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Abstract

The detection and rapid characterisation of earthquake parameters such as magnitude are important in real time seismological

applications such as Earthquake Monitoring and Earthquake Early Warning (EEW). Traditional methods, aside from requiring

extensive human involvement can be sensitive to signal-to-noise ratio leading to false/missed alarms depending on the threshold.

We here propose a multi-tasking deep learning model – the Convolutional Recurrent model for Earthquake Identification and

Magnitude Estimation (CREIME) that: (i) detects the earthquake signal from background seismic noise, (ii) determines the

first P-wave arrival time and (iii) estimates the magnitude using the raw 3-component waveforms from a single station as model

input. Considering, that speed is essential in EEW, we use up to two seconds of P-wave information which, to the best of our

knowledge, is a significantly smaller data window compared to the previous studies. To examine the robustness of CREIME we

test it on two independent datasets and find that it achieves an average accuracy of 98\% for event-vs-noise discrimination and

can estimate first P-arrival time and local magnitude with average root mean squared errors of 0.13 seconds and 0.65 units,

respectively. We compare CREIME with traditional methods such as short-term-average/ long-term-average (STA/LTA) and

show that CREIME has superior performance, for example, the accuracy for signal and noise discrimination is higher by 4.5\%

and 11.5\% respectively for the two datasets. We also compare the architecture of CREIME with the architectures of other

baseline models, trained on the same data, and show that CREIME outperforms the baseline models.
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Key Points:12

• We use a novel sequence-to-sequence mapping to train a deep learning model to13

detect an earthquake, pick the P-wave arrival and estimate its magnitude.14

• The proposed model can perform reasonably well with 5 second windows contain-15

ing only up to 2s of P-wave data.16

• We show that our model can outperform traditional methods like STA/LTA and17

the existing deep learning models.18
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Abstract19

The detection and rapid characterisation of earthquake parameters such as magnitude20

are important in real time seismological applications such as Earthquake Monitoring and21

Earthquake Early Warning (EEW). Traditional methods, aside from requiring extensive22

human involvement can be sensitive to signal-to-noise ratio leading to false/missed alarms23

depending on the threshold. We here propose a multi-tasking deep learning model – the24

Convolutional Recurrent model for Earthquake Identification and Magnitude Estimation25

(CREIME) that: (i) detects the earthquake signal from background seismic noise, (ii)26

determines the first P-wave arrival time and (iii) estimates the magnitude using the raw27

3-component waveforms from a single station as model input. Considering, that speed28

is essential in EEW, we use up to two seconds of P-wave information which, to the best29

of our knowledge, is a significantly smaller data window compared to the previous stud-30

ies. To examine the robustness of CREIME we test it on two independent datasets and31

find that it achieves an average accuracy of 98% for event-vs-noise discrimination and32

can estimate first P-arrival time and local magnitude with average root mean squared33

errors of 0.13 seconds and 0.65 units, respectively. We compare CREIME with traditional34

methods such as short-term-average/ long-term-average (STA/LTA) and show that CREIME35

has superior performance, for example, the accuracy for signal and noise discrimination36

is higher by 4.5% and 11.5% respectively for the two datasets. We also compare the ar-37

chitecture of CREIME with the architectures of other baseline models, trained on the38

same data, and show that CREIME outperforms the baseline models.39

Plain Language Summary40

The detection of earthquakes and rapid determination of parameters such as mag-41

nitude is crucial in Earthquake Monitoring and Earthquake Early Warning (EEW). Ex-42

isting methods used to make such estimations are empirical and require expert analysts43

to define involved parameters, which is quite challenging. They are also sensitive to noise,44

which could lead to erroneous results. In this paper we propose a the Convolutional Recurrent45

model for Earthquake Identification and Magnitude Estimation (CREIME) which is ca-46

pable to detect an earthquake within 2 seconds of the first P-wave arrival and provides47

a first estimate for its magnitude. We test the model on two independent datasets to demon-48

strate its generalizability. CREIME successfully discriminates between seismic events and49

noise with an average accuracy of 98% and can estimate first P-arrival time and local50

magnitude with average root mean squared errors of 0.13 seconds and 0.65 units, respec-51

tively. We also show that CREIME can perform better than traditional methods like STA/LTA52

and previously published deep learning architectures in the context of rapid character-53

isation.54

1 Introduction55

According to its original definition (Richter, 1935) the magnitude of an earthquake56

is the logarithm of the maximum trace amplitude expressed in microns measured by a57

standard short-period torsion seismometer at an epicentral distance of 100km. It is one58

of ”the most important and also the most difficult parameters” involved in real-time seis-59

mology (Jin et al., 2013) particularly since most magnitude scales such as local magni-60

tude (mL), body wave magnitude (mB), surface wave magnitude (mS) are empirical and61

saturate at different magnitude ranges (Chung & Bernreuter, 1981; Ekström & Dziewon-62

ski, 1988). This, coupled with the complexity of the nature of the geophysical processes63

affecting earthquakes, makes it very difficult to have a single reliable measure for the size64

of an earthquake (Kanamori & Stewart, 1978). Magnitude values measured in different65

scales may thus differ by more than 1 unit, particularly for extremely large events due66

to saturation effects (Howell Jr, 1981; Giardini, 1988; Geller, 1976; Kanamori, 1983). Even67

for the same magnitude scale, values reported by different agencies may differ by up to68

