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Abstract

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version

2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and

with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal
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resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice

with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance

is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation,

and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate

impact of different forcing agents.

The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1.

E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K

which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However,

E3SMv2 significantly underestimates the global mean temperature in the second half of the historical record. An analysis of

single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the

magnitude of the aerosol-related forcing.
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Key Points:41

• E3SMv2 is nearly twice as fast as E3SMv1 with a simulated climate that is im-42

proved in many metrics (e.g. precipitation and clouds).43

• Climate sensitivity is substantially lower with a now plausible ECS of 4.0 K (com-44

pared to an unlikely value of 5.3 K in E3SMv1).45

• E3SMv2 underestimates the warming in the late historical period due to exces-46

sive aerosol-related forcing.47
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Abstract48

This work documents version two of the Department of Energy’s Energy Exascale Earth49

System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its pre-50

decessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated51

climate that is improved in many metrics. We describe the physical climate model in its52

lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land,53

0.5° river routing model, and an ocean and sea ice with mesh spacing varying between54

60 km in the mid-latitudes and 30 km at the equator and poles. The model performance55

is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase56

6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations57

augmented with historical simulations as well as simulations to evaluate impact of dif-58

ferent forcing agents.59

The simulated climate is generally realistic, with notable improvements in clouds60

and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equi-61

librium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which62

is now within the plausible range based on a recent World Climate Research Programme63

(WCRP) assessment. However, E3SMv2 significantly underestimates the global mean64

temperature in the second half of the historical record. An analysis of single-forcing sim-65

ulations indicates that correcting the historical temperature bias would require a sub-66

stantial reduction in the magnitude of the aerosol-related forcing.67

Plain Language Summary68

The U.S. Department of Energy recently released version two of its Energy Exas-69

cale Earth System Model (E3SM). E3SMv2 experienced a significant evolution in many70

of its model components (most notably the atmosphere and sea ice models), and its sup-71

porting software infrastructure. In this work, we document the computational perfor-72

mance of E3SMv2 and analyze its ability to reproduce the observed climate. To accom-73

plish this, we utilize the standard Diagnosis and Evaluation and Characterization of Klima74

(DECK) experiments augmented with historical simulations for the period (1850-2015).75

We find that E3SMv2 is nearly twice as fast as its predecessor and more accurately re-76

produces the observed climate in a number of metrics, most notably clouds and precip-77

itation. We also find that the model’s simulated response to increasing carbon dioxide78

(the Equilibrium Climate Sensitivity) is much more realistic. Unfortunately, E3SMv279

underestimates the global mean surface temperature compared to observations during80

the second half of historical period. Using sensitivity experiments, where forcing agents81

(carbon dioxide, aerosols) are selectively disabled in the model, we determine that cor-82

recting this problem would require a strong reduction in the impact of aerosols.83

1 Introduction84

The U.S. Department of Energy (DOE) Energy Exascale Earth System Model (E3SM)85

project (https://e3sm.org) was conceived from the confluence of energy mission needs86

and disruptive changes in scientific computing technology. E3SM aims to optimize the87

use of DOE resources to meet the science needs of DOE. The long-term goal of the E3SM88

project is to address the challenge of actionable predictions of Earth system variability89

and change, with an emphasis on the most critical scientific questions facing the nation90

and DOE (Leung et al., 2020).91

Version one of E3SM (E3SMv1) was first released in 2018 as a physical climate model92

with a lower horizontal resolution configuration (110-km atmosphere, 60-to-30 km ocean;93

Golaz et al., 2019) followed by a higher resolution configuration (25-km atmosphere, 18-94

to-6 km ocean; Caldwell et al., 2019). The lower resolution configuration served as the95
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starting point for a biogeochemistry configuration (E3SMv1.1; Burrows et al., 2020) and96

a cryosphere configuration (E3SMv1.2; Comeau et al., 2022).97

Version two E3SM is a significant evolution from version one. Herein we describe98

the changes made in E3SM version 2 (E3SMv2) in each model component and the sup-99

porting infrastructure. We further diagnose its performance relative to E3SMv1. E3SMv2100

includes significant improvements to component model structure and physical param-101

eterizations. The result is a model that is nearly twice as fast as version one with a sim-102

ulated climate that is improved in many metrics. Also new to E3SMv2 is the introduc-103

tion of fully coupled regionally refined mesh (RRM) configurations. Although simula-104

tions with the RRM will be the subject of forthcoming manuscripts, the validation herein105

will provide a benchmark for RRM configurations.106

As with E3SMv1, we focus on the physical climate model at lower resolution with107

a 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice108

with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equa-109

tor and poles. The vertical grids remain the same as in E3SMv1 with 72 layers and a110

top at approximately 60 km in the atmosphere and 60 layers in the ocean. We focus our111

analysis on the CMIP6 Diagnosis, Evaluation, and Characterization of Klima (DECK)112

and historical simulations (Eyring et al., 2016). E3SMv2 DECK simulations reveal a num-113

ber of improvements in the simulated mean climate and variability: equilibrium climate114

sensitivity, precipitation, shortwave cloud radiative effects, ozone hole, aerosol absorp-115

tion and sea ice. Yet despite numerous improvements, a number of important biases re-116

main including a weak Atlantic Meridional Overturning Circulation and an inability to117

appropriately simulate the historical temperature record. To diagnose the latter bias we118

conduct an ensemble of simulations following the Detection and Attribution Model In-119

tercomparison Project (DAMIP) protocol (Gillett et al., 2016). Using a decomposition120

analysis, we find that an overly strong aerosol effect is responsible for this bias and fur-121

ther that if this effect can be reduced, other reductions in regional radiation, temper-122

ature, and other biases can be expected. These results also show that even though E3SMv2123

has shortcomings, it can still serve as a useful tool for numerous future studies.124

E3SM was originally branched from an early developmental version of CESM2 (CESM2;125

Danabasoglu et al., 2020). The river routing, ocean and sea ice components as well as126

the atmosphere dynamical core and stratospheric chemistry are now different, while the127

atmosphere physics, the land model and the coupler retain similarities to CESM2. E3SMv2128

is the second release of a CMIP6-class model for E3SM. E3SMv2 also serves as a foun-129

dation for additional upcoming configurations targeting DOE applications: (i) an RRM130

configuration with a high resolution region (25-km atmosphere, 14-km ocean) centered131

over North America, (ii) a biogeochemistry configuration with interactive carbon, nitro-132

gen and phosphorous cycles and (iii) a cryosphere configuration with RRM over the South-133

ern Ocean and ice-shelf cavities.134

We begin in Section 2 with a description of the changes in E3SMv2 for each model135

component. In Sub-section 2.6 we describe important improvements to energy conser-136

vation in the coupled system and our coupled tuning strategy for E3SMv2. Section 3 de-137

tails computational performance and factors leading to the nearly doubling of through-138

put. Section 4 details the simulation campaign and analysis of the simulated climate in139

each portion of the campaign. Section 5 presents an examination of the historical tem-140

perature record bias and the potential impact of altering the contribution of aerosols and141

greenhouse gases on the simulated climate. We end with summary and conclusions in142

Section 6.143
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2 Model description144

2.1 Atmosphere145

2.1.1 Dynamical core146

The dynamical core in EAMv2 is greatly upgraded from v1 with a new nonhydro-147

static option (not employed here). The dynamical core solves the equations of motion148

in a rotating reference frame with the shallow atmosphere approximation, hyperviscos-149

ity based turbulence closure and the option to apply the hydrostatic approximation. The150

code is implemented in the High Order Method Modeling Environment (HOMME) (J. Den-151

nis et al., 2005; J. M. Dennis et al., 2011; Evans et al., 2013). The equations are formu-152

lated following Taylor et al. (2020) using a terrain following mass based vertical coor-153

dinate (Kasahara, 1974; Laprise, 1992). The simulations presented here use the hydro-154

static approximation. The nonhydrostatic configuration adds additional prognostic equa-155

tions for vertical velocity and geopotential height and is used for E3SM’s cloud resolv-156

ing simulations (Caldwell et al., 2021). The prognostic equations consist of the time-reversible157

adiabatic terms (Taylor et al., 2020), a ∇4 hyperviscosity (J. M. Dennis et al., 2011; Guba158

et al., 2014), and a sponge layer at the model top (described below). For the adiabatic159

terms, we use a structure preserving formulation in order to preserve the discrete Hamil-160

tonian and produce an energetically consistent model.161

The horizontal discretization uses the collocated mimetic spectral finite element162

method from Taylor & Fournier (2010). Within each element the prognostic variables163

are represented by degree p polynomials with p = 3 and order of accuracy np = 4. EAMv2164

uses new separate parameterized physics and dynamics grids. Hannah et al. (2021) de-165

scribe these grids, the remap algorithms to transfer data between the grids, and the new166

topography file format to support these grids. The grids are the same as introduced in167

Herrington et al. (2019), but in EAMv2, the high-order remap method is local to each168

element except for some halo data for extremal mixing ratio values. Thus, EAMv2’s grid169

remap algorithms work without modification in RRM configurations. While some of the170

initialization infrastructure is part of the physics infrastructure, the dynamical core pro-171

vides the remap algorithms. In EAMv2, the pg2 configuration is used, meaning each el-172

ement has a 2×2 subgrid for a total of four physics columns. Thus, the total number of173

physics columns in a simulation is 4/9 the number used in EAMv1 for a given element174

grid. The dynamics grid has an average grid spacing of 110 km, while the physics grid175

and, as a result, the land grid have an average grid spacing of 165 km.176

The vertical discretization uses a Lorenz staggered extension of the mimetic cen-177

tered difference from Simmons & Burridge (1981). The vertical grid remains the same178

as in EAMv1 with 72 layers and a top at approximately 60 km. With the vertical stag-179

gering, prognostic variables are located at level midpoints, with the exception of the ver-180

tical velocity and the geopotential, which are located at level interfaces. For the verti-181

cal transport terms, we use a vertically Lagrangian approach adapted from Lin (2004).182

The timestepping algorithm, unchanged from EAMv1, is the high-CFL 5 stage 3rd or-183

der accurate Runge-Kutta method from Guerra & Ullrich (2016).184

There are several sources of dissipation in the dynamical core. The ∇4 hypervis-185

cosity is the largest. It is applied to all prognostic variables and on every model layer.186

For the model-top sponge layer, we apply a ∇2 Laplacian operator in the top 6 model187

layers to all prognostic variables. The strength is proportional to the model layer ref-188

erence pressure, following Lauritzen et al. (2011). In addition, vertical dissipation is in-189

troduced by the monotone vertical remap operator. A smaller amount of dissipation is190

also generated by the Runge-Kutta timestepping. In EAMv1, we used additional diver-191

gence damping in order to control noise when running with realistic topography. This192

was implemented by separating the hyperviscosity into compressible and rotational com-193

ponents and using a larger hyperviscosity coefficient for the compressible component. EAMv2194
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has a more accurate pressure gradient formulation which improves the treatment of to-195

pography and no longer needs nor uses additional divergence damping.196

The dynamical core’s passive tracer transport method is a new interpolation semi-197

Lagrangian (ISL) scheme called Islet (Bradley et al., 2021). A high-order ISL method198

using the natural Gauss-Lobatto-Legendre (GLL) element-local interpolant is unstable;199

thus, Islet provides modified element-local interpolation basis functions that obey a nec-200

essary condition for stability. EAMv2 uses the lowest-order Islet basis set, the one for201

np = 4. Because the model code was frozen before the Islet bases were finalized, the202

formulation of the np = 4 stable basis set is slightly different than reported in Bradley203

et al. (2021), but this difference has essentially no impact. To achieve global mass con-204

servation, shape preservation, and mass-tracer consistency, Islet uses element-local and205

global versions of the communication-efficient density reconstructor (CEDR) described206

in Algorithm 3.1 of Bradley et al. (2019). The ISL scheme’s time step can be, and in EAMv2207

is, longer than the vertical remap time step of the dynamics. In integrating from time208

t1 to time t2, Lagrangian levels at time t2 are reconstructed from data on the reference209

grid at times t1 and t2. Then horizontal velocity at time t2 is remapped to the Lagrangian210

levels. Finally, departure points within each Lagrangian level are computed at time t1.211

Then 2D advection within each level can proceed as usual. In this time step configura-212

tion, the CEDR must be applied to the 3D data rather than separately to each level be-213

cause the reconstructed levels do not conserve mass within each level; thus, corrections214

must be applied among levels as well as within each level. In EAMv2’s lower resolution215

configuration, the vertical remap time step is two times larger than the dynamics time216

step, and the passive tracer transport is six times larger. Like the rest of the dynami-217

cal core, Islet works without modification in RRM configurations.218

2.1.2 Updated atmosphere physics219

As in EAMv1 (Rasch et al., 2019; Xie et al., 2018), EAMv2 represents subgrid tur-220

bulent transport and cloud macrophysics by use of the Cloud Layers Unified By Binor-221

mals (CLUBB) parameterization (Golaz et al., 2002; V. E. Larson, 2017). In EAMv2,222

CLUBB represents all stratiform and shallow cumulus clouds, but not deep convective223

clouds. CLUBB prognoses various subgrid moments of turbulence, heat content, and mois-224

ture, and the moments are used to estimate a multivariate subgrid probability density225

function (PDF). The PDF is then used to diagnose liquid cloud fraction and cloud liq-226

uid water via a saturation adjustment. CLUBB is called immediately before the micro-227

physics.228

The main update of CLUBB for EAMv2 is that CLUBB’s internal call order has229

been changed so that CLUBB’s subgrid moments are prognosed first, and the PDF is230

estimated immediately afterward. This leaves a saturation-adjusted state for the micro-231

physics. This call order eliminates the unrealistic pockets of supersaturation that were232

left for the microphysics to handle in EAMv1. Another update of CLUBB is that its code233

has been refactored in order to improve computational performance. For instance, ar-234

rays were restructured to permit contiguous memory access. Loops were rearranged in235

order to allow calculations with no data dependencies to be done in parallel. Asymptotic236

values of functions were approximated analytically in order to avoid the unnecessary cal-237

culation of expensive special functions.238

The deep convection scheme (G. J. Zhang & McFarlane, 1995, ZM hereafter) in EAMv2239

is the same as that in EAMv1, except that ZM adopts two updates described in Xie et240

al. (2019) to improve its simulated precipitation, in particular the diurnal cycle. The new241

