Reply to 'Comment on "Bayesian Update and Method of Distributions: Application to Leak Detection in Transmission Mains" by Wang, Che, and Ghidaoui'

Abdulrahman A Alawadhi¹ and Daniel M Tartakovsky²

¹University of California, San Diego ²Stanford University

November 23, 2022

Reply to Comment on "Bayesian Update and Method of Distributions: Application to Leak Detection in Transmission Mains" by Wang, Che, and Ghidaoui

Abdulrahman Alawadhi¹ and Daniel M. Tartakovsky²

Department of Machanical and Acrospace Engineering, University of California, San Diago, 0500 Cilman Drive, La Jalla

5	Department of Meenanical and Actospace Engineering, Oniversity of Camorina, San Diego, 5500 Oninan Drive, La Jona,
6	CA 92093, USA.
7	² Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Stanford, CA 94305, USA.
8	We thank the Comment's authors both for their kind words about our analysis and
9	for pointing out the need for further developments of our leak detection method. We agree
10	with the authors that the performance of our method, like that of any data assimilation

technique, is affected by, and must handle, ubiquitous measurement errors. That is why the generation of observational data in *Alawadhi and Tartakovsky* [2020] includes white noise $\xi(t)$, which "accounts for measurement errors and ambient noise. This gives a Gaus-

sian observation model with mean $h_{obs}(t)$ and variance 1."

We also agree that the wave speed a is a potentially important source of uncertainty 15 in field applications. It can be quantified by treating a as either a random variable or a 16 random field. The method of distributions used by Alawadhi et al. [2018] to derive a de-17 terministic equation for the PDF $f_h(H; x, t)$ of pressure head h(x, t) can be modified to 18 account for this eventuality. Two strategies for achieving that are derivation of i) a deter-19 ministic equation for the joint PDF $f_{ha}(H,A;x,t)$ for the random variable a and the ran-20 dom field h(x,t); and ii) a PDF equation for $f_h(H; x,t)$ that would require a closure, such 21 as the Large Eddy Diffusivity approximation [Venturi et al., 2013; Wang et al., 2013]. We 22 are currently pursuing this line of research. 23

24 References

2

3

4

Alawadhi, A., F. Boso, and D. M. Tartakovsky (2018), Method of distributions for water-

hammer equations with uncertain parameters, *Water Resour. Res.*, 54(11), 9398–9411,

doi:10.1029/2018WR023383.

Corresponding author: D. M. Tartakovsky, tartakovsky@stanford.edu

- Alawadhi, A. A., and D. M. Tartakovsky (2020), Bayesian updating and method of distri-
- ²⁹ butions: Application to leak detection in transmission mains, *Water Resour. Res.*, 56(2),
- ³⁰ e2019WR025879, doi:10.1029/2019WR025879.
- Venturi, D., D. M. Tartakovsky, A. M. Tartakovsky, and G. E. Karniadakis (2013), Exact
- PDF equations and closure approximations for advective-reactive transport, *J. Comput. Phys.*, 243, 323–343.
- Wang, P., D. M. Tartakovsky, K. D. Jarman Jr, and A. M. Tartakovsky (2013), CDF solu-
- tions of Buckley–Leverett equation with uncertain parameters, *Multiscale Model. Simul.*,
- ³⁶ *11*(1), 118–133.