–2–



manuscript submitted to JGR: Solid Earth

0.5 units (Mousavi & Beroza, 2020). Traditionally, frequency-domain parameters such69

as predominant period τmax
p (Nakamura, 1988; R. Allen & Kanamori, 2003), effective70

average period τc (Kanamori, 2005; Kuyuk & Allen, 2013; Jin et al., 2013) and ampli-71

tude domain parameters such as peak displacement (Pd) (Wu & Zhao, 2006; Kuyuk &72

Allen, 2013; Jin et al., 2013) calculated from the initial 1-3 seconds of P-waves have been73

shown to provide reliable estimates of (body wave) magnitudes through empirical rela-74

tions. Such methods have been applied to Earthquake Early Warning (EEW) systems75

in Japan, California, Taiwan etc. (R. Allen et al. (2009) and the references therein). It76

has further been shown that the correlation of such parameters increases steadily upon77

increasing the duration of data used (Ziv, 2014). Thus, there is an “inherent trade-off78

between speed and reliability” (Meier et al., 2019).79

Traditional machine-learning algorithms were ”limited by their inability to process80

data in its raw format” (LeCun et al., 2015) and the need for hand-crafted features. This81

challenge has been overcome by the emergence of deep learning. Deep learning comprises82

hierarchical feature learning methods (LeCun et al., 2015), whereby several simple non-83

linear mathematical functions are applied to the raw data, to extract an increasingly ab-84

stract representation of the data at each level. It is the job of the deep learning model85

to learn the parameters of these functions. The advent of deep learning, coupled with86

the availability of large volumes of data and affordable computational power in the form87

of GPUs, have led to state-of-the-art results in image recognition (Krizhevsky et al., 2017;88

He et al., 2016), speech recognition (Mikolov et al., 2011; Hinton et al., 2012), and nat-89

ural language processing (Peters et al., 2018; Collobert et al., 2011). In fields such as seis-90

mology, which have been data-intensive since their very origin and are witnessing an ex-91

ponential increase in the volume of data (Kong et al., 2018), deep learning has proven92

successful in several tasks such as event detection(Perol et al., 2018; Z. Li et al., 2018;93

Meier et al., 2019; W. Li et al., 2022; Fenner et al., 2022) and phase picking (W. Zhu &94

Beroza, 2019; Mousavi et al., 2020; Liao et al., 2021; W. Li et al., 2021; Zhou et al., 2019),95

event location characterisation (Perol et al., 2018; Panakkat & Adeli, 2009; Kuyuk & Susumu,96

2018), first motion polarity detection (Ross et al., 2018; Hara et al., 2019), among oth-97

ers.98

A deep learning based approach for magnitude estimation was presented by Mousavi99

and Beroza (2020). The model presented in that paper focuses on estimating the mag-100

nitude for an earthquake waveform, using a window length of 30 seconds that includes101

both the P- and S-wave information. The input to the model are earthquake traces, and102

event-vs-noise discrimination and first P-arrival are not included in its goals. The use103

of deep learning facilitates the learning of the most relevant features directly from the104

waveform. This approach suffers from under-estimation at high magnitudes as these mag-105

nitudes are rare in nature and, hence, under-represented in the training data. In order106

to overcome this drawback we propose a two-pronged approach – resampling the data107

to get a more uniform magnitude distribution and penalising the underestimation of high108

magnitudes during model training. As already mentioned the model presented in Mousavi109

and Beroza (2020) uses S-wave information which makes it unsuitable for the purpose110

of rapid characterisation and EEW, where the information from the faster P-waves is111

leveraged to issue a warning before the slower, and more devastation S-waves hit the sur-112

face (Cremen & Galasso, 2020)).113

In this paper we present a novel approach to achieve multi-tasking Convolutional114

Recurrent model for Earthquake Identification and Magnitude Estimation (CREIME),115

which can simultaneously perform earthquake identification, local magnitude estimation116

and first P-wave arrival time regression solely based on 1-2 seconds P-wave recording.117

Unlike J. Zhu et al. (2021) which uses a set of twelve features extracted from 3 seconds118

of data to perform magnitude estimation, CREIME is end-to-end using a combination119

of Convolutional and Recurrent neural network to extract features directly from the raw120

waveform. The motivation for using such a small duration of P-wave data lies in its po-121
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tential utility in applications such as rapid earthquake characterisation for EEW systems122

