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Abstract

T-type intersections are commonly observed in natural fracture networks. Their impacts on the connectivity and flow results

in complex fracture networks are rarely investigated. In this work, we implement the discrete fracture network method to

construct complex fracture networks, denoted as original fracture networks. By implementing the rule-based fracture growth

algorithm, we generate the corresponding kinematic fracture networks with a substantial proportion of T-type intersections.

The connectivity and flow results of both the single-phase and two-phase flow simulations in these two types of fracture networks

are systematically investigated. The results show that kinematic fracture networks tend to connect more fractures with fewer

intersections and yield better connectivity than the original ones. Most kinematic fracture networks have larger permeability in

the single-phase flow simulation and higher cumulative gas production in the two-phase flow simulation than original fracture

networks under the same boundary conditions. The proportions of permeability and production enhancement are 68\% and

77\%, respectively. Flow results, like the permeability and production, have strong positive correlations with the connectivity

of the fracture networks, but they are nonequivalent and strongly impacted by the number of inlets and outlets.
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Key Points:8

• The rule-based fracture growth algorithm is implemented to construct kinematic9
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Abstract15

T-type intersections are commonly observed in natural fracture networks. Their impacts16

on the connectivity and flow results in complex fracture networks are rarely investigated.17

In this work, we implement the discrete fracture network method to construct complex18

fracture networks, denoted as original fracture networks. By implementing the rule-based19

fracture growth algorithm, we generate the corresponding kinematic fracture networks with20

a substantial proportion of T-type intersections. The connectivity and flow results of both21

the single-phase and two-phase flow simulations in these two types of fracture networks22

are systematically investigated. The results show that kinematic fracture networks tend23

to connect more fractures with fewer intersections and yield better connectivity than the24

original ones. Most kinematic fracture networks have larger permeability in the single-phase25

flow simulation and higher cumulative gas production in the two-phase flow simulation26

than original fracture networks under the same boundary conditions. The proportions of27

permeability and production enhancement are 68% and 77%, respectively. Flow results, like28

the permeability and production, have strong positive correlations with the connectivity of29

the fracture networks, but they are nonequivalent and strongly impacted by the number of30

inlets and outlets.31

1 Introduction32

Fractures provide essential pathways to subsurface flow in formations with low per-33

meability [Berkowitz, 2002; Hardebol et al., 2015; Gierzynski and Pollyea, 2017]. However,34

current technologies, such as outcrop observations, wellbore imaging, seismic mapping, and35

crosswell seismic techniques [Rijks and Jauffred, 1991; Wilt et al., 1995; Ellefsen et al., 2002;36

Prioul and Jocker , 2009; Ukar et al., 2019], are insufficient to have detailed characteriza-37

tions of subsurface fracture networks. Discrete fracture networks (DFNs) are a practical38

alternative to describe subsurface fractures by preserving main geometrical properties, such39

as fracture lengths, center positions, orientations, and topological structures, but neglecting40

intricate details, like fracture roughness and curved shapes. DFNs are widely used to in-41

vestigate the natural fracture networks and their impact on the subsurface flow [Robinson,42

1983; Bour and Davy, 1997a, 1998; Darcel et al., 2003; Wang et al., 2007; Lei et al., 2017;43

Zhu et al., 2018; Wang et al., 2021].44

The ordinary procedure to generate DFNs includes: i, choosing proper stochastic dis-47

tributions to describe fracture geometries; ii, generating discrete fractures according to the48

–2–



Confidential manuscript submitted to Water Resource Research

chosen distribution in succession; iii, stopping generating fractures when the termination49

criterion is reached, such as a prescribed fracture intensity. Through implementing the pro-50

cedure, it is almost impossible to generate fractures abutting the other fractures (T-type51

intersections, Fig. 1a), and only cross fractures (X-type intersections, Fig. 1b) are avail-52

able. However, T-type intersections are commonly observed in real outcrop maps and take53

a significant proportion of the total intersections [Dershowitz and Einstein, 1988; Watkins54

et al., 2015; Zhu et al., 2021a]. Fig. 2 shows two fracture outcrop maps at the Achnashellach55

Culmination field area in North-West Scotland (Fig. 7B and 7D in Watkins et al. [2015]),56

and different types of nodes are marked in different colors. The proportions of T-type in-57

tersections are 74% and 76%, respectively. V-type intersections (Fig. 1c) have coincident58

tips and are unlike to form in reality [Sanderson and Nixon, 2015]. Therefore, they are not59

distinguished from T-type intersections in Fig. 2.