ZM feature combines the dynamic Convective Available Potential Energy (dCAPE) trig-242

ger proposed in Xie & Zhang (2000) with an unrestricted air parcel launch level (ULL)243

approach used in Y.-C. Wang et al. (2015) (hereafter the dCAPE-ULL trigger). The dCAPE244

trigger provides a dynamic constraint for preconditioning of convection-favoring envi-245
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ronments and prevents CAPE from being released spontaneously. The ULL trigger re-246

moves the constraint that convection is always rooted within the boundary layer, as is247

often assumed in deep convection schemes. Thus, it captures mid-level convection by de-248

tecting atmospheric instability above the boundary layer. As shown in Xie et al. (2019),249

the use of the dCAPE-ULL trigger helps address the “too frequent, too weak” precip-250

itation issue — a long-standing climate model bias — as well as capture the nocturnal251

elevated convection systems which are often seen downstream of major mountains as-252

sociated with the propagation of Mesoscale Convective Systems (MCSs) but missed in253

most climate models including E3SM. It also significantly improves the phase of the di-254

urnal cycle of precipitation over both land and ocean.255

After releasing EAMv1, Ma et al. (2022) proposed a set of recalibrated atmospheric256

parameters in the deep convection scheme, the microphysics scheme, and the CLUBB257

turbulence and macrophysics scheme (hereafter EAMv1p). Many of these parameter changes258

have been carried over to EAMv2. A new feature in EAMv1p is the inclusion of surface259

wind speed enhancements from the gustiness associated with turbulence, shallow and260

deep convection in the surface flux calculations over land and ocean (Ma et al., 2022; Har-261

rop et al., 2018; Redelsperger et al., 2000).262

In the deep convection scheme, the parcel buoyancy considers the subgrid temper-263

ature perturbation from the CLUBB scheme in addition to a constant value of 0.8 K used264

in EAMv1. A new tunable parameter with a default value of 2.0, zmconv tp fac (see265

Table A1), is introduced to scale the square root of the CLUBB subgrid temperature vari-266

ance to be the subgrid temperature perturbation. Additionally, the parameters related267

to the autoconversion rate, detrained ice cloud effective radius, and cloud fraction in deep268

convective clouds are reduced, while the parameters related to the downdraft mass flux269

fraction and the impact of the surface temperature change are enhanced compared to270

EAMv1.271

A number of tunable parameters in the CLUBB scheme have been updated in EAMv1p272

to improve both stratocumulus and shallow cumulus clouds. Briefly, EAMv1p separated273

the setting of several damping coefficients at low skewness (X ∗ a) and high skewness274

(X ∗ b), recalibrated transition factors between the two regimes (X ∗ c), and adjusted275

parameters controlling the low cloudiness (e.g., mu, C8, C1, C k10) to increase stratocu-276

mulus clouds and reduce shallow cumulus clouds. To better represent clouds and pre-277

cipitation in subtropical low cloud regimes, the liquid cloud accretion enhancement fac-278

tor and the exponent coefficient for liquid cloud autoconversion rate in the microphysics279

scheme have been updated as well. For ice and mixed-phase clouds, the overly suppressed280

scaling factor (0.1) for the Wegener–Bergeron–Findeisen (WBF) process in EAMv1 has281

been updated to be 0.7. The Aitken mode sulfate aerosol size threshold for homogeneous282

ice nucleation is increased. The minimum subgrid vertical velocity for liquid droplet nu-283

cleation is reduced from 0.2 to 0.1 m/s in EAMv2.284

Based on atmosphere-only and coupled simulations performed during the tuning285

process, EAMv2 keeps tunable parameters related to liquid droplet sedimentation, ice286

particle fall speed, and the lateral entrainment of deep convection the same as EAMv1287

instead of EAMv1p (see Table A1 for details).288

The effective aerosol radiative forcing (ERFaer) estimated in E3SMv1 is about -289

1.6 Wm−2 (Golaz et al., 2019), which is relatively large compared to other CMIP6 mod-290

els (Smith et al., 2020). After applying the EAMv1p parameter tuning proposed by Ma291

et al. (2022), the simulated magnitude of ERFaer shortwave and longwave components292

is reduced significantly, but the change in net ERFaer is small due to the compensation293

between longwave and shortwave. Clouds are more susceptible to aerosol perturbations294

under relatively clean conditions. Based on analysis of developmental configurations (to295

be documented in a separate work), unrealistically-small cloud droplet number concen-296

trations (e.g., < 10 cm−3) frequently appeared, especially in mid- and high-latitude re-297
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gions. As a temporary remedy, a lower bound (10 cm−3) is applied to the simulated cloud298

droplet number concentration in EAMv2. Results show that it reduces the net ERFaer299

magnitude by 0.3-0.4 Wm−2, which agrees with findings from previous studies (e.g. Hoose300

et al., 2009). The lower bound value is also consistent with other CMIP6 models (e.g.301

Mignot et al., 2021). We note however that this is not a cure for the problem. Additional302

efforts are planned to improve the simulated aerosol and cloud properties in pristine re-303

gions and reduce ERFaer in a more physical manner for future versions of E3SM.304

EAMv2 employs the same orographic and non-orographic gravity wave (GW) pa-305

rameterization as EAMv1, following Richter et al. (2010), which includes separate rep-306

resentation of orographic GWs (McFarlane, 1987), convective GWs (Beres et al., 2004),307

and GWs generated by frontal systems (Charron & Manzini, 2002). Tunable parame-308

ters in the orographic and frontal GW parameterizations remain the same as in EAMv1.309

In EAMv1, the period of the quasi-biennial oscillation (QBO) in the tropical stratospheric310

zonal mean wind was only 18 months as compared to 28 months in observations (Richter311

et al., 2019). In order to arrive at a more realistic representation of the QBO in EAMv2,312

several combinations of tunable parameters in the Beres et al. (2004) parameterization313

were explored, focusing on the convective fraction (CF) and efficiency with which con-314

vection generates GWs, effgw beres, starting with the setting that improved the QBO315

in EAMv1 described in Richter et al. (2019) (effgw beres=0.35 from 0.4, CF=8% from316

5%). Based on sensitivity simulations performed in parallel with the pre-industrial spinup317

simulation, CF was changed from 8% to 10% (gw convect hcf = 1/CF = 10), and effgw beres318

remained 0.35 (Table A1), resulting in a QBO period of ∼ 21 months in the pre-industrial319

control. Due to changes in tropical variability (Kelvin and mixed-Rossby gravity waves)320

related to the convective parameterization changes described above, the amplitude of the321

QBO in E3SMv2 is weaker than in observations.322

2.1.3 Atmospheric chemistry323

The atmospheric chemistry in EAMv1 was the O3v1 model with prognostic strato-324

spheric ozone by the linearized chemistry (Linoz v2) (Hsu & Prather, 2009) and the pre-325

scribed tropospheric ozone with the v1.0 input4MIPS ozone data set (Hegglin et al., 2016).326

The prescribed tropospheric ozone data only contained decadal monthly zonal climatol-327

ogy of latitude-pressure values. Due to the sharp cross-tropopause ozone gradient, un-328

physical ozone distributions was simulated in the vicinity of the tropopause when the329

modelled tropopause was higher than that of the prescribed data, assigning stratospheric330

ozone abundances to the tropospheric model grid boxes. Since ozone interacts with the331

radiation transfer code in E3SM, such ozone deficiencies impacted the solar heating and332

radiative forcing.333

In EAMv2, we implemented the O3v2 model (Tang et al., 2021) to overcome the334

limitations in the O3v1 model by replacing the prescribed ozone data with a passive ozone335

tracer in the troposphere. Ozone is transported from the stratosphere into the tropo-336

sphere and decays within the lowest four model layers (below 1 km) with a 48-hour e-337

folding to 30 ppb (parts per billion by mole fraction). The choice of 30 ppb is based on338

observations (Ziemke et al., 2019) and gives a tropospheric ozone mass similar to full chem-339

istry models. O3v2 is capable of interacting with the tropopause changes and hence cap-340

tures the naturally sharp ozone cross-tropopause gradient. Moreover, the ozone sink at341

the lower boundary in O3v2 allows us to diagnose the stratosphere-troposphere exchange342

flux of ozone, an important tropospheric ozone budget term, which was not possible with343

O3v1. The ozone hole is simulated following Cariolle et al. (1990) to represent the rapid344

chlorine-induced ozone depletion at cold temperatures, but the polar stratospheric cloud345

(PSC) temperature threshold is increased to 197.5 K in the EAMv2 from 193 K in the346

EAMv1 due to a warmer Antarctic winter pole. More details about O3v2 in E3SM are347

documented by Tang et al. (2021).348
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2.1.4 Aerosol349

The aerosol model in EAMv2 is based on EAMv1 (H. Wang et al., 2020) which it-350

self evolved from the four mode version of Modal Aerosol Module (MAM4) in CAM5.3351

(Liu et al., 2016) that represents the major aerosol species within four internally mixed352

size modes, and incorporated the new treatments of aerosol processes related to new par-353

ticle formation, secondary organic aerosol formation, aerosol convective transport and354

wet removal, resuspension, and deposition and mixing with snow grain. These new treat-355

ments in EAMv1 led to significant improvements in characterizing global distributions356

of aerosols and interactions with clouds and radiation. The development and evaluation357

of aerosol representation in the E3SMv1 coupled model simulations with both standard358

resolution (Golaz et al., 2019) and high resolution (Caldwell et al., 2019) configurations359

have mainly focused on the global budgets and annual mean constraints of aerosol op-360

tical depth (AOD) with observational estimates in the present-day conditions. While the361

total/speciated AOD and direct radiative effects are constrained to a large extent, fur-362

ther analysis of E3SMv1 simulations suggested that the shortwave absorption of aerosols363

is too strong in the model compared with observations especially over the dusty regions364

(Feng et al., 2022). The heating effect in the atmosphere due to the overestimated dust365

absorption could lead to changes of the lower tropospheric stability and affect the model-366

simulated clouds and precipitation.367

In E3SMv2, we updated dust refractive indices in the shortwave bands with the368

observationally derived values from the AERONET measurements (Dubovik et al., 2000),369

which replace the strongly absorbing dust properties used in E3SMv1 (Hess et al., 1998).370

Additionally, we implemented a different dust particle size distribution (Kok, 2011) in371

E3SMv2 for calculating fractional dust emission fluxes into the accumulation and coarse372

modes. Kok et al. (2017) suggests that dust size distributions at emission in current global373

climate models under-represent the coarse-mode (>1 µm) dust particles in the atmosphere.374

For the same dust optical depth, coarse-mode dust particles would result in larger long-375

wave warming and less shortwave cooling than the fine particles, resulting in a less cool-376

ing net effect of dust aerosols. Compared to E3SMv1, the new size distribution imple-377

mented to E3SMv2 (Kok, 2011) predicts more particles in larger dust sizes: about 1.1%378

in the accumulation mode and 98.9% in the coarse mode, which is consistent with the379

recent measurements (Kok et al., 2017) but can substantially change the dust transport380

to remote regions (Wu et al., 2020). With these updates in E3SMv2, dust emissions are381

re-tuned for the globally constrained dust optical depth of 0.03±0.005 (Ridley et al., 2016).382

2.2 Ocean383

Due to development priorities, the ocean component (the Model for Prediction Across384

Scales-Ocean: MPAS-Ocean) in E3SMv2 is mostly unchanged from E3SMv1 (Petersen385

et al., 2018, 2019). The underlying spatial discretization (Thuburn et al., 2009) is ap-386

plied to the primitive equations with a free surface (Ringler et al., 2013), with 60 lay-387

ers using a z-star vertical coordinate (Petersen et al., 2015; Reckinger et al., 2015). The388

parameterizations of unresolved physics, such as the Gent & Mcwilliams (1990) param-389

eterization for mesoscale eddy transport, and K-Profile Parameterization (KPP, Large390

et al., 1994; Van Roekel et al., 2018) for vertical mixing, remain largely the same with391

minor update.392

In E3SMv2, Redi isopycnal mixing is introduced following the triad formulation393

from Griffies et al. (1998). The Gent-McWilliams mesoscale eddy mixing parameteriza-394

tion continues to utilize a globally constant value for the bolus coefficient. However, in395

development of E3SMv2, a series of sensitivity simulations were conducted to find a more396

optimal value of the Gent-McWilliams bolus kappa parameter. Based on these simula-397

tions, a value of 900 m2 s−1 was chosen. This value is half of that used in E3SMv1. The398

reduction improved the surface salinity bias and increased Antarctic Circumpolar Cir-399
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culation (ACC) transport (not shown). A smaller globally constant value (400 m2 s−1)400

is utilized for Redi isopycnal mixing. In the Redi parameterization, slope tapering is a401

slightly modified version of Danabasoglu & Williams (1995) with a critical slope param-402

eter of 0.01. We also implemented the stratification-based tapering from Danabasoglu403

& Marshall (2007).404

In addition to the improvements in model physics, a sign error in the high order405

reconstruction of tracer values on cell edges, was discovered in the flux corrected tracer406

transport advection scheme. A set of simulations was conducted to determine the im-407

pact of this bug. The percentage change in ocean heat content (OHC) due to the bug408

fix at various levels is shown in Fig. S1. In a broad sense the effect of the bug fix was409

to increase ocean heat content, although there are broad swaths of decrease in OHC in410

the North Pacific and ACC in the upper ocean (Figs. S1a-c). In the deep ocean, the bug411

fix resulted in weaker OHC anomalies (Fig. S1d).412

2.3 Sea ice413

Improvements have been made to the column physics, coupling, and analysis of E3SM’s414

sea ice component (MPAS-Seaice) since the E3SMv1 configuration described by Turner415

et al. (2021). Here we expand on innovations new to E3SMv2. The core Delta-Eddington416

radiative transfer of Briegleb & Light (2007) has been updated to the Dang et al. (2019)417

SNICAR-AD model, ensuring radiative consistency across all snow surfaces, including418

on land, ice sheets and sea ice. The SNICAR-AD radiative transfer code includes five-419

band snow single-scattering properties, two-stream Delta-Eddington approximation with420

the adding–doubling technique, and parameterization for correcting the near-infrared (NIR)421

snow albedo biases when solar zenith angle exceeds 75◦ (Dang et al., 2019). However,422

radiative coupling with the atmosphere still integrates across just two bands (visible and423

NIR) separated at 700nm, which does not fully exploit the five-band capability; an ex-424

pansion of the coupling bands is planned for E3SMv3.425

A new snow-on-sea ice-morphology has been added to E3SMv2 that includes the426

effects of wind redistribution: losses to leads and meltponds, and the piling of snow against427

ridges. Snow grain radius, now a prognosed tracer field on sea ice, evolves according to428

temperature gradient and wet snow metamorphisms and feeds back to the SNICAR-AD429

radiative model up to a dry maximum of 2800µm. Fresh snow falls at a grain radius of430

54.5µm, and five vertical snow layers replace the previous single snow layer atop each431

of the five sea ice thickness categories retained from E3SMv1. The combined default con-432

figurations of the new radiative and snow schemes were found to minimally impact the433

climatic state of sea ice reported in this manuscript, but greater parametric sensitivities434

are explored in a sister paper in preparation.435

The most significant improvement to the sea ice climate since E3SMv1 was achieved436

with coupling changes associated with mushy-layer thermodynamics. Whereas the basal437

temperature of the ice was held fixed at -1.8 ◦C in E3SMv1, the new version of the model438

assumes the mushy liquidus basal temperature from the sea ice as described by Turner439

