 

as industry exploitation blasts and traffic flow. On one hand, discrimination between 69 

local tectonic earthquakes and other seismic signals is important for seismic hazard 70 

analysis. Recent studies show that seismic catalogs contaminated by quarry blasts can 71 

result in an overestimated b-value and an underestimated probability of large 72 

earthquakes (Gulia & Gasperini, 2021; Gulia & Wiemer, 2019; Tang et al., 2020). On 73 

the other hand, classification of these signals can provide valuable resources in 74 

environmental seismology (Larose et al., 2015), urban seismology (Díaz et al., 2017) 75 

and forensic seismology (Douglas, 2013). For example, in mining areas, monitoring 76 

blasting events with small magnitudes has practical uses for supervising safe production 77 

and detecting illegal mining activities (Banchirigah, 2008). Either to clean up 78 

earthquake catalogs or to construct catalogs of non-earthquake events, interests to 79 

classify different events have grown rapidly over the past years. However, visual 80 

identification is laborious and subjective. Reliable automated classification methods are 81 

necessary, especially in real-time processing and earthquake early warning (Li et al., 82 

2018).  83 

Discrimination between earthquakes and quarry blasts has been a challenging task 84 

in seismic network operation for a long time owing to their apparent similarity in 85 

waveform characteristics (Astiz et al., 2014). Seismologists have proposed a variety of 86 

automated approaches, which can be roughly divided into two categories: source-87 

parameter-based and waveform-based. The former relies on source information like 88 

location and/or origin time (Fereidoni & Atkinson, 2017; Renouard et al., 2021; 89 

Wiemer, 2000). For example, blasts tend to occur in known quarry sites and in the 90 

daytime. However, source information requires accurate preceding analyses, which 91 

limits its application in real-time processing. Comparatively, waveform-based 92 

approaches use seismic waveform features only, which can be manually defined by 93 

experienced experts or automatically extracted from data (Allmann et al., 2008; Hartse 94 
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et al., 1997; Koper et al., 2016, 2021; Korrat et al., 2022; L. Linville et al., 2019; Miao 95 

et al., 2020; Rodriguez Asihama, 2016; Su et al., 1991; Tibi et al., 2018, 2019; Wang 96 

et al., 2020, 2021). 97 

Manually defined features include spectral ratios of Lg (Bennett & Murphy, 1986) 98 

and Rg (Tibi et al., 2018), P-to-S phase ratios (Hartse et al., 1997; Wang et al., 2020, 99 

2021), 𝑀𝐿 −𝑀𝐶  (𝑀𝐿, local magnitude; 𝑀𝐶 , coda magnitude. Koper et al., 2016, 2021; 100 

Wang et al., 2021), and the misfit of P-wave spectra to an ω−2 source model (Allmann 101 

et al., 2008). Particularly, blast signals tend to have emergent P waves and weak S 102 

waves, upward P wave polarity and Gaussian-like envelopes, whereas earthquake 103 

signals often have clear P and S waves (Miao et al., 2020; Stump et al., 2002; Tang et 104 

al., 2020). Generally, the performance of waveform-based approaches depends on the 105 

generalizability of the extracted features. Features crafted for one region may be 106 

unsuitable for another so that the classification performance could drop significantly. 107 

Moreover, waveform features cannot be reliably measured in presence of high noise 108 

and thus small events could be difficult to classify (L. Linville et al., 2019; Tibi et al., 109 

2019). 110 

Instead of using manually defined features, deep learning enables direct extraction 111 

of implicit features from data (L. Linville et al., 2019; Liu et al., 2020; Ross, Meier, & 112 

Hauksson, 2018; Ross, Meier, Hauksson, et al., 2018; L. Zhu et al., 2019; W. Zhu & 113 

Beroza, 2018). The features are sought greedily during the training process that maps 114 

the input waveforms to the output class. Thereby, they are likely more representative 115 

than manually-defined features. However, deep learning models contain a large number 116 

of parameters and thus require large sets of high-quality labelled data to avoid 117 

overfitting (i.e., the model memorizes the data rather than learns the generalizable rules). 118 

Such data sets may not be always available, especially in areas with a short monitoring 119 

history, a low activity level, or lack of manual labels. In this case, transfer learning 120 

could be helpful. It leverages the knowledge learned from a rich dataset and applies to 121 

another dataset with minor modifications (Chai et al., 2020; Do & Ng, 2005; Ismail 122 

Fawaz et al., 2018; Pan & Yang, 2010; Yosinski et al., 2014; Y. Zhu et al., 2011). With 123 
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a well-trained base model, transfer learning only takes a small number of labels to 124 

adequately fine-tune the model. 125 

In this study, we build a deep learning model for southern California using a large 126 

number of labelled earthquakes and blasts, and on this basis apply transfer learning to 127 

build another model for eastern Kentucky. We use different strategies to the two regions 128 

because they have distinct amount of data. Moreover, we implement data augmentation 129 

to mitigate the effect of imbalanced data in the two regions. The southern California 130 

model achieves an accuracy of 91.97%, an F1-score of 95.00% for earthquakes and 131 

