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Abstract

We propose a reformulation of the wing crack model of brittle creep and brittle failure. Experimental studies suggest that

the mechanical interactions of sliding and tensile wing cracks are complex, involving formation, growth and coalescence of

multiple tensile, shear and mixed-mode cracks. Inspired by studies of failure in granular media, we propose that these complex

mechanical interactions lead to the formation of micro shear-bands, which, in turn, develop longer wing cracks and interact with

a wider volume of rock to produce larger shear bands. This process is assumed to indefinitely continue at greater scales. We

assume the original wing crack formalism is applicable to micro shear-band formation, with the difference that the half-length,

a, of the characteristic micro shear band is allowed to increase with deformation (i.e. wing crack growth). In this approach,

the dimensionless shear band half-length A is related to the dimensionless wing crack length L by a function, A(L) = 1 +

f (L), where f (L) embodies the entire process of shear band formation, growth and interaction with other shear bands and flaws

and the problem is then to identify its proper form. We compare the model predictions for various classes of functions f (L)

to experimental brittle creep data. Although a very large class of functions reproduce the classic sequence of tri-modal creep,

we found that only the simple power law f (L) = (L/Λ)q generated creep curves consistent with published creep data of rocks.

Similar accord was also obtained with experimental brittle failure data.
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Abstract: 11 
We propose a reformulation of the wing crack model of brittle creep and brittle failure. 12 

Experimental studies suggest that the mechanical interactions of sliding and tensile wing cracks are 13 
complex, involving formation, growth and coalescence of multiple tensile, shear and mixed-mode cracks. 14 
Inspired by studies of failure in granular media, we propose that these complex mechanical interactions 15 
lead to the formation of micro shear-bands, which, in turn, develop longer wing cracks and interact with a 16 
wider volume of rock to produce larger shear bands. This process is assumed to indefinitely continue at 17 
greater scales. We assume the original wing crack formalism is applicable to micro shear-band formation, 18 
with the difference that the half-length, a, of the characteristic micro shear band is allowed to increase with 19 
deformation (i.e. wing crack growth).  In this approach, the dimensionless shear band half-length A is related 20 
to the dimensionless wing crack length L by a function, A(L) = 1 + f(L), where f(L) embodies the entire 21 
process of shear band formation, growth and interaction with other shear bands and flaws and the problem 22 
is then to identify its proper form. We compare the model predictions for various classes of functions f(L) 23 
to experimental brittle creep data. Although a very large class of functions reproduce the classic sequence 24 
of tri-modal creep, we found that only the simple power law f(L) = (L/L)q generated creep curves consistent 25 
with published creep data of rocks.  Similar accord was also obtained with experimental brittle failure data. 26 

 27 
 28 
Plain language summary: 29 
 30 
Rocks close to Earth’s surface deform by breaking. Breaking can occur abruptly if the load the rocks bear 31 
increases rapidly. Breaking can however also occur over much longer times without changes to the load 32 
during a process called brittle creep. Observations suggest that breaking occurs due to growth and linkage 33 
of many small-scale flaws present in the rock. The details of this growth and linkage process, however, 34 
are very complex which complicates our ability to assess when rocks will ultimately break. Here we 35 
develop a model that simplifies the details of these small-scale interactions between large populations of 36 
flaws into a simple functional form. We analyze a number of possible functional forms and find that the 37 
simplest power law form yields good agreement with experimental data. Our model reproduces the 38 
behavior observed in brittle creep experiments where, after a step increase in load, the initially rapid rate 39 
of deformation first slows down, reaches a transitory steady-state and then accelerates until final failure 40 
occurs. Our model hence improves our ability to predict when failure will occur and presents a step 41 
towards mitigating the hazards associated with rock failure.  42 
 43 

 44 
Highlights: 45 

• Sliding cracks and their wing cracks interact with nearby flaws to form shear bands, which 46 
coalesce to form shear bands at greater scales.  47 

• Formation, growth and coalescence of shear bands is self-similar over a range of length-48 
scales and is expressed by a power law function.  49 



• The model naturally reproduces trimodal creep curves and returns experimentally 50 
determinable quantities. 51 

 52 
1. Introduction 53 
 54 
Deformation in Earth’s upper crust is dominated by fracturing and frictional sliding resulting in 55 

macroscopically “brittle” behavior. Fractures occur over a range of length scales from intragranular 56 
microscopic cracks to fault zones spanning plate boundaries that host destructive earthquakes. The stress in 57 
the upper crust is limited by frictional sliding on favorably oriented faults (e.g. Zoback and Zoback 2007) 58 
and therefore much focus was dedicated to the problem of sliding frictional interfaces which are the end-59 
product of brittle failure (e.g. Marone 1998, Dietrich 2007). Brittle creep and brittle failure that precede the 60 
formation of a through-going fault are relatively less studied phenomena, but nevertheless critical to our 61 
understanding of the long-term behavior of the crust and the earthquake cycle (e.g. Brantut et al. 2013, 62 
Main 2000). These phenomena will be the focus of the present contribution.  63 

 64 
1.1 Background: the wing crack model 65 
In the laboratory, rocks are typically tested under either constant stress or constant strain rate 66 

boundary conditions (or more precisely under constant load or constant displacement rate boundary 67 
conditions). Typical stress-strain-time plots obtained for both types of tests are schematically illustrated in 68 
figure 1. Under constant stress, rocks exhibit trimodal creep curves. Namely, decelerating “primary creep” 69 
occurs after the initial change in stress, followed by a transitory, apparent steady state “secondary creep”, 70 
which eventually gives way to accelerating "tertiary creep” and failure (figure 1, left diagram). In constant 71 
strain rate tests, rocks first deform elastically (albeit, often non-linearly) until the yield point (i.e., onset of 72 
inelastic deformation), followed by strain hardening and accumulation of permanent strain. The axial stress 73 
eventually reaches a maximum (peak stress or strength), at which point a fault starts developing and the 74 
rock weakens to a stress level dictated by the residual friction on the fault (figure 1, right diagram). This 75 
macroscopic behavior is controlled by the activation, propagation and interactions of cracks in the rocks in 76 
the brittle regime. Loading conditions in nature are generally more complex than those employed in 77 
experiments, nevertheless laboratory tests can provide valuable insights into the micromechanics of brittle 78 
creep and brittle failure 79 
 80 

  81 
Figure 1. Schematic of typical curves of stress and strain versus time recorded in laboratory constant stress (left diagram) 82 

and constant strain rate tests (right diagram).  83 
 84 
We are trying, here, to revisit the wing crack model of brittle failure and brittle creep. The wing 85 

crack model attributes the rock inelastic deformation leading to failure to tensile cracks that emanate from 86 
the tips of the largest pre-existing microcracks undergoing frictional shear. These activated microcracks are 87 
called the dominant cracks and are represented in the model by a single characteristic crack length, 2a0, and 88 
their inclinations with respect to the remotely applied principal stresses, s3 < s2 < s1. The resolved shear 89 
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stress is maximum in cracks oriented parallel to the intermediate stress s2 and inclined with respect to the 90 
minimum stress s3 by an angle b = 45° (figure 2). The model assumes that the dominant cracks verify these 91 
optimal conditions, implying that the intermediate stress plays no role in the process of rock failure except 92 
for controlling the orientation of the final fracture. We will not attempt to modify this assumption in our 93 
model. A discussion of the effect of s2 is considered out of the scope of the present paper. 94 
 95 