& Hunke (2015). Conversion of frazil ice from MPAS-Ocean with a fixed reference salin-440

ity of 4 PSU to the mushy layer now conserves to computational accuracy over a 500-441

year control integration. This was achieved by exchanging additional mass between the442

upper ocean and sea ice model to accommodate an assumed 25% mushy liquid content443

assumed from heat and mass transferred adiabatically from the MPAS-Ocean frazil scheme444

active from a depth of 100 m. In addition to achieving perfect heat and mass conserva-445

tion between sea ice and ocean models, this improvement greatly reduces a negative sea446

ice thickness bias in the summer Arctic reported by Golaz et al. (2019) for E3SMv1; it447

only minimally impacts Southern Ocean sea ice mass that was better simulated as com-448

pared to northern hemisphere sea ice in E3SMv1. Note that E3SM does not use virtual449
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ice-ocean fluxes, but instead full volume and heat flux exchange consistent with a Boussi-450

nesq ocean model as described by Campin et al. (2008).451

In addition to these core physics improvements, E3SMv2 includes a number of struc-452

tural additions to the sea ice model. E3SMv2 has significantly increased output to bet-453

ter diagnose behavior and compare against seasonal extremes and data. For example,454

daily Ice Numerals for Arctic shipping (Aksenov et al., 2017) are easily derived from this455

output, commensurate with the new E3SMv2 marine mesh that resolves major Arctic456

shipping channels (Section 2.4).457

E3SMv2 now also includes a prescribed-extent ice mode for MPAS-Seaice based458

on that found in the Community Ice CodE (CICE) in E3SMv1 and CESM (Bailey et al.,459

2011). This mode is needed for AMIP (Atmospheric Model Intercomparison Project) style460

simulations where a full prognostic sea ice model is not desired but sea ice surface fluxes,461

albedos, snow depth, and surface temperature are needed by the atmosphere model and462

are calculated by the vertical thermodynamics module of the sea ice component. The463

mode is intended for atmosphere sensitivity experiments and does not conserve energy464

or mass. In this mode, sea ice thermodynamics is active but sea ice dynamics are dis-465

abled and at each time step ice area and thickness are reset to specified values. Ice area466

is interpolated in time and space from an input data set, while ice thickness in grid cells467

containing sea ice is set to 2 m in the Northern hemisphere and 1 m in the Southern hemi-468

sphere. During each adjustment snow volume is adjusted to preserve the snow thickness469

prognosed in the previous time step. Snow temperatures are reset to the surface tem-470

perature, as prognosed in the previous time step, while ice temperatures are set so that471

the ice temperature gradient is linear, with the ice temperature at the top equal to the472

prognosed surface temperature, and equal to the sea freezing temperature at the base473

of the ice. The vertical ice salinity profile is reset to the profile from Bitz & Lipscomb474

(1999).475

2.4 Unstructured marine mesh generation476

Generation of the unstructured Centroidal Voronoi-type meshes (e.g. Ringler et al.,477

2008) used in the ocean and sea ice components of E3SMv2 is handled using the JIG-478

SAW library (Engwirda, 2017), enabling the creation of complex, variable-resolution meshes479

to resolve regional ocean (Hoch et al., 2020), sea ice (Turner et al., 2021) and land-ice480

(Hoffman et al., 2018) dynamics. Compared to E3SMv1, improvements to the robust-481

ness, efficiency, and flexibility of our meshing workflows has been targeted — employ-482

ing a multi-paradigm mesh generation strategy that combines ‘off-centre’ Delaunay-refinement483

and ‘hill-climbing’ optimization approaches (Engwirda & Ivers, 2016; Engwirda, 2018)484

to build the Spherical Centroidal Voronoi Tessellations (SCVTs) used in the MPAS-Ocean485

and MPAS-Seaice dynamical cores. Key to improved robustness in E3SMv2 is the elim-486

ination of invalid grid configurations centered around obtuse triangles, in which a lack487

of geometrical consistency between adjacent computational cells would lead to break-488

downs in the numerical discretization used by the ocean dynamical core. Difficulties as-489

sociated with the generation of valid meshes limited the application of variable mesh res-490

olution in E3SMv1, restricting model configurations to quasi-uniform resolution cases.491

These effects are remedied in E3SMv2, with our enhanced optimization strategies lead-492

ing to the generation of valid, well-conditioned meshes in complex, regionally-refined con-493

figurations. Equally important are improvements to E3SM’s COMPASS (Configuration494

Of MPAS Setups) package — a Python-based scripting environment that allows mod-495

elers to readily customize mesh and model configurations based on proximity to geographic496

features, climatological state, and user-defined inputs, with geometric tuning parame-497

ters that are easy to adjust on the fly. COMPASS tracks mesh provenance data asso-498

ciated with the creation of each new E3SM configuration to support model regression499

testing and ensure long-term reproducibility. Overall, improvements to the unstructured500

meshing workflows in E3SMv2 has led to significantly improved turnaround in the mesh501
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design, simulation, and analysis process, reducing the time required to complete vari-502

ous MPAS mesh-related tasks from days-to-weeks in E3SMv1 to minutes-to-hours in E3SMv2.503

As a consequence of these improvements, the E3SMv2 coastline is more realistic across504

the globe. As one example, E3SMv2 includes key shipping routes in the Canadian Archipelago505

that were missing from E3SMv1 (Figure 1), eliciting improved archipelagic through-flow.506

Figure 1. Comparison of the (a) old and (b) new standard resolution E3SM unstructured ma-

rine mesh, highlighting improved geographic acuity in E3SMv2 including Arctic coastal shipping

channels fitting standard routes published by the Arctic Council (2009) (red).

507

2.5 Land and river508

The physics configuration of E3SM Land Model version 2 (ELMv2) used in E3SMv2509

is similar to E3SMv1 (Golaz et al., 2019). ELMv2 simulates hydrologic and thermal pro-510

cesses in vegetation, snow, and soil for different land cover types, which include bare soils,511

vegetated surfaces, lakes, glaciers, and urban areas. Present-day leaf area index (LAI)512

is prescribed using satellite data and photosynthesis and is not limited by leaf nutrients.513

The prescribed vegetation distribution has been updated for E3SMv2 to resolve incon-514

sistencies across platforms in translating land use to changes in plant functional types.515

ELMv2 includes the new shortwave radiation model SNICAR-AD for snow also used for516

sea ice as described in section 2.3.517

The river routing component in E3SMv2 (Model for Scale Adaptive River Trans-518

port, MOSARTv2) takes the runoff produced by ELM and routes it to the river mouth519

as freshwater input to the ocean component. The physics scheme and configuration is520

the same as used in E3SMv1 standard resolution (Golaz et al., 2019). Specifically, MOSARTv2521

uses the kinematic wave approach to route streamflow across hillslopes, tributaries, and522

main river stems on an eight-direction-based river network (Li et al., 2013) at 0.5◦ latitude-523

longitude spatial resolution.524

There are a number of new features developed in ELMv2 and MOSARTv2 since525

the release of v1 that were not activated in E3SMv2. The soil erosion model of Tan et526

al. (2018) has been implemented and simulations showed that 5% of the newly fixed land527

organic carbon in the continental United States (CONUS) is displaced annually by soil528

erosion (Tan et al., 2020). OpenACC directives were added in ELM to include support529
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for GPUs and a 1km ELM simulation over the CONUS was successfully performed on530

the Oak Ridge National Laboratory’s Summit supercomputer (D. Wang et al., 2020).531

The plant hydraulics model of Kennedy et al. (2019) has been implemented to more mech-532

anistically account for water stress on vegetation. MOSARTv2 now includes a two-way533

irrigation scheme which allows the irrigation in ELMv2 to be constrained by the surface534

water availability calculated by MOSARTv2 (Zhou et al., 2020). The surface water made535

available for the irrigation includes the water storage in river channels and the reservoirs536

estimated by a water management scheme introduced in MOSARTv2 (Voisin et al., 2013).537

MOSARTv2 also includes a newly-developed flood inundation scheme which adds a flood-538

plain storage defined by the local Digital Elevation Model (DEM) along the main river539

channel (Luo et al., 2017). Once activated, this scheme allows the water exchanges be-540

tween main river channel and floodplain and thus outputs the inundated fraction for each541

gridcell. Although inactive in E3SMv2, the impact of these new features have been eval-542

uated in separate studies described above and will be evaluated as a whole in fully-coupled543

simulation campaigns planned in the future.544

2.6 Coupled system545

As in E3SMv1, the coupler/driver for E3SMv2 is cpl7 (Craig et al., 2012). The driver546

of cpl7 performs the integration of the coupled model and provides the “main” for the547

single executable. cpl7 relies on the Model Coupling Toolkit (MCT; J. Larson et al., 2005)548

for inter-component communication and remapping operations.549

2.6.1 Mapping weights550

The remapping operations are performed using mapping weights precomputed by551

external tools for each grid pair using two different algorithms. Nearly all maps in both552

directions use the TempestRemap conservative, monotone map (Ullrich & Taylor, 2015;553

Ullrich et al., 2016). In the case of the atmosphere’s pg2 grid and the ocean’s Voronoi554

grid, TempestRemap implements an L2 projection between the finite-volume grids. The555

requirement of monotonicity implies the projection must use the constant-function ba-556

sis rather than a high-order reconstruction. This map type is used for all fluxes and most557

states in the coupled model. The second map type is bilinear interpolation from ESMF558

(Hill et al., 2004). This map type is used to transfer state from the atmosphere to the559

ocean and sea ice.560

2.6.2 Energy conservation561

EAM and its predecessor CAM (Neale et al., 2012) are designed around the prin-562

ciple that each parameterization conserves energy. Therefore, the change of energy in563

the atmosphere should be equal to the difference in net fluxes at the top of the model564

and the surface. A long-term average of the energy change should be close to zero if the565

model conserves energy, since storage in the atmosphere is minimal.566

EAMv1 contained a few energy leaks. For example, one source of leaks is the pres-567

ence of a limiter for water forms (K. Zhang et al., 2018), but this source is small. In EAMv1,568

we recognized the gravity wave drag (GWD) parameterization as the source of the largest569

energy leak. In the orographic gravity waves parameterization, the change in kinetic en-570

ergy was not properly accounted for. After a fix, the energy imbalance in the atmosphere571

is reduced from 0.07 Wm−2 to 0.01 Wm−2. Figure S2 depicts energy imbalance for at-572

mosphere simulations with and without the GWD energy fix.573

MPAS-Ocean utilizes a fixed two band exponential formulation for penetrating short-574

wave radiation. For grid cells with shallow bottom depths, a portion of the penetrating575

shortwave radiation reaches the bottom of the ocean. In E3SMv1, this portion of the short-576

wave radiation was not accounted for, resulting in a globally averaged energy leak of ap-577

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

proximately 0.25 Wm−2. In E3SMv2, the shortwave radiation that reaches the bottom578

of the ocean is added to the bottom layer. In development of E3SMv2, we found that579

this change had minimal impact on the large scale ocean climate.580

After these energy conservation errors in the atmosphere and the ocean were ad-581

dressed, we realized that the coupled system was no longer in energy balance compared582

to E3SMv1. Further investigation led to the energy correction term incorporated in E3SMv1583

to account for the inconsistent definition of energy in the ocean and atmosphere (see Go-584

laz et al., 2019, Appendix A). While conceptually correct, the computation of that cor-585

rection term was based on all the precipitation, when instead it should have included only586

precipitation over ocean and ocean runoff. Precipitation over land should not have been587

included because the land model ELM does not take into account heat carried by pre-588

cipitation. The energy imbalance was corrected by calculating the needed energy to bring589

fluxes of water to a common temperature with the ocean, and then pass the globally av-590

eraged value as a correction term to be applied in the atmosphere every coupling time591

step.592

2.6.3 Coupled tuning593

The coupled tuning objectives for the pre-industrial control simulation were sim-594

ilar to Golaz et al. (2019):595

1. Near-zero long-term average net top-of-atmosphere (TOA) energy flux and total596

ocean heat content (OHC) in equilibrium.597

2. Minimum long-term drift in global mean surface air temperature.598

3. Reasonable absolute global mean surface air temperature.599

Furthermore, spatial root meam square error (RMSE) against observations for key600

climate variables (e.g., annual mean SST, annual and seasonal precipitation, TOA ra-601

diation, cloud radiative effect, sea surface wind stress, etc.) from the E3SM Diagnostic602

package (C. Zhang et al., 2022) are also considered. Tuning was performed iteratively603

at component levels and with the coupled system under perpetual pre-industrial (1850)604

forcings.605

In the atmosphere, we conducted short atmosphere sensitivity tests with repeat-606

ing SST and sea ice annual cycle (“F2010”) to estimate the impact of individual param-607

eters on the modeled precipitation, cloud radiative forcing and other climate state vari-608

ables. Promising atmospheric configurations were then evaluated with longer Atmospheric609

Model Intercomparison Project (AMIP) simulations (prescribed SST for year 1980-2015)610

before being tested in pre-industrial coupled mode. Results from the coupled simulation611

then fed back into another round of atmospheric tuning.612

Periodically, we also performed atmospheric simulations to evaluate cloud feedback613

and aerosol ERF to inform the atmospheric tuning. Specifically, we estimated the cloud614

feedback using Cess-like simulations (Cess et al., 1989) by comparing the differences be-615

tween an 11-year AMIP standard simulation (year 1980-1990) and the same simulation616

except with globally +4K SST (Ringer et al., 2014). The aerosol ERF was estimated with617

time slice simulations (e.g. Hansen, 2005) consisting of a 9-year 2010 simulation vs a 2010618

simulation except with 1850 aerosol emissions. To estimate the aerosol ERF more effi-619

ciently, we also used short (1 year after 3-month spin-up) nudged simulations with 2010620

and 1850 aerosol emissions (all other external forcings kept as year 2010 conditions), where621

the horizontal winds were nudged towards model output from a baseline simulation. Pre-622

vious studies (K. Zhang et al., 2022; S. Zhang et al., 2022) showed good agreement in623

the global and regional annual mean aerosol ERF estimates between the free-running and624

nudged simulations in E3SMv1.625
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Component-level development and tuning for the ocean also relied on simulations626

forced with atmospheric reanalyses (Tsujino et al., 2018) to guide the tuning of the Gent-627

McWilliams bolus kappa parameter and the newly implemented Redi isopynal mixing628

scheme.629

As in E3SMv1, the last step was a final tuning of the CLUBB parameter clubb c14630

in the coupled system to minimize long-term drift by adjusting shortwave cloud radia-631

tive effects (SWCRE) in the low-cloud regimes.632

Pre-industrial simulations were the only coupled simulations performed before the633

model was frozen. In particular, no idealized CO2 or test historical simulations were per-634

formed before finalizing E3SMv2.635

3 Computational performance636

3.1 Performance comparison of v1 and v2 simulations637

This section examines computational performance using a set of atmosphere-only638

and fully coupled simulations. Relative to EAMv1, EAMv2 is approximately twice as639

efficient for primarily two reasons: faster passive tracer transport and fewer physics columns.640

E3SMv2 is also approximately twice as efficient because the ocean dynamics time step641

is three times larger than in E3SMv1. The sea ice component is slower in v2 than in v1642

because of additional snow layers.643

Performance benchmark simulations were performed on the ANL Chrysalis clus-644

ter. Chrysalis has 512 compute nodes. Each node of the cluster has two AMD Epyc 7532645