79.62% for blasts. The transfer-learned model to eastern Kentucky achieves an 132 

accuracy of 97.35%, an F1-score of 74.59% for earthquakes and 98.60% for blasts. In 133 

both cases, the smaller class (blasts in southern California, earthquakes in eastern 134 

California) tends to have a lower precision and F1-score.We implement occlusion 135 

(Zeiler & Fergus, 2014) test and gradient-weighted class activation mapping (Grad-136 

CAM) (Selvaraju et al., 2020) to investigate which parts of the waveforms are important 137 

for decision making. Finally, we discuss the advantages and practical considerations of 138 

our models and offer suggestions for further use of them. 139 

 140 

2 Data 141 

2.1 Southern California 142 

Southern California is instrumented by the Southern California Seismic Network 143 

(SCSN) with a long earthquake monitoring history since 1932. Presently it provides not 144 

only waveform data archives but also high-quality earthquake catalogs with 145 

information of origin time, location, magnitudes, phase picks, and event types (Hutton 146 

et al., 2010). The event types cataloged in SCSN include local, regional and remote 147 

earthquakes, as well as quarry blasts and sonic events. In this study we keep one of 148 

every six earthquakes in the SCSN catalogs from 2011 to 2020 to mitigate data 149 

imbalance, and finally obtain 37,702 local earthquake events and 6,690 blast events 150 

recorded by 329 seismic stations with a maximal epicentral distance of 100 km (Figures 151 

1a and b). This results in a total of 1,721,092 three-component earthquake recordings 152 



 7 

and 312,911 blast recordings, a class ratio approximately 5.5:1. Data augmentation for 153 

blasts is still needed and will be described in the method section. 154 

The waveforms are preprocessed as follows. First, the waveforms are linearly 155 

detrended, tapered with a Hanning window, and normalized by the maximal standard 156 

deviation of three components. Second, we pick the P arrivals by applying a short-term-157 

average/long-term-average picker (Allen, 1978) within 3 s around predicted arrivals on 158 

the 1-15 Hz bandpass filtered vertical component (Figure 2a). The theoretical prediction 159 

uses the Hadley-Kanamori 1D model (Hadley & Kanamori, 1977; Kanamori & Hadley, 160 

1975). The short-term and long-term windows are 0.4 s and 4 s, respectively. Third, we 161 

only keep the recordings with signal-to-noise ratio (SNR) >3 dB for further analysis. 162 

We use a relatively low SNR threshold to include many noisy waveforms so that the 163 

model performance could be improved in low SNRs. Finally, the raw waveforms are 164 

cut 5 s before and 50 s after the first arrival (Figure 2b). The resulting data set contains 165 

17,336 ML −0.48 ~ 5.51 earthquake events (319,576 recordings) and 3,671 ML −0.17 ~ 166 

2.56 blast events (64,655 recordings). 167 

 168 

2.2 Eastern Kentucky 169 

Another dataset used in this study is from Miao et al. (2020) who compiled 170 

waveforms of earthquakes and blasts in the Rome trough of eastern Kentucky. It 171 

contains 148 natural earthquakes (1,198 recordings) and 3,542 quarry blasts (27,854 172 

recordings) from June 2015 to March 2019, recorded by 20 regional seismic stations 173 

and a temporary network EKMMP of 6 seismic stations (Figures 1c and d). The P 174 

arrivals are picked by generalized phase detection (Ross, Meier, Hauksson, et al., 2018) 175 

and associated as seismic events using PhasePAPy (Chen & Holland, 2016). Other 176 

preprocessing steps are similar to those for the California data set.  177 

The eastern Kentucky data set differs from the California one in terms of data size 178 

and sense of data imbalance. Southern California has active seismicity and a long 179 

history of earthquake monitoring. There are abundant manual labels of local 180 

earthquakes and quarry blasts. Eastern Kentucky is relatively quiet in seismicity and 181 

has frequent quarry blasts due to prosperous mining industry in the region (Carpenter 182 
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et al., 2020). As a result, earthquakes outnumber the quarry blasts in southern California, 183 

whereas it is the opposite in eastern Kentucky. In addition, most events in Kentucky 184 

have an epicentral distance longer than 100 km due to relatively sparse seismic 185 

networks, compared to the shorter epicentral distance and denser seismic networks in 186 

southern California. These differences are test stones to evaluate the efficacy of transfer 187 

learning between two distinct regions.  188 

 189 

3 Methods 190 

3.1 Data division and augmentation 191 

We divide the southern California dataset into three subsets, training (70%), 192 

validation (10%) and test set (20%, Table 1). To avoid data leakage (i.e., the model 193 

training uses information that is unavailable in real-world applications), we split the 194 

dataset at the event level rather than the station level. Specifically, all recordings from 195 

the same event are assigned to the same subset. To mimic the scenario of near real-time 196 

classification, the events in the training, validation and test sets are split chronologically 197 

as recommended by Linville et al. (2019) (Table 1). This practice allows assessing the 198 

model performance under more realistic monitoring conditions. 199 

As local earthquakes are predominant in the southern California dataset, the trained 200 

model tends to predict a recording as an earthquake owing to the Bayesian nature of 201 

deep learning. Hence, data augmentation is needed for quarry blasts. We randomly shift 202 