 96 
Figure 2. Schematic of a sliding microcrack and the associated wing cracks. The intermediate stress s2 is normal to the 97 

figure plane. The angle b is, hereafter, assumed to be 45°.  98 
 99 

In the idealized conditions depicted in figure 2, the wing cracks are curved. The angle q they form with the 100 
dominant microcrack changes during propagation, starting at about 70° at initiation and decreasing until 101 
the wing cracks become parallel to s1. Assuming b = 45°, the normal stress and the resolved shear stress 102 
on the dominant microcrack are: 103 
  sN = ½ (s1 + s3)     (1) 104 
  |t| = ½ (s1 - s3)      (2) 105 
Part of the shear stress is balanced by friction. The effectively active shear stress is therefore given by:  106 
  |teff| = |t| - µsN       (3) 107 
where µ is the friction coefficient and the condition |t| ≥ µ sN imposes s1/s3 ≥ (1-µ)/(1+µ). Note that we 108 
are using the geophysics convention that compressive stresses are positive. 109 

The mode I stress intensity factor, kI, of a wing crack is a complex function of the remotely applied 110 
principal stresses, the length 2a0 of the dominant crack, the wing crack length l, and, the angles b and q 111 
(figure 2). A number of models have been published (see Baud et al., 1996, for a review). Although they 112 
differ in some details depending on how the curvature of the wing cracks and other such features are treated, 113 
they all consist of the sum of two terms, one driving and one resisting wing crack propagation. Here, we 114 
consider the simple model from Kachanov (1982) (also used in Brantut et al., 2013):  115 
  κ! = −1.15|τ"##|)𝜋𝑎$ + σ%)𝜋𝑙/2   (4) 116 
Despite its simplicity (e.g., the wing crack curvature is ignored), the Kachanov model considers 3D penny 117 
shape microcracks and not 2D cracks like many other models. The model predicts that wing cracks will 118 
form when the initial stress intensity factor is larger than the rock fracture toughness, |𝜅$| =119 
1.15|𝜏"##|)𝜋𝑎$ ≥ |𝜅!&|, or, in other words, when |teff| exceeds a critical shear stress 𝜏' =120 
|𝜅!&| 41.15)𝜋𝑎$5⁄ . The first (driving) term in equation 4 expresses the wedging effect of shear 121 
displacements at the tips of the dominant crack. The second (resistant) term depends on l and accounts for 122 
wing crack closure caused by s3. The two terms have different signs, causing |kI| to decrease with increasing 123 
l. Wing crack growth will therefore stop when kI becomes equal to kIc, or, in other words, when the wing 124 
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crack length reaches l0 = a0 (1.15 (|teff|-tc)/s3)2. This ultimate crack arrest means that the behavior of a 125 
single wing crack system cannot be used to model brittle failure except, perhaps, in uniaxial compression 126 
conditions (increasing s1 and s3 = s2 = 0), when the wing cracks eventually intersect the sample edges (i.e., 127 
axial splitting). But this difficulty can be resolved by recognizing that the rock contains a broad population 128 
of mechanically interacting flaws. Interacting dominant cracks are expected to experience an increase of 129 
|kI| during wing crack extension. The currently published crack interaction models are all variations of the 130 
model developed by Ashby and Hallam (1986) and Ashby and Sammis (1990). In this model, the dominant 131 
microcracks are assumed to form linear arrays parallel to the maximum stress s1. Their growing wing cracks 132 
are therefore colinear and, owing to their mutual influence, the remotely applied lateral stress s3 is locally 133 
reduced in the ligaments between neighboring wing cracks by a quantity si. This causes a decrease of the 134 
resistant term, (𝜎% − 𝜎())𝜋 𝑙 2⁄ , and allows further propagation and finally coalescence of the wing cracks. 135 
The wing cracks thus form columns parallel to the maximum stress s1, which ultimately fail, owing to the 136 
classic buckling instability of slender columns. The intrinsic weakness of this model is the assumption of a 137 
very specific geometrical structure of the dominant microcracks, which is very unlikely to be found in a 138 
natural material. Nevertheless, the model has been quite successfully applied to experimental rock 139 
deformation and failure data (see the review by Brantut et al., 2013).  140 
 141 

1.2 Background: crack coalescence 142 
Since the early work of Horii and Nemat-Nasser (1985), the interaction and coalescence of wing 143 

cracks in conditions of uniaxial and biaxial compression have been experimentally investigated in a variety 144 
of materials, including rocks (see the comprehensive review of Wong, 2008). One important result is that 145 
biaxially loaded samples containing two parallel, cm-scale man-made crack-like flaws produced strongly 146 
different coalescence patterns depending on their relative positions and inclinations with respect to the 147 
applied principal stresses (e.g., Wong and Einstein, 2009ab; Lin et al., 2021). In Lin et al. (2021), a scalar 148 
measure of the strain field was determined as a function of time using digital image correlation analysis, 149 
allowing identification of the fissures developing and coalescing around the initial flaws. In the 150 
configuration shown in figure 3 (a schematic partial reproduction of Lin et al.’s figure 12), the wing cracks 151 
emanating from the inclined flaws merged and two new ones were created on the sides, forming a column 152 
aligned with s1 quite similar to the structure assumed in the Ashby-Hallam-Sammis model. However, the 153 
unstable buckling of the column predicted in the Ashby-Hallam-Sammis model was not observed, perhaps 154 
because the experiment was prematurely stopped.  155 

 156 

 157 
Figure 3. Simplified reproduction of figure 12 of Lin et al. (2021). The boxes show the outlines of growing wing cracks 158 

at the surface of a mortar slab containing two cm-scale flaws. The slab was subjected to uniaxial compression (the values of the 159 
axial stress is indicated below each box). The initial flaws are positioned such that the wing cracks merge and new tensile cracks 160 
are produced from the other side of the sliding flaws.  161 

 162 
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In other configurations of the initial flaws, very different coalescence patterns occurred, in which the 163 
inclined shear cracks themselves were actively involved. For example, a separate, small shear crack formed 164 
between two nearly aligned initial flaws and eventually merged with both of them, completely bridging the 165 
ligament (figure 4). Very complex bridging structures combining tensile, shear and mixed mode cracks 166 
were also observed in other configurations of the initial flaws.  167 
 168 

 169 
Figure 4. Simplified reproduction of figure 7 of Lin et al. (2021). Here the position of the initial flaws leads to the 170 

formation of a shear crack and the eventual bridging of the ligament between the initial flaws.  171 
 172 
Similar coalescence patterns were produced in samples of Carrara marble and molded gypsum (Wong and 173 
Einstein, 2009ab). For example, nearly aligned flaws produced bridging shear cracks, while merging of the 174 
tensile wing cracks occurred when the flaws were shifted to form a 90° angle. Combinations of shear, tensile 175 
and mixed mode bridging cracks were observed in other cases.  176 
 177 