(R. Allen et al. (2009); R. M. Allen and Melgar (2019) and references therein). While123

multiple-station based approaches are generally more robust and reliable, single station124

approaches are faster and therefore can be more useful in places where human settlements125

may lie very close to the earthquake epicenter, such as Southern California.126

The model presented here can be seen as a prototype that can be adapted into EEW127

systems and has a potential to provide reliable first estimates. We demonstrate the ro-128

bustness of our model, by testing it on two datasets. It is ensured that these datasets129

have no overlap in terms of the traces they contain to assert the generalizability of the130

model. We also compare the effects of using different types of ground motion data as the131

input to the model. As a final step we test the model on S-wave arrivals which are not132

encountered by the model during training, to verify that S-wave arrivals from low mag-133

nitude events do not get wrongly identified as P-arrivals for high magnitude events. This134

implies that the model can easily be adapted on real time data.135

2 Data136

2.1 STEAD137

The data used to train and test CREIME has been obtained from the STanford138

EArthquake Dataset (STEAD) (Mousavi et al., 2019). It is a high-quality benchmarked139

global dataset of labelled seismograms which have been detrended, bandpass filtered be-140

tween 1.0-40.0 Hz and resampled to 100 Hz. There are a total of 7 different types of in-141

struments in which the data has been recorded, of these, 99.5% are either high-gain broad142

band or extremely short period. Each seismogram is of duration 1 minute and is rep-143

resented in the form of NumPy arrays (Harris et al., 2020) of dimensions 6000 × 3. All144

earthquake waveforms are associated with local earthquakes with epicentral distance no145

greater than 350km. The metadata includes 35 attributes for each earthquake waveform146

and 8 attributes for each noise waveform.147

For the sake of uniformity in magnitude, of the 23 different magnitude scales in which148

earthquakes are reported, we only choose events for which the magnitudes are reported149

in the ‘ml’ scale, i.e., local magnitude as these events constitute the majority (above 70%)150

of the dataset. To ensure that extremely noisy data is left out from the training and test-151

ing process only waveforms with a signal-to-noise ratio (provided in the metadata) above152

10 dB are used (similar to Mousavi and Beroza (2020) where 20 dB is the cutoff signal-153

to-noise ratio). The noise and earthquake traces are roughly divided in the ratio 60:10:30154

for training, validation and test sets. A total of 32,356 traces are used for training. For155

earthquake waveforms, it is made sure that all traces associated with one earthquake event156

are present in only one of the aforementioned three sets with the help of the ‘source id’157

attribute from the metadata. For noise waveforms, traces corresponding to a particu-158

lar station can be present in only one of the three sets. This ensures that the test dataset159

is “truly unseen” to the model and hence, can give a reliable evaluation of the model’s160

performance.161

In accordance with the Gutenberg-Richter power-law (Gutenberg & Richter, 1944),162

high magnitude earthquakes are rare in nature. This power-law is reflected in the dataset163

as well (with a magnitude of completeness around 1-1.5). The distribution of magnitudes164

in the original dataset is similar to that of the testing data shown in Figure 1. This kind165

of imbalance in the distribution of the target variable in a regression problem tends to166

bias the model’s performance towards lower magnitudes (<2.5) (Krawczyk, 2016) as ob-167

served in Mousavi and Beroza (2020). So, to make sure that the model can perform a168

reliable estimation over all magnitude ranges, we perform random under-sampling up169

to magnitudes of 4.0 and random over-sampling for magnitudes above 4.5. For this, dif-170

ferent rates (chosen by trial and error) of undersampling or oversampling (achieved by171

–4–



manuscript submitted to JGR: Solid Earth

Figures/Figure1.png

Figure 1. Distribution of magnitudes in training data (in slate blue) and chunk of

STEAD(Mousavi et al., 2019) data used for testing (in orange). Note that the y-axis on the

left corresponds to the training data distribution and that on the right corresponds to the test

data distribution. While random undersampling and oversampling are applied to different magni-

tude ranges for training data in an attempt to get a uniform distribution, the original magnitude

distribution of the test dataset is retained.

using windows with different starting time between 312-412 samples before P-arrival time)172

are applied to different magnitude ranges on the training and validation sets. This re-173

sults in a training set with a magnitude distribution as shown in Figure 1. No such aug-174

mentation is applied to the test set (Figure 1) to retain the real world distribution of earth-175

quake magnitudes encountered by the system. Furthermore, for training and validation,176

the number of noise traces chosen is exactly equal to the number of event traces.177

2.2 INSTANCE178

We further test our model on the INSTANCE dataset (Michelini, Cianetti, Gaviano,179

Giunchi, Jozinovic, & Lauciani, 2021), which is a recently published dataset comprising180
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1.2 million three-component waveform traces and 130,000 noise traces, each with a du-181

ration of 2 minutes, recorded primarily by the Italian National Seismic Network (net-182

work code IV). Corresponding to each trace 100 metadata, including magnitude and P-183

wave arrival sample, are provided. To make sure that there is no overlap with the train-184

ing data, we exclude data from stations that are part of the STEAD dataset. We choose185

only traces for which magnitudes are provided in the ‘ML’ scale. For a fair evaluation186

of our model, we use only those traces with a single event and with distance and depth187

each within the corresponding maximum value present in the training data. Once again,188

traces with signal-to-noise ratio lower than 10 dB are not used. This leaves us with 135,347189

traces corresponding to events between April 2005 to January 2020 and having a mag-190

nitude distribution as shown in Figure B1 in the appendix. The preprocessing steps for191