(< 5 s) the waveform window to make multiple copies of quarry blasts (Figure 2b). The 203 

random shifts also avoid the model’s sensitivity to phase picking timing (W. Zhu & 204 

Beroza, 2018). We take 5 random shifts for recordings of quarry blasts (hence augment 205 

quarry blasts for 5 times) and only 1 random shift for recordings of local earthquakes. 206 

Conversely, to balance the two classes in the eastern Kentucky dataset, we augment the 207 

number of earthquakes by 23 random shifts and keep 1 random shift for quarry blasts. 208 

 209 

3.2 Deep learning: the CNN architecture 210 

CNNs essentially learn a nonlinear function that maps 2-D image or 1-D time-211 

series data to class labels (Lecun et al., 1998). Compared with a multilayer perceptron, 212 
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a CNN introduces a feature extractor which consists of several convolutional layers (the 213 

blue rectangles in Figure 2c). Each layer receives the locally connected input from its 214 

previous layer. After convolving the input with a filter (convolutional kernel), the layer 215 

subsamples the output and sends it to the subsequent layer at the locally connected 216 

position. The convolutional kernels are determined during the training process to 217 

parameterize the general object features. As these kernels are shared across a layer and 218 

convolutional downsampling is done through the model, the feature extractor is 219 

generally insensitive to specific locations and scales of the salient features. Because 220 

seismic signals vary widely owing to diverse path and source effects, the invariance in 221 

feature shift, scale and distortion makes CNNs suitable for seismic waveforms. Since 222 

2018, CNNs have been widely applied to seismic data processing, such as earthquake 223 

detection (Perol et al., 2018), phase picking (Ross, Meier, Hauksson, et al., 2018; L. 224 

Zhu et al., 2019; W. Zhu & Beroza, 2018), first-motion polarity identification (Ross, 225 

Meier, & Hauksson, 2018) and seismic source discrimination (L. Linville et al., 2019; 226 

Liu et al., 2020; Tibi et al., 2019). Especially, CNNs are proposed to distinguish 227 

between earthquakes and quarry blasts in Utah with spectrograms as input (Linville et 228 

al., 2019; Tibi et al., 2019).  229 

We design a new CNN model to discriminate earthquake and blasts in southern 230 

California using minimally processed 50 s three-component waveforms (dimension 231 

[5000, 1, 3]). The 50 s window is sufficiently long to include the major phases as well 232 

as the coda in both California and Kentucky. The model contains seven convolutional 233 

layers and one fully-connected layer (Figure 2c). A Rectified Linear Unit (ReLU) 234 

nonlinear activation function is used in each convolutional layer. Each convolutional 235 

layer is followed with a batch normalization and a max pooling layer. In the bottom, a 236 

fully-connected layer, together with a dropout layer, serves as a downstream classifier. 237 

The final output is a two-node probability vector representing the likelihoods of an 238 

earthquake and a blast, respectively. We add a softmax activation function in the last 239 

layer so that the values of the two nodes are non-negative and their sum is 1. 240 

The CNN model has a total of 150,154 trainable parameters and is built on the 241 

Keras framework (Chollet & others, 2015). To avoid overfitting, we terminate training 242 
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when the loss on validation set fails to decrease over five epochs and save the model 243 

with the lowest validation loss, a common training strategy called early stopping in 244 

machine learning. The training is run on a work station with Nvidia Graph Process Unit 245 

GeForce RTX 2070 for approximately 1 hour. 246 

 247 

3.3 Transfer learning: fine-tuning the pretrained model 248 

A deep learning model typically contains tens of thousands to millions of 249 

parameters to be determined during the training process. Sufficient data are needed to 250 

constrain them without overfitting. As aforementioned, the California model contains 251 

150,154 parameters and is trained on 268,958 recordings. In comparison, the Kentucky 252 

data have only 29,052 recordings, an order of magnitude less. Moreover, the Kentucky 253 

data have more quarry blasts than earthquakes, different from those in southern 254 

California. Besides, the epicentral distance is generally longer in Kentucky. Finally, the 255 

differences in velocity and attenuation structures of southern California and eastern 256 

Kentucky could lead to differences in the recorded earthquake and blast waveforms. 257 

