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Abstract

Subsurface remediation often involves reconstruction of contaminant release history from sparse observations of solute concen-

tration. Markov Chain Monte Carlo (MCMC), the most accurate and general method for this task, is rarely used in practice

because of its high computational cost associated with multiple solves of contaminant transport equations. We propose an

adaptive MCMC method, in which a transport model is replaced with a fast and accurate surrogate model in the form of a deep

convolutional neural network (CNN). The CNN-based surrogate is trained on a small number of the transport model runs based

on the prior knowledge of the unknown release history. Thus reduced computational cost allows one to reduce the sampling

error associated with construction of the approximate likelihood function. As all MCMC strategies for source identification, our

method has an added advantage of quantifying predictive uncertainty and accounting for measurement errors. Our numerical

experiments demonstrate the accuracy comparable to that of MCMC with the forward transport model, which is obtained at

a fraction of the computational cost of the latter.
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Abstract10

Subsurface remediation often involves reconstruction of contaminant release history from11

sparse observations of solute concentration. Markov Chain Monte Carlo (MCMC), the12

most accurate and general method for this task, is rarely used in practice because of its high13

computational cost associated with multiple solves of contaminant transport equations. We14

propose an adaptive MCMC method, in which a transport model is replaced with a fast15

and accurate surrogate model in the form of a deep convolutional neural network (CNN).16

The CNN-based surrogate is trained on a small number of the transport model runs based17

on the prior knowledge of the unknown release history. Thus reduced computational cost18

allows one to reduce the sampling error associated with construction of the approximate19

likelihood function. As all MCMC strategies for source identification, our method has20

an added advantage of quantifying predictive uncertainty and accounting for measurement21

errors. Our numerical experiments demonstrate the accuracy comparable to that of MCMC22

with the forward transport model, which is obtained at a fraction of the computational cost23

of the latter.24

1 Introduction25

Identification of contaminant release history in groundwater plays an important role in26

regulatory efforts and design of remedial actions. Such efforts rely on measurements of solute27

concentrations collected at a few locations (pumping or observation wells) in an aquifer.28

Data collection can take place at discrete times and is often plagued by measurement errors.29

A release history is estimated by matching these data to predictions of a solute transport30

model, an inverse modeling procedure that is typically ill-posed.31

Alternative strategies for solving this inverse problem (Amirabdollahian & Datta, 2013;32

Zhou et al., 2014; Rajabi et al., 2018; Barajas-Solano et al., 2019, and the references therein)33

fall into two categories: deterministic and probabilistic. Deterministic methods include least34

squares regression (White, 2015) and hybrid optimization with a genetic algorithm (Ayvaz,35

2016; Leichombam & Bhattacharjya, 2018). They provide a “best” estimate of the contam-36

inant release history, without quantifying the uncertainty inevitable in such predictions.37

Probabilistic methods, e.g., data assimilation via extended and ensemble Kalman filters38

(Xu & Gómez-Hernández, 2016, 2018) and Bayesian inference based on Markov chain Monte39

Carlo or MCMC (Gamerman & Lopes, 2006), overcome this shortcoming. Kalman filters are40

relatively fast but do not generalize to strongly nonlinear problems, sometimes exhibiting41

inconsistency between updated parameters and observed states (Chaudhuri et al., 2018).42

Particle filters and MCMC are exact even for nonlinear systems but are computationally43

expensive, and often prohibitively so. Increased efficiency of MCMC with a Gibbs sampler44

(Michalak & Kitanidis, 2003) comes at the cost of generality by requiring the random fields45

of interest to be Gaussian. MCMC with the Delay Rejection Adaptive Metropolis (DRAM)46

sampling (Haario et al., 2006) is slightly more efficient and does not require the Gaussianity47

assumption; it has been used in experimental design for source identification (Zhang et al.,48