“Rome” 2.4 GHz processors, and each processor has 32 cores, for a total of 64 cores per646

node. Each node has 256GB 16 channel DDR4 3200MHz memory. The interconnect hard-647

ware is Mellanox HDR200 InfiniBand and uses the fat tree topology. The model code648

was compiled with Intel release 20200925 with GCC version 8.3.1 compatibility and run649

with OpenMPI 4.1.1 provided in the Mellanox HPC-X Software Toolkit.650

All throughput values reported in this section are derived using the maximum time651

(minimum throughput) over all MPI processes. Only the total throughput value is fully652

accurate, as it is computed using the top-level wallclock time of the simulation, exclud-653

ing initialization; component and subcomponent throughput values are approximations654

because these lower-level timers are not associated with global synchronization points.655

The simulations are run with one MPI process per core and no OpenMP threading. A656

throughput data point corresponds to one simulation run for three months with the de-657

fault input/output (I/O) configuration and one restart file at the simulation end. For658

these tests, both v1 and v2 simulations use the new SCORPIO (Software for Caching659

Output and Reads for Parallel I/O) I/O library; thus, performance differences in these660

simulations are due to components’ computational and I/O volume differences rather than661

I/O library differences. Performance improvements from SCORPIO are documented sep-662

arately in Section 3.2.663

Figure 2 summarizes the performance of E3SMv2 relative to E3SMv1 on the lower664

resolution E3SMv1 and E3SMv2 pre-industrial control simulations. Figure 2a plots to-665

tal throughput versus the number of computer nodes. The models provide a small num-666

ber of optimized layouts, available using the names XS (v2 only), S, M, L. In addition,667

the figure shows small-node-count simulations using a simple stacked layout (“st”) in which668

each component runs serially with respect to the others, and all components share the669

same processors. Each simulation’s data point is annotated with its throughput in sim-670

ulated years per day (SYPD) and layout. Comparing S, M, and L layouts between mod-671

els, v2 is at least 1.97 times more efficient than v1. Figure 2b illustrates this efficiency672

difference by plotting the throughput-resource product for each component as a rectan-673

gle for the L layouts. The atmosphere (ATM), sea ice (ICE), coupler (CPL), land (LND),674
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Figure 2. Performance of the lower resolution E3SMv1 and E3SMv2 pre-industrial control

simulations. (a) Throughput vs. number of nodes. PE layouts XS, S, M, L are provided as part

of the models. Points annotated with “st” use a simple stacked layout in which each compo-

nent runs serially with respect to the others, and all components share the same processors. (b)

Throughput-resource product plots. Each component has one rectangle. A rectangle has the

area given by the product of throughput and number of nodes. In v2, the atmosphere and ocean

components have substantially smaller throughput-resource products.

and river runoff (ROF; LND and ROF are too small to label) components run on one675

set of nodes, while the ocean (OCN) component runs on another set. An unfilled rect-676

angle having “v1” or “v2” at the top-right corner shows the total product; because the677

throughput value of each component is approximate, the filled rectangles do not sum to678

the total throughput value.679

Figure 3 focuses on just the atmosphere component using prescriped SST and sea680

ice simulations. In E3SMv2, by default MPAS-Seaice now replaces CICE in such con-681

figurations (see Section 2.3). However, we use CICE for this study for three reasons. First,682

MPAS-Seaice requires a partition file for each process decomposition, and one goal of683

this study is to run simulations with a large number of decompositions. With CICE, we684

do not need to generate a decomposition file for each one. Second, MPAS-Seaice is slower685

than CICE, and it must run on an MPAS grid; the combined slowdown from each of these686

would reduce the precision of our analysis of just the atmosphere component’s perfor-687

mance in this study. Finally, v1 must use CICE, so a comparison of just the changes to688

the atmosphere component is best done by using CICE in the v2 simulations as well.689

Figure 3a shows total throughput of the simulation and approximate throughputs690

of the dynamical core (“dycore”) and passive tracer transport. A subset of data points691

are annotated with throughput values. Passive tracer transport is at least six to at least692

eight times faster in v2 than in v1. Two details are apparent in this plot. First, the dy-693

namical core is sensitive to the element decomposition, while the rest of the model is sen-694

sitive to the finer physics column decomposition. Thus, between 43 and 68 nodes, per-695

formance of the dynamical core subcomponents plateaus or slightly degrades, since in696

this range an increase in node count provides no improvement to the most-burdened MPI697

processes. Nonetheless, total throughput is roughly monotonically increasing even in this698

node count range. Second, representative node counts are chosen to favor, generally sep-699

arately, v1 and v2 in roughly equal numbers. Thus, there are closely spaced pairs of points700

in this same range to show the best available throughputs of both model versions.701
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Figure 3. Performance of the lower resolution EAMv1 and EAMv2 atmosphere simulations.

(a) Throughput vs. number of nodes. PE layouts are simple stacked layouts. (b) Proportion of

time spent in each subcomponent, with the total time for v1 normalized to 1.

Figure 3b decomposes performance of the 85-node simulations into the same sub-702

components. Only each full-height bar is fully accurate; subcomponent proportions are703

approximate. Again, tracer transport in v2 is over six times faster than in v1, speeding704

up the dynamical core by over three times in this case. The total model speedup is a lit-705

tle over two times in this case, with the speedup outside of the dynamical core coming706

from the reduction in number of physics columns.707

3.2 File Input/Output708

The EAM and E3SM simulations discussed above used the SCORPIO library for709

reading input data and writing simulation output to the file system. To improve the I/O710

write performance, the library caches and rearranges output data among MPI processes711

before using low-level I/O libraries, such as NetCDF, Parallel NetCDF (PnetCDF), and712

the Adaptable IO System (ADIOS), to write the data to the file system. In all the sim-713

ulation campaigns we used PnetCDF as the low-level I/O library in SCORPIO, and I/O714

accounted for less than 4% of the total runtime of the simulation.715

To measure the I/O improvements in the model, we compared the old version of716

the I/O library, SCORPIO CLASSIC (based on PIO, J. M. Dennis et al., 2012), used717

by E3SMv1 with the new version of the library, SCORPIO, used by E3SMv2 by running718

E3SMv1 benchmark simulation on Chrysalis with the S, M and L configurations. The719

simulation was run for 90 simulated days and generated ∼ 30GB of history and restart720

model output for each configuration. We found that SCORPIO provides a higher write721

and read performance than SCORPIO CLASSIC for all the model configurations. SCOR-722

PIO provides a consistent write throughput of 3-3.5 GB/s for all the configurations while723

the write throughput of SCORPIO CLASSIC drops from 1.9 GB/s for the S configura-724

tion to 356 MB/s for the L configuration. The time to read the model input data stays725

relatively constant for SCORPIO with the different model configurations while it increases726

exponentially with the number of MPI processes for SCORPIO CLASSIC. The time to727

read the model input data is ∼ 40% higher for SCORPIO CLASSIC compared to SCOR-728

PIO for the S and M model configurations, and for the L model configuration the time729

to read data with SCORPIO CLASSIC is 3.3 times the time taken with SCORPIO. The730

total time, including reads and writes, spent in I/O by both the libraries was less than731
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8% of the total runtime for all the model configurations except the L configuration with732

the SCORPIO CLASSIC library, where I/O accounted for 25% of the total runtime.733

4 Simulation Campaign734

Table 1 summarizes the E3SMv2 simulation campaign. All simulations were con-735

figured to adhere to the CMIP6 specifications as closely as possible and rely on the same736

boundary files as E3SMv1 (Golaz et al., 2019). The CMIP6 DECK plus historical sim-737

ulations (Eyring et al., 2016) include the pre-industrial control (piControl) spanning a738

total of 500 years, idealized CO2 simulations (1pctCO2, abrupt-4xCO2 ; 150 years each)739

and a five-member ensemble of historical simulations (historical N ; 1850-2014). These740

simulations were initialized from piControl on Jan 1 of various years as indicated in Ta-741

ble 1. AMIP simulations (prescribed SST and sea ice extent) were also performed to cover742

the entire period for which CMIP6 provides surface boundary conditions (1870-2014).743

Atmosphere, land and river initial conditions for amip N were taken from year 1870 of744

the corresponding historical N coupled simulations.745

To understand the relative importance of different forcing agents, a set of DAMIP746

(Detection and Attribution Model Intercomparison Project; Gillett et al., 2016) histor-747

ical simulations was performed. They consist of five-member ensembles with well-mixed748

greenhouse-gas-only (hist-GHG) and anthropogenic aerosol related (hist-aer). Instead749

of natural-only historical simulations as in Gillett et al. (2016), we opted for a third set750

with all agents active except well-mixed GHG and aerosols (hist-all-xGHG-xaer). This751

non-standard choice was motivated by a desire to include all forcing agents in our de-752

composition (including land-use and ozone).753

Finally, we performed a set of simulations following RFMIP (Radiative Forcing Model754

Intercomparison Project; Pincus et al., 2016) with slight updates to the protocol (https://755

rfmip.leeds.ac.uk/rfmip-erf). These simulations are designed to estimate time-varying756

total effective radiative forcing (ERF) and aerosol-related ERF. Three sets of prescribed757

SST and sea ice simulations are performed with SST and sea ice derived from a 500-year758

average of piControl. piClim-control is the control simulation with all forcing agents held759

at their 1850 values. piClim-histall activates all time varying forcing agents, whereas piClim-760

histaer only activates time varying agents related to anthropogenic aerosols and their761

precursors.762

The entire simulation campaign was performed on the DOE-E3SM Chrysalis clus-763

ter located at Argonne National Laboratory. E3SMv2 experienced only a single model764

crash during the nearly 3000 simulated years. The failure occurred during year 121 of765

abrupt-4xCO2 ensemble member 301. The failure was overcome by rerunning and tog-766

gling a flag in the coupler (“BFBFLAG”) that changes order of arithmetic operations.767

This introduces a “butterfly effect” sufficient to alter the weather and avoid the origi-768

nal failure point.769

4.1 Pre-industrial control770

The pre-industrial control simulation (piControl) was initialized after a 1000-year771

long spin-up simulation, itself initialized from ocean and sea ice states derived from a772

one-year forced ocean-sea ice simulation. During the spin-up, the model configuration773

was final, except for a small retuning of the gravity wave drag parameterization that was774

introduced at year 800 to improve the period of the QBO as described in Section 2.1.2.775

The climate simulated by E3SMv2 is very stable throughout the 500-year piCon-776

trol as demonstrated in Figure 4. The net TOA radiation (Fig. 4a) averages to -0.05 Wm−2777

with no trend. This value is sufficiently close (compared to anthropogenic forcing) to the778

ideal value of 0 Wm−2 for a fully equilibrated and perfectly energy conserving model.779
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Table 1. Summary of E3SMv2 simulations.

Label Description Period Ens. Initialization

Fully coupled
(atmosphere, ocean, sea ice, land and river)

piControl Pre-industrial control 500 years - Pre-industrial
spinup

1pctCO2 Prescribed 1% yr−1 CO2

increase
150 years 1 piControl (101)

abrupt-4xCO2 Abrupt CO2 quadrupling 150 years 2 piControl (101, 301)
historical N Historical 1850-2014 5 piControl (101, 151,

201, 251, 301)
hist-GHG DAMIP well-mixed

greenhouse-gas-only his-
torical

1850-2014 5 piControl (101, 151,
201, 251, 301)

hist-aer DAMIP anthropogenic-
aerosol-only historical

1850-2014 5 piControl (101, 151,
201, 251, 301)

hist-all-xGHG-xaer Other forcing historical (all
forcing except GHG and
aer)

1850-2014 5 piControl (101, 151,
201, 251, 301)

Prescribed SST and sea ice extent
(atmosphere, thermodynamic sea ice, land and river)

amip N Atmosphere with prescribed
SSTs and sea ice concentra-
tion

1870-2014 3 historical N (1870)

piClim-control RFMIP baseline control 50 years - Pre-industrial
spinup

piClim-histall RFMIP time-varying ERF
all agents

1850-2014 3 piClim-Control (21,
31, 41)

piClim-histaer RFMIP time-varying ERF
aerosols

1850-2014 3 piClim-Control (21,
31, 41)
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Figure 4. Time evolution of annual (a) global mean net top-of-atmosphere (TOA) radiation

(positive down), (b) global mean surface air temperature, (c) maximum and minimum of total

sea ice area for the Arctic and Antarctic, and (d) maximum Atlantic Meridional Overturning Cir-

culation (AMOC) at 26.5◦N below 500-m depth in the piControl simulation. Dashed lines in (a),

(b), and (d) represent linear trends. The solid straight line in (a) is the mean TOA energy imbal-

ance of -0.05 Wm−2, while the solid straight line in (d) is the mean annual maximum AMOC of

9.84 Sv.
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The global mean surface temperature averages to 13.70 ◦C with a very small down-780

ward trend (dashed line in Fig. 4b). The average temperature is very similar to E3SMv1781

and consistent with estimated warming and the present-day global temperature of 14.0±0.5◦C782

by Jones et al. (1999) for the period 1961-1990 and with leading reanalyses datasets (14.3783

to 14.6 ◦C) for the period 1979-2008 (Hawkins & Sutton, 2016). Along with the global784

mean temperature, maximum and minimum seasonal sea ice areas for the Arctic and Antarc-785

tic are stable as well (Fig. 4c).786

Finally, the maximum AMOC in E3SMv2 is quite weak, similarly to that in E3SMv1.787

The AMOC in Fig. 4d is weaker than the value in Golaz et al. (2019) (∼11 Sv). How-788

ever, during the E3SMv2 development it was discovered that the published AMOC did789

not include the contribution of the parameterized mesoscale eddies. In the North Atlantic790

the influence of the Gent-McWilliams parameterization opposes the resolved AMOC. When791

the eddy bolus velocity is included in the v1 calculation, the AMOC is very similar (∼9.5792

Sv) to that in E3SMv2.793

4.2 Climate sensitivity and effective radiative forcing794

Included in the DECK simulations are two idealized CO2 simulations designed to795

estimate the model response (sensitivity) to CO2-forcing at different time horizons. The796

equilibrium climate sensitivity (ECS) is defined as the equilibrium surface temperature797

change resulting from a doubling in CO2 concentrations. Because it is not practical to798

run a model to equilibrium, ECS is approximated by linear regression of TOA radiation799

vs surface temperature in a 150-year “abrupt-4xCO2” simulation (Gregory et al., 2004),800

often referred to as “effective climate sensitivity”. Response on shorter time scales is mea-801

sured by the transient climate response (TCR). TCR is defined as the change in surface802

temperature averaged for a 20-year period around the time of CO2 doubling from a 1pctCO2803

simulation. TCR depends on both climate sensitivity and ocean heat uptake rate.804

Figure 5 illustrates the time evolution of annual-average surface air temperature805

from the E3SMv1 and E3SMv2 idealized CO2 simulations, as well as their linear regres-806

sion. ECS is reduced from 5.3 K in E3SMv1 to 4.0 K in E3SMv2, a substantial reduc-807

tion. TCR is reduced as well, but by a smaller relative fraction from 2.93 K to 2.41 K.808