this data are very similar to those of the STEAD data except the bandpass filtering, so192

we apply a bandpass filter between 1.0 to 40.0 Hz using the bandpass function from ob-193

spy.signal.filter (Beyreuther et al., 2010).194

3 Methodology195

We use supervised learning (Chollet, 2017, Chapter 4) in this work to achieve earth-196

quake identification and magnitude estimation, together with P-arrival time regression,197

based upon short records of P-wave data. The local magnitude (which is provided in the198

metadata for both the STEAD and INSTANCE datasets) or Richter scale magnitude199

(Richter, 1935) has the form:200

ML = logA− logA0 + S (1)201

where, A is the peak horizontal amplitude measured on a Wood-Anderson seismograph,202

and A0 and S are empirically determined distance and station correction terms derived203

from amplitude-distance relations representing attenuation and site functions respectively.204

While the peak amplitude can be directly obtained from the input data as we do not ap-205

ply normalisation, it is expected that the model will learn the distance parameters, which206

are not provided explicitly, from the frequency content of the data itself. All three com-207

ponents are provided, to facilitate the learning of site effects (a similar approach has been208

followed by Mousavi and Beroza (2020)). We provide the data in units of ‘counts’ and209

do not perform instrument corrections, which gives the advantage that the analysis can210

be done in real-time.211

A sequence-to-sequence approach is developed – the input to our model being 512212

samples (5.12s) from 3 channels and the output is an array of the same length (512 sam-213

ples). The data window for earthquake waveforms is chosen in such a way as to include214

1 to 2 seconds of P-wave data, preceded by pre-signal noise (for noise waveforms the win-215

dow has 512 samples of noise). This type of windowing allows the model to learn the noise216

characteristics (Münchmeyer et al., 2020). The Y-label for each X is a 512 × 1 array. These217

values are defined as follows:218

yi =

{
M if i ≥ ip

−4 otherwise
(2)219

where M is the magnitude of the event and ip denotes the P-arrival sample (in case220

of earthquake waveforms). The value -4 representing noise is arbitrary and chosen em-221

pirically by testing model performance on the validation data. The use of an arbitrary222

negative number to represent noise was explored by Yanwei et al. (2021). An example223

of this labelling for event and noise data is shown in Figure 2a. We have also tried mod-224

ifying the final layer of the model to output two numbers corresponding P-arrival sam-225

ple and magnitude instead of a sequence, similar to the approach of Yanwei et al. (2021)226

(not shown in the paper). However, our observation was that the sequence-to-sequence227

mapping approach leads to smaller errors.228
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Figures/Figure_2.jpg

Figure 2. (a) Example of labelling for an event trace (left) and a noise trace (right); the label

value is set to -4 for all samples before the P-arrival and the event magnitude for the P-arrival

sample onward; for the noise trace it is set at -4 for all samples. (b) A schematic showing the

architecture of the CREIME model; each convolution layer has a kernel size 16 and the number

of filters are 32, 16 and 8; each Maxpooling layer reduces the dimension of the data by a factor of

4 and the Bi-LSTM layers have dimensions of 128 and 256 respectively.
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Figures/Figure_3.jpg

Figure 3. The variation of the training and validation loss as training progresses. The valida-

tion and training losses remain close to each other, which shows that the training is quite robust

and there is no discernible overfitting.

The architecture of the CREIME model consists of three sets of 1D Convolution229

(Kiranyaz et al., 2015) and Maxpooling (Nagi et al., 2011) layer followed by two bidi-230

rectional Long-Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) layers231

of dimensions 128 and 256, which is followed by the output layer of dimensionality 512232

(Figure 2b). The convolutional and maxpooling layers are used to extract and retain the233

relevant features while downsampling the data volume. Bidirectional LSTMs are used234

because of their ability to detect temporal dependencies for sequential data such as earth-235

quake waveforms. Each convolution has a kernel size 16, a stride of 1, and padding type236

“same”; the number of filters is 32, 16 and 8, respectively. Each maxpooling layer reduces237

the size of the data by a factor of 4. Unlike the approach in Lomax et al. (2019) we find238

the model performance to be better when we use the original data without any normal-239

isation. The model has a total of 1,454,992 trainable parameters and is trained using RMS240

Propagation optimiser (Tieleman & Hinton, 2012), with a batch size of 512. The model241

is implemented using Keras (Charles, 2013). On an NVIDIA A100GPU the training pro-242

cess takes less than 1 second per epoch. Each hyperparameter, including the number of243

layers in the model was chosen through meticulous experimentation by running several244

iterations of training and subsequent testing on the validation data.245

We use early stopping (Prechelt, 2012) during the training to prevent overfitting.246

The validation loss is monitored and the training stops if it does not reduce for 15 con-247

secutive epochs. We have an initial learning rate of 10−3 and reduce it by a factor of 10248

until it reaches 10−6 if the validation loss does not go down for 10 consecutive epochs.249

The model with the lowest validation loss is saved. With these conditions the model trains250

for 71 epochs. The training history (i.e. learning curve) is shown in Figure 3.251