2015), and is deployed as part of our algorithm. Gradient-based MCMC methods, such49

as hybrid Monte Carlo (HMC) sampling (Barajas-Solano et al., 2019), increase the slow50

convergence of these and other MCMC variants. However, the repeated computation of51

gradients of a Hamiltonian can be prohibitively expensive for high-dimensional transport52

problems.53

With an exception of the method of distribution (Boso & Tartakovsky, 2020), the54

computational cost of Bayesian methods for data assimilation and statistical inference is55

dominated by multiple runs of a forward transport model. The computational burden56

can be significantly reduced by deploying a surrogate model, which provides a low-cost57

approximation of its expensive physics-based counterpart. Examples of such surrogates58

include polynomial chaos expansions (Zhang et al., 2015; Ciriello et al., 2019) and Gaussian59

processes (Elsheikh et al., 2014; Zhang et al., 2016). A possible surrogate-introduced bias60
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can be reduced or eliminated altogether by the use of a two-stage MCMC (Zhang et al.,61

2016). Both polynomial chaos expansions and Gaussian processes suffer from the so-called62

curse of dimensionality, which refers to the degradation of their performance as the number63

of random inputs becomes large.64

Artificial neural networks in general, and deep neural networks in particular, constitute65

surrogates that remain robust for large numbers of inputs and outputs (Mo, Zhu, et al., 2019;66

Mo, Zabaras, et al., 2019). Their implementations in open-source software offer an added67

benefit of being portable to advanced computer architectures, such as graphics processing68

units and tensor processing units, without significant input from the user. Our algorithm69

employs a convolutional neural network (CNN) as a surrogate, the role that is related to70

but distinct from other uses of neural networks in scientific computing, e.g., their use as a71

numerical method for solving differential equations (Lee & Kang, 1990; Lagaris et al., 1998).72

In Section 2 we formulate the problem of contaminant source identification from sparse73

and noisy measurements of solute concentrations. Section 3 contains a description of our74

algorithm, which combines MCMC with DRAM sampling (Section 3.1) and a CNN-based75

surrogate of the forward transport model (Section 3.2). Results of our numerical experiments76

are reported in Section 4; they demonstrate that our method is about 50 times faster than77

MCMC with a physics-based transport model. Main conclusions drawn from this study are78

summarized in Section 5.79

2 Problem Formulation80

Vertically averaged hydraulic head distribution h(x) in an aquifer Ω with hydraulic81

conductivity K(x) and porosity θ(x) is described by a two-dimensional steady-state ground-82

water flow equation,83

∇ · (K∇h) = 0, x ∈ Ω, (1)84

subject to appropriate boundary conditions on the simulation domain boundary ∂Ω. Once (1)85

is solved, average macroscopic flow velocity u(x) = (u1, u2)> is evaluated as86

u = −K
θ
∇h. (2)87

Starting at some unknown time t0 a contaminant with volumetric concentration cs88

enters the aquifer through point-wise or spatially distributed sources Ωs ⊂ Ω. The con-89

taminant continues to be released for unknown duration T with unknown intensity qs(x, t)90

(volumetric flow rate per unit source volume), such that qs(x, t) 6= 0 for t0 ≤ t ≤ t0 + T .91

The contaminant, whose volumetric concentration is denoted by c(x, t), migrates through92

the aquifer and undergoes (bio)geochemical transformations with a rate law R(c). With-93

out loss of generality, we assume that the spatiotemporal evolution of c(x, t) is adequately94

described by an advection-dispersion-reaction equation,95

∂θc

∂t
= ∇ · (θD∇c)−∇ · (θuc)−R(c) + qscs, x = (x1, x2)> ∈ Ω, t > t0, (3)96

although other, e.g., non-Fickian, transport models (Neuman & Tartakovsky, 2009; Srini-97

vasan et al., 2010; Severino et al., 2012) can be considered instead. If the coordinate system98

is aligned with the mean flow direction, such that u = (u ≡ |u|, 0)>, then the dispersion99

coefficient tensor D in (3) has components100

D11 = θDm + αLu, D22 = θDm + αTu, D12 = D21 = θDm, (4)101

where Dm is the contaminant’s molecular diffusion coefficient in water; and αL and αT are102

the longitudinal and transverse dispersivities, respectively.103

Our goal is to estimate the location and strength of the source of contamination,104

r(x, t) = qs(x, t)cs(x, t), by using the transport model (1)–(4) and concentration measure-105

ments c̄mi = c̄(xm, ti) collected at locations {xm}Mm=1 at times {ti}Ii=1. The concentration106
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data are corrupted by random measurement errors, such that107

c̄m,i = c(xm, ti) + εmi, m = 1, · · · ,M, i = 1, · · · , I; (5)108

where c(xm, ti) are the model predictions, and the errors εmi are zero-mean Gaussian random109

variables with covariance E[εmiεnj ] = δijRmn. Here, E[·] denotes the ensemble mean; δij110

is the Kronecker delta function; and Rmn, with m,n ∈ [1,M ], are components of the111

