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Abstract

Historically, the sparseness of in situ open-ocean wave and weather observations has severely limited the forecast skill of weather

over the ocean with major social and economic consequences for coastal communities and maritime industries. Ocean surface