2. The model 178 
2.1 The concept: micro to macroscopic shear bands 179 
Despite the general similarity of the results described above, important differences were noted in 180 

materials with distinct internal structures. For example, development of a secondary crack was usually 181 
preceded in Carrara marble by an increase in light reflectivity (whitening) of the sample surface in a thin 182 
region exactly delineating the path of the future secondary crack (Wong, 2008; Wong and Einstein, 183 
2009ab). These “white patches” visible on the sample surface prior to cracking can be attributed to the 184 
formation and accumulation of damage in highly strained thin zones. This explanation implies the existence, 185 
in the material, of a population of very small defects and microcracks (invisible to the eye or even a very 186 
high-resolution camera) that are activated by the amplified stresses around the large cm-scale flaws. White 187 
patches were not observed in molded gypsum, a microgranular material that was fabricated using 188 
procedures specifically designed to ensure excellent homogeneity. Lajtai (1974) similarly noticed the 189 
formation and growth of damaged shear zones at the tips of a sheared cm-scale synthetic crack in a biaxially 190 
stressed plaster slab. Evidence of interaction of large propagating cracks with smaller flaws is also reported 191 
in Brantut et al. (2014a). Their figure 12 shows examples of, on one hand, very smooth and rectilinear wing 192 
cracks in homogeneous sparitic calcite cement and, on the other, rough and tortuous cracks traversing 193 
microgranular micritic aggregations. As in rocks, failure of unconsolidated granular aggregates is generally 194 
observed to entail strain localization on shear bands. The initiation and growth of shear bands in granular 195 
materials has been extensively investigated experimentally and numerically (e.g., see Desrues, 1990, and 196 
references therein). One important observation is that the first stage of strain localization consists in the 197 
formation of multiple, separate micro shear bands. With increasing stress, some of these micro shear bands 198 
interact with neighboring ones, coalesce and eventually develop into macroscopic shear bands (Desrues 199 
and Andó, 2015). Similar scenarios have been observed in rocks. For example, figure 16 in Brantut et al. 200 
(2013) shows the hypocenter locations of acoustic emissions recorded during a creep test of a granite 201 

19.8 MPa 25.3 MPa 32.2 MPa



sample. The distribution of hypocenters is random and featureless during primary and secondary creep but 202 
becomes strongly concentrated during tertiary creep in a region largely coincident with the final shear 203 
fracture (see also, Lockner et al., 1992; Lockner, 1993; Fortin et al., 2009; Fortin et al., 2010).  204 

Here, we follow a similar concept. Natural flaws and microcracks in rocks have a very broad 205 
distribution of sizes. The (largest and most favorably oriented) dominant cracks are the first to develop 206 
wing cracks, which, as discussed above, are bound to interact with nearby minor flaws. We posit that this 207 
process will generally result in the development, near the tip of the dominant crack, of a complex array of 208 
microcracks (formed in tensile, shear and mixed mode) that globally deforms in shear. For lack of a better 209 
term, we will use the granular material terminology and call these structures micro shear bands. We 210 
emphasize that this term is meant to cover a broad range of damage structures, from simple merged shear 211 
cracks to inclined zones of crushed material. All these structures share a greater susceptibility to deform in 212 
shear than their surrounding, hence our choice to refer to them as shear bands. Shear cracks and micro shear 213 
bands similarly slide when submitted to sufficient shear stresses, although they may have different effective 214 
coefficients of friction. A wing crack should therefore develop at the outer edge of the shear band (figure 215 
5). Note that wing cracks have indeed been observed to initiate from the edges of sheared microstructural 216 
objects other than microcracks. For example, Rawling et al. (2002) present SEM images of wing cracks 217 
emanating from the edges of sheared biotite grains in triaxially deformed samples of Four-mile gneiss (e.g., 218 
see their figure 9). Furthermore, owing to the overall increase in length, the wing crack emanating from a 219 
micro shear band will be longer than the initial one and, thus, have the capacity to interact with a greater 220 
volume of rock. It becomes therefore likely that two micro shear bands in favorable positions and 221 
orientations will coalesce to form even longer micro shear bands, from the edges of which increasingly long 222 
wing cracks will grow (figure 5). The model does not include an upper cut-off scale and the process is 223 
therefore assumed to continue at indefinitely increasing scales.  224 

 225 

 226 
Figure 5. Schematic representation of mechanical interactions of cracks and flaws and the resulting micro shear band 227 

formation. The change of scale shown here is assumed to continuously take place at greater and greater scales.  228 
 229 

2.2 Micro shear band model: brittle failure 230 
We posit that the brittle deformation of rock illustrated in figure 5 can be described as the result of 231 

crack growth and coalescence around a representative dominant (or leading) micro shear band. Given the 232 
mechanical similarity of shear bands and sheared cracks, it is reasonable to assume that a leading micro 233 
shear band can be also modeled using the mathematical framework expressed in equation 4, the only 234 
difference being that the half-length a of the leading micro shear band increases during loading.  235 

Since the second term of equation 4 describes the restraining effect of s3 on wing crack expansion, 236 
it does not need to be modified. In the first term, the friction coefficient entering the definition of teff may 237 
depend on the internal structure of the shear band and thus vary during crack growth. For the sake of 238 
simplicity, we will assume that the friction coefficient of the micro shear bands remains approximately 239 
equal to that of the sheared cracks. Equation 4 then becomes: 240 
  κ! = −1.15|τ"##|)𝜋𝑎(𝑙) + σ%)𝜋𝑙/2   (5) 241 
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where the half-length of the micro shear band is an increasing function of l. If we assume that wing crack 242 
growth is stable (as it has to be when the mechanical interactions are negligible) the crack arrest condition, 243 
kI = kIc, yields:  244 
  −1.15(|τ"##| − 𝜏&))𝜋𝑎(𝑙) + σ%)𝜋𝑙/2		= 0  (6) 245 
If |teff| is considered the independent variable (i.e., in constant loading rate tests), solving equation 6 for a(l) 246 
yields: 247 
   𝑎(𝑙) = 𝑙(σ) 1.15(|τ"##| − 𝜏&)⁄ ))   (7) 248 
which simply states that a(l) can be calculated if the dependence of l on |teff| is known. In this description, 249 
failure occurs with increasing |teff| when the leading shear band eventually reaches the sample boundaries. 250 
Rock failure tests, however, are usually carried out in constant strain rate conditions and not at constant 251 
loading rate as assumed by equation 7. In this case, l is the independent variable and prior knowledge of 252 
a(l) is needed to model brittle failure.  253 
 254 

2.3 Micro shear band model: brittle creep 255 
 Following previous models of brittle creep, we introduce time dependence by assuming subcritical 256 
crack growth. In this case, wing crack propagation can proceed at constant stresses below the critical shear 257 
stress tc. The initial stress intensity factor is |𝜅$| = 1.15|𝜏"##|)𝜋𝑎$ < |kIc| and equation 5 can be recast as: 258 
  *!