M×M spatial covariance matrix R of measurements errors, taken to be the identity matrix112

multiplied by the standard deviation of the measurement errors. This model assumes both113

the model (1)–(4) to be error-free and the measurements errors to be uncorrelated in time114

but not in space.115

3 Methods116

Our algorithm comprises MCMC with DRAM sampling and a CNN-based surrogate117

of the transport model (1)–(4). These two components are described below.118

3.1 MCMC with DRAM Sampling119

Upon a spatiotemporal discretization of the simulation domain, we arrange the uncer-120

tain (random) input parameters in (1)–(4) into a vector m of length Nm; these inputs may121

include the spatiotemporally discretized source term r(x, t), initial concentration cin(x), hy-122

draulic conductivity K(x), etc. Likewise, we arrange the random measurements c̄m,i into123

a vector d of length Nd, the random measurement noise εmi into a vector ε of the same124

length. Then, the error model (5) takes the vector form125

d = g(m) + ε, (6)126

where g(·) is the vector, of length Nd, of the correspondingly arranged stochastic model127

predictions c(xm, ti) predicated on the model inputs m.128

In Bayesian inferences, the parameters m are inferred probabilistically from both model129

predictions and (noisy) measurements by means of the Bayes theorem,130

fm|d(m̃; d̃) =
fm(m̃)fd|m(m̃; d̃)

fd(d̃)
, fd(d̃) =

∫
fm(m̃)fd|m(m̃; d̃)dm̃. (7)131

Here, fm is a prior probability density function (PDF) of the inputs m, which encapsulates132

the information about the model parameters and contaminant source before any measure-133

ments are assimilated; fm|d is the posterior PDF of m that represents refined knowledge134

about m gained from the data d; fd|m is the likelihood function, i.e., the joint PDF of135

concentration measurements conditioned on the corresponding model predictions that is136

treated as a function of m rather than d; and fd, called “evidence”, serves as a normalizing137

constant that ensures that fm|d(m; ·) integrates to 1. Since ε in (5) or (6) is multivariate138

Gaussian, the likelihood function has the form139

fd|m(m̃; d̃) =
1

(2π)d/2|R|1/2 exp

(
−1

2
v>R−1v

)
, v = d− g(m). (8)140

In high-dimensional nonlinear problems (i.e., problems with large Nm), such as (1)–141

(4), the posterior PDF fd|m cannot be obtained analytically and computation of the integral142

in the evidence fd is prohibitively expensive. Instead, one can use MCMC to draw samples143

from fm(m̃)fd|m(m̃; d̃), without computing the normalizing constant fd. A commonly used144

MCMC variant relies on the Metropolis–Hastings sampling (Gamerman & Lopes, 2006); this145

approach uses a zero-mean Gaussian PDF with tunable variance σ2 to generate proposals146

near a previous sample, which are accepted with the acceptance rate given by the relative147

posterior value. The performance of the Metropolis-Hastings sampling depends on the choice148
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of hyperparameters, such as σ2, and on how well the proposal PDF matches the target PDF.149

The choice of an inappropriate proposal PDF might cause an extremely slow convergence.150

We deploy the DRAM sampling—specifically its numerical implementation in (Miles,151