The effective CO2 radiative forcing is also reduced by approximately 10% (3.34 to 2.98809

Wm−2).810

For comparison, Meehl et al. (2020) evaluated ECS and TCR for 37 CMIP6 mod-811

els. ECS ranged between 1.8 and 5.6 K, with 6 models above 5 K including E3SMv1.812

The multimodel mean ECS was 3.7 K with a standard deviation of 1.1 K. TCR ranged813

from 1.3 to 3.0 K, with E3SMv1 having the largest value. The multimodel mean TCR814

was 2.0 K with a standard deviation of 0.4 K. E3SMv2 is now within one standard de-815

viation of multimodel mean for both ECS and TCR, but still on the high side.816

World Climate Research Programme (WCRP) researchers conducted a recent as-817

sessment of the equilibrium climate sensitivity following multiple lines of evidence (Sher-818

wood et al., 2020). They arrived at a 66% confidence range of 2.6–3.9 K for their base-819

line calculation and 2.3–4.5 K under their robustness tests. The broader 5–95% confi-820

dence ranges were 2.3–4.7 K, respectively 2.0–5.7 K. E3SMv1 with an ECS of 5.3 K is821

rather unrealistic as it lies outside of most of those ranges. On the other hand, E3SMv2822

has a high, but plausible ECS of 4.0 K.823

Although a part of the reduction in ECS stems from the reduced effective radia-824

tive forcing in E3SMv2 (from 3.34 to 2.98 Wm−2), it is mainly due to the reduced to-825

tal climate feedback. Applying the radiative kernel method (Soden et al., 2008) imple-826

mented in the E3SM cloud feedback diagnostic package (Qin, 2022) to decompose the827

climate feedback into different components, we find the reduced cloud feedback (E3SMv1:828

0.93 Wm−2K−1; E3SMv2: 0.72 Wm−2K−1), especially over the marine low cloud regions,829
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contributes the most to the reduction in total climate feedback, whereas the changes in830

other non-cloud feedbacks are negligible. Sensitivity tests on model changes in E3SMv2831

atmosphere physics indicate that the dCAPE-ULL convective trigger in the ZM scheme832

and the updated CLUBB tuning parameters play leading roles in reducing the marine833

low cloud feedbacks in E3SMv2.834

We also evaluate the evolution of the effective radiative forcing (ERF) from pre-835

industrial to present-day conditions using RFMIP simulations (Table 1). ERFtotal is the836

difference in net TOA radiation between piClim-histall and piClim-control and ERFaer837

the difference between piClim-histaer and piClim-control. Their time evolutions are shown838

in Figure 6 along with their counterparts from E3SMv1 (computed with a comparable839

but slightly different methodology, see Golaz et al., 2019). The time evolutions of ERFtotal840

and ERFaer are nearly identical between E3SMv2 and E3SMv1. ERFtotal remains close841

to zero until the late 1900’s, except for dips during explosive volcanic eruptions. Aver-842

aging over the last 20 years reveals small differences between the two models. The aerosol843

forcing is slightly reduced in magnitude (-1.52 vs -1.65 Wm−2), but the the total forc-844

ing does not increase as a result. In fact it is reduced (+1.00 vs +1.10 Wm−2), likely as845

a consequence of the smaller CO2 ERF (Fig. 5).846

Another assessment was conducted under the auspices of the WCRP with the goal847

of bounding the aerosol radiative forcing (Bellouin et al., 2020). Following multiple lines848

of evidence, the assessment arrived at a 68% confidence interval for the total aerosol ef-849

fective radiative forcing of -1.6 to -0.6 Wm−2, or -2.0 to -0.4 Wm−2 with a 90% likeli-850

hood. With a forcing of -1.52 Wm−2, E3SMv2 is close to the lower bound but within851

the narrower confidence interval.852
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Figure 5. (a-b): time evolution of annual global mean air surface temperature anomalies for

the idealized CO2 forcing simulations abrupt-4xCO2 (red), 1pctCO2 (blue) and the control sim-

ulation (piControl ; green) for E3SMv1 and E3SMv2. The transient climate response (TCR) is

computed as an 20-year average around time of doubling (year 70). (c-d) Gregory regression to

estimate effective climate sensitivity (ECS) and effective 2xCO2 radiative forcing (F).
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4.3 Historical ensemble853

To facilitate comparisons between model and observations, the bulk of the anal-854

ysis focuses on the historical simulations. For climatologies, we select the last 30 years855

(1985-2014) of the ensemble members.856

Figure 7 provides a broad overview of the model performance. Spatial RMSE against857

observations or ranalysis products are computed for annual and sesonal averages with858

the E3SM Diags package (C. Zhang et al., 2022). The first historical ensemble members859

of E3SM are depicted with triangles, blue for E3SMv1 and red for E3SMv2. They are860

compared against 52 CMIP6 models shown with box-and-whisker plots (minimum, 25th,861

75th percentile, maximum). Underlying E3SM Diags comparison figures are available862

on-line (https://portal.nersc.gov/project/e3sm/CMIP6 comparison 1985-2014 E3SMv2863

golaz etal 2022/). For most fields, E3SMv2 outperforms E3SMv1. Notable improve-864

ments include precipitation and sea-level pressure. The simulated precipitation in E3SMv2865

is now competitive with the upper quartile of the CMIP6 ensemble. While sea-level pres-866

sure is also much improved, it is still only about average compared to CMIP6. Consis-867

tent with sea-level pressure, zonal wind at 850 hPa also improves. E3SMv2, similarly to868

E3SMv1, has a good representation of TOA radiation fields, moderately improving upon869

v1 for most fields and seasons. Unfortunately, two fields suffer from a degradation in E3SMv2870

as compared to E3SMv1. For the zonal wind at 200 hPa, the degradation is partly as-871

sociated with the change in stratospheric ozone chemistry (i.e., O3v2) (Tang et al., 2021,872

their Figure 10), but the differences between E3SMv2 and E3SMv1 in Figure 7 are larger873

than those between E3SMv1+O3v2 and E3SMv1, suggesting that other factors contribute874

as well. The degradation in surface air temperature over land is largely attributable to875

poor simulation of the historical temperature record (see Sections 4.3.6 and 5 below).876

4.3.1 Radiation and Clouds877

Annual net top-of-atmosphere (TOA) radiative flux in E3SMv1 and v2 is depicted878

in Figure 8 in comparison with observations from CERES-EBAF Ed4.1 (Loeb et al., 2018).879

The simulated global mean value is nearly identical between the two versions at +0.3880

Wm−2, lower than the observational estimate (but consistent with the smaller warm-881

ing; Figure 6 and Section 4.3.6). Many regional biases are reduced in E3SMv2, includ-882

ing positive biases over stratocumulus regions, as well as negative biases over tropical883
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Figure 7. Comparison of RMSE (1985–2014) of an ensemble of 52 CMIP6 models (first

historical members r1i1p1f1) with the first historical members of E3SMv1 (blue triangles) and

E3SMv2 (red triangles). Box and whiskers show 25th, 75th percentile, minimum and maximum

RMSE for the CMIP6 ensemble. Spatial RMSE against observations are computed for annual

and sesonal averages with the E3SM Diags package (C. Zhang et al., 2022). Fields shown include

TOA net radiation (a), TOA SW and LW cloud radiative effects (b, c), precipitation (d), sur-

face air temperature over land (e), sea-level pressure (f), 200- and 850-hPa zonal wind (g, h),

and 500-hPa geopotential height (i). TOA = top-of-atmosphere; SW = shortwave; CRE = cloud

radiative effects; LW = longwave; DJF = December–February; MAM = March–April; JJA =

June–August; SON = September–November; RMSE = root-mean-square error. The mean cli-

matology of the reference observational and reanalysis datasets are derived from: CERES-EBAF

Ed4.1 (Loeb et al., 2018) (2001-2018) for (a, b and c), GPCP2.3 (Adler et al., 2018) (1979-2017)

for (d) and ERA5 (Hersbach et al., 2020) (1979-2019) for (e, f, g and h). Due to data availability,

not all models are included for every variable. Complete data is available in Table S1.
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E3SMv2 (H1-5) – Observations 

E3SMv1 (H1-5) – Observations  

Figure 8. Annual net top-of-atmosphere (TOA) radiative flux (W/m2): (a) CERES-EBAF

Ed4.1 observational estimate (2001-2018), (b) model bias from the 5-member ensemble of

E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member

ensemble of E3SMv1 historical coupled simulations (1985–2014). RMSE = root-mean-square

error. CORR = correlation coefficient between observation and model.
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and subtropical Pacific, Indian, and Atlantic oceans, resulting in an overall smaller RMSE884

(8.5 vs 9.3 Wm−2).885

Figure 9, 10 demonstrate that both the TOA shortwave and longwave cloud radia-886

tive effects are improved in the E3SMv2 historical ensemble compared with the E3SMv1887

historical ensemble in terms of RMSE and the pattern correlation. Overall, the global888

mean SWCRE in E3SMv2 is weaker than in E3SMv1 by ∼ 1.5Wm−2, and the LWCRE889

is weaker by ∼ 0.6Wm−2. The positive TOA SWCRE bias associated with the stratocu-890

mulus decks over eastern ocean basins, especially right off the coasts of California, Peru891

and Chile, and the southern West Africa, is clearly reduced, while the negative SWCRE892

bias associated with the cumulus regimes over central/western tropical oceans is slightly893

reduced as well. The improvement in the marine boundary layer cloud regimes is mainly894

from the updated CLUBB tuning paramters (Ma et al., 2022). The TOA LWCRE bias895

is reduced over the equatorial Pacific and the intertropical convergence zone (ITCZ), which896

is associated with the improved precipitation over these areas (described in Section 4.3.2897

below). The positive TOA LWCRE bias is also slightly reduced over the Southern Ocean.898

The enhanced Wegener-Bergeron-Findeisen (WBF) efficiency and the update to899

the ZM scheme significantly increase ice water in mixed-phase clouds, which also weak-900

ens SWCRE in the Southern Hemisphere (e.g. ∼ 30 ◦S in Figure 9). The liquid conden-901

sate mass fraction as a function of temperature at all latitudes between 30 ◦S–80 ◦S (Fig-902

ure 11) from both E3SMv1 and E3SMv2 historical coupled simulations demonstrate that903

the updated atmosphere features and tuning parameters in E3SMv2 significantly increase904

ice cloud mass fraction in the temperature range between −10 ◦C and −50 ◦C, which is905

closer to the observational estimate (Y. Zhang et al., 2019).906

We further quantify the improvements in the subtropical stratocumulus decks com-907

pared to E3SMv1 following Brunke et al. (2019). We define the decks as the areas within908

30◦ latitude by 35◦ longitude boxes in the Northeast Pacific (NEP), Northeast Atlantic909

(NEA), Southeast Pacific (SEP), Southeast Atlantic (SEA), and the Southern Indian Ocean910

(SIO) where low cloud cover > 45, the LCC45+ decks. E3SMv2 LCC is generally im-911

proved falling more within the observational spread represented by three satellite and912

in-situ based climatologies [the Cloud-Aerosol Lidar and Infrared Pathfinder (CALIPSO)913

satellite GCM-Oriented CALIPSO Cloud Product (GOCCP), the International Satel-914

lite Cloud Climatology Project (ISCCP) D2 product, and the Extended Edited Cloud915

Reports Archive (EECRA)] (Figure 12).916

The cloud changes that lead to the SWCRE improvements can be explained by the917

spatial errors in the simulated LCC45+ cloud decks with respect to GOCCP which are918

defined as in Brunke et al. (2019). An example of these for the seasons of maximum LCC919

for each region in Figure 12 is given in Figure 13. For “apples-to-apples” comparisons,920

the model output from the Cloud Feedback Model Intercomparison Project Observation921

Simulator Package (COSP) CALIPSO satellite simulator is used. Centroid distances (Fig-922

ure 13a) measure the distance between the centroid of the seasonal mean cloud deck in923

GOCCP and the model. Smaller centroid distances are better than large ones. Area ra-924

tios (Figure 13b) are the ratio of the area of the model’s deck to that of the satellite to925

measure cloud deck size errors. Finally, overlap ratios (Figure 13c) are the fraction of926

the union of the model and satellite cloud decks in which there is overlap. This synthe-927

sizes the effects of location, size, and shape errors in the simulated cloud decks. Both of928

these ratios should be close to 1 for minimal errors.929

Figure 13 shows that E3SMv2 improves most the representation of the widely stud-930

ied subtropical stratocumulus cloud decks in the NEP, NEA, and SEP. In these regions,931

centroid distances are decreased and overlap ratios are similar to or increased to values932

closer to 1. Area ratios are improved in all regions with values closer to 1 except NEA.933

Similar results are found in all other seasons.934
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E3SMv2 (H1-5) – Observations 

E3SMv1 (H1-5) – Observations  

Figure 9. Annual top-of-atmosphere shortwave cloud radiative effect (W/m2): (a) CERES-

EBAF Ed4.1 observational estimate (2001-2018), (b) model bias from the 5-member ensemble of

E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member en-

semble of E3SMv1 historical coupled simulations (1985–2014). RMSE = root-mean-square error.

CORR = correlation coefficient between observation and model.
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E3SMv2 (H1-5) – Observations 

E3SMv1 (H1-5) – Observations  

Figure 10. Annual top-of-atmosphere longwave cloud radiative effect (Wm−2): (a) CERES-

EBAF Ed4.1 observational estimate (2001-2018), (b) model bias from the 5-member ensemble of

E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member en-

semble of E3SMv1 historical coupled simulations (1985–2014). RMSE = root-mean-square error.

CORR = correlation coefficient between observation and model.

–27–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 11. Diagnosed mixed-phase partitioning based on the monthly model output in the

30-80◦S latitude band from (blue line) the E3SMv2 historical coupled simulation (1985–2014),

(olive line) the E3SMv1 historical coupled simulations (1985–2014), and (black line) observations

from Hu et al. (2010)

Figure 12. The mean low cloud cover (LCC) for each of the LCC45+ cloud decks (see text

for definitions) for the 30◦ latitude by 35◦ longitude boxes over the Northeast Pacific (NEP),

Northeast Atlantic (NEA), Southeast Pacific (SEP), Southeast Atlantic (SEA), and the Southern

Indian Ocean (SIO).

Figure 13. Centroid distances, area ratios, and overlap ratios of the LCC45+ decks in June-

August (JJA) for the two Northern Hemisphere regions and in September-November (SON) for

the Southern Hemisphere regions.
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4.3.2 Precipitation935

The model bias in annual precipitation from E3SMv2 shows notable improvement936

compared with that in E3SMv1 (Figure 14). The biases are clearly reduced in the Trop-937

ical Pacific ocean, Maritime continent, Central America and the Amazon. The updated938

ZM tuning parameters, the dCAPE-ULL convective trigger, and the inclusion of the gusti-939

ness effects and the subgrid temperature variance are found to reduce the regional bi-940

ases of annual mean precipitation (Xie et al., 2019; Ma et al., 2022).941

E3SMv2 (H1-5) – Observations 

E3SMv1 (H1-5) – Observations  

Figure 14. Annual precipitation rate (mm/day): (a) Global Precipitation Climatology

Project v2.3 observational estimate (1979-2017), (b) model bias from the 5-member ensemble

of E3SMv2 historical coupled simulations (1985–2014), and (c) model bias from the 5-member en-

semble of E3SMv1 historical coupled simulations (1985–2014). RMSE = root-mean-square error.