Therefore, direct application of the California model to Kentucky could be 258 

unsatisfactory and model modification is required.  259 

Transfer learning provides a convenient tool to modify deep learning models. 260 

Typically, deep learning models hypothesize that the training data are independent and 261 

identically distributed with the test data; transfer learning relaxes this hypothesis to 262 

extend the applications to similar tasks (Tan et al., 2018). Transfer learning proves to 263 

be efficient and effective in many other fields (Long et al., 2013, 2015; Pan et al., 2011), 264 

whereas its applications in seismology are rather limited. As an early example, Zhu et 265 

al. (2019) trained a phase picker on the 2008 Mw 7.9 Wenchuan earthquake sequence 266 

and fine-tuned it for an Oklahoma data set. By modifying the PhaseNet (W. Zhu & 267 

Beroza, 2018) model which is learned from regional seismic networks, Chai et al. (2020) 268 

made it work well for microseismic data with a much higher sample rate and a smaller 269 

data size than those for training the original PhaseNet. They reported that the transfer-270 

learned model outperforms both the original PhaseNet and even human analysts. 271 
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In practice, fine-tuning a deep learning model is straightforward. Instead of re-272 

training the model from scratch where the model parameters are randomly initialized, 273 

transfer learning uses the original model as a starting point and continues to train the 274 

model with new data. Alternatively, one can choose to freeze most parameters of the 275 

original model and only allow modifying the rest. Here we adopt the former strategy 276 

which continues to train the California model with the eastern Kentucky data. This 277 

allows tuning the parameters at the widest range while using the knowledge from the 278 

California model.  279 

 280 

4 Results 281 

4.1 Deep learning for southern California 282 

 For each seismogram, the model outputs two probabilities corresponding to the 283 

likelihood of each class (earthquake or blast), which sums to be 1. If the probability for 284 

natural earthquakes is above/below a threshold level (here set as 0.5), the seismogram 285 

is assigned to the earthquake/blast class. As an event is often recorded by multiple 286 

stations, more reliable classification can be achieved by averaging over all the available 287 

stations. We evaluate the classification performance quantitatively with confusion 288 

matrices (Table 2) at both the station level (individual recordings) and the network level 289 

(averaged over all stations). To describe the performance in the framework of typical 290 

classification tasks, we define blasts as positive predictions and earthquakes as negative 291 

predictions. Following this definition, a confusion matrix consists of four elements: (1) 292 

True positive (TP): Correctly classified blasts; (2) True negative (TN): Correctly 293 

classified earthquakes; (3) False positive (FP): Earthquakes misclassified as blasts; (4) 294 

False negative (FN): Blasts misclassified as earthquakes. We further define recall as 295 

fraction of true samples that are correctly classified, and precision as fraction of 296 

classified samples that are true samples. 297 

The results show that most events are correctly classified (Figure 3), with overall 298 

91.97% accuracy at the station level and 97.54% accuracy at the network level. Figure 299 

3b shows that events with mean probability around 0.5 (uncertain predictions) also have 300 

large inter-station standard deviations, indicating discrepancy among individual 301 
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stations. The recall is 91.73% for earthquakes and 93.18% for quarry blasts at the station 302 

level (Figure 4). The precision is 98.52% for earthquakes and 69.50% for blasts. 303 

Earthquakes have higher precision because of more earthquakes in the data set. We use 304 

the area under the precision-recall curve (AUC) to evaluate our model. AUC measures 305 

overall performance by taking both precision and recall into account, which is 306 

particularly useful for imbalanced data classification. Figure 4c shows that the AUC for 307 

earthquakes is 0.996 and the AUC for blasts is 0.921, confirming a generally good 308 

classification performance. 309 

We investigate the performance dependency on SNR, epicentral distance, 310 

magnitude and focal depth (Figure 5). The results show that recalls of both earthquakes 311 

and blasts increase with SNR and magnitude, and decrease with epicentral distance, 312 

suggesting that signal quality is a major impact factor on classification accuracy. Our 313 

model shows a slightly increasing recall with focal depth (Figure 5d). This is consistent 314 

with previous findings that focal depth is an important discriminant (Koper et al., 2016, 315 

2021) given that most natural earthquakes are deeper than quarry blasts. Finally, we 316 

plot the misclassified earthquakes and blasts (FNs and FPs) but find no clear spatial 317 

patterns (Figure 3d). 318 

 319 

4.2 Transfer learning to eastern Kentucky 320 

As eastern Kentucky has a much smaller data set and different characteristics from 321 

California, we compare the performance of different strategies in eastern Kentucky: (1) 322 

Directly apply the California model to the Kentucky test set; (2) Re-train the model 323 

with the Kentucky data from scratch; (3) Fine-tune the California model with the 324 