F1

F2
F2

F1 F1

F2

X-type T-type V-type 

(a) (b) (c)

Figure 1. Demonstration of different types of intersections between fractures. F1 and F2 refer

to the first and second fracture.

45

46

60

(a) (b)

Figure 2. Fracture outcrop map at Achnashellach Culmination field area in North-West Scotland

(Fig. 7B and 7D in Watkins et al. [2015]) with different types of intersection nodes marked in

different colors. Red nodes are isolated nodes; Green nodes refer to T-type intersection nodes; Blue

nodes represent X-type intersection nodes.

61

62

63

64
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T-type intersections are naturally formed during the fracture growth process, and they65

are important to enhance the connectivity of fracture networks because of the reduction of66

dead-ends [Barton and Hsieh, 1989; Odling, 1997]. Complex Numerical schemes are nec-67

essary to obtain the accurate stress/strain field considering different rock types, strengths,68

and stress states [Olson et al., 2009; Chen and Wang, 2017]. However, in complex fracture69

networks, such numerical simulation is computationally unacceptable. Therefore, detailed70

investigations on the impact of T-type intersections on the connectivity and subsurface flow71

in complex fracture networks are rarely conducted.72

Davy et al. [2010, 2013] considered the fracture growth process by simplifying the com-73

plex mechanical calculation with three steps: nucleation, growth, and arrest. The method74

provides different constraining rules according to field and experiment observations and me-75

chanical principles to describe the nucleation, growth, and arrest process. The rule-based76

method renders main mechanical interactions and forms many T-type intersections. Maillot77

et al. [2016] implemented the nucleation-growth-arrest method and investigated the impact78

of T-type intersections on fracture connectivity and flow, where meaningful findings and79

conclusions were summarized. However, their cases are limited to comparisons between the80

kinematic and Poisson models, where fracture centers and fracture orientations are uniformly81

distributed. Percolation analysis was involved, and the conventional percolation threshold82

derived from excluded volume method is only applicable for the Poisson model dominated83

by small fractures [Bour and Davy, 1997a; Zhu et al., 2018]. However, natural fractures84

are usually spatially clustered instead of uniform [Akara et al., 2021; Zhu et al., 2018] and85

preferential orientations depending on stress history are commonly observed [Laubach, 1988;86

Kemeny and Post, 2003; Watkins et al., 2015]. Therefore, a more systematic analysis is nec-87

essary to investigate the impact of T-type intersections on the connectivity and subsurface88

flow in complex fracture networks.89

In this work, we followed the rule-based nucleation-growth-arrest method to generate90

T-type intersections in complex fracture networks, considering a wide range of geometrical91

variations on fractures. In specific, different levels of fracture lengths, orientations, and92

clustering degrees are included to describe complex fracture networks. Two types of fracture93

networks are constructed for comparison: original fracture networks (no fracture growth94

algorithm implemented) and kinematic fracture networks (with fracture growth algorithm95

implemented). Impacts of T-type intersections on the connectivity and subsurface flow are96

then systematically investigated in complex fracture networks.97
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The organization of this paper is as follows: In Section 2, techniques to construct98

complex fracture networks and generate T-type intersections are introduced. Topology99

analysis and flow simulation details are also included in Section 2. In Section 3, results100

of the systematic analysis of two types of fracture networks are presented. The impact of101