*"
= )𝑎(𝑙)/𝑎$ +

+#
*"
)𝜋𝑙/2    (8) 259 

Equation 8 can be further simplified by using the following dimensionless variables and parameters: KI = 260 
kI/k0, A = a/a0 and L = l/l0, where l0 = 2a0 (1.15 |teff|/s3)2 = 2 k0

2/(p s3
2), i.e., the maximum possible length 261 

of the wing cracks generated under the current state of stress at the tips of a microcrack of length 2a0 in the 262 
absence of any mechanical interactions (l0 is thus an intrinsic property of the dominant microcracks of the 263 
undeformed rock). Note that l0 can be physically achieved when subcritical crack growth is operating since 264 
|kI| is allowed to drop to zero. We finally obtain:  265 
  Κ! = )𝐴(𝐿) − √𝐿     (9) 266 
Although equation 9 is not a mechanistic model of crack coalescence, the function A(L) is effectively a 267 
closed-form expression of the results of the extremely complex and varied mechanical interactions 268 
underlying the formation and growth of micro shear bands. To do the job correctly, A(L) must satisfy a 269 
number of constraints. First, there are the trivial conditions that A(0) = 1 and A(L) must be a monotonically 270 
increasing function. Thus, A(L) can be expressed as A(L) = 1 + f(L), where f(L) is a monotonically increasing 271 
function verifying f(0) = 0. Most importantly, KI must always be strictly larger than zero. Negative values 272 
obviously contradict the definition of KI since kI and k0 are both negative quantities. Moreover, KI = 0 273 
implies crack arrest and is therefore incompatible with tertiary creep.  274 

The simplest functions satisfying these conditions are the power law functions, f(L) = (L/L)q, where 275 
L =  l/l0 is a dimensionless length scale representing the normalized distance that the wing crack must 276 
propagate to enter the vicinity of another microcrack or flaw, interact with it and therefore produce a 277 
substantial increase of KI. Of course, other more complex functions such as the polynomials, f(L) = 278 
∑ 𝐶(
,
(-. 𝐿( 	(with Ci ≥ 0), can also meet the conditions above. We will focus here on the power laws f(L) = 279 

(L/L)q, because they are the analytically simplest functions and, as will be discussed later, produced results 280 
in good agreement with experimental brittle creep data. We nevertheless investigated the polynomials f(L) 281 
= (1 + L/L)q - 1 (i.e., A(L) = (1 + L/L)q ) as thoroughly as f(L) = (L/L)q but the results obtained were 282 
inconsistent with experimental brittle creep observations and will not be discussed in detail in the following 283 
text.  284 

To illustrate how equation 9 works, it is convenient to consider the perfect square function A(L) = 285 
(1+L/L)2 (see figure 6). Since the square root of A(L) is a linear function of L, the first term in equation 9 286 
yields a family of straight lines with slopes increasing when L is decreased (the values of L are indicated 287 
in the same color as the corresponding lines in figure 6). The values of KI are graphically measured as the 288 
vertical distance between these lines and the √𝐿 curve representing the second term of equation 9 (dashed 289 



line in figure 6). Thus, in all cases, KI first decreases (primary creep), reaches a minimum (secondary creep) 290 
and then increases indefinitely (tertiary creep). To satisfy the condition, KI > 0, the colored straight lines in 291 
figure 6 are not allowed to intersect or tangentially touch the √𝐿 curve, thus limiting the values that L can 292 
take (in this example, L < Lc = 4). We also note that increasing L causes a reduction of the minimum Km 293 
of KI and of the rate of increase of KI in the second stage while the value Lm of L at the minimum increases 294 
(figure 6). Km and Lm are key output parameters of the model since they identify the transition from primary 295 
to tertiary creep.  296 

 297 

 298 
Figure 6. Graphic representation of equation 9 in the case of A(L) = (1+L/L)2. The vertical distance between the colored 299 

straight lines (the values of L for each line are indicated in matching colors) and the dashed purple curve is a measure of the stress 300 
intensity factor KI. The position Lm of the minimum stress intensity factor Km of the black curve is indicated by the small empty 301 
circle and the associated vertical dashed line. Note that Km is nearly equal to zero in this case. See text for a detailed interpretation.  302 
 303 
The consecutive KI-decreasing and KI-increasing stages illustrated in figure 6 were produced by the power 304 
laws f(L) = (L/L)q with an exponent q ≥ 2 as well as all other functions f(L) examined in this study. These 305 
various f(L) functions, however, differed in the values of Lc, Km and Lm that they generated.  306 

To assess the effect of the power law exponent q we examined the form of the curves of KI versus 307 
L associated with f(L) = (L/L)q for different values of q and L (the curves associated to q = 2 to 6 and L = 308 
1 are shown in figure 7).  309 
 310 

 311 
Figure 7. Examples of curves of stress intensity factor KI versus wing crack length L associated with f(L) = (L/L)q with 312 

L = 1 for various values of the exponent q as indicated in matching colors. See text for a detailed discussion.  313 
 314 
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The limit Lc is analytically related to the exponent q through the expression, Lc = (q1/(1-q) - qq/(1-q))(1-q)/q (see 315 
Appendix A for the derivation). According to this relation, Lc decreases from 2 to ~1.46 when q is increased 316 
from 2 to 8. As mentioned earlier, L = l/l0 represents the normalized distance, over which a wing crack 317 
must propagate to enter the vicinity of other microcracks and flaws and interact with them. It is important 318 
to note that this interaction distance depends both on the properties of the material being modeled and the 319 
state of stress considered. Indeed, the effect of the stress state is introduced through the normalization factor 320 
l0 µ (|teff|/s3)2 while the material is described by both l0, which contains a0, and l, which can be understood 321 
as a characteristic flaw separation (or the inverse of the flaw density). Consequently, variations of L may 322 
represent either distinct materials with differing flaw densities or a single material subjected to various 323 
levels of stress. Thus, an increase of q indicates an increase of either the flaw density of the rock considered 324 
or the level of stress needed to allow brittle creep. We also note that the minimum stress intensity factor Km 325 
along the KI versus L curves decreased with increasing q while the corresponding Lm first decreased and 326 
then increased (figure 7).  327 

Time dependence is then introduced in the model by assuming subcritical crack growth. According 328 
to this assumption, crack propagation proceeds gradually, starting at a stress intensity factor k0 lower than 329 
kIC. Although different sub-critical crack growth models can be used, the most commonly reported in 330 
previous studies is based on the power law relation often called Charles’ law (Charles, 1958; see also 331 
Wiederhorn and Boltz, 1970): 332 
  /

/"
= A*$

*"
B
0

      (10) 333 
where v and v0 are propagation velocities of the wing cracks, and the exponent n usually takes very high 334 
values (between 10 and 50). Note that equation 10 is dimensionless and can be re-written V = Κ!0, with V = 335 
v/v0, and then combined with equation 9 to yield: 336 
  𝑉 = 12

13
= 4)1 + 𝑓(𝐿) − √𝐿5

0
    (11) 337 

where the normalized time is defined as T = t/t0 = t v0/l0. Using the previously discussed functions f(L) = 338 
(L/L)q, equation 11 contains three parameters, the normalized flaw separation L, the power law exponent 339 
q and the subcritical crack growth exponent n. Since L is a strictly monotonic, increasing function of T, 340 
equation 11 can be numerically solved using the following simple procedure. First we construct a wing 341 
crack length series, Li = (i – 1) dL, where dL denotes a small increment (e.g., dL = 0.01 or lower for more 342 
accuracy). We then use equation 10 to calculate the corresponding wing crack velocity series Vi. Finally, 343 
the time series Ti can be calculated using the recurrence Ti+1 = Ti + dTi, with dTi calculated by numerical 344 
integration of dTi =∫ 4)1 + 𝑓(𝐿) − √𝐿5