For the cost function, we customized a combination of three losses, as different loss252

functions proved to be working better for different tasks and for different ranges of mag-253

nitude. The weights were determined by a trial and error method.254
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1. Mean Squared Error (MSE) with a weight of 40%: This is the average of squared255

values of errors corresponding to each data point in a minibatch. For k output val-256

ues and a batch size n it has the form:257

LMSE =
1

n

n−1∑
j=0

1

k

k−1∑
i=0

(yi,jtrue − yi,jpred)
2 (3)258

Here yi,jtrue and yi,jpred represents the true and predicted y values of the i-th sam-259

ple for the j-th example in the minibatch, respectively.260

2. Mean Absolute Error (MAE) with a weight of 40%: This is the average of abso-261

lute errors corresponding to each data point in a minibatch. For k output values262

and a batch size n it has the form:263

LMAE =
1

n

n−1∑
j=0

1

k

k−1∑
i=0

|yi,jtrue − yi,jpred| (4)264

3. Magnitude Estimation Loss with a weight of weight: 20%: As mentioned in the265

Introduction, we penalise the underestimation of magnitude, for high magnitude266

events (and overestimation for noise traces). To achieve this we define a third loss267

function. For k output values and a batch size n it has the form:268

LME =
1

n

n−1∑
j=0

αj 1

k

k−1∑
i=0

(yi,jtrue − yi,jpred) (5)269

where,

αj =

{
Event Magnitude, for events

−4, for noise

As already mentioned, we utilise the output from our model to perform three tasks:270

discrimination between seismic event and noise, magnitude estimation, P-arrival sam-271

ple detection. Based on a manual investigation of the output data and a subsequent test-272

ing on the validation dataset we used the following analysis to extract the desired pa-273

rameters from the 512 sample sequence output by the model:274

1. Predicted magnitude,275

Mpred =
1

10

k∑
i=(k−9)

yipred (6)276

where k is the number of samples, in our case, 512277

2. Considering the first sample point in the data window as zeroth sample, we de-278

fine279

P-arrival sample = ippred such that yipred > −0.5 for all i ≥ ippred (7)280

3. If Mpred calculated by equation (6) is less than -0.5 then it is classified as noise.281

The value -0.5 is chosen empirically based on the magnitude range of the data. For282

a detailed description of the metrics please refer to the Appendix A.283

4 Results284

The model was tested on a chunk of the STEAD dataset (Figure 1). Figure 4a shows285

the confusion matrix for noise/event classification; Figure 4b shows that the predicted286

magnitudes for noise data wrongly classified as event tend to be low (mostly ≤ 1) indi-287

cating that the possibility of false alarms caused by noise is low and events which are288

wrongly classified as noise are usually of low magnitude (≤ 2) indicating a low risk of289
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Figures/Figure_4.jpg

Figure 4. Analysis of CREIME model performance as a classifier on STEAD Data. It

achieves an accuracy of 98.58%. The true magnitude of events misclassified as noise and pre-

dicted magnitude of events misclassified as noise tends to be low, which reduces the chance of

missed or false alarms. (a) Confusion matrix for classifier performance. (b) Distribution of pre-

dicted magnitudes of noise misclassified as event and true magnitude of events misclassified as

noise.
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Figures/Figures_5.jpg

Figure 5. (a) Example of correct classification of an event trace (left) and a noise trace

(right); one can see that the predicted magnitude for the event trace is very close to the true

magnitude. (b) Example of incorrect classification of an event trace as noise trace(left) and a

noise trace as an event trace (right); the event is a low magnitude one, and quite difficult to iden-

tify in this frequency range; the noise level in case of the noise trace is quite high gets classified

as a low magnitude earthquake.
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Figures/Figures_6.jpg

Figure 6. Analysis of model performance as a regressor on STEAD Data. The density plot

shows that the highest density of points lies close to the zero error line; in spite of our penaliza-

tion of under-estimation of high magnitudes, some under-estimation is observed above a magni-

tude of 5.5. In over 90% of the cases, the error in predicted magnitudes is less than 1 unit. (a)

Relationship between true and predicted magnitude values. (b) Distribution of errors in predicted

magnitudes. (c) Distribution of errors in P-arrival estimation.
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false alarms, which is reassuring. Figure 5 shows examples of input and corresponding290

outputs for correctly and incorrectly classified traces.291

The scatter plot for predicted versus true magnitudes is shown in Figure 6a. It is292

worth to note that for majority of the events (shown with higher relative density in the293

plot) the prediction reproduce well for the true magnitudes up to 5.5. For higher mag-294

nitudes events, some degree of underestimation is observed in spite of the penalty incor-295

porated in the loss function. The result here, however, is an improvement over Mousavi296

and Beroza (2020), where magnitude underestimation starts to occur from a magnitude297

of 4. It should be taken into account that the data used to train the MagNet Mousavi298

and Beroza (2020) has a signal-to-noise ratio above 20 dB whereas, we use a lower thresh-299

old of 10 dB in our analysis. The histogram for errors in magnitude (Figure 6b) has a300