T-type intersections on the connectivity and subsurface flow is analyzed in detail. Section 4102

summarizes important findings and conclusions.103

2 Materials and Methods104

In this section, we introduce techniques to construct complex fracture networks and105

their corresponding kinematic fracture networks considering the fracture growth process.106

The detailed information for the single and two-phase flow simulation is also presented.107

2.1 Fracture network construction and topology analysis108

The process to construct discrete fracture networks are intensively discussed, and details109

are available in our recent preprint on the in-house DFN modeling software, HatchFrac [Zhu110

et al., 2021b]. Three main geometrical properties of fractures are emphasized in this work111

and described with different stochastic distributions. A power-law distribution is adopted to112

describe fracture length [Bour and Davy, 1997b]. The fracture orientations are characterized113

by the von Mises–Fisher distribution [Whitaker and Engelder , 2005]. The fractal spatial114

density distribution is implemented to generate clustered fracture centers, which is closer115

to the reality [Akara et al., 2021; Zhu et al., 2021a]. A fractal dimension characterizes the116

fractal spatial density distribution and varies between 1.0 and 2.0 for fracture networks117

in 2D. The system size is 100 arbitrary units, and the minimum length of fractures is 10118

units. From outcrop observations, the exponent of the power-law usually varies in the range119

of [2.0, 3.0] [Bonnet et al., 2001; Zhu et al., 2018] and the concentration parameter κ is120

usually smaller than 3.0 [Zhu et al., 2021a]. In this work, three levels of each parameter121

are chosen to represent different scenarios of complex fracture networks. A Taguchi method122

[Karna et al., 2012] is adopted to generate nine orthogonal cases with three levels for three123

parameters. Each case is stabilized with 10 realizations to avoid random effects from statistic124

distributions. Although this work focuses on the analysis of the 2D fracture network, the125

extension to 3D fracture networks can be convenient following similar procedures in 2D126

cases. Table 1 summarizes the parameters for each case.127

–5–



Confidential manuscript submitted to Water Resource Research

Table 1. Parameters for complex fracture networks128

Parameter Low Intermediate High Definition

Fracture length, a 2.0 2.5 3.0 The exponent of a power-law distribution

Position of the fracture center, FD 1.5 1.7 2.0
The fractal dimension of a

fractal spatial density distribution

Fracture orientation, κ 0 5 10
The concentration parameter

in a von Mises–Fisher distribution

After choosing the parameters for different statistic distributions, the discrete fracture129

network can be constructed by adding fractures in succession. The termination criterion is130

when the fracture network is over-percolative, and the fracture intensity is twice as large131

as the intensity at the percolation state. The percolation state is where a spanning cluster132

connecting four sides of the domain is formed. The over-percolative states are widely ob-133

served from natural outcrops [Watkins et al., 2015; Zhu et al., 2021a]. 90 discrete fracture134

networks are generated and denoted as original fracture networks since no fracture growth is135

considered. Fracture networks considering fracture growth are denoted as kinematic fracture136

networks.137

Connectivity determines the hydraulic diffusivity of a fracture network and significantly

impacts the flow behavior. Several methods are available to measure connectivity of the

fracture system, such as the connectivity index/field method [Xu et al., 2006; Fadakar-A

et al., 2013], global efficiency method [Zhu et al., 2021c], ternary diagram method [Barton

and Hsieh, 1989]. Aperture variations of fractures are not included in this work. Therefore,

it is sufficient and convenient to follow Sanderson and Nixon [2015] and adopt CB , the mean

number of linkages of each branch, as the measure of connectivity.

CB = 3×NT + 4×NX

NB
, (1)

where NT, NX, and NB refer to the numbers of T-type nodes, X-type nodes and branches.