40
𝑑𝐿2%&'

2%
. Examples of curves of V as a function of T corresponding 345 

to f(L) = (L/L)q with L = 0.1, 0.5, 1., 1.4 and 1.75, q = 2 and 4, and, n = 10 are shown in figure 8.  346 
 347 

 348 
Figure 8. Examples of curves of wing crack growth rate V versus time T associated with f(L) = (L/L)q for q = 2 (left 349 

diagram) and 4 (right diagram). The values of L corresponding to each curve are indicated in matching colors (the subcritical crack 350 
growth exponent n was equal to 10 in all cases). The times Tinf, T2 and TF, and the exponent m are graphically defined in the inset. 351 
See text for a detailed discussion.  352 
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 353 
In all cases considered in this study, the V versus L curves displayed the same generic shape consistent with 354 
the three classic stages of creep. As illustrated in figure 8, the crack propagation velocity V first decreases 355 
gradually (decelerating or primary creep stage) down to a minimum value (secondary creep) and then 356 
sharply increases up to failure (accelerating or tertiary creep stage). The failure time TF is obtained by 357 
integrating dT = dL/V for L increasing from 0 to infinity.  358 
  𝑇5 = ∫ 4)1 + 𝑓(𝐿) − √𝐿5

40
𝑑𝐿6

$    (12) 359 
The integral of equation 12 is convergent for all values of L satisfying the condition L < Lc and all functions 360 
f(L) mentioned in previous sections. Figure 8 also shows that the decelerating stage consists of two 361 
segments, first the deceleration magnitude | dV/dT | increases and then, after an inflection point is passed, 362 
decreases down to zero (i.e., the point where the accelerating stage begins). Comparison of the right- and 363 
left-hand diagrams demonstrates that increasing the polynomial degree q (for a given L) brings the 364 
minimum propagation velocity closer to zero, increases greatly the time to failure and strongly sharpens the 365 
transition to tertiary creep. Similar effects are produced by raising the subcritical crack growth exponent n 366 
(not shown in figure 8).   367 

Based on the results described above, three key points can be identified along the curve of V versus 368 
T, namely, (1) the inflection point within the decelerating creep stage, (2) the minimum of the curve (note 369 
that this point is the limit between the primary and tertiary creep segments; it can therefore be interpreted 370 
as the center of a secondary creep segment), and (3) the failure point. These three points are distinguished 371 
by their respective time coordinates, Tinf, T2 and TF (see inset in figure 8). Furthermore, in a log-log plot, 372 
the tangent at the inflection point Tinf defines a local power law V ∝ T-m, which becomes steeper with 373 
increasing L (see inset in figure 8). Although the individual normalized times T2 and TF may be difficult to 374 
determine experimentally because the time normalization, T = t l0/V0, involves l0, a quantity that may not 375 
be experimentally accessible, the ratio TF/T2 is independent of normalization and can be measured in 376 
laboratory tests.  377 

We measured TF/T2 for f(L) = (L/L)q in various conditions of L, q and n. We observed that TF/T2 378 
strongly decreased with increasing L when q was equal to 2, changed to a much flatter, non-monotonic 379 
behavior with increasing q from 3 to 5, and eventually became a steadily but moderately increasing function 380 
of L for q = 6 (figure 9, right diagram). In all cases, TF/T2 approached a limit value of 2 for the largest L’s 381 
while a wide range, from as high 3 to as low as 1.6, was obtained for L near zero depending on the 382 
polynomial degree q.  383 

Because inflection points are patently difficult to determine from noisy data, Tinf is not a practical 384 
parameter to use for comparison with experimental data, but the exponent m is independent of time 385 
normalization and can be estimated as a characteristic power law exponent of rock primary creep data. We 386 
calculated m for a variety of values of L and q. We observed that m showed approximately logarithmic 387 
dependence on L for different values of q (figure 9, left diagram). The calculated m’s increased from values 388 
between 0.2 and 0.5, depending on q, at low L’s to an upper limit of about 1 at L’s approaching Lc (figure 389 
9, left diagram).  390 

 391 



 392 
Figure 9. Examples of the predicted dependence of the primary creep exponent m (left diagram) and the failure time to 393 

secondary creep time ratio TF/T2 (right diagram) on the characteristic flaw separation L. These curves correspond to the function 394 
f(L) = (L/L)q with values of q indicated in matching colors (the subcritical crack growth exponent n was equal to 10 in all cases). 395 
The positions of the limit Lc for the different exponents q are indicated by colored solid dots in the left diagram. See text for a 396 
detailed discussion. 397 
 398 

3. Discussion  399 
3.1 Comparison with experimental data: brittle creep 400 
Testing this model against experimental data cannot be done directly since the essential wing crack 401 

parameters l and v cannot be measured in rock samples during deformation. Even, estimating the half-length 402 
a0 of the dominant flaws from SEM images of the undeformed rock is an extremely difficult and uncertain 403 
undertaking. We will assume here that the macroscopic creep strain rate e’ of a very large volume of 404 
material containing many dominant microcracks is linearly related to the wing crack propagation velocity 405 
v. Note that the (usually non-linear) relations between v and e’ derived in various versions of the Ashby-406 
Hallam-Sammis model (e.g., Brantut et al., 2012) cannot be used in our model. Indeed, these relations only 407 
include the effect of wing cracks growth and neglect the shear displacements along the dominant 408 
microcracks. In our model, on the other hand, the macroscopic creep strain rate is mainly produced by 409 
formation and shearing of the micro shear bands. Accordingly, the experimental equivalent of the wing 410 
crack length l is the (inelastic) creep strain e. Note that there is no measurable equivalent of l0, making it 411 
impossible to normalize experimental time so that it can be directly compared to the model dimensionless 412 
time T = t v0/l0. However, the main output parameters of the model, the exponent m and the ratio tF/t2 can 413 
be estimated from experimental creep curves spanning the three regimes from primary to tertiary creep 414 
without time normalization. Note that experimental data are necessarily afflicted by noise, mostly random 415 
fluctuations of the readings of the measuring devices but sometimes also errors caused by computer 416 
glitches. Published data sometimes contain “unphysical” features in the recorded signals, like sharp steps 417 
(i.e., points of extremely high strain rates) or oscillations (i.e., alternating positive and negative strain rates), 418 
which require specific removal treatments (the easiest being manually passing a smooth curve through the 419 
steps or oscillations). Since the combination of regularization techniques needed for differentiating the 420 
experimental e versus t data strongly depended on the particular data being analyzed, we did not attempt to 421 
develop a comprehensive data-treatment workflow. Each data set was individually processed, although we 422 
made every effort to maintain consistency.  423 