2019)—to accelerate the convergence of MCMC. It differs from the Metropolis–Hasting152

sampling in two aspects. First, the delayed rejection (Green & Mira, 2001) refers to the153

strategy in which a proposal’s rejection in the first attempt is tied to the subsequent proposal154

that can be accepted with a combined probability for the two proposals; this rejection delay155

is iterated multiple times in the sampling process. Second, adaptive Metropolis (Haario et156

al., 2001) uses past sample chains to tune the proposal distribution in order to accelerate157

the convergence of MCMC. The DRAM sampling has been shown to be more efficient than158

other sampling strategies for many problems, including that of source identification (Zhang159

et al., 2015).160

3.2 Deep Convolutional Neural Networks161

Any implementation of MCMC requires multiple solves of the transport model (1)–(4)162

for different realizations of the input parameters m. We use a CNN surrogate model to163

alleviate the cost of these solves by relating the inputs to the outputs in a computationally164

efficient way. Several alternative input-output frameworks to construct a surrogate model165

are shown in Table 1. Among these, autoregressive models predict a concentration map only166

for the next time step. When measurements are collected at multiple times, an autoregressive167

model has to be repeatedly evaluated, for each realization of the inputs m. If considering168

known release time, conductivity field, and porosity, m can be simplified as the initial169

concentration field cin(x). Otherwise, m is the stack of the maps of cin(x), conductivity170

field K(x), porosity field θ(x), etc.

Table 1. Alternative input-output frameworks for construction of surrogate models. The data

are collected at M locations xm (m = 1, · · · ,M) at I times ti (i = 1, · · · , I).

Model Input Output Modeling frequency

PDE model m {c(x, ti)} 1
Image-to-image m {c(x, ti)} 1
Image-to-sensors m {c(xm, ti)} 1
Autoregressive image-to-image c(x, t) c(x, t+ ∆t) I

171

We choose an image-to-image regression model, rather than the autoregressive surro-172

gate used in (Mo, Zabaras, et al., 2019) to solve a similar source identification problem,173

for the following reasons. First, it is better at generalization than image-to-sensors models.174

Second, although autoregressive surrogates excel at regression tasks (Mo, Zabaras, et al.,175

2019), they might become computationally expensive when the measurement frequency is176

high.177

Our image-to-image regression model replaces the PDE-based transport model (1)–(4)178

or g(m) with a CNN N(m) depicted in Figure 1, i.e.,179

g : m
PDEs−−−→ {c(xm, ti)}M,I

m,i=1 is replaced with N : m
CNN−−−→ {c(x, ti)}Ii=1, (9)180

We start by attempting to demystify neural networks, which are spreading virally throughout181

the hydrologic community. A simplest way to relate the model output d to the model input182

m without having to run the model g is to replace the latter with a linear input-output183

relation d̂ = Wm, where W is an Nd ×Nm matrix of weights whose numerical values are184

obtained by minimizes the discrepancy between the d̂ and d values which are either measured185
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or computed with the model g or both. The performance of this linear regression, in which186

the bias parameters are omitted to simplify the presentation, is likely to be suboptimal, since187

a relationship between the inputs and outputs is likely to be highly nonlinear. Thus, one188

replaces d̂ = Wm with a nonlinear model d̂ = σ(Wm), in which a prescribed function σ(·)189

operates on each element of the vector Wm. Examples of this so-called activation function190

include a sigmoidal function (e.g., tanh) and a rectified linear unit (ReLU). The latter is191

defined as σ(s) = max(0, s), it is used here because of its current popularity in the field.192

The nonlinear regression model d̂ = σ(Wm) ≡ (σ ◦W)(m) constitutes a single “layer” in193

a network.194

Input:

…

…

…

…

Output:

CNN surrogate

c(x, tI)
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Figure 1. A surrogate model constructed with a convolution neural network (CNN). The surro-

gate takes as input a set of uncertain parameters m, e.g., an initial contaminant concentration field

cin(x) and returns as output temporal snapshots of the solute concentrations c(x, ti) in an aquifer.

A (deep) fully connected neural network Nf comprising Nl “layers” is constructed by195

a repeated application of the activation function to the input,196

d = Nf (m; Θ) ≡ (σNl
◦WNl−1) ◦ . . . ◦ (σ2 ◦W1)(m). (10a)197

In general, different activation functions might be used in one network. The parameter set198

Θ = {W1, . . . ,WNl−1} consists of the weights Wn connecting the nth and (n+ 1)st layers.199

In this recursive relation,200 
s1 = (σ2 ◦W1)(m) ≡ σ2(W1m),

s2 = (σ3 ◦W2)(s1) ≡ σ3(W2s1),
...