NB is calculated by:

NB = 1
2(NI + 3NT + 4NX), (2)

where NI is the number of I-type nodes.138

CB is a dimensionless number varying between 0 and 2.0, and a larger value indicates139

better connectivity. The topology analysis and connectivity index calculation are conducted140
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for the largest cluster of the fracture network (red fractures in Fig. 3) instead of all frac-141

tures because the subsurface fluid flows through well-connected fracture networks instead142

of isolated fractures in formations with low permeability.143

Figs. 3(a) and (b) show two examples of original fracture networks with different com-147

binations of geometrical parameters. The fracture network in Fig. 3(a) has a = 3, FD = 2,148

and κ = 5. The total amount of intersections in the largest fracture cluster is 1210. The149

connectivity index is 1.724. The fracture network in Fig. 3(b) has a = 2, FD = 1.5, and150

κ = 0. The total number of intersection and the connectivity index of the largest cluster151

are 522 and 1.80 respectively.

(a) (b)

(c) (d)

a=3, FD=2,  =5 a=2, FD=1.5,  =0

No growth

With growth

Figure 3. Examples of the original fracture networks (a, b) and the corresponding kinematic

fracture networks (c,d). Red line segments refer to the largest fracture cluster and green line

segments are local clusters.

144

145

146

152
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2.2 Fracture growth and T-type intersections153

The rule-based fracture growth algorithm constrains the growth process with specific154

nucleation, growth, and arrest rules. Making original and kinematic fracture networks155

similar is essential to compare their impacts on connectivity and flow results. Therefore,156

we construct a corresponding kinematic counterpart for each original fracture network. The157

number of nuclei equals the number of fractures in the original fracture network. Each158

nucleus grows in the same direction as the original fracture. The fracture intensity, P21159

(the length of fracture traces per unit area), is kept the same for the original and kinematic160

fracture networks. Therefore, the kinematic fracture network requires one degree of freedom161

to match the prescribed intensity. Fracture lengths in kinematic fracture networks vary to162

match the intensity and depend on the velocity model and arrest criterion. The arrest163

criterion is that each fracture tip stops growing when it encounters a large fracture [Segall164

and Pollard, 1983; Nur , 1982]. The growth velocity at fracture tips follows a power-law165

distribution if assuming fracture propagation happens in a stable and quantifiable sub-166

critical regime [Olson, 2004; Engelder , 2004].167

v = dl/dt = A( KI

KIC
)
n

(3)168

where KI is a stress intensity factor of the opening mode at the fracture tip; KIC is the169

fracture toughness at opening mode; A is a proportionality coefficient. n is a sub-critical170

growth index of the fracture, depending on environmental conditions and rock types. For171

simplicity, we set n = 0 and assume the growth velocity of the ith fracture is a combination172

of a constant part and a length-related random part.173

vi = lc + rand(0, 2.0× li
lmax

) (4)174

where lc is the constant velocity for all fractures and set as 5 units/step; rand(a,b) is a175

function to generate random varaibles distributed in the interval [a, b]; li is the length of176

original fracture; lmax is the largest fracture length in the original fracture network. The177

advantage of Eq. 4 is to provide a degree of freedom with the random function to match the178

prescribed fracture intensity. Furthermore, larger fractures in the original fracture network179

tend to have a higher growth velocity and remain a similar shape in the kinematic fracture180

network. Choices of lc and the coefficient of 2.0 before li

lmax
are decided with trial and error181

and the chosen combination can reach the convergence efficiently.182

Figs. 3(c) and (d) show the corresponding kinematic fracture networks of Figs. 3(a)183

and (b). The total number of intersections in the largest fracture cluster of the fracture184
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network in Fig. 3(c) is 1150, and the connectivity index is 1.827. For the fracture network185

in Fig. 3(d), the total number of intersections and the connectivity index of the largest186

cluster are 450 and 1.877, respectively.187

2.3 Single/two-phase flow simulation188

We consider the impact of T-type intersections in the single-phase and two-phase flow,189

which are essential for real engineering applications. The enhanced geothermal extraction190

process is a typical simplified single-phase flow example, where cold water is injected into191

the subsurface formation and transported to the production well through the fracture net-192

work. A two-phase flow simulation can mimic the simplified process of shale gas production,193

where natural gas stored in the matrix firstly flows to the fracture network and then to the194