We downloaded or digitized the published brittle creep data of Inada granite (Fujii et al., 1999), 424 
Thala limestone (Brantut et al., 2013), Etna basalt (hereafter labeled Etna basalt 1; Heap, 2009; Heap et al., 425 
2011) and Darley Dale sandstone (Heap, 2009; Heap et al., 2009) and calculated the corresponding time-426 
dependent strain rates. In the case of Darley Dale sandstone and Etna basalt 1 (Heap, 2009), preliminary 427 
constant strain rate tests at different effective confining pressures were performed to determine the rock 428 
strength defined as the peak effective differential stress speak-s3 (note that, in the following, all stresses will 429 
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be understood to be effective stresses, i.e., differences of the total stresses and pore pressures). Creep tests 430 
at the same effective confining pressure (30 MPa) and various effective differential stresses s1-s3 below 431 
the previously measured peak stresses were then carried out in samples from the same blocks (Heap, 2009). 432 
These tests are particularly interesting to us since the samples had presumably identical properties and 433 
microstructures but were subjected to different stresses. We therefore expected that the experimental data 434 
would yield values of TF/T2 and m consistent with a single value of q and decreasing L’s with increasing 435 
creep stress. We also analyzed creep curves measured in basalt samples from a different outcrop on Mount 436 
Etna (hereafter labelled Etna basalt 2, Mansbach, 2022) and a cored well in Iceland (Xing et al., 2022), and, 437 
in thermally cracked glass cylinders (Mallet et al., 2014, 2015).   438 
 439 

 440 
Figure 10. Example of a strain rate versus time curve calculated from a digitized experimental creep curve (here, a Darley 441 

Dale sandstone creep test at a creep to peak stress ratio of 0.93; Heap, 2009; Heap et al., 2009). Experimental data with (dotted 442 
blue line) and without smoothing (solid black dots) are shown. The estimates of tF, t2 and the primary creep exponent m are 443 
graphically indicated. See text for a detailed discussion. 444 

 445 
The experimental curves of log(e’) versus log(t) of these rock samples (e.g., figure 10) appear 446 

indeed similar to the theoretical curves of figure 8. We were, therefore, able to estimate the two primary 447 
output parameters, tF/t2 and m, from these data. The time to failure tF is easy to measure but t2 can be more 448 
challenging (note that superposing the smoothed creep curves and the original noisy ones is quite helpful 449 
to avoid unreasonable under- or overestimations of t2 and to estimate uncertainties). The inflection point 450 
within the decelerating stage is all but impossible to identify, but the power law exponent m can still be 451 
estimated by selecting a segment of data points at the center of the primary creep stage (see the example of 452 
figure 10; again superposing the smoothed and original data is a very useful precaution). Within the 453 
estimated uncertainties, the measured values of the ratio tF/t2 ranged from about 1.5 to 2.2, and m from 0.4 454 
to slightly over 1.  455 

For comparison purposes, we superposed the experimental (m, tF/t2) data on the theoretical TF/T2 456 
versus m curves obtained by cross-plotting the numerical results for the function f(L) = (L/L)q and constant 457 
values of q. Note that the theoretical curves converge from the left border to the vicinity of the point (m = 458 
1; TF/T2 = 2), thus delimiting a wedge-shaped region that excludes values of m significantly exceeding one. 459 
The experimental results are in good agreement with the model in the sense that the measured data points 460 
approximately fall within the allowed wedge-shaped region (figure 11). This observation also lends support 461 
to our assumption that the strain rate e’ is linearly related to the wing crack propagation velocity v. Indeed, 462 
let's assume instead that e’ is an arbitrary (monotonically increasing) function g of v. The experimental 463 
strain rate versus time curves (e.g., figure 10) should then be compared to curves of g(V) versus T, which 464 
should have similar shapes to the curves shown in Figure 8 but yield very different values of m. These 465 
changes would likely produce a very different Figure 11. They could significantly distort the region in (m; 466 
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TF/T2) space allowed by the model and thus reduce or even destroy any agreement of model and 467 
experiments.  468 

Although we cannot exclude that other functions besides (L/L)q may yield similarly satisfactory 469 
results, we can definitely eliminate the function A(L) = (1 + L/L)q (or f(L) = (1 + L/L)q -1), which only 470 
generated values of TF/T2 greater than 2 that are not consistent with more than half the experimental data. 471 
We surmise that the unfitness of the function A(L) = (1 + L/L)q is shared by all polynomial functions 472 
combining terms of widely variable degrees in L/L, including linear and quadratic terms, which produce 473 
values of TF/T2 significantly greater than 2. If this is true, we can, hereafter, safely limit our discussion to 474 
the simple power laws f(L) = (L/L)q. 475 

If the functions f(L) = (L/L)q are indeed the appropriate functions for interpreting rock data, we can 476 
infer the values of q and L corresponding to each creep experiment. For example, q ≈ 4 fits both Inada 477 
granite and Thala limestone although a larger L is associated to the granite than the limestone (L ≈ 0.5 and 478 
0.1, respectively). It is tempting to interpret this result as indicating that the granite, whose low porosity 479 
(0.45%) presumably consists of long, thin microcracks, has a lower flaw density than a strongly 480 
heterogeneous, porous (17.5 %) carbonate. But it would be wrong to do so because L is normalized by l0, 481 
an unknown quantity that could take very different values in these two rocks. The only other observation 482 
in support of taking large L’s as an indication of low flaw density is the fact that even larger values of L (> 483 
1.5) correspond to the two thermally cracked glass samples. Their microstructure, indeed, exclusively 484 
consists of cm-scale rather thin and smooth microcracks with intersections distant from each other by a few 485 
to tens of millimeters (Mallet et al., 2014).   486 

Even though the absolute values of L are practically impossible to interpret, relative variations can 487 
be amenable to quantitative analysis. As mentioned earlier, creep experiments at different stress levels were 488 
carried in four samples of Etna basalt 1 extracted from the same block and a similar procedure was applied 489 
to three samples of Darley Dale sandstone (Heap, 2009). We therefore expect q to be constant in each rock, 490 
which is indeed observed for three of the Etna basalt 1 samples (q = 2) and all the Darley Dale sandstone 491 
ones (q ≈ 7 or 8). We also note that the inverse of L can be expressed as a second-degree polynomial in s1: 492 
  .