mean of -0.06 units, and a slight left skew, reflecting our penalisation of underestima-301

tion of magnitudes. The histogram for errors in predicted P-arrival (Figure 6c), is also302

unimodal, with a higher negative skewness indicating, that the P-arrival is more often303

predicted to be at a later time than it really is. The kurtosis for errors in P-arrival pre-304

diction is also much higher than that for magnitude prediction, indicating that errors305

in P-arrival predictions have a much narrower peak compared to errors in magnitude pre-306

diction. Similar results are observed for the INSTANCE dataset. We refer interested read-307

ers to Appendix B for the corresponding figures.308

Comparison with other models309

We compare our model with ones published in the papers listed below. It is im-310

portant to note here, that the input data for the models in these studies differs from our311

data in terms of length, pre-processing etc. Therefore, for an unbiased comparison, all312

models have been retrained on the same training data that we use for our model. This313

is essentially a comparison between different architectures and not between the method-314

ology presented by the respective authors.315

1. MagNet (Mousavi & Beroza, 2020): This paper presents a deep learning model316

to perform only magnitude estimation using 30 seconds of data including both P317

and S phases. While both MagNet and CREIME use a combination of CNNs and318

bidirectional LSTMs, they differ significantly in the number of layers (MagNet uses319

2 Convolutional layers and 1 bi-LSTM whereas CREIME uses 3 Convolutional lay-320

ers and 2 bi-LSTMs), the model output(MagNet outputs the estimated magnitude321

and the aleatoric uncertainty whereas CREIME outputs a 512 dimensional array)322

and the choice of hyperparameters (such as number of filters in the Convolutional323

layers and dimension of LSTM). Unlike MagNet, CREIME does not use dropout324

layers. The only modification we make to the original architecture of MagNet, while325

re-training it, is to change the input shape from (3000,3) to (512,3). We then com-326

pare this model with CREIME in terms of estimation of event magnitudes.327

2. CNN model for signal noise discrimination (Meier et al., 2019): The model pre-328

sented in this paper originally takes 4s of data, starting 0.5 to 1.5 seconds before329

the P-arrival to discriminate between earthquake signals and noise. We train it330

on our data while keeping the architecture intact except a change in the input di-331

mensions. Unlike the original paper, however, we do not impose a lower limit on332

the magnitudes of the events.333

3. ConvNetQuake INGV (Lomax et al., 2019): This model is inspired by the Con-334

vNetQuake (Perol et al., 2018), and uses 10 seconds of data to perform multiclass335

classification to identify seismic events and characterise earthquake parameters336

such as magnitude, distance, depth and azimuth. While the original architecture337

uses 9 CNN layers, each downsampling the data by a factor of 2, we use only 8338

(similar to Perol et al. (2018)) since the length of data in our case is almost half339

of that in the original paper. Further, in the last layer we use 31 classes for mag-340

nitude instead of 20 in the original paper giving a total of 32 nodes (one for sig-341
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Table 1. Comparison between the performance of CREIME model and other baseline models

as a classifier for events and noise. CREIME model outperforms the other models.

Metric

Accuracy (%)
Precision (%) Recall (%) F1-score (%)

Dataset Model Architecture Event Noise Event Noise Event Noise

STEAD

CREIME Model 98.58 99.64 96.25 98.31 99.18 98.97 97.70
CNN Model 89.72 99.18 75.37 85.93 98.37 92.08 85.35
ConvNetQuake INGV 96.56 99.12 91.30 95.91 98.05 97.49 94.55
STA/LTA Algorithm 94.08 96.03 89.70 95.43 91.00 95.73 90.34

INSTANCE

CREIME Model 97.59 98.66 95.75 97.53 97.68 98.10 96.71
CNN Model 91.71 96.77 84.33 90.00 94.71 93.23 89.22
ConvNetQuake INGV 86.48 96.00 74.16 82.79 93.47 88.90 82.70
STA/LTA Algorithm 86.03 90.87 78.49 86.81 84.66 88.79 81.46

Table 2. Comparison between magnitude estimation by CREIME model and other baseline

models. The smallest errors are shown by CREIME model.

Metric
Mean Error St. dev. of Error RMSE MAE

Dataset Model Architecture

STEAD
CREIME Model -0.06 0.60 0.61 0.46
MagNet -0.29 0.65 0.72 0.53
ConvNetQuake INGV 0.41 1.05 1.13 0.94

INSTANCE
CREIME Model -0.02 0.69 0.69 0.54
MagNet -0.33 0.80 0.86 0.68
ConvNetQuake INGV 0.78 0.98 1.25 1.04

nal vs noise discrimination). To compare the magnitude regression performance342

with CREIME we take the predicted magnitude to be the arithmetic mean of the343

boundaries for the predicted class.344

In addition to these deep learning models, we also compare our model with the Short-345