CORR = correlation coefficient between observation and model.

As described in section 2.1.2, the dCAPE-ULL convective trigger is expected to broadly942

improve the simulation of diurnal precipitation. This can be clearly seen in Figure 15,943

which shows the comparison of the time phase (color) and amplitude (color density) of944
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diurnal precipitation between TRMM, and E3SMv2 and E3SMv1 historical simulations945

over the tropics. The improvements are most evident in the diurnal peak phase. Over946

the oceans, E3SMv2 captures the observed widespread morning peaks, particularly along947

the primary precipitation bands, where on average the peak precipitation occurs 3 hours948

too early in E3SMv1. Over the Maritime continent region, E3SMv2 closely reproduces949

the observed early evening peaks over land and the transition to morning peaks towards950

the coasts and open oceans, while E3SMv1 has too-early diurnal precipitation peaks from951

noon to early afternoon over land and similarly much earlier peaks around midnight in952

the coastal regions. Over the tropical continents, including Africa, South America, and953

South Asia, the observed diurnal peaks occur from late afternoon to early evening. While954

the diurnal precipitation peaks in E3SMv1 are nearly phase-locked to insolation over these955

land masses, the phase-locking behaviors are totally avoided in E3SMv2, which actually956

sees the peak phases delayed by several hours. However, the improvement in simulat-957

ing diurnal timing phases does not translate to diurnal amplitude. This is presumably958

due to lack of skill in simulating meso-scale convective systems in coarse resolution mod-959

els. Furthermore, while the diurnal amplitudes are weaker in both models compared to960

observations, they are somewhat degraded from E3SMv1 to E3SMv2 particularly over961

weakly precipitating subtropical oceans.

Figure 15. Annual mean time phase (color) and amplitude (color density) of the first diurnal

harmonic of 3-hourly total precipitation (mm/day) from (a) TRMM (1998-2013), and historical

simulations (1985-2014) of (b) E3SMv2 and (c) E3SMv1. Note the difference in the upper bound

of the plotted amplitude ranges for TRMM (15 mm/day) and models (5 mm/day). Areas with

diurnal amplitude less than 0.2 mm/day are left blank.

962

After the model was finalized, it was observed that the dCAPE trigger, indepen-963

dent of the ULL trigger and other model settings, induces a checkerboard grid-level noise964

pattern in a number of output fields, including total grid-box cloud water liquid and ice965

paths, when these fields are temporally instantaneous or averaged over not more than966

several days. Figure S3 illustrates this issue by comparing a daily average output of the967

total grid-box cloud liquid water path in two lower resolution atmosphere simulations968

with the dCAPE trigger on and off.969
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4.3.3 Tropical variability970

As in Golaz et al. (2019) we examine the E3SMv2 variability of El Niño Southern971

Oscillation (ENSO) via wavelet analysis (Torrence & Compo, 1998) of the Niño 3.4 SST972

for the piControl and historical simulations in Fig. 16. In this figure the piControl has973

again been divided into five 100-year intervals. The 90% confidence interval is shown as974

the dashed black line. ENSO variability in E3SMv2 shows a number of similarities to975

E3SMv1 (compare to Golaz et al., 2019, their Fig. 20). Again E3SMv2 shows a very ro-976

bust peak of variability at short periods (∼2.5 years), which is similar to E3SMv1 and977

shorter than ERSSTv4 (thick black line). While a longer period (6-9 years) remains in978

the piControl, the mean for the five 100-year intervals has reduced relative to E3SMv1.979

This longer term variability is weaker than simulated in other CMIP5 and CMIP6 mod-980

els (see Orbe et al., 2020, their Fig. 10a) and observations (black line in Fig. 16). The981

intermediate periods (3-6 years) seen in ERSSTv4 are not well captured in E3SMv2. The982

spatial SST response to ENSO is shown in Fig. S4. The magnitude of SST response (ap-983

proximately 2.5◦C) in the piControl and historical ensemble mean (panels b and c) is984

consistent with E3SMv1, other CMIP models, and observations (Golaz et al., 2019; Brown985

et al., 2020). However, the center of response is shifted too far westward, which is con-986

sistent with other models.987

Figure 16. El Niño–Southern Oscillation (ENSO; Nino3.4) variability of the pre-industrial

(PI) control simulation and historical ensemble. The Morlet wavelet of degree 6 is used (e.g., Tor-

rence & Compo, 1998). The PI control (green lines) has been divided into five 100-year sections,

each Historical ensemble member is shown as an orange line. ERSSTv4 data (W. Liu et al., 2015)

is shown as the thick black line. The 90% confidence interval is shown as the dashed black line.

The Madden-Julian oscillation (MJO; Madden & Julian, 1971), the dominant mode988

of tropical variability on subseasonal (10-100 day) scales, is a key contributor to ENSO989

events (C. Zhang & Gottschalck, 2002), monsoon activity (Wheeler & McBride, 2012),990

extratropical atmospheric blocking episodes (Henderson et al., 2016), tropical cyclone991

formation (Maloney & Hartmann, 2000), and weather extremes (Higgins et al., 2000; Mat-992

sueda & Takaya, 2015; Mundhenk et al., 2016). Its accurate representation in numer-993
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ical models is essential for weather and climate prediction (Vitart & Robertson, 2018),994

yet a satisfactory depiction of the MJO remains elusive (Jiang et al., 2015; Ahn et al.,995

2020). Figure 17 shows the distribution of tropical precipitation spectral power, normal-996

ized by a smoothed background spectrum, in zonal wavenumber-frequency space (Wheeler997

& Kiladis, 1999). Results from an E3SMv2 historical simulation (Fig. 17b) indicate slightly998

lower power values for equatorial Rossby waves and the MJO and a MJO peak that is999

at a higher frequency compared to observations (Fig. 17a). Relative to E3SMv1 (see Go-1000

laz et al. (2019) and Orbe et al. (2020) for details), precipitation normalized power in1001

the broad MJO spectral region has increased and shifted to higher frequencies (Fig. 17c).1002

Both E3SMv2 and E3SMv1 dramatically underestimate precipitation variability asso-1003

ciated with atmospheric Kelvin waves and other synoptic-scale disturbances. Lag cor-1004

relations of equatorial precipitation and 850 hPa zonal wind with Indian Ocean precip-1005

itation (Figure 18) suggest some improvement in MJO propagation across the Maritime1006

Continent in E3SMv2 compared to E3SMv1, as evidenced by more consistent red shad-1007

ing eastward to 125◦E. In both E3SMv2 and E3SMv1, the quadrature phasing of pre-1008

cipitation and zonal wind resembles that in observations, but the MJO phase speed be-1009

gins to exceed the observed 5.5 m s−1 reference value (dashed green line) east of 120◦E1010

and especially in E3SMv2. A more detailed evaluation of tropical subseasonal variabil-1011

ity in E3SMv2 will be presented in a forthcoming manuscript.1012
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a) Observations (2001-2010) b) E3SMv2 historical (1985-2014) c) (E3SMv2–E3SMv1)/E3SMv1

Figure 17. Tropical zonal wavenumber-frequency power spectra of the component of precip-

itation that is symmetric about the Equator for (a) observations (Tropical Rainfall Measuring

Mission product 3B42v7) from 2001-2010 and (b) the 1985–2014 period from an E3SMv2 his-

torical simulation. Plotted values represent the summed power from 15◦S–15◦N divided by the

smoothed background power (the “normalized” power). Solid black lines indicate shallow water

dispersion curves for equivalent depths of 12, 25, and 50 m. Prominent wave types are labeled:

westward inertia-gravity (n=1 WIG), Kelvin, equatorial Rossby (n=1 ER), and the Madden-

Julian oscillation (MJO). (c) The change, expressed as a percent difference, in the normalized

spectral power between E3SMv2 and E3SMv1 historical simulations for the period 1985–2014.

4.3.4 Ozone1013

The stratospheric column ozone (SCO) of the historical ensemble mean of E3SMv21014

is compared with the satellite observations from the Ozone Monitoring Instrument (OMI)1015

and the Microwave Limb Sounder (MLS) at 60◦S to 60◦N, where the satellite observa-1016

tions have good quality all year round. Figure 19 shows the climatology of SCO zonal1017

mean annual cycle from years 1995–2014 of E3SMv2 historical simulations and years 2005–1018

2017 of the OMI+MLS observations. We chose different years of simulations from that1019

of the observations to facilitate the comparison with the O3v2 model results in the E3SMv11020

reported by Tang et al. (2021). The E3SMv2 historical simulations match the observed1021
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a) Observations (2001-2010) b) E3SMv1 (1985-2014) c) E3SMv2 (1985-2014)

Figure 18. Latitudinally averaged (10◦S–10◦N) precipitation (colors) and 850 hPa zonal

wind (lines) anomalies lag correlated with precipitation in the Indian Ocean region (60◦–90◦E,

10◦S–10◦N) for (a) observations from 2001–2010 (Tropical Rainfall Measuring Mission [TRMM]

precipitation and Modern-Era Retrospective Analysis for Research and Applications [MERRA]

wind), (b) the 1985–2014 period from an E3SMv1 historical simulation, and (c) the 1985–2014

period from an E3SMv2 historical simulation. The dashed green line in (a) represents the ob-

served Madden-Julian oscillation phase speed (5.5 m s−1) in precipitation and is copied to panels

(b) and (c) for reference. The line contour interval is 0.1, solid lines indicate positive correlations,

dashed lines indicate negative correlations, and the zero correlation line is omitted. Anomalies,

defined as departures from the smoothed seasonal cycle, are bandpass filtered to retain 20-100

day signals prior to correlation.

SCO seasonal phase and pattern, but generally overestimate the SCO magnitude except1022

over the Northern Hemisphere (NH) mid-latitudes and near 30◦S from March to Septem-1023

ber. Comparing to the E3SMv1 SCO in Fig. 1d of Tang et al. (2021), the E3SMv2 SCO1024

better matches observations in the SH mid-latitudes, but is worse in the NH mid-latitudes.1025

This E3SMv1-E3SMv2 difference in the SCO is likely associated with the QBO and GW1026

retuning for the E3SMv2.1027

The evolution of the Antarctic ozone hole during the historical time period reflects1028

the combined effect of dynamics, physics, and chemistry. The NASA Ozone Watch web-1029

site (https://ozonewatch.gsfc.nasa.gov, last access: October 11, 2021) archives the daily1030

records of the Antarctic ozone hole area (where the total column ozone (TCO) is less than1031

220 DU) and minimum TCO in the SH based on daily TCO observational data. Figures1032

20a and b compare the yearly E3SMv2 historical ensemble mean time series with the yearly1033

Ozone Watch observations for the SH minimum TCO and the ozone hole area, respec-1034

tively. Both the yearly model and observational results are based on the daily data from1035

July 1 to December 31 of each year.1036

The Antarctic ozone hole emerges about 1980 after the build up of anthropogenic1037

chlorouorocarbons (CFCs) reach a threshold that initiates rapid, catalytic destruction1038

of ozone within the Antarctic stratospheric polar vortex (Molina & Rowland, 1974; Far-1039

man et al., 1985). The ozone hole simulation in E3SMv2 is weaker than observed in terms1040

of minimum TCO (Figure 20a,c) and areal extent of the ozone hole (Figure 20b,d). Given1041

the 50 DU high bias for ozone-hole minimum TCO (Figure 20c), the temporal history1042

of the ozone hole, from onset to partial recovery, is well matched in E3SMv2 (Figure 20a).1043

In terms of seasonality, the E3SMv2 ozone hole begins almost a month later and recov-1044

ers almost a month earlier. The cause of this is not the ozone chemical model, as it works1045

well in other atmospheric models, but is likely to be related to the formation and per-1046

sistence of the wintertime vortex. The ozone hole is created chemically, but its size and1047

duration depend on the vortex remaining isolated from the mid-latitude stratosphere through-1048
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(a)

(b)

(c)

Figure 19. Climatology of zonal mean annual cycle of stratospheric column ozone (SCO, in

Dobson units (DU)). The panels are (a) E3SMv2 ensemble mean of historical simulations from

years 1995–2014; (b) OMI+MLS observations from years 2005–2017; (c) The differences in SCO

of E3SMv2 minus OMI+MLS.
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(a) (b)

(c) (d)

Figure 20. Ozone hole results as shown in the historical time series (top) and daily mean

climatology and variance (bottom) of the SH minimum total column ozone (left, unit: DU) and

the SH maximum ozone hole area (right, area with total ozone < 220 DU, unit: million km2)

based on the daily data from July 1 to December 31. In the bottom panels, the lines indicate the

multi-year average (observations in black from years 1990–2019 and models in blue from years

1990–2014), and shading covers ±1 standard deviation.

out most of the lower stratosphere. The E3SMv2 ozone hole interannual variability (IAV,1049

shaded areas in Figure 20c,d), scaled to the size of the ozone hole, matches the obser-1050

vations, indicating that the vortex IAV is similar to observations. It is possible that the1051

weaker ozone hole in E3SMv2 could be improved with a colder stratosphere, or paramet-1052

rically, by increasing the PSC temperature threshold.1053

4.3.5 Aerosols1054

The global distribution of annual mean AOD at 550 nm from E3SMv2 and E3SMv11055

historical simulations (2000-2014) is compared with observational composite (Kinne et1056

al., 2013) in Figure 21. Model results are not included for this comparison over regions1057

where the observations are not available, e.g., in the high latitudes. E3SMv1 and v2 re-1058

alistically capture the broad regional distribution in AOD, but E3SMv2 has a stronger1059

positive bias than E3SMv1 in the global mean (0.034 vs. 0.013) compared to the obser-1060

vational composite, although the low bias over mid-latitude source regions is improved1061

in E3SMv2. Larger positive biases in E3SMv2 than E3SMv1 are found over tropical and1062

subtropical oceans. Decomposition of the total AOD into major aerosol species is pro-1063

vided in Table 2. The positive biases are mostly due to an increase in anthropogenic aerosol1064

species, particularly sulfate and secondary organic aerosol (SOA). The global annual mean1065

burdens of sulfate and SOA have an increase of 1.03 and 0.95 Tg, respectively, in the E3SMv21066

historical simulations (2000-2014) compared to E3SMv1 (Fig. S5). The global annual1067

mean burdens of other anthropogenic aerosol species are also larger in E3SMv2 than those1068

in E3SMv1, although both model simulations use the same set of CMIP6 emissions, in-1069
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Figure 21. Spatial distributions of global annual mean (a) aerosol optical depth (AOD) from

observational composite (Kinne et al., 2013) and the AOD difference between (b) E3SMv2 and

(c) E3SMv1, respectively, from the historical simulations (2000-2014) and the observational

composite. Areas with gray shading in polar regions indicate missing value. The number at the

top-right of each panel represents the global mean.