d = (σNl
◦WNl−1)(sNl−2) ≡ σNl

(WNl−1sNl−2),

(10b)201

202

the weights W1 form a d1×Nm matrix, W2 is a d2×d1 matrix, W3 is a d3×d2 matrix,. . .,203

and WNl−1 is a Nd × dNl−2 matrix. The integers d1, · · · , dNl−2 represent the number204

of neurons in the corresponding inner layers of the network. The fitting parameters Θ are205

obtained, or the “network is trained”, by minimizing the discrepancy between the prediction206

and the output in the dataset.207

The size of the parameter set Θ grows rapidly with the number of layers Nl and the208

number of neurons dn in each inner layer. When the output layer contains hundreds or209

thousands of variables (aka “features”, such as concentrations at observation wells collected210

at multiple times), this size can be unreasonably large. By utilizing a convolution-like211

operator to preserve the spatial correlations in the input, CNNs reduce the size of Θ and212

scale much better with the number of parameters than their fully connected counterparts.213

CNNs are widely used to perform image-to-image regression. Details about a convolutional214
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layer are not main concern of this study; we refer the interested reader to (Goodfellow et215

al., 2016) for an in-depth description of CNNs. In this study, CNNs is trained to predict216

the concentration map at times when the measurements were obtained.217

Specifically, we use a convolutional encoder-decoder network to perform the regression218

with a coarse-refine process. In the latter, the encoder extracts the high-level coarse features219

of the input maps, and the decoder refines the coarse features to the full maps again (Mo,220

Zabaras, et al., 2019, fig. 2). The L1-norm loss function, L2-norm weight regularization, and221

stochastic gradient descent (Bottou, 2010) are used in the parameter estimation process.222

It is worthwhile emphasizing that unlike some surrogate models, e.g., polynomial chaos223

which can predict a solution at any time, the CNN used in this study predicts only con-224

centration maps for a short period. The reason is that for the inverse problem under225

consideration, only observations at measurement times are of interests and a model s ability226

to predict concentrations at later times is immaterial.227

4 Numerical Experiments228

We use the CNN-based MCMC with the DRAM sampling to identify a contamination229

source from sparse concentration measurements. A PDE-based transport model used to230

generate synthetic data is formulated in Section 4.1. Its CNN-based surrogate is developed231

and analyzed in Section 4.2. The performance of our approach in terms of the accuracy232

and efficiency vis-à-vis the PDE-based MCMC with the DRAM sampling is discussed in233

Section 4.3.234

4.1 Contaminant Transport Model235
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Figure 2. Hydraulic conductivity K(x) [m/d], in logarithm scale.

Our solute transport model consists of (1)–(4) with R(c) = 0. A spatially varying236

hydraulic conductivity field K(x) is shown in Figure 2 for a 1000 m by 2000 m rectangular237

simulation domain discretized into 41 × 81 cells. Porosity θ and dispersivities λL and λT238

are constant. The values of these and other flow and transport parameters, which are239

representative of an alluvial aquifer in Southern California, are summarized in Table 2.240
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We consider an instantaneous, spatially distributed contaminant release taking place241

at time t0 = 0. This replaces the source term r(x, t) = qs(x, t)cs(x, t) in (3) with the242

Dirac-delta source r(x, t) = r(x)δ(t) or, equivalently, with an unknown initial contaminant243

distribution cin(x). Our goal is to reconstruct the latter from the noisy concentration data244

c̄m,i collected at M = 20 locations {xm}Mm=1 at {ti}Ii=1 = {3, 4, . . . , 18) years after the245

contaminant release (I = 16).246
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Figure 3. Hydraulic head distribution h(x) [m] and locations of 20 observational wells. The flow

is driven by constant heads hL = 10 m and hR = 0 maintained at the left and right boundaries,

respectively; no-flow boundary conditions are assigned to the upper and lower boundaries.

Table 2. Values of hydraulic and transport parameters, which are representative of alluvial

aquifers in Southern California.