production well. UNCONG[Li et al., 2015] is adopted to simulate the single/two-phase195

flow with embedded discrete fracture network techniques. In the flow simulation, the unit196

of the system size is a meter for convenient calculations.197

For the single-phase flow simulation, the matrix is assumed to be impermeable and199

constant pressure boundary conditions are implemented for all fracture networks. The inlet200

boundary (left side) has a constant pressure of 2.0 bar, and the outlet boundary (right side)201

has a constant pressure of 0 bar. The chosen pressure values constrict the Reynolds number202

to a feasible range, O(10−3) and yield a macroscopic pressure gradient of 2.0 kPa/m [Zhu203

et al., 2021c]. The top and bottom boundaries are set impermeable. A sketch map of the204

boundary condition for the single-phase flow is demonstrated in Fig. 4(a). Fig. 5(a) shows205

the pressure distribution of the single-phase flow in the fracture network (Fig. 3(a)).

Figure 4. Boundary conditions for the single-phase (a) and two-phase (b) flow198

–9–



Confidential manuscript submitted to Water Resource Research

(a) (b)

Figure 5. Pressure distribution in the single-phase flow simulation (a) and two-phase flow

simulation (b)

206

207

For the two-phase flow, we consider the gas-water flow in formations with ultra-low208

permeability. The matrix has a low permeability of 1.0 micro-darcy. Fractures have a high209

permeability of 10 darcies, seven orders of magnitude higher than the matrix permeability.210

The initial reservoir pressure is set as 300 bar. A horizontal well is drilled at the middle of211

the formation, and the bottom-hole pressure is set as 100 bar and kept constant. Fig. 4(b)212

presents a sketch map of the boundary condition for the two-phase flow. Detailed input213

parameters are listed in Table 2. Fig. 6(a) shows the compressibility and viscosity changes214

of gas with pressure. Figs. 6 (b) and (c) show the relative permeability curves in the matrix215

and fractures, respectively. The production is simulated for ten days, and Fig. 5(b) shows216

the pressure distribution in the formation after the production.217

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300 350 400 450

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0130

0.0131

0.0132

0.0133

0.0134

0.0135

0.0136

(a) (b) (c)

Figure 6. (a) the compressibility (Bg) and viscosity (µg) changes of gas with pressure; (b) the

relative permeability curve in the matrix; (c) the relative permeability curve in fractures; After Zhu

et al. [2022].

219

220

221
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Table 2. Input parameters for the two-phase simulation218

Property Value

Matrix permeability, km [µd] 1.0

Matrix porosity, φm [-] 0.05

Fracture permeability, kf [d] 10

Fracture porosity,φf [-] 1.0

The coefficient of water compressibility,Bw [bar−1] 3.15e-6

The coefficient of water viscosity compressibility, Bµw [cP · bar−1] 2.10e-6

Initial water saturation, Swi [-] 0.5

Initial reservoir pressure, Pi [bar] 300

Constant bottomhole pressure, Pb [bar] 100

3 Results and discussion222

The corresponding kinematic fracture networks share the same orientations and fracture223

intensities, both P20 and P21, as the original fracture networks. However, 87 out of 90224

kinematic fracture networks show different length distributions from the original ones based225

on a Two-sample Kolmogorov-Smirnov test, which is necessary to match the prescribed226

fracture intensity.227

Fig. 7 shows the proportion of T-type intersections out of total intersections. Almost no230

T-type intersections exist in the original fracture networks, and the corresponding proportion231

is close to zero for all scenarios (blue circles). After implementing the fracture growth232

algorithm, the proportion of T-type intersections is significantly increased (red circles), and233

the mean proportion of the 90 scenarios is 0.32.234

Fig. 8 shows the ratio of the total number/ length of fractures in the largest cluster and239

the whole domain in both kinematic and original fracture networks. Green line segments240

linking two fracture networks represent an increase from the original case to the correspond-241

ing kinematic case, and black line segments denote a decrease. All cases have more fractures242

belonging to the largest cluster in the kinematic fracture networks than the original ones. 4243

out of 90 cases have larger fracture lengths in the original fracture networks than in the kine-244

matic ones. Fig. 9 shows the ratios of total intersections and connectivity index between the245

kinematic and original fracture networks. Most cases have better connectivity in the kine-246
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-0.2