Table 2. Global and annual mean AOD at 550 nm for total aerosol and major aerosol types

AOD (2000-2014) Total Dust Sea salt Sulfate POMa BCa SOAa

E3SMv1 (DECK) 0.146 0.032 0.049 0.024 0.007 0.0049 0.029
E3SMv2 (historical) 0.166 0.028 0.049 0.033 0.009 0.0063 0.040

aPOM (particulate organic matter), BC (black carbon), and SOA (secondary organic aerosol)

dicating that the aerosol removal in E3SMv2 is weaker than in E3SMv1. This might be1070

an unintended consequence of intensive cloud and precipitation parameter tuning for EAMv2.1071

Natural aerosols (e.g., dust and sea salt) in E3SMv2 have small changes in their global1072

burdens, as their emissions are scaled to match the global constraints of dust or sea salt1073

optical depth.1074

In addition to AOD, aerosol absorption of sunlight is also an important parame-1075

ter in determining the aerosol radiative impacts. As discussed in Section 2.1.4, dust re-1076

fractive indices in the shortwave were updated in E3SMv2. This leads to better agree-1077

ment in the simulated aerosol absorption optical depth (AAOD) at 550 nm, as shown in1078

Fig. 22, compared with the long-term average AAOD (2006-2015) derived from the ground-1079

based AERONET measurements (Holben et al., 1998). The compiled AERONET data1080

for AAOD are available at a total of 139 stations globally, and 19 of them with aerosol1081

Ångström exponent <0.8 are denoted as the dusty sites, which are located near the ma-1082
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(a) E3SMv2 AAOD (b) Comparison with AERONET

Figure 22. (a) Global and annual mean aerosol absorption optical depth (AAOD) at 550nm

with E3SMv2 for the time period of 2000-2014. The gray dots overlaid on top denote the loca-

tions of 139 AERONET stations, of which those circled in red denote the 19 dusty sites, and (b)

comparison with the AAOD observations derived from AERONET between 2006-2015 (Holben et

al., 1998)

jor dust source regions. Compared to E3SMv1, E3SMv2 simulates smaller AAODs over1083

all the dusty sites, and the calculated multi-site mean is 0.024, reducing the overestima-1084

tion of E3SMv1 (0.044) by nearly a factor of two against the observations (0.017). Over1085

the other AERONET sites, AAODs in E3SMv2 are generally larger than those in E3SMv11086

mainly due to the increased BC burden. Overall, E3SMv2 improves from E3SMv1 (0.017)1087

by predicting a smaller AAOD (0.014) averaged over all the AERONET sites, similar1088

to the observed mean (0.012). The spatial correlation between the modeled and observed1089

AAOD is noticeably improved in E3SMv2, for a larger correlation coefficient (0.83) with1090

the AERONET data than that of E3SMv1 (0.72). Stronger correlation with the observed1091

AOD is also found over the AERONET sites, implying a better representation of aerosol1092

spatial distributions in E3SMv2.1093

The improvement in the modeled aerosol absorption leads to less aerosol heating1094

in the atmosphere and more aerosol cooling at the top of the atmosphere over the dust-1095

influenced regions in E3SMv2, while the opposite effects occur over the BC-dominated1096

regions. Additionally, we also updated the representation of dust size distribution in emis-1097

sion by accounting for more coarse particles in E3SMv2, which would decrease the net1098

cooling effect of dust but the impact is less than the enhanced cooling due to the low-1099

ered dust absorption (Feng et al., 2022).1100

4.3.6 Historical temperature record1101

We now compare the time evolution of the global mean surface air temperature in1102

E3SM with the observed historical record. We select the HadCRUT5-Analysis product1103

(Morice et al., 2021); other products are available but the differences are minor compared1104

to the differences with E3SM. Figure 23 shows the temperature anomalies normalized1105

with respect to 1850-1899. As discussed previously (Golaz et al., 2019), E3SMv1 failed1106

to accurately simulate the record by underestimating the warming starting around 19301107

but eventually caught up to with the observed record near 2010 because it overestimated1108

the pace of warming from 1990 onward. This was attributed to excessively strong aerosol-1109

related forcing and high climate sensitivity. While both have improved in E3SMv2 – slightly1110

for the aerosol-related forcing and significantly for the sensitivity – E3SMv2 further un-1111

derestimates the global mean surface temperature during the second half of the record.1112
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E3SMv2 diverges from E3SMv1 around 1930 and remains colder for the remainder of1113

the record. A more in-depth analysis of this shortcoming is provided in Section 5.1114

As mentioned above, no historical test simulations were performed prior to final-1115

izing E3SMv2. Once the model development was concluded and the first historical sim-1116

ulation complete, the E3SM project made a pragmatic decision to be transparent and1117

release the model version and accompanying simulations, rather than delay in an attempt1118

to correct the problem with the simulation of the global mean temperature in the his-1119

torical record.1120
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Figure 23. Time evolution of annual global mean surface air temperature anomalies (with

respect to 1850-1899). Comparison between observations from HadCRUT5-Analysis (grey),

E3SMv1 ensemble mean (red) and range (orange) and E3SMv2 ensemble mean (dark blue) and

range (light blue).

5 Historical record: role of GHG vs aerosols1121

To understand why E3SMv2 fails to accurately simulate the second half of the his-1122

torical temperature record, we analyze an ensemble of coupled simulations spanning 1850-1123

2014, but selectively activating only certain time varying forcing agents:1124

• well-mixed greenhouse gases only (“GHG”),1125

• aerosol and aerosol precursors only, including interactions with clouds (“aer”),1126

• everything-else, all forcing agents except well-mixed GHG and aerosol (“other”).1127

This decomposition is similar to the DAMIP protocol (Gillett et al., 2016), except1128

for the everything-else configuration, which is similar to natural forcing but includes ad-1129

ditional forcing terms (in particular land-use and ozone). We chose this particular de-1130

composition so that all the forcing agents are accounted for within the set. Five ensem-1131

ble members were run for each decomposition, initialized identically to the five-member1132

ensemble of historical simulations.1133
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Figure 24. Global annual surface air temperature anomalies for model and observations

(gray). For E3SMv2, the decomposition includes contributions from only GHG (red), only aer

(turquoise), and other (green). The E3SMv2 historical is in blue, with the sum of individual

terms in thin blue. Also shown is E3SMv1 with GHG only forcing (dark red). Observations from

HadCRUT5-Analysis are normalized with respect to 1850-1899. Model results are normalized

with respect to the 500-year piControl simulation.

The time evolution of annual global mean surface air temperature is depicted in1134

Fig. 24. As expected, the dominant forcings are GHG (red) and aerosol-related (turquoise).1135

The remaining forcings (green) show inter-annual variations (mostly from volcanic erup-1136

tions and the solar cycle) with little long term trend. A summation over the decompo-1137

sition (thin blue) recovers the original historical ensemble (thick blue) very well, indi-1138

cating that the decomposition is linear. The GHG and aerosol contributions almost per-1139

fectly mirror each other until approximately 1960, thus explaining the lack of net warm-1140

ing until then (Fig. 23). It is only after the aerosol-related forcing stabilizes around 19901141

due to pollution control in North America and Europe that the GHG starts to dominate1142

and E3SMv2 warms as a whole. As discussed previously, E3SMv2 has a lower TCR and1143

ECS compared to E3SMv1. As a result, the warming from GHG alone is weaker than1144

in v1 (dark red; Zheng et al., 2021). The two models diverge mostly after 1960 which1145

helps explain why E3SMv2 remains colder longer.1146

Equipped with this decomposition and under the assumption of linearity, we can1147

investigate hypothetical configurations with different relative strengths of GHG and aerosol.1148

We can write any variable ψ as:1149

ψall = ψpiControl +αGHG (ψGHG − ψpiControl) +αaer (ψaer − ψpiControl) + (ψother − ψpiControl)
(1)

This reconstruction is conceptually similar to Neelin et al. (2010), but applied to differ-1150

ent forcing terms rather than physics parameter perturbations. Setting αGHG = αaer =1151

1 recovers the all-forcing configuration as long as the decomposition is linear. We call1152

this configuration “composite base”. Linearity is a very good approximation for annual1153

global averages (Fig 24). It also holds well for two-dimensional and three-dimensional1154

climatological fields as demonstrated in Fig. S6: RMSE for the composite base config-1155

uration (red stars) and E3SMv2 (red triangles) are very similar for most fields and sea-1156

sons.1157
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We note however that individual terms in Eq. 1 are derived from five-member av-1158

erages, and therefore the reconstruction is not expected to realistically capture natural1159

multidecadal variability. While multidecadal variability plays an important role (e.g. Zeng1160

& Geil, 2016) it is clearly not sufficient to explain the mismatch between E3SMv2 and1161

observations (Fig. 23).1162

We can vary αGHG and αaer in Eq. 1 (with ψ set to surface air temperature) to con-1163

struct hypothetical composite model configurations. Varying αGHG modulates the model1164

response to GHG (akin to modulating TCR and the shorter time periods in ECS), while1165

αaer modulates the model response to aerosols (akin to modulating the magnitude of the1166

aerosol-related forcing and feedback).1167

We construct a loss function that quantifies the mismatch between modeled and1168

observed surface air temperature separately in the northern (NH) and southern hemi-1169

spheres (SH):1170

F =
∑

SH,NH

(
2014∑

yr=1950

(T̄model − T̄obs)2
)1/2

(2)

We opt to separately account for SH and NH due to the strong asymmetry in aerosol1171

forcing. We also select the latter part of the historical record (1950-2014) when obser-1172

vational uncertainties are smaller. Changing those assumptions (global average, entire1173

historical record) does not fundamentally change the results.1174
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Figure 25. Loss function from Eq. 2. Star represents E3SMv2, circle global minimum, and

triangles local minima by minimizing along a single dimension.

The loss function F is shown in Fig. 25 as a function of αGHG and αaer. The sur-1175

face depicts a broad valley oriented diagonally. The global minimum (composite best)1176

is situated at αGHG = 0.73 and αaer = 0.17, indicating that improving the historical1177

temperature record simulated by E3SMv2 would require a modest reduction in response1178

from GHG, but a very substantial one from the aerosols. Also shown in Fig. 25 are two1179

local minima. One holding GHG constant (composite fixed-GHG; αGHG = 1 and αaer =1180

0.41) and one holding aerosol constant (composite fixed-aerosol; αGHG = 1.55 and αaer =1181

1). The first local minimum is much closer to the global one compared to the second one,1182

confirming that aerosols are the dominant source of the mismatch.1183

–40–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

1860 1880 1900 1920 1940 1960 1980 2000
Year

0.5

0.0

0.5

1.0

1.5

de
gC

Global surface air temperature anomaly
HadCRUT5-Analysis
E3SMv2 historical
Composite fixed-aerosol
Composite fixed-GHG
Composite best

(a)

1860 1880 1900 1920 1940 1960 1980 2000
Year

0.5

0.0

0.5

1.0

1.5

2.0

de
gC

NH surface air temperature anomaly
HadCRUT5-Analysis
E3SMv2 historical
Composite fixed-aerosol
Composite fixed-GHG
Composite best

(b)

1860 1880 1900 1920 1940 1960 1980 2000
Year

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

de
gC

SH surface air temperature anomaly
HadCRUT5-Analysis
E3SMv2 historical
Composite fixed-aerosol
Composite fixed-GHG
Composite best

(c)

Figure 26. Surface air temperature anomalies (with respect to 1850-1899) for (a) global,

(b) northern hemisphere and (c) southern hemisphere. Lines shown include observations

(HadCRUT5-Analysis, grey), E3SMv2 (blue), and composite configurations from Fig. 25 (red,

purple, gold).
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This can be further illustrated by constructing global and hemispheric tempera-1184

ture time series corresponding to these composite configurations (Fig. 26). The compos-1185

ite best solution (gold) corresponding to the global minimum improves considerably upon1186

E3SMv2 and matches the historical record best for each region (global, NH, SH). Com-1187

posite fixed-GHG (purple) also does an adequate job, but with some indication of ex-1188

cessive warming in the 2000s due to its higher response to GHG. Composite fixed-aerosol1189

(orange), which increases the response of GHG to balance the strong aerosol cooling fails1190

to match the historical record well. This confirms the argument that higher sensitivity1191

cannot adequately compensate for excessive aerosol forcing owing to the presence of a1192

plateau in the aerosol forcing and hemispheric asymmetry (e.g. Zhao et al., 2018; Albright1193

et al., 2021).1194
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Figure 27. Net TOA SW radiation: observations (CERES-EBAF 4,1; b), model error for

E3SMv2 (a), composite best configuration from Fig. 25 (c) and difference between E3SMv2 and

composite best configuration (d). Model averages are computed over 1985-2014.