Parameter Value Units

Porosity, θ 0.3 −
Molecular diffusion, Dm 10−9 m2/d
Longitudinal dispersivity, αL 10 m
Dispersivity ratio, αL/αT 10 −

We used Flopy (Bakker et al., 2016), a Python implementation of MODFLOW (Harbaugh,247

2005) and MT3DMS (Bedekar et al., 2016), to solve the flow (1) and transport (3) equations,248

respectively. With constant hydraulic head values on the left and right boundaries, the head249

distribution h(x) is shown in Figure 3, together with the locations of 20 observational wells.250

The initial contaminant distribution consists of Np co-mingling Gaussian plumes,251

cin(x1, x2) =

Np∑
i=1

Si exp

[
− (x1 − x1,i)

2 + (x2 − x2,i)
2

2σ2
i

]
, (11)252

each of which has the strength Si and the width σi, and is centered at the point (x1,i, x2,i).253

The true, yet unknown, values of these parameters are collated in Table 3 for Np = 2;254
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Table 3. Prior uniform distributions for the meta-parameters m characterizing the initial con-

taminant plume (11), and the true, yet unknown, values of these parameters.

x1,1 x2,1 x1,2 x2,2 S1 σ1 S2 σ2

Interval [0,700] [50,900] [0,700] [50,900] [0,100] [13,20] [0,100] [13,20]
Truth 325 325 562.5 625 30 15 50 17

they are used to generate the measurements c̄m,i by adding the zero-mean Gaussian noise255

with standard deviation σε = 0.001. These data form the 20 breakthrough curves shown in256

Figure 4.257

The lack of knowledge about the initial contaminant distribution cin(x) is modeled258

by treating these parameters, m = (x1,i, x2,i, σi, Si) with i = 1 and 2, as random variables259

distributed uniformly on the intervals specified in Table 3. These uninformative priors are260

refined as the measurements are assimilated into model predictions.261
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Figure 4. Contaminant breakthrough curves c(xm, t) observed in the wells whose locations xm

(m = 1, . . . , 20) are shown in Figure 3.

4.2 Construction and Accuracy of CNN Surrogate262

As discussed in Section 3, although only model predictions at 20 wells are strictly263

necessary for the inversion, the use of full concentration distributions c(x, ti) as output of264

the CNN-based surrogate has better generalization properties. We used N = 1600 solutions265

(Monte Carlo realizations) of the PDE-based transport model (3) for different realizations266

of the initial condition cin(x) to “train” the CNN; another Ntest = 400 realizations were267

retained for test. These 2000 Realizations of the initial concentration cin(x) in (11) were268
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generated with Latin hyper-cube sampling of the uniformly distributed input parameters269

m from Table 3. The CNN contains three dense blocks with Nl = 6, 12, 6 internal layers,270

uses a growth rate of Rg = 40, number of initial features Nin = 64, and was trained for271

300 epochs. The CNN’s output is 16 stacked maps of the solute concentration c(x, ti) at272

ti = (3, 4, . . . , 18) years after the contaminant release.273
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Figure 5. Temporal snapshots of the solute concentration alternatively predicted with the trans-

port model (c, top row) and the CNN surrogate (ĉ, second row) for a given realization of the initial

concentration cin(x). The bottom row exhibits the corresponding errors of the CNN surrogate,

(c − ĉ). The times in the upper left corner correspond to the number of years after contaminant

release.

Figure 5 exhibits temporal snapshots of the solute concentrations alternatively pre-274

dicted with the transport model, c(x, ti), and the CNN surrogate, ĉ(x, ti), for a given real-275

ization of the initial concentration cin(x) at eight different times ti. The root mean square276

error of the CNN surrogate, ‖c(x, ti) − ĉ(x, ti)‖2, falls to 0.023 at the end of the training277

process. It is worthwhile emphasizing here that the N = 1600 Monte Carlo realizations used278

to train our CNN surrogate are but a small fraction of the number of forward solves needed279

by MCMC.280

4.3 MCMC Reconstruction of Contaminant Source281

We start by analyzing the performance of MCMC with the DRAM sampler of m when282

the PDE-based transport model (3) is used to generate realizations of c(x, ti). Since the283

model is treated as exact, this step allows us to establish the best plume reconstruction284

provided by our implementation of MCMC. The latter relied on 100000 samples of m, the285

first half of which was used in the “burn-in” stage and, hence, are not included into the286

estimation sample set. Figure 6 exhibits sample chains for each of the six parameters m287

characterizing the initial plume configuration cin(x). Visual inspection of these plots reveals288

that MCMC does a good job identifying the centers of mass of the two co-mingling plumes,289

(x1,i, x2,i) with i = 1 and 2; identification of the spatial extent, σi, and strength, Si, of these290

plumes is less accurate.291
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Figure 6. MCMC chains of the parameters m characterizing the initial plume configuration

cin(x) obtained by sampling from the transport model (3). Each Markov chain represents a param-

eter value plotted as function of the number of iterations (links in the chain). The black horizontal

lines are the true values of each parameter.