-0.1

-0.0

0.1

0.2

0.3
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0.5

Kinematic

Original

Figure 7. The ratio between the number of T-type intersections (NT I) and total intersections

(T-type, NT I plus X-type, NXI)

228

229

matic than the original fracture networks. The only different case also has its connectivity247

index ratio close to 1.0. Most of the scenarios (77 out of 90) have fewer intersections in the248

kinematic than the original fracture networks. The decreasing intersections and increasing249

fracture numbers yield a decreasing intersections per fracture (Ipf ) in the kinematic fracture250

networks. Ipf has been adopted as a percolation parameter and a measure of connectivity251

for fracture networks with constant fracture lengths and uniformly distributed fracture cen-252

ters and orientations [Robinson, 1983]. However, the results here demonstrate that Ipf is an253

invalid parameter to characterize the connectivity of complex fracture networks as concluded254

in Zhu et al. [2018]. In a kinematic fracture network with substantial T-type intersections,255

the connectivity is enhanced, and more fractures are connected to form a larger cluster, but256

the number of intersections usually decreases.257

From the single-phase flow simulation, the permeability of the fracture network is cal-262

culated. Fig. 10 shows the ratio of permeability between kinematic and origin fracture263

networks. Out of 90 cases, 61 cases have their permeability increased in the kinematic264

fracture networks compared with the original ones. The maximum increase of permeability265

can be 3.5 times. Different fracture geometries (fracture length, positions, and orientations)266
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Figure 8. Ratios between the number (a) and length (b) of fractures in the largest cluster(Nlc,

Llc) and the number and length of total fractures(Nt, Lt)
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236
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Figure 9. Ratios of the connectivity index (a) and total number of intersections (b) between

the kinematic and original fracture networks

237

238

have a different impact on the permeability ratio. Therefore, results are plotted separately267

in different colors and sub-figures regarding fracture length (a), positions of fracture centers268

(FD), and concentrated fracture orientations (κ). The number of cases with a permeability269

ratio larger than 1.0 is denoted in the figure. From Fig. 10 (a), more cases have a higher per-270

meability in the kinematic fracture networks with an increase of a, indicating that kinematic271

fracture networks composed of small fractures tend to have better permeability. The cluster-272

ing effects have a negative contribution to the permeability enhancement in the kinematic273

fracture networks, as shown in Fig. 10 (b). Fig. 10 (c) shows non-monotonic variations274

of concentrate fracture orientations on the permeability ratio, indicating an insignificant275

impact from the orientation concentration on the permeability enhancement.276
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Figure 10. Permeability ratio between the kinematic fracture networks and the original ones.

Different sub-figures classify the permeability ratio based on the geometrical parameters: (a) the

power-law exponent a; (b) the fractal dimension FD; (c) the concentration parameter κ. The

number of cases with the ratio larger than 1.0 is denoted.

258

259

260

261

An input/output correlation method is implemented to evaluate the impact of each281

independent geometrical parameter on the permeability of kinematic and original fracture282

networks. The sensitivity of each parameter is measured according to the correlation coeffi-283

cient, ρ, between the parameter and the response. Fig. 11 shows the sensitivity analysis of284

fracture geometries with different responses, including the permeability of original fracture285

networks (Fig. 11a), the permeability of kinematic fracture networks (Fig. 11b), and the286

permeability ratio between these two types of fracture networks (Fig. 11c). For the original287

and kinematic fracture networks, both a and κ have positive correlations with the perme-288

ability, indicating that fracture networks composed of small fractures with concentrated289

orientations tend to have higher permeability. The orientation concentration has a more290

critical impact on the permeability enhancement. FD has slightly negative correlations, in-291