Term Average/Long-Term Average method (STA/LTA)(R. V. Allen, 1978), to evaluate346

the performance of our model in terms of classification and P-arrival time prediction. This347

is done by using the classic sta lta from Obspy (Beyreuther et al., 2010). The best set348

of parameters, determined on the basis of a grid search on the training data are: short-349

term window length = 20 samples (0.2s), long-term window length = 200 samples (2s),350

and trigger threshold = 4.0.351

The performance metrics for the CREIME classifier in comparison with other clas-352

sification models and the STA/LTA algorithm are summed up in Table 1. CREIME out-353

performs all the other architectures trained on the same data, and the conventional STA/LTA354

algorithm. The performance of the model in estimating magnitude and P-arrival time355

is summarised in tables 2 and 3 respectively. CREIME model outperforms MagNet and356

ConvNetQuake INGV in terms of magnitude estimation. It also gives lower values for357

both RMSE and MAE compared to STA/LTA algorithm.358

5 Discussion359

We investigated the different factors that influence the results of our model. Fig-360

ure 7a shows the variation of errors with the signal-to-noise ratio in the data. It is ob-361

served that the errors in magnitude and P-arrival time show highest density within ±1362

units and ±0.1 seconds, respectively, and tends to be lower for higher signal-to-noise ra-363

tios.364
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Table 3. Comparison between CREIME model and STA/LTA method in terms of P-arrival

picking. CREIME model outperforms STA/LTA

Metric
Mean Error St. dev. of Error RMSE MAE

Dataset Model Architecture (s) (s) (s) (s)

STEAD
CREIME Model -0.05 0.10 0.12 0.08
STA/LTA 0.01 0.37 0.36 0.18

INSTANCE
CREIME Model -0.04 0.13 0.14 0.09
STA/LTA 0.01 0.52 0.52 0.29

Figures/Figure_7.jpg

Figure 7. Factors affecting the error in estimation of magnitude and P-arrival times; er-

rors in both magnitude and P-arrival are lower for higher signal-to-noise ratios; the magnitude

of events seems to be under-estimated for higher hypocentral distances owing to their under-

representation in the data. (a) Variation of errors with signal to noise ratio. (b)Variation of

errors with hypocentral distance.
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Figure 7b shows the variation of errors with hypocentral distance. We see that the365

errors tend to be close to zero over a wide range of hypocentral distances (up to 200km).366

There is a tendency for the model to underestimate the magnitude for higher hypocen-367

tral distances, which are under-represented in the training data. Both these figures are368

generated using STEAD data, and the corresponding figures for INSTANCE data can369

be found in the Appendix B.370

We further looked into the effect of using different types of ground motion data as371

input (by removing instrument response), a summary of which can be found in Appendix372

C.373

To make sure, that S-arrivals for low magnitude earthquakes do not get detected374

as high-magnitude events, we test the model on S-arrival data. We do not notice any sys-375

tematic overestimation, only in 9% of the cases in the overestimation more than 1 unit.376

This means that our model can be applied to the incoming seismogram in real time for377

rapid characterisation. Comparing the performance of the CREIME model with our ob-378

servations in Chakraborty et al. (2021), we find that providing data labels in the form379

of a series and including the first P-arrival information is beneficial for the model, in es-380

timating the earthquake magnitude.381

6 Conclusion382

We present a novel deep learning model, CREIME, which successfully unifies the383

tasks of event and noise discrimination, P-arrival time estimation and magnitude esti-384

mation using a smaller window (up to 2 seconds) of P-wave data as compared to pre-385

viously published models. The model in its current form, however, is restricted by the386

fact that was trained specifically on data windows where the P-wave arrival is between387

3.12 and 4.12 seconds of the starting sample. This restriction can be overcome in a fu-388

ture version of the model by modifying the training dataset to include a wider range of389

arrival times. Nevertheless, this model can be seen as an important first step to a fully390

automated earthquake characterisation approach in real time. We show that it performs391

better than baseline models re-trained on the same duration of data. It also outperforms392

traditional event discrimination algorithms such as STA/LTA. We demonstrate the ro-393

bustness of our model by testing it on two independent datasets, and show that it can394

provide reliable estimates over a wide range of hypocentral distances and signal-to-noise395

ratios. The model is designed to handle seismological waveform data in its raw format,396

which makes it very efficient in handling big data. Such models can also find their util-397

ity in smartphone applications to issue timely warnings to the public, as smartphone sen-398

sors have been shown to be capable of detecting seismic events (Kong et al., 2016).399

Appendix A Metrics used for model evaluation400

A1 Classification Metrics401

We use different kinds of metrics to evaluate the classification and regression tasks.402

The performance of a classifier is often visualised with the help of a confusion matrix (Ting,403

2017). The metrics we use to evaluate our model performance are described below. The404

abbreviations used are: TP: True positives405

TN: True negatives406

FP: False positives407

FN: False negatives408
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• Accuracy: The accuracy of a classifier is the ratio of the number of correct pre-
dictions to the total number of predictions made by the model.

Accuracy =
TP + TN

TP + FP + TN + FN
(A1)

• Precision: The precision of a classifier is the ratio of the number of correct pre-
dictions for a particular class to the total number of times that class is predicted.

Precision =
TP

TP + FP
(A2)

• Recall: The recall of a classifier is the proportion of the number of instances of
a class in the data set that are correctly predicted.