Kentucky data. Directly applying the California model to the Kentucky test set yields 325 

the lowest accuracy (45.38%). The re-trained model performs significantly better with 326 

an accuracy of 94.36%. The transfer-learned model achieves the highest 97.35% 327 

accuracy which outperforms the other two (Table 3 and Figure 6). The better 328 

performance of the transfer-learned model demonstrates that the California model does 329 

provide additional useful knowledge to discriminate events in Kentucky. 330 

 331 
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4.3 Model interpretation: occlusion and Grad-CAM tests 332 

While deep learning proves to be powerful in a wide range of applications, its 333 

decision-making process has been known for poor interpretability. As an end-to-end 334 

approach, CNNs do not provide direct clues whether it truly identifies major seismic 335 

phases (e.g., P, S and coda) like human experts do. However, computer scientists have 336 

developed various techniques to shed light on their decision-making process. We use 337 

two auxiliary interpretation techniques, namely the occlusion test and the Grad-CAM 338 

test, to illustrate the primary characteristics that the models utilize to distinguish two 339 

signal types. Both techniques evaluate the importance of given waveform sections for 340 

classification. Specifically, occlusion test evaluates the average importance using the 341 

entire data set (L. Linville et al., 2019; Zeiler & Fergus, 2014), whereas Grad-CAM 342 

evaluates on individual recordings (Selvaraju et al., 2020).  343 

Specifically, occlusion iteratively masks each waveform section (i.e., replaced by 344 

zeros) and then monitors the change in classification performance. If a given waveform 345 

section is important for decision-making but is masked, the classification accuracy is 346 

expected to drop significantly. In this study, the mask window is 1-s long and 347 

nonoverlapped. Figures 7a and e show that when the waveforms following the first P 348 

arrival are masked, the number of TNs decreases. This indicates that P waves and coda 349 

are important signatures for earthquakes on average. The local minima in TN curves 350 

are likely caused by the temporally separated P and S arrivals, which are also diagnostic 351 

features of natural earthquakes compared to the Gaussian-like envelopes of blasts. As 352 

for quarry blasts, the most important waveform windows are around the P wave arrival 353 

(Figures 7b and f). This is consistent with previous results that the most obvious 354 

characteristic of natural earthquakes is the well-developed S waves due to shear rupture, 355 

whereas quarry blasts, often have smaller S wave energy due to volumetric change. We 356 

notice that the F1-scores of both classes slightly increase when masking the noise before 357 

P arrival or after coda, likely because the removal of irrelevant noise reduces 358 

interference in model prediction. 359 

Compared to the occlusion test that evaluates the average contribution, Grad-CAM  360 

visualizes the model sensitivity for individual samples (Selvaraju et al., 2020). It first 361 
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computes the gradients of either class’s score with respect to the last convolutional 362 

layer’s output, i.e., the 256-feature maps in Figure 2c. These gradients are related to the 363 

importance of each feature map for the class of interest. Grad-CAM sums the absolute 364 

feature maps with the gradients as weights. This produces a weighted forward activation 365 

heatmap which represents the significance of the waveforms. The heatmap has the same 366 

size as but a different resolution from the input seismogram.  367 

Figure 8 shows example waveforms and the heatmaps for earthquakes and blasts 368 

in southern California. From top to bottom, the California model predicts their 369 

earthquake probabilities as approximately 1, 0.5 and 0, respectively. Both the correctly 370 

and the incorrectly predicted earthquakes have an impulsive P wave followed by a high-371 

frequency S wave (Figures 8a and b). Comparatively, both the incorrectly and the 372 

correctly predicted quarry blasts have the relatively long-duration and low-frequency S 373 

waves (Figures 8e and f). The events with earthquake probability near 0.5 exhibit weak 374 

high-frequency S waves contaminated by P wave coda, possibly resulting in uncertain 375 

predictions (Figures 8c and d). In general, these results agree with previous observations 376 

that quarry blasts have lower frequency content than earthquakes (Allmann et al., 2008; 377 

Korrat et al., 2022; Kortström et al., 2016; Su et al., 1991). Particularly, quarry blasts 378 

in southern California are often characterized by long-duration and low-frequency S-379 

waves, a feature that the SCSN analysts often use to distinguish from local earthquakes 380 

(personal communication with Shang-Lin Chen). 381 

 382 

5 Discussion and conclusions 383 

We have developed two deep learning models to distinguish between local 384 

earthquakes and quarry blasts in southern California and in eastern Kentucky. The CNN 385 

model takes waveforms as direct input and automatically extracts implicit features that 386 

are optimized for classification. These models show generally high classification 387 

accuracy (>90%) for natural earthquakes and quarry blasts. Our results demonstrate that 388 

reliable classification can be achieved using raw waveforms without source information, 389 

which has potential to speed up real-time applications. We find that although Kentucky 390 

has distinct data characteristics from California, transfer learning of the California 391 
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model to eastern Kentucky still outperforms the retrained model. This demonstrates the 392 

efficacy of transfer learning in generalizing deep learning across different regions. 393 