dicating that clustering effects can enhance permeability and this effect is more significant292

in kinematics fracture networks. a and FD have positive and negative correlations with the293

permeability ratio. κ has an insignificant impact on the permeability ratio. The correlation294

results in Fig. 11(c) are consistent with behaviors shown in Fig. 10.295

Fig. 12 shows ratios of cumulative gas production after ten days between kinematic and300

original fracture networks. In all 90 cases, 69 cases have their cumulative production larger in301

the kinematic fracture networks than in the original ones. The maximum increase can be 1.4302

times. Different sub-figures and colors are presented for different geometrical parameters (a,303

FD, and κ). a and FD have positive and negative impacts on the production ratio, similar304

to the results in the permeability ratio in Figs. 10(a, b). Therefore, kinematic fracture305
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(a) (b) (c)

Figure 11. Sensitivity analysis of fracture geometries with (a): permeability in origin frac-

ture networks; (b): permeability in kinematic fracture networks; (c): permeability ratio between

kinematic and original fracture networks as responses. ρ is the correlation coefficient between the

parameter and the response.

277

278

279

280

networks that are composed of small fractures (a larger exponent, a) with weak clustering306

effects (a larger fractal dimension, FD) tend to produce more than the original ones. The307

concentration parameter κ has a negative impact on the production ratio instead of non-308

monotonic variations shown in Fig. 10(c), indicating that concentrated fracture orientations309

may not help to enhance production in kinematic fracture networks.

a=2.0

a=2.5

a=3.0

Figure 12. Production ratio between the kinematic fracture networks and the original ones.

Different sub-figures classify the production ratio based on the geometrical parameters: (a) the

power-law exponent a; (b) the fractal dimension FD; (c) the concentration parameter κ. The

number of cases with the ratio larger than 1.0 is denoted.

296

297

298

299

310

Fig. 13 shows similar sensitivity analyses with different responses, including the cumu-315

lative gas production of original and kinematic fracture networks and the production ratio316

between these two types of fracture networks. Compared with the sensitivity results on317

permeability in Fig. 11, the exponent a and concentration parameter κ have similar results,318
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positive correlations with the cumulative gas production in both kinematic and original frac-319

ture networks. However, the fractal dimension FD has a positive correlation, indicating that320

clustering effects cannot increase the gas production, and this impact is more signification321

in the original fracture networks. In Fig. 13(c), the sensitivity results are consistent with322

the observations in Fig. 12 with a positive correlation for a, a negative correlation for FD323

and a weak negative correlation for κ.

(a) (b) (c)

Figure 13. Sensitivity analysis of fracture geometries with (a): cumulative gas production in

origin fracture networks; (b): cumulative gas production in growth fracture networks; (c): cumu-

lative gas production ratio between origin and growth fracture networks as responses. ρ is the

correlation coefficient between the parameter and the response.

311

312

313

314

324

Most kinematic fracture networks have better permeability or cumulative gas produc-325

tion than original ones, and the corresponding proportions are 68% and 77%, respectively.326

However, the percentage of cases with a connectivity enhancement in kinematic fracture327

networks is almost 100%. Therefore, flow behaviors and connectivity of fracture networks328

are correlated but nonequivalent, and flow results are not good candidates to evaluate the329

connectivity of complex fracture networks as dissuaded in Zhu et al. [2021c]. The flow be-330

haviors, such as permeability or fluid production, can be affected by the other geometrical331

configurations and different boundary conditions. Here, the impact of the number of inlets332

and outlets is investigated with available data. For single-phase flow, the number of inlets333

and outlets is the number of fractures intersecting the left and right boundaries. All frac-334

tures serve as inlet fractures for the two-phase flow, and the outlets are fractures intersecting335

the production well in the middle of the formation.336

The correlations are summarized in Table 3. Possible influential parameters in both337

kinematic and original fracture networks include the number of inlets and outlets for the338

single-phase flow, the number of outlets for the two-phase flow, and the connectivity index.339
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Table 3. Correlation coefficients between different parameters and responses361