Table 4. MCMC chain statistics—mean, standard deviation, integrated autocorrelation time

τ , and Geweke convergence diagnostic p—of the parameters m characterizing the initial plume

configuration cin(x) obtained by sampling from the PDE model. Also shown is the total contaminant

mass of the two co-mingling plumes, M1 and M2.

Parameter True value Mean Std τ p

x1,1 325 327.5836 3.3924 1046.3394 0.9991
x2,1 325 325.7773 1.6108 1289.5577 0.9929
x1,2 562.5 564.3320 1.9967 2218.9018 0.9881
x2,2 625 624.7743 0.3203 402.0658 0.9998
S1 30 18.6853 0.5007 1713.8339 0.9699
σ1 15 19.1371 0.2365 2172.9087 0.9837
S2 50 44.3071 2.8493 4441.9589 0.7632
σ2 17 18.0939 0.5932 4409.0626 0.8832
M1 20.4244 20.6709 − − −
M1 43.5802 43.74 − − −
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Table 4 provides a more quantitative assessment of the performance of the PDE-based292

MCMC. The standard deviations of the MCMC estimates of the plumes’ centers of mass,293

(x1,i, x2,i), is no more than 1% of their respective means, indicating high confidence in294

the estimation of these key parameters. The standard deviations for the other parameter295

estimates, relative to their respective means, are appreciably higher. Also shown in table 4296

are Sokal’s adaptive truncated periodogram estimator of the integrated autocorrelation time297

τ (Sokal, 1997), and the Geweke convergence diagnostic p (Geweke, 1991). These quantities298

are routinely used to diagnose the convergence of Markov chains. The former provides an299

average number of dependent samples in a chain that contain the same information as one300

independent sample; the latter quantifies the similarity between the first 10% samples and301

the last 50% samples.302

Although somewhat less accurate, the estimates of the spatial extent, σi, and strength,303

Si, of the co-mingling plumes is more than adequate for field applications. Their estimation304

errors cannot be eliminated with more computations, as suggested by a very large number of305

samples used in our MCMC. Instead, they reflect the relative dearth of information provided306

by a few sampling locations.307
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Figure 7. MCMC chains of the parameters m characterizing the initial plume configuration

cin(x) obtained by sampling from the CNN surrogate (10). Each Markov chain represents a param-

eter value plotted as function of the number of iterations (links in the chain). The black horizontal

lines are the true values of each parameter.

Next, we repeat the MCMC procedure but using the CNN surrogate to generate sam-308

ples. Figure 7 exhibits the resulting MCMC chains of the parameters m, i.e., the parameter309

values plotted as function of the number of samples N (excluding the first 50000 samples310

used in the burn-in stage). Because of the prediction error of the CNN surrogate, the chains311

differ significantly from their PDE-based counterparts in fig. 6. They are visibly “better312

mixed”, an observation that is further confirmed by the fact that the integrated autocor-313

relation times τ in table 5 are much smaller than those reported in table 4. However, the314

standard deviations (std) for the parameter estimators are much larger than those obtained315

with the PDE-based MCMC; this implies that the CNN prediction error undermines the316

ability of the MCMC to “narrow down” the posterior distributions. The posterior PDFs for317

the centers of mass of the two co-mingling plumes, (x1,i, x2,i), are shown in figs. 8 and 9. The318

discrepancy between the actual and reconstructed (as the means of these PDFs) locations319

is within 7 m; it is of negligible practical significance.320

Comparison of tables 4 and 5 reveals that, similar to the PDE-based sampler, the321