 394 

5.1 Comparison with previous methods 395 

 Allmann et al. (2008) proposed to use the misfit of P wave spectra to an ω−2 source 396 

model as a discriminant between local earthquakes and blasts in southern California. 397 

They examined the events recorded by at least three stations with SNR >3 dB on three 398 

frequency bands, and reported a 90% classification accuracy. Comparatively, our 399 

California model achieves overall 91.97% accuracy on a much larger data set, with a 400 

looser data selection criterion and much simpler preprocessing. In eastern Kentucky, 401 

Miao et al. (2020) carefully designed multiwindow spectral features  and trained a two-402 

layer artificial neural network that achieved an accuracy of 97%. Here we use a much 403 

deeper model to automatically extract the features and achieve a comparable accuracy. 404 

Although the simpler model by Miao et al. (2020) indicates that the carefully 405 

handcrafted features may help reduce model complexity, our approach with transfer 406 

learning is potentially more generalizable to other regions. Because the model can be 407 

automatically fine-tuned and requires little expert knowledge. Our results show that 408 

transfer learning is a viable approach to obtain a state-of-the-art deep classification 409 

model for regions like Kentucky where data are relatively scarce. 410 

 Without handcrafted features, the deep learning models proposed by Linville et al. 411 

(2019) also automatically distinguish between mining blasts and tectonic earthquakes 412 

in Utah. Tibi et al. (2019) compared the models to amplitude-ratio-based methods and 413 

concluded that deep learning methods are generally more robust for low-SNR events. 414 

Our CNN models differ from Linville et al.’s in input data formats and data balancing. 415 

First, they use the spectrograms of three-component waveforms which are rotated to 416 

radial, transverse and vertical directions. In comparison, our model uses unfiltered raw 417 

waveforms as input. Also, we do not rotate the waveforms so that our model can work 418 

without knowing the event locations. Compared to the fixed P wave arrivals used in 419 

Linville’s model, the random window shifts also make our model insensitive to P wave 420 

onsets. Second, the number of earthquakes and blasts are fairly balanced in the Utah 421 
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dataset (L. Linville et al., 2019; Tibi et al., 2019), compared to the extreme class 422 

imbalance in southern California and eastern Kentucky. The data imbalance inevitably 423 

biases the model training and results in overall performance drop. The opposite sense 424 

of class imbalance in the two study regions could also have decreased the effectiveness 425 

of transfer learning, even though we mitigate the data imbalance by taking random 426 

shifted copies of the waveforms.  427 

 428 

5.2 Practical considerations in deep learning strategies  429 

 We design our models to take input with minimal preprocessing for more 430 

generalizability and ease of use. For this consideration, conventional preprocessing 431 

operations, such as filtering, spectrogram calculation and component rotation, are all 432 

skipped. Possibly, the model performance could be further enhanced if some of 433 

preprocessing operations are applied to enhance signal quality. However, we argue that 434 

minimal human interference of the data not only reduces on-line runtime, but also offers 435 

flexibility to transfer the models to other regions. Our model can classify 76,848 436 

samples within 88 seconds during on-line test, and the model file is as small as 1.8 Mb. 437 

The fast-processing speed and small file size enable easy integration of the models into 438 

real-time seismic monitoring systems. 439 

Class imbalance is a major problem in the classification for both California and 440 

Kentucky, where different treatments can lead to different results. In the California case, 441 

training without augmentation produces a lower recall of 63.05% for the minority class. 442 

Besides data augmentation, we test two other strategies i.e., downsampling the majority 443 

class and cost-sensitive learning, to improve the performance. Compared with data 444 

augmentation, downsampling the majority class reduces both quantity and diversity of 445 

the training data and the accuracy drops by 5.99% (the recall drops by 6.32%/4.38% for 446 

earthquakes/blasts, respectively). As for cost-sensitive learning, we increase the weight 447 

of the loss term for the minority class i.e., misclassifying blasts as earthquakes is 448 

penalized more than misclassifying earthquakes as blasts. However, cost-sensitive 449 

learning yields only a recall of 82.81% for blasts, as compared to a recall of 93.18% for 450 

blasts with data augmentation. Thereby, data augmentation appears more effective to 451 
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mitigate the imbalance problem, likely because various versions of time shifts increase 452 

the overall data diversity. Nonetheless, even with data augmentation, the smaller class 453 