Precision =
TP

TP + FN
(A3)

• F1 Score: By definition, there is an inherent trade-off between the precision and
the recall of a classifier. Therefore, it is often worthwhile to look at the harmonic
mean of the two. This metric is called the F1-score of the classifier.

F1-score =
2× Precision × Recall

Precision + Recall
(A4)

A2 Regression Metrics409

For the regression task, the following metrics will be used to measure the CREIME410

performance:411

• Mean Error: This is the mean value of errors corresponding to each example in
the data set.

Mean Error, Ē =
1

N

N−1∑
i=0

Ei =
1

N

N−1∑
i=0

yitrue − yipred (A5)

where N is the total number of examples in the dataset.412

• Standard Deviation of Error: This is the standard deviation of the errors in
the predictions.

Standard Deviation of Error, σE =

√∑N−1
i=0 (Ei − Ē)2

N
(A6)

• Root Mean Squared Error (RMSE): As the name says, this is the square root
of the mean of squares of errors in prediction.

RMSE =

√∑N−1
i=0 E2

i

N
(A7)

• Mean Absolute Error: This is the mean of the absolute values of the errors in
prediction.

MAE =

∑N−1
i=0 |Ei|
N

(A8)

Appendix B Model performance on INSTANCE Dataset413
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Figures/Figure_B1.jpg

Figure B1. Distribution of magnitudes in chunk of INSTANCE data used for testing. Once

again, no resampling is applied to the dataset based on magnitude.
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Figures/Figure_B2.jpg

Figure B2. Analysis of model performance as a regressor on INSTANCE Data, here the

events misclassified as noise, reflect the imbalanced distribution of magnitudes in the dataset

itself, whereas the predicted magnitude of noise waveforms follows a similar trend as in case of

STEAD data. (a) Confusion matrix for classifier performance on Instance Data. (b) Distribution

of predicted magnitudes of noise misclassified as event and true magnitude of events misclassified

as noise.
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Figures/Figure_B3.jpg

Figure B3. Analysis of model performance as a regressor on INSTANCE Data. (a) Rela-

tionship between true and predicted magnitude values. (b) Distribution of errors in predicted

magnitudes. (c) Distribution of errors in P-arrival estimation.
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Figures/Figure_B4.jpg

Figure B4. (a) Variation of errors with signal to noise ratio. (b) Variation of errors with

hypocentral distance.
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Appendix C Effect of using different types of ground motion data as414

input415

We compared the performance of the model when trained on different kinds of ground416

motion data viz. acceleration (in µm s−2), velocity (in nm s−1) and displacement (in nm)417

to investigate the effects of instrument response removal. This part of the analysis was418

done only on the STEAD data. We lose roughly one fourth of the data due to unavail-419

ability of the instrument response. In each case, the models were trained on roughly the420

same number of traces, alongside which we also compare it with the model whose results421

are discussed in the Results (trained on more traces). For a fair comparison, we also train422

a model on raw data, using roughly the same number of traces as in case of ground mo-423

tion data, accounting for the loss of data due to unavailability of instrument response424

(this model is referred to as raw data (smaller) in the tables). The reason behind doing425

this is to highlight one of the advantages of using counts data without instrument response426

removal, which is the availability of more traces for training and testing. All five mod-427

els have been tested on the same traces.428

Tables C1-C3 show the comparison between different types of input data. Even though429

certain ground motion parameters perform better in some metrics, using the raw data430

gives us an advantage that the data can be used in real time, and it is much readily avail-431

able.432

Table C1. Summary of classification performance for different types of ground motion data;

removing instrument response does not seem to provide a significant advantage over using raw

data

Metric

Accuracy (%)
Precision (%) Recall (%) F1-score (%)

Type of input data Event Noise Event Noise Event Noise

Raw Data 98.33 99.90 85.90 98.25 99.09 99.06 92.03
Raw Data (smaller) 97.85 99.91 82.36 97.71 99.17 98.79 89.99
Acceleration 98.15 99.79 93.62 97.75 99.37 98.76 96.41
Velocity 97.81 99.65 92.74 97.42 98.98 98.53 95.76
Displacement 96.52 99.61 88.54 95.74 98.86 97.64 93.41

Table C2. Summary of magnitude estimation for different types of ground motion data

Metric
Mean Error St. dev. of Error RMSE MAE

Ground Motion

Raw Data -0.19 0.63 0.65 0.50
Raw Data (smaller) 0.01 0.64 0.64 0.49
Acceleration -0.11 0.56 0.57 0.44
Velocity -0.09 0.62 0.63 0.47
Displacement -0.32 0.65 0.72 0.54
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Table C3. Summary of P-arrival estimation for different types of ground motion data

Metric
Mean Error (s) St. dev. of Error (s) RMSE (s) MAE (s)

Ground Motion

Raw Data -0.04 0.11 0.12 0.08
Raw Data (smaller) -0.06 0.11 0.13 0.09
Acceleration -0.07 0.12 0.14 0.10
Velocity -0.06 0.14 0.15 0.11
Displacement -0.06 0.18 0.19 0.13
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