7
= 𝐶$ − 2𝐶.𝜎. + 𝐶)𝜎.)   (13) 493 

Indeed, combining equations 1 to 3 yields the linear expression, |teff| = a s1 - b, where the positive constants 494 
are given by a = (1-µ)/2 and b = s3 (1+µ)/2. By definition l0 is proportional to |teff|2 = a2 s1

2 - 2 a b s1 + b2 495 
and so is 1/L = l0/l, hence demonstrating equation 13. The positive constants C0, C1 and C2 are proportional 496 
to b2/l, ab/l and a2/l, respectively, and therefore obey the equality C2/C1 = C1/C0 = a/b.  497 

We graphically estimated L ≈ 0.40, 1.15 and 1.89 for the three Etna Basalt 1 samples with s1/speak 498 
= 0.97, 0.86 and 0.80, respectively. Using the values above, the curve of 1/L versus s1/speak is indeed very 499 
well fitted with a second-degree polynomial of the same form as in equation 13. The estimated constants 500 
C0 = 32.9, C1 = 41.8 and C2 = 53.8 yield ratios C1/C0 = 1.27 and C2/C1 = 1.29 within 1.5% of the theoretical 501 
equality. We applied the same analysis to the Darley Dale sandstone data. A value of q greater than 6 was 502 
needed, which posed some numerical problems because we had to use a much smaller increment dL of 503 
3x10-5 to maintain an acceptable accuracy. Using q = 8, we obtained L ≈ 0.27, 0.19 and 0.059 for the creep 504 
stress levels s1/ speak = 0.84, 0.88 and 0.93, respectively, which yielded C0 = 1560, C1 = 1930 and C2 = 505 
2270, corresponding to ratios C1/C0 = 1.170 and C2/C1 = 1.174 in excellent agreement with the theoretical 506 
equality. Thus, the values of L fitting the Etna basalt 1 and Darley Dale sandstone experiments are 507 
quantitatively consistent with the creep stresses used in them.   508 

 509 



 510 
Figure 11. Experimental estimates of tF/t2 and m for Inada granite (black), Thala limestone (dark blue), Darley Dale 511 

sandstone (light blue), Etna basalt 1 (purple), Etna basalt 2 (red), Iceland basalt (orange) and thermally cracked glass (green). The 512 
error bars indicate the estimated uncertainties of the calculated values of tF/t2 and m. In the case of Darley Dale sandstone and Etna 513 
basalt 1, the creep stress levels (s1/speak) are shown above the data points in matching color. The theoretical curves of TF/T2 versus 514 
m for the function f(L) = (L/L)q and various values of the exponent q as indicated in the inset on the right side of the diagram, are 515 
superposed on the experimental data. The olive green arrow indicates the direction in which the theoretical interaction distance L 516 
increases in this diagram.  517 
 518 

3.2 Comparison with experimental data: brittle failure in constant strain rate experiments 519 
 Since f(L) = (L/L)q appears to yield an appropriate description of experimental creep data in a large 520 
variety of rocks, it is worth incorporating it in the failure model. Equation 6 thus becomes: 521 

 −1.15(|τ"##| − 𝜏&)I𝜋𝑎$ A1 + A
8
9
B
,
B + σ%)𝜋𝑙/2 = 0  (14) 522 

Equation 14 can be written in dimensionless form using t* = (|teff|-tc)/s3, l* = l/(1.152 2a0) and l* = l/(1.152 523 
2a0) (note that the previously used normalization of l and l to l0 is not possible here because the remotely 524 
applied stresses are not constant in constant strain rate experiments). Solving it for t*, yields: 525 

  𝜏∗ = J
8∗

.;< )
∗
*∗=

+       (15) 526 

Equation 15 can be used to model constant strain rate tests by calculating the variations of t* associated to 527 
a constant rate of increase of l*. We thus determined the t* versus l* curves for q varying from 2 to 12 and 528 
l* from 0.1 to 16. All curves go through a maximum, t* = t*peak, analogous to rock peak strength at l* = 529 
l*peak (see examples in figure 12). The right-hand side of equation 15 is sufficiently simple to allow 530 
determining the coordinates of the peak analytically, yielding: 531 
  𝑙>"?@∗ = 𝜆∗ (𝑞 − 1). ,⁄⁄      (16) 532 

and  𝜏>"?@∗ = I9
∗

,
(𝑞 − 1)

+,'
+      (17), 533 

which implies 𝜏>"?@∗ = I𝑙>"?@∗ (𝑞 − 1) 𝑞⁄  (see derivation in appendix B). Thus, l*peak is proportional to l* 534 

(the pre-factor decreasing from 1 to ~0.757 and then slightly increasing to ~0.784, when q is increased 535 
from 2 to ~4.6 and finally 8). In the same range of q, t*peak varies as the square root of l* (the pre-factor 536 
gradually increasing from ~0.707 to ~0.828). Although the definitions of l* and L are not identical, these 537 
two parameters are both related to the separation distance between microcracks and/or flaws, or, in other 538 
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words, inversely related to the flaw density. As intuitively expected, the model predicts that strength 539 
increases with decreasing flaw density (left diagram, figure 12). 540 

 541 
Figure 12. Examples of curves of normalized resolved shear stress t* versus normalized wing crack length l* for the 542 

function (l*/l*)q with q = 2 and various values of the dimensionless flaw separation l* as indicated in matching colors (left 543 
diagram). Curves of t* versus l* normalized to their peak values t*peak and l*peak, respectively, for various values of q as indicated 544 
in matching colors (right diagram). Importantly, these curves are independent of the values of l* used to calculate them (in other 545 
words, variations of l* at constant q yield exactly coincident curves).  546 

 547 
Interestingly, normalizing the shear stress and wing crack length to their values at the peak (i.e., 548 

t*/t*peak and l*/l*peak) produced exactly coincident curves for a given value of q, independent of l* (right 549 
diagram, figure 12). Thus, l* (equivalently, the flaw density) affects the values of t*peak and l*peak but not 550 
the shape of the curves. Instead, it is the power law exponent q which appears to control the shape of the t* 551 
versus l* curves, particularly the post-peak softening stage. Increasing values of q produce an increasingly 552 
sharp softening post-peak behavior (right diagram, figure 12). Note that, in the softening stage, t* 553 
asymptotically approaches zero while l* increases to infinity (figure 12). This implies that formation of new 554 
larger shear bands continues indefinitely at shear stresses (|teff|) closer and closer to tc, the shear stress, 555 
below which wing crack growth was not initially allowed. This property is due to the fact that the model 556 
does not include an upper scale limit and, therefore, does not allow formation of a through-going shear band 557 
like those ultimately occurring in (finite size) rock samples deformed to brittle failure. 558 
 Stress-strain curves measured in brittle materials are similar to the theoretical curves shown in 559 
figure 12. However, unlike the t* versus l* curves, which represent the results of exclusively inelastic 560 
processes, experimental stress-strain curves include both elastic and inelastic strains. For the purpose of 561 
comparison with the model, the axial strain, e = ee + ei, measured in a constant strain rate test must be 562 
corrected of its elastic component ee so that only the inelastic strain ei remains. Elastic strains must 563 
obviously be dominant during the early stage of a constant strain rate test when the applied stress is too low 564 
to produce significant inelastic deformation. This elastic stage is usually identified as the upwardly curved 565 
segment, commonly observed at the beginning of the stress-strain curve (e.g., Heap and Faulkner, 2008). 566 
Along this segment, the axial Young’s modulus E (i.e., the slope of the stress-strain curve) increases 567 
gradually owing to the closure of cracks normal to s1 and reaches a maximum (i.e., inflexion point of the 568 
stress-strain curve) at s1 = sc that is generally assumed to mark the onset of inelastic deformation. The 569 
interpretation of the upwardly curved segment as purely elastic has generally been considered satisfactory 570 
in many studies where dilatancy was measured and/or acoustic emissions recorded (among others, Lockner 571 
et al., 1992; Lockner, 1993; Stanchits et al., 2006; Fortin et al., 2009; Fortin et al., 2010). However, even if 572 
the purely elastic stage of a given laboratory test is accurately identified, determining ee along the rest of 573 
the stress-strain curve cannot be done without extrapolation unless the elastic properties were actually 574 
measured at regular intervals, for example, by running small cyclic stress excursions (e.g., Bernabé et al., 575 
1994). The use of such techniques, however, is extremely rare in practice. Here, we manually digitized the 576 
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stress-strain curves measured in Etna basalt 1 and Darley Dale sandstone by Heap (2009), since we had 577 
previously determined suitable values of q for these rocks, and attempted to construct models of the rocks 578 
Young's modulus as a function of stress and total axial strain. Our first attempt yielded values of (speak - 579 
sc)/s3 (i.e., the equivalent of t*peak) that did not scale as the square root of epeak, the inelastic strain at the 580 
peak of the stress-strain curve, as predicted by the model. However, fine-tuning the elastic model brought 581 
the results closer to the model prediction. Since the validity of the elasticity models cannot be checked 582 
independently, these efforts do not produce truly meaningful results and this approach was not pursued 583 
further.  584 
 585 