Finally, we also reconstruct climatological fields for the period 1985-2014 using Eq. 1.1195

Figure 27 shows the top-of-atmosphere SW net radiation. Remarkably, the NH negative1196

bias in E3SMv2 (blue shading in Fig 27a) is greatly reduced in composite best (Fig. 27c)1197

which becomes much closer to observations regionally, especially over the N Atlantic and1198

N Pacific oceans. Global metrics also improve with a reduced mean bias (0.11 vs -1.881199

W/m2) and RMSE (9.69 vs 10.38 W/m2). A similar picture emerges for the sea-surface1200

temperature (Fig. 28) with substantial reductions in regional cold biases in the NH. SH1201

SST biases are essentially unchanged, pointing to a different cause.1202

Taken together, our results indicate that a substantial reduction in the aerosol forc-1203

ing would not only improve the match with the historical temperature record, but also1204

improve aspects of the present-day climatology. Other fields, for example precipitation1205

exhibit much smaller impact as seen in Figure S6 by comparing the gold (composite best)1206

and red stars (composite base). This is reassuring in the sense that E3SMv2, despite its1207

shortcomings, can still serve as a useful model for many studies.1208

5.1 Impacts on Polar Climate1209

In the historical ensemble (Fig. 29), Northern Hemisphere sea ice extent and vol-1210

ume both increase over the time period 1850-1978, and decrease after the mid-1980s, as1211
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Figure 28. Same as Fig. 27 but for SST. Sea ice covered regions are excluded from the aver-

aging.

observed. This behavior is consistent with changes in the ocean heat content (Fig. 29e)1212

and surface air temperature anomalies for the historical simulations (Fig. 26b).1213

The maximum ice extent in the Arctic is larger in v2 than in v1, while it is smaller1214

in the Southern Hemisphere. The minimum ice extent is similar for v1 and v2 in both1215

hemispheres. E3SMv1’s large, cold SST bias in the North Atlantic and associated anoma-1216

lous sea ice in the Labrador Sea remains in v2, although it improves in the aerosol sen-1217

sitivity “composite” simulations (Fig. 28c). Unlike v1, which featured both warm and1218

cold SST biases in the Northern Hemisphere, the Northern Hemisphere in v2 is too cold1219

over its entirety (only regions outside of the sea ice pack are shown in Fig. 28a), and so1220

greater sea ice extent in v2 is not surprising. The Southern Hemisphere is still biased1221

warm, but not as badly as in v1, and sea ice in the Southern Ocean is not extensive enough1222

compared with the climate data record, year-round, in v2.1223

Trends during the satellite era (Fig. 29, right panels) indicate that the model ex-1224

tent is decreasing faster than observed in the Arctic, consistent with the faster increase1225

in surface air temperatures than observed (Fig. 26b). The ice extent trend has the op-1226

posite sign compared with observations in the Antarctic, as in many other models, and1227

the change in volume extremes (∆) between 1850 and 2015 is decreasing.1228

A counter-intuitive result is that extremes in the ice extent and volume in the his-1229

torical simulations (left column of Fig. 29) are generally larger than in the pre-industrial1230

control, with a greater range of variability. However, this behavior is consistent with the1231

aerosol forcing biases discussed in Section 5. Cloud radiative effects is still biased pos-1232

itive in the polar regions, although v2 has improved over v1.1233

The net effect of improvements to the radiative and snow schemes in v2 only min-1234

imally impacts the climatic state of sea ice, indicating that biases in prior v1 simulations1235

were not fundamentally due to critical faults in these parameterizations. Lack of con-1236

servation in the ice-ocean mass coupling scheme played a much more important role; the1237

correction of mass exchanges between the upper ocean and sea ice models to account for1238

brine content in the sea ice thickens the Arctic ice pack in summer, reducing a bias from1239

v1 (Fig. 29c, left column), while minimally impacting ice in the Southern Ocean (Fig. 29d).1240
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Figure 29. Daily sea ice extent (a, b) and volume (c, d) evolution across five ensemble mem-

bers for the Northern and Southern Hemispheres, respectively, divided at the beginning of the

core passive-microwave observation period in 1979 and compared to the change in 12-month fil-

tered total ocean heat content from the start of the historical period in (e). Box plots in the left

column compare annual extremes from daily values of the 500-year pre-industrial control (blue)

with the industrial-era 5-member ensemble (purple). Trace colors for the year of the control sim-

ulation from which the ensemble members were spawned are indicated in (c; 101, 151, 201, 251,

300). Linear decadal trend in annual maximum and minimum daily extent is indicated in the

right column for the ensemble mean of each ensemble trend line from 1979 to 2015, as compared

to the Meier et al. (2017) NOAA Climate Data Record for (a) and (b). The right column in (c),

(d) and (e) indicates the change (∆) in the ensemble mean of volume extremes and non-filtered

ocean content between 1850 and 2015.
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With this mass-conserving scheme, the maximum and minimum sea ice areas are now1241

stable in both hemispheres for the 500-year pre-industrial simulations, as shown in Fig. 4c.1242

6 Summary and conclusion1243

By design, E3SMv2 represents an evolution from E3SMv1 and as such resembles1244

E3SMv1 in many aspects. There are nevertheless notable differences that justified a new1245

model release and associated simulation campaign.1246

• E3SMv2 is approximately twice as fast (or efficient if measured in terms of power)1247

compared to v1 (Fig. 2). The efficiency gains are achieved in the atmosphere and1248

ocean components. In the atmosphere, they arise from a new semi-Lagrangian tracer1249

transport method and a new grid for physics calculations (Fig. 3). The gain in the1250

ocean is due to a longer timestep.1251

• The atmospheric physics, while based on the same basic set of parameterizations1252

as v1, underwent significant retuning in v2. Many improvements from the inter-1253

mediate EAMv1p configuration (Ma et al., 2022) are incorporated with additional1254

changes to further improve clouds and precipitation (e.g. Figs. 9,11,12,13,14).1255

• A new convective trigger function for the deep convection (Xie et al., 2019) sig-1256

nificantly improves the phase of the diurnal cycle of precipitation, but the ampli-1257

tude remains weaker than observed (Fig. 15).1258

• E3SMv2 captures important modes of variability such as ENSO (Fig. 16) and MJO1259

(Fig. 18). However, the ENSO spectrum has excessive energy at short periods (∼2.51260

years) and is too weak for longer periods (6-9 years). MJO phase speed is real-1261

istic west of 125◦E, but then exceeds observations east of it. Tropical variability1262

is significantly too weak (Fig. 17).1263

• A more realistic treatment of ozone is implemented (Tang et al., 2021). It cap-1264

tures the seasonal cycle of stratospheric column ozone (Fig. 19) and the ozone hole1265

in the historical period, although the size is underestimated (Fig. 20).1266

• Dust aerosol optical properties and particle size distributions are revised, result-1267

ing in a better prediction of mean AAOD over dusty AERONET sites (Fig. 22).1268

Burdens of sulfate and SOA aerosols increase as an unintended consequence of cloud1269

tuning efforts, giving rise to a slightly overestimated global mean AOD despite re-1270

gional improvements (Fig. 21).1271

• E3SMv2 is less sensitive to GHG forcing (Fig. 5). ECS is reduced significantly com-1272

pared to v1 (4.0 K vs 5.3 K) which is mostly attributable to a smaller cloud feed-1273

back. The ECS value of 4.0 K is plausible as assessed by WCRP (Sherwood et al.,1274

2020). This is a substantial achievement compared to the unrealistically high sen-1275

sitivity of E3SMv1. On shorter time scales, TCR is also reduced to 2.4 from 2.91276

K.1277

• The effective aerosol forcing (ERFaer = -1.5 Wm−2) remains essentially unchanged1278

in E3SMv2 (Fig. 6). This value is within the likely range assessed by WCRP (Bel-1279

louin et al., 2020). Some changes were made in v2 that reduced the magnitude of1280

ERFaer, but their impact was negated by changes elsewhere in the cloud physics1281

(convection).1282

• E3SMv2 significantly underestimates the global mean temperature in the second1283

half of the historical temperature record (Fig. 23). An analysis of single-forcing1284

simulations indicate that correcting the historical record would require a substan-1285

tial reduction in the magnitude of ERFaer (60 to 80%), and possibly a more mod-1286

est reduction in the model’s response to GHG (Figs. 25, 26). A reduction in ERFaer1287

would furthermore reduce regional biases in TOA radiative fluxes and SST (Fig. 27,1288

28). Other fields are less impacted (e.g. precipitation; Fig. S6), indicating that E3SMv21289

can still serve as a useful tool despite its shortcomings.1290
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• Proper conservation of mass in ocean/sea-ice exchanges increased Arctic sea ice1291

volume, improving a low-thickness bias from v1, while impacting the Southern Ocean1292

ice pack very little. Changes to the radiation and snow physics parameterizations1293

had little net effect, highlighting the importance of coupled interactions over in-1294

ternal sea ice processes in the climate system (Hunke, 2010). The sea ice simu-1295

lations shown here are largely consistent with the overall climatic environment,1296

including excessively cool surface air and ocean temperatures.1297

This release of E3SMv2 serves as a starting point for additional configurations. They1298

include regionally refined configurations with higher resolution over North America and,1299

separately, the Southern Ocean. A configuration with interactive biogeochemistry is also1300

under development. While E3SMv2 improves upon its predecessor in many aspects, sig-1301

nificant work remains. The highest priorities for future releases of E3SM are address-1302

ing the weak AMOC and the poor historical temperature record.1303
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Appendix A Atmosphere configuration1304

Table A1: List of the atmospheric tuning parameters. Note: the
value of microp aero wsubmin was set to 0.001 for v1p and v2
based on Ma et al. (2021). However, an additional lower bound is
present in the code that effectively resets it to 0.1 consistent with
Ma et al. (2022).

Scheme Parameter v2 v1 v1p Short Description

CLUBB clubb c14 2.5 1.06 2.0 Dissipation of ū′2 and v̄′2

clubb c1 2.4 1.335 2.4 Low-skewness value of
dissipation of w̄′2

clubb c1b 2.8 1.335 2.8 High-Skw value of

dissipation of v̄′2

clubb c1c 0.75 1.0 0.75 Smoothness of transition
between high-Skw and
low-Skw for the
dissipation of v̄′2

clubb c6rtb 7.5 6.0 7.5 High-Skw value of
pressure damping of
water flux

clubb c6rtc 0.5 1.0 0.5 Smoothness of transition
between high-Skw and
low-Skw for the pressure
damping of water flux

clubb c6thlb 7.5 6.0 7.5 High-Skw value of
pressure damping of heat
flux

clubb c6thlc 0.5 1.0 0.5 Smoothness of transition
between high-Skw and
low-Skw for the pressure
damping of heat flux

clubb c8 5.2 4.3 5.2 Pressure damping of w̄′3

clubb c11 0.7 0.8 0.7 Buoyancy damping of 2̄′3

at low Skw

clubb c11b 0.2 0.35 0.2 Buoyancy damping of 2̄′3

at high Skw
clubb c11c 0.85 0.5 0.85 Smoothness of transition

between high Skw and
low Skw for the buoyancy

damping of 2̄′3

clubb c k10 0.35 0.3 0.35 Coefficient of momentum
diffusivity, Kh zm

clubb c k10h 0.35 0.3 0.35 Coefficient of
thermodynamic
diffusivity, Kmh zm

clubb gamma coef 0.12 0.32 0.12 Constant of the width of
PDF in w-coordinate

clubb gamma coefb 0.28 0.32 0.28 High-skw value of gamma
coefficient

clubb gamma coefc 1.2 5.0 1.2 Smoothness of transition
between values of gamma
coefficient
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clubb mu 5e−4 1e−3 5e−4 Fractional parcel
entrainment rate per unit
height [1/m]

clubb wpxp l thresh 100.0 60 100 Threshold in length scale
below which extra
damping is applied to C6
and C7 functions [m]

clubb ice deep 14e−6 16e−6 14e−6 Radius of ice particles
detrained from deep
convection [m]

cldfrc dp1 0.018 0.045 0.018 parameter for deep
convective cloud fraction

clubb use sgv True False True Enables subgrid features
gustiness, tpert, and thv
fix

clubb ipdf call placement 1 2 1 Select the placement of
the call to CLUBB’s
PDF: 1 - before
advancing CLUBB’s
predictive fields, 2 - after,
3 - both before and after

ZM zmconv alfa 0.14 0.1 0.14 Maximum downdraft
mass flux fraction

zmconv c0 lnd 0.002 0.007 0.002 Autoconversion
coefficient over land for
deep convection

zmconv c0 ocn 0.002 0.007 0.002 Autoconversion
coefficient over ocean for
deep convection

zmconv dmpdz -0.7e−3 -0.7e−3 -1.2e−3 Parcel fractional mass
entrainment rate

zmconv mx bot lyr adj 1 2 1 Bottom layer adjustment
for setting ”launching”
level of maximum moist
static energy

zmconv tp fac 2 0 2 Tpert scale factor in ZM
deep convection scheme

MG2 cld sed 1.0 1.0 1.8 Scale factor for cloud
droplet sedimentation

ice sed ai 500 500 1200 Cloud ice fall speed
parameter

micro mg berg eff factor 0.7 0.1 0.7 Efficiency factor for WBF
processes

micro mg accre enhan fac 1.75 1.5 1.75 Accretion enhancement
factor

prc exp1 -1.4 -1.2 -1.4 Tunable exponent
coefficient for
autoconversion

micro mincdnc 10.D6 0.0 0.0 Minimum cloud droplet
number concentration
imposed when
micro mincdnc > 0
[m−3]
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nucleate so4 sz thresh icenuc 0.08e−6 0.05e−6 0.08e−6 Aitken mode SO2 size
threshold for ice
nucleation

microp
aero

microp aero wsubmin 0.1 0.2 0.1 See
note in
caption

Minimum subgrid vertical
velocity

aerosol seasalt emis scale 0.6 0.85 0.6 Tuning factor for sea salt
aerosol emission

dust dus emis fact 1.5 2.05 2.8 Tuning parameter for
dust emissions

Linoz linoz psc t 197.5 193.0 193.0 Tunable Linoz PSC ozone
loss temperature
threshold (K)

Gravity
wave
drag

gw convect hcf 10.0 20.0 20.0 Heating rate conversion
factor associated with
convective gravity waves

effgw beres 0.35 0.40 0.40 Efficiency associated with
convective gravity waves
from the Beres scheme

effgw oro 0.375 0.25 0.25 Efficiency associated with
orographic gravity waves
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(a) (b)

(d)(c)

Figure S1. Percent change in ocean heat content anomalies between the simulation with the

advection bug and with the bug fixed, i.e., (OHCfix − OHCbug)/ |OHCfix|, (a) Full depth, (b)

0-700m, (c) 700-2000m, and (d) 2000m - Bottom.

1980 1990 2000 2010
Year

0.2

0.0

0.2

W
/m

2 0.07
0.01

Energy imbalance

without fix
with fix

Figure S2. Energy imbalance (diagnosed as the difference between the net fluxes at the top

and the surface) for atmosphere simulations with and without energy fix in the gravity wave

drag parametrization. Horizontal lines and corresponding values to the right of the plot indicate

average values of the imbalance.
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Figure S3. Daily average output of the total grid-box cloud liquid water path (TG-

CLDLWP) field in the second time slice of two low-resolution atmosphere simulations (F2010-

CICE.ne30pg2 ne30pg2) with the dCAPE trigger on and off.
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Figure S4. (a–c) Difference of composite El Niño events and composite La Niña events for

the HadleyISST data set, the E3SMv2 historical ensemble (1850–2015), and the pre-industrial

control, respectively. El Niño events are defined as periods when the Niño 3.4 SST anomaly

exceeds 0.8 ◦C for more than six consecutive months. The La Niña criterion is Niño 3.4 SST

anomaly less then -0.8 ◦C for more than 6 months (these definitions are consistent with Menary

et al., 2018). When an El Niño–Southern Oscillation event is identified, the SST is averaged

from November to March. For model output, every ensemble member contributes to the mean

composite.
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Figure S5. Spatial distributions of global annual mean (2000-2014) (a) sulfate burden from

E3SMv2 historical simulations, (b) sulfate burden differences between E3SMv2 and E3SMv1

historical simulations, (c) SOA burden from E3SMv2, and (d) SOA burden differences between

E3SMv2 and E3SMv1.
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Figure S6. Same as Figure 7 but showing first historical member of E3SMv2 (red triangles)

and composite configurations. Red stars (composite base) and gold stars (composite best) re-

fer to hypothetical composite configurations generated by linear combination of single-forcing

simulations described in Section 5. Complete data is available in Table S1.
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Table S1. Data from Figures 7 and S6 is available in external file ‘cmip6.csv’. Rows corre-

spond to CMIP6 models (first member of historical simulations) or E3SMv2 configurations and

column correspond to different fields and seasons. Values are RMSE against relevant observa-

tions. Missing values (models for which a specific variable is not available) are indicated by ‘--’.

Underlying E3SM Diags comparison figures are available on-line (https://portal.nersc.gov/

project/e3sm/CMIP6 comparison 1985-2014 E3SMv2 golaz etal 2022/) . See main text for

additional information.
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