Parameter

Response Permeability

(Original)

Permeability

(Kinematic)

Ratio of

permeability

Cumulative production

Original

Cumulative production

Kinematic

Ratio of

production

No. inletsSP (Original) 0.78 5 0.49 5 5 5

No. inletsSP (Kinematic) 5 0.97 0.48 5 5 5

No. outletsSP (Original) 0.90 5 0.10 5 5 5

No. outletsSP (Kinematic) 5 0.97 0.37 5 5 5

No. outletsTP (Original) 5 5 5 0.74 5 0.16

No. outletsTP (Kinematic) 5 5 5 5 0.69 0.30

Connectivity index (Original) 0.61 5 0.71 0.65 5 0.58

Connectivity index (Kinematic) 5 0.63 0.67 5 0.85 0.54

SP: single-phase flow simulation; TP: two-phase flow simulation

The responses include the permeability of kinematic and original fracture networks, the340

cumulative gas production of kinematic and original fracture networks, and the ratios of341

permeability and cumulative production of these two types of fracture networks.342

The parameters listed in Table 3 are not included in the sensitivity analysis of geomet-343

rical parameters because they are not independent of each other. For example, the number344

of inlets/outlets depends on the connectivity index, which correlates with geometrical pa-345

rameters (a, FD and κ). From the correlation coefficients shown in Table 3, the connectivity346

index has a positive correlation with flow results, including the permeability and cumulative347

production, indicating better connectivity of a fracture network can lead to a better flow348

performance. However, the number of inlets/outlets is also strongly correlated with the349

flow results, even with a higher correlation coefficient than the connectivity index. For the350

permeability calculation in the original fracture networks, the correlation coefficients of the351

number of inlets/outlets are 0.78 and 0.90, respectively. In the kinematic fracture networks,352

the correlation coefficients are 0.97 for both the number of inlets and outlets. For the cumu-353

lative production, the correlations between the number of outlets and cumulative production354

in the original and kinematic fracture networks are 0.74 and 0.69, respectively. Although the355

impact of inlets/outlets is not directly comparable with geometrical parameters, it is still356

qualitatively correct to conclude that the number of inlets and outlets significantly impacts357

the flow results. The impact of inlets/outlets on the permeability and production ratios is358

not as significant as the impact on individual permeability and production. Instead, the359

connectivity index correlates relatively better with permeability and production ratios.360
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4 Conclusions362

In this work, we construct complex fracture networks with their main geometries (frac-363

ture lengths, orientations, and center positions) constrained by different stochastic distri-364

butions. Multiple levels of geometrical parameters are chosen to make generated fracture365

networks more representative. By implementing the rule-based fracture growth method,366

we construct the corresponding kinematic fracture networks, which share the same fracture367

orientations and fracture intensities (P20 and P21) with the original fracture networks. Con-368

nectivity and flow results in the original and kinematic fracture networks are systematically369

analyzed, and several essential conclusions are summarized:370

• Kinematic fracture networks tend to connect more fractures with fewer intersections371

compared with the original fracture networks.372

• Kinematic fracture networks systematically have better connectivity than the original373

fracture networks.374

• Most kinematic fracture networks have larger permeability in the single-phase flow375

simulation and higher cumulative gas production in the two-phase flow simulation376

than original fracture networks under the same boundary conditions. The proportions377

of permeability and production enhancement are 68% and 77%, respectively.378

• Flow results, like the permeability and production, have strong positive correla-379

tions with the connectivity of the fracture networks, but they are nonequivalent and380

strongly impacted by the number of inlets and outlets.381

Data Availability382

The original and kinematic fracture networks are generated by an in-house DFN mod-383

eling software, HatchFrac. The detailed information about the software can be found at Zhu384

et al. [2021b]. The C++ code for generating 2D and 3D fracture networks and simulating the385

fracture growth process are available online (https://data.mendeley.com/datasets/zhs97tsdry/1).386
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