4. Concluding remark, implications 586 
 587 
 We developed a brittle creep and brittle failure model recognizing that flaws in rocks exist over a 588 
broad range of length-scales. Our assumption behind the model is motivated by the fact that self-similarity 589 
is one of the characteristics of brittle systems; grain size distributions in fault rocks (e.g. Keulen et al. 2008), 590 
roughness of frictional interfaces (e.g. Candela et al. 2012), acoustic emissions recorded during experiments 591 
(e.g. Goebel et al. 2017), as well as moment-magnitude scaling of crustal earthquakes (Gutenberg and 592 
Richter 1944) are all suggesting that cracking is a process that is self-similar over many orders of magnitude 593 
in length scale. The interactions of the dominant microcracks with smaller flaws in their vicinity, leads to 594 
their coalescence, formation of micro shear bands and eventually to shear failure when the growing 595 
dominant shear band reaches the sample boundaries, as typically observed in rocks deformed under 596 
confining pressure. In our model, both the inclined dominant microcracks as well as their associated wing 597 
cracks are allowed to grow in contrast to traditional models of brittle creep where only wing crack growth 598 
is assumed (e.g. Ashby and Sammis 1990, Brantut et al. 2012). Comparison of our model to experimental 599 
data suggests that the complex and non-tractable interactions of the rock microcracks and flaws can be 600 
adequately expressed by the simple power law functions, f(L) = (L/L)q, where L is the normalized wing 601 
crack length and L represents the normalized distance over which a wing crack must propagate to interact 602 
with other flaws. The model reproduces all three characteristic stages of creep and returns experimentally 603 
determinable quantities, namely the ratio of time to failure, tF, to the time of minimum wing crack 604 
propagation velocity (i.e. minimum strain rate, or center of the secondary creep segment), t2, and a power-605 
law exponent, m, that characterizes the mean deceleration rate of primary creep. The model successfully 606 
fits data from a broad range of rocks and - with appropriate normalization and accounting for elastic 607 
deformation - can be also used to model brittle failure. Furthermore, our model predicts that brittle creep 608 
can occur over a very broad range of flaw densities and/or stress levels depending on the exact functional 609 
form. Tertiary, accelerating creep has typically been observed only at a high percentage (>50%) of the 610 
ultimate failure strength (e.g. Brantut et al. 2012), however recent experiments document primary and 611 
secondary brittle creep operating at stress levels as low as ~10% of the failure strength (Xing et al. 2022) 612 
providing evidence that brittle creep indeed occurs over a broad range of stress levels – resolving whether 613 
creep at such low fractions of the failure strength will eventually enter the tertiary creep stage is however 614 
impossible in the laboratory. As shown in figure 8, the time to failure predicted by the model varies by over 615 
20 orders of magnitude for the variations of L explored in this work. 616 
 617 

5. Conclusions  618 
 619 
We reformulated the wing crack model of brittle creep and brittle failure to allow for the formation, growth 620 
and coalescence of micro shear bands over a broad range of length scales and found that: 621 
 622 

• The model using a wide class of function A(L) properly returns classical trimodal creep curves for 623 
constant stress boundary conditions and characteristic stress-strain curves under constant strain rate 624 
boundary conditions 625 



• The model returns experimentally determinable quantities independent of the chosen 626 
normalizations. Key outputs are the ratio of time to failure, tF, to the time of minimum strain rate, 627 
t2, and a power-law exponent, m, that characterizes the mean deceleration rate of primary creep. 628 

• The function A(L) = 1 + f(L), where f(L) is a simple power law, f(L) = (L/L)q, produced values of 629 
the constants L and q consistent with those estimated from the experimental data. The parameter L 630 
represents a normalized distance over which a flaw must propagate to interact with other flaws and 631 
can be related to flaw density and stress level. 632 

• Polynomial functions which combine the effect of multiple terms with different degrees, yielded 633 
results inconsistent with the experimental data, suggesting that brittle creep of rocks can be 634 
appropriately described using the power law function, f(L) = (L/L)q. 635 

 636 
Appendix A 637 
 The limit Lc is the upper limit of L such that the curves of )1 + (𝐿 Λ&⁄ ), and √𝐿 versus L are 638 
tangent. As discussed in section 2.3, the two curves do not intersect when L is smaller than Lc and they 639 
intersect on two separate points for L strictly larger than Lc. We now note that the curves produced by 640 
elevating the two functions above to the power 2 are also tangent to each other for L = Lc. They therefore 641 
have a single common point, where the derivatives of the functions with respect to L must be equal. We 642 
can therefore write the two obvious equalities 1 + (L/Lc)q = L and q (Lq-1/Lc

q) = 1. Eliminating L between 643 
these two equations yields Lc = (q1/(1-q) - qq/(1-q))(1-q)/q.  644 
 645 
Appendix B 646 
 We wish to calculate the coordinates t*peak and l*peak of the maximum of the curve of t* versus l* 647 
predicted by equation 15. For this, we only need to calculate the derivative with respect to l* of the right-648 
hand side of equation 15:  649 

 𝜏′(𝑙∗) =
.;< )

∗

*∗=
+
4,< )

∗
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+
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∗
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+
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 650 

Solving t'(l*) = 0 for l* yields the solution 𝑙>"?@∗ = 𝜆∗ (𝑞 − 1). ,⁄⁄ and plugging this value in equation 15 651 

produces 𝜏>"?@∗ 	= 	I9
∗

,
(𝑞 − 1)

+,'
+ , which can be rewritten 𝜏>"?@∗ = I𝑙>"?@∗ (𝑞 − 1) 𝑞⁄ .  652 

 653 

Data Availability Statement 654 

            Our model is analytical. Computer programming is therefore unnecessary in principle. However 655 
certain parameters such as the power law exponent m are easier to determine numerically. To help interested 656 
readers, the Mathematica script used to construct and interpret Figure 8 is available at Zenodo. Except for 657 
the Iceland and Etna 2 basalts, we used published experimental data that can be obtained from the articles 658 
cited. The Iceland and Etna 2 basalts data were produced in our laboratory and are available at Zenodo at 659 
10.5281/zenodo.6463941. 660 
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