CNN-based sampler provides more accurate estimates of the source location (x1,i, x2,i) than322

of its spread (σi) and strength (Si). However, in practice, one is more interested in the total323

mass of the released contaminant (M) rather than its spatial configuration (characterized324
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Figure 8. Probability density functions (solid lines) and histograms (gray bars) of the centers

of mass of the two co-mingling spills, (x1,1, x2,1) and (x1,2, x2,2), computed with MCMC drawing

samples from the PDE-based transport model. Vertical dashed lines represent the true locations.
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Table 5. MCMC chain statistics—mean, standard deviation, integrated autocorrelation time τ ,

and Geweke convergence diagnostic p—of the parameters m characterizing the initial plume config-

uration cin(x) obtained by sampling from the CNN surrogate. Also shown is the total contaminant

mass of the two co-mingling plumes, M1 and M2.

Parameter True value Mean Std τ p

x1,1 325 322.3274 124.4586 189.8946 0.9944
x2,1 325 328.8859 43.1297 231.9033 0.9992
x1,2 562.5 555.4074 30.3591 35.8577 0.9983
x2,2 625 623.8933 4.5785 43.2115 0.9999
S1 30 28.4441 154.6037 514.4594 0.8100
σ1 15 15.9822 48.4355 537.7868 0.9094
S2 50 64.6830 275.2247 540.6132 0.9962
σ2 17 15.1550 37.6966 543.3779 0.9964
M1 20.4244 21.9306 − − −
M1 43.5802 44.8789 − − −

by σi and Si). The mass of each of the co-mingling plumes in (11), M1 and M2, is325

Mi = θ

∫
Ωi

cin(x)dx, Ωi : [x1,i ± 100]× [x2,i ± 100], i = 1, 2. (12)326

Both the PDE- and CNN-based MCMC yield accurate estimates of M1 and M2 (tables 4327

and 5).328

4.4 Computational Efficiency of MCMC with CNN Surrogate329

The proposed CNN-based MCMC is about 20 times faster than MCMC with the high-330

fidelity transport model (table 6). This computational speed-up is in large part due to the331

use of CNN-related computations, while the PDE solver utilizes CPUs. One could rewrite332

PDE-based transport models to run on GPUs, but it is not practical. At the same time,333

no modifications or special expertise are needed to run the Pytorch (Paszke et al., 2019)334

implementation of neural networks on GPUs.335

Table 6. Computational cost (in seconds) of the MCMC samplers based on the PDE-based

transport model and its CNN surrogate. The PDE sampler uses CPU; the CNN sampler is trained

and simulated on GPUs provided by GoogleColab.

Number of samples Sampling time Training time Average time per sample

PDE 105 101849.0 0 1.01849
CNN 105 1101.7 4007.4 0.05109

5 Conclusions336

We proposed an MCMC approach that uses DRAM sampling and draws samples from337

a CNN surrogate of a PDE-based model. The approach was used to reconstruct contaminant338

release history from sparse and noisy measurements of solute concentration. In our numerical339

experiments, water flow and solute transport take place in a heterogeneous two-dimensional340

aquifer; the goal is to identify the spatial extent and total mass of two co-mingling plumes341
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Figure 9. Probability density functions (solid lines) and histograms (gray bars) of the centers

of mass of the two co-mingling spills, (x1,1, x2,1) and (x1,2, x2,2), computed with MCMC drawing

samples from the CNN surrogate. Vertical dashed lines represent the true locations.
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at the moment of their release into the aquifer. Our analysis leads to the following major342

conclusions.343

1. The CNN-based MCMC is able to identify the locations of contaminant release, as344

quantified by the centers of mass of co-mingling spills forming the initial contaminant345

plume.346

2. Although somewhat less accurate, the estimates of the spread and strength of these347

spills is adequate for field applications. Their integral characteristics, the total mass348

of each spill, are correctly identified.349

3. The estimation errors cannot be eliminated with more computations. Instead, they350

reflect both the ill-posedness of the problem of source identification and the relative351

dearth of information provided by sparse concentration data.352

4. Replacement of a PDE-based transport model with its CNN-based surrogate increases353

uncertainty in, i.e., widens the confidence intervals of, the source identification.354

5. The CNN-based MCMC is about 20 times faster than MCMC with the high-fidelity355

transport model. This computational speed-up is in large part due to the use of356

CNN-related computations, while the PDE solver utilizes CPUs.357
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