(i.e., blasts in southern California, earthquakes in eastern Kentucky) inevitably tends to 454 

have a lower precision and F1-score. 455 

Finally, the input window length also affects the performance. We have tested a 456 

window length of 30 s. Compared to the 50-s window, the 30-s window yields a better 457 

performance in southern California (92.59% accuracy) but a worse performance in 458 

eastern Kentucky (94.58% accuracy) than the window length of 50 s. This is likely 459 

associated with the longer source-receiver distance (mostly >100 km) and longer P/S 460 

separation and coda waves in Kentucky. A longer window at the face value can 461 

incorporate more coda waves. However, the occlusion tests suggest that it might not 462 

improve the performance, because a longer window tends to include more irrelevant 463 

noise, especially in southern California where the seismic networks are denser and 464 

epicentral distances are generally shorter. 465 

 466 

5.3 Suggestions for further use 467 

Although our deep learning models produce generally reliable results, there remains 468 

room for improvement given that some waveforms are misclassified. We could not rule 469 

out the possibility of false manual labels, as some waveforms are difficult to label even 470 

for experienced experts (Allmann et al., 2008). Figure 9 shows an earthquake and a 471 

blast misclassified on almost all stations, which are likely false labelled. Despite this, 472 

path and site effects can significantly modify the waveforms and results in potential 473 

misclassification. Averaging the probabilities of multi-station recordings can help 474 

mitigate the misclassification caused by the variations of path and site effects. 475 

Compared to single-station classification, network-averaged classification improves 476 

accuracy by 5.57% in the California case, 2.11% in the Kentucky case (Table 4). 477 

Similarly, majority voting, which simply counts the output classes of all stations, may 478 

improve performance at the network level (Liu et al., 2020). Besides, L. M. Linville 479 

(2022) proposed an event-based training strategy to promote consistency across 480 

different stations, which could be also useful. Finally, in real-time operation, there 481 
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might be events neither natural earthquakes nor quarry blasts. For example, mining-482 

induced earthquakes might be similar to both earthquakes and blasts as their source 483 

mechanisms can be double-couple, isotropic, or a combination of both (Koper et al., 484 

2016). Including other classes of events to further reduce ambiguity remains a subject 485 

of future work. 486 

As different areas seem to have different characteristics of blasts and earthquakes, 487 

when adopting our classification models to other areas, we strongly recommend using 488 

the transfer learning strategy. We have shown that transfer learning is the best solution 489 

among three strategies for the eastern Kentucky case. Although deep learning models 490 

are increasingly used in seismology and many efforts have been made to pursue a 491 

universal model that works best for all data (Ross et al., 2019; Zhu et al., 2020; Mousavi 492 

et al., 2020), we argue that rather than pursuing an optimal universal model, 493 

customizing models that work optimally for specific regions is probably a more viable 494 

pathway. With the help of transfer learning, regions with short seismic monitoring 495 

histories could have high-quality deep learning models comparable to those in well-496 

instrumented regions at an economical price.  497 

 498 
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Tables  696 

Table 1. Southern California data division 697 

  Recordings Events Time span Split ratio 

Quake 223,701 12,941 Jan 2011 - Dec 2017 70% 

(training) Blast 45,257 2,542 Jan 2011 - Dec 2015 

Quake 31,956 1,481 Dec 2017 - July 2019 10% 

(validation) Blast 6,469 219 Dec 2015 - May 2016 

Quake 63,919 2,914 July 2019 - Dec 2020 20% 

(test) Blast 12,929 910 May 2016 - Dec 2020 

 698 

  699 
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Table 2. Performance of the California model 700 

 
Station Network 

Predicted EQ Predicted QB Predicted EQ Predicted QB 

True EQ 58,632 5,287 2,842 72 

True QB 882 12,047 22 888 

Recall 91.73% 93.18% 97.53% 97.58% 

Precision 98.52% 69.50% 99.23% 92.50% 

F1-score 95.00% 79.62% 98.37% 94.97% 

Accuracy 91.97% 97.54% 

Note. EQ, natural earthquakes are defined as “negative”; QB, quarry blasts; 

Recall of earthquakes: TN/(TN+FP); Recall of blasts: TP/(TP+FN); 

Precision of earthquakes: TN/(TN+FN); Precision of blasts: TP/(TP+FP); 

F1-score: 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙); 

Accuracy: (TP+TN)/(TP+FP+TN+FN) 

 701 
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Table 3. Performance comparison of three models in the eastern Kentucky dataset 703 

Model Original California Retrained Transfer-learned 

Accuracy 45.38% 94.36% 97.35% 

 
Predicted 

EQ 

Predicted 

QB 

Predicted 

EQ 

Predicted 

QB 

Predicted 

EQ 

Predicted 

QB 

True EQ 220 24 222 22 226 18 

True QB 3,154 2,420 306 5,268 136 5,438 

Recall 90.16% 43.42% 90.98% 94.51% 92.62% 97.56% 

Precision 6.52% 99.02% 42.05% 99.58% 62.43% 99.67% 

F1-score 12.16% 60.36% 57.51% 96.98% 74.59% 98.60% 

 704 
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Table 4. Performance of the transfer-learned model in eastern Kentucky 706 

 
Station Network 

Predicted EQ Predicted QB Predicted EQ Predicted QB 

True EQ 226 18 27 2 

True QB 136 5,438 2 711 

Recall 92.62% 97.56% 93.10% 99.72% 

Precision 62.43% 99.67% 93.10% 99.72% 

F1-score 74.59% 98.60% 93.10% 99.72% 

Accuracy 97.35% 99.46% 

 707 
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Figures 709 

 710 

Figure 1. Distribution of local earthquakes, quarry blasts and seismic stations. (a) 711 

Earthquakes (red dots) and blasts (blue dots) in southern California. The bottom left 712 

inset shows the statistics of 6,690 quarry blasts and 37,702 natural earthquakes. The top 713 

left inset marks the study area. (b) Seismic stations used in this study, colored by 714 

different networks. (c) and (d): symbols are the same as (a) and (b) respectively but for 715 

eastern Kentucky. Note that EKMMP, abbreviated as EK in (d), is a part of the 716 

temporary Eastern Kentucky Microseismic Monitoring Network. 717 
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 719 

Figure 2. Preprocessing workflow and the convolutional neural network (CNN) 720 

architecture. (a) A phase picking example for a 55 s quarry blast waveform. The blue 721 

dashed line marks the predicted arrival time; the red dashed line marks the STA/LTA 722 

pick. The top right inset shows the zoom-in plot around the P arrival. (b) A window of 723 

50 s waveforms is used for model input (shaded area). Waveforms are augmented via a 724 

sliding window whose onset is random within 5 s before the arrival. (c) The CNN model 725 

consists of seven convolutional layers (each including three basic operations i.e., 726 

convolution, the ReLU activation function and max pooling), one dropout and one fully 727 

connected layer. The dimensions of the model input and each layer’s output are 728 

annotated on top of the layers. 729 
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 731 

Figure 3. Classification results of the CNN California model on the test set in southern 732 

California. (a) Distribution of the test set including 910 blasts and 2,914 earthquakes. 733 

(b) Consistency across multiple stations. Each circle (correctly classified) or cross 734 

(misclassified) represents the standard deviation versus the average of output 735 

earthquake probability on multiple stations for a given event. Symbols are colored by 736 

the log-scaled number of available stations for that event. (c) Network-averaged 737 

predictions by the California model. The inset shows the histogram of predicted 738 

earthquake probabilities. (d) Symbols are similar to (c), but only for events 739 

misclassified by at least two stations. Blue/red stars mark the FPs/FNs, respectively. 740 

Blue/red circles mark the TPs/TNs, respectively. The inset is the histogram of network-741 

averaged earthquake probabilities for misclassified events. 742 
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 744 

Figure 4. Performance of the California model on the test set in southern California. (a) 745 

Histogram of predicted earthquake probability for earthquakes. The black dashed line 746 

marks the threshold of 0.5. (b) Histogram of predicted earthquake probabilities for 747 

blasts. (c) Precision-recall curves for earthquakes (red) and blasts (blue). 748 
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 750 

Figure 5. Variations of model recall on SNR (a), epicentral distance (b), magnitude (c) 751 

and earthquake depth (d). 752 

  753 
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 754 

Figure 6. Classification results of the transferred CNN model for the test set in eastern 755 

Kentucky: TNs (red circles), FPs (blue stars), FNs (red stars) and TPs (blue circles). 756 

The inset is the histogram of network-averaged earthquake probabilities. Both the 757 

number of predicted blasts and earthquakes are annotated. 758 
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 760 

Figure 7. Occlusion tests for model performance dependence with masked waveform 761 

sections (nonoverlapping three-component signals of 1 s) in southern California and 762 

eastern Kentucky. From top to bottom are (a) the number of TNs and (b) TPs, (c) the 763 

F1-score of blasts and (d) earthquakes for the California model. The horizontal black 764 

line marks the baseline performance without occlusion. (e)-(h) Same as (a)-(d), but for 765 

the transfer-learned model in eastern Kentucky. 766 
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 768 

Figure 8. Gradient-weighted class activation mapping (Grad-CAM) for example 769 

earthquakes (left) and blasts (right) in the southern California test set. From top to 770 

bottom are from most earthquake-like (a)-(b) to most blast-like (e)-(f), with earthquake 771 

probabilities annotated in the Z-component of each example. The red/blue shade is the 772 

heatmap representing the relative contribution of the waveforms towards an 773 

earthquake/blast prediction, respectively. 774 
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 776 

Figure 9. Examples of misclassified events. (a) An earthquake (SCEDC event ID 777 

37470525) classified as a blast by almost all stations except CI.SLB. Earthquake 778 

probabilities are annotated on the right. (b) A quarry blast (SCEDC event ID 37772600) 779 

classified as an earthquake by all stations. Notice that the reported depth is 14.3 km, 780 

indicating that it is likely an earthquake but falsely labelled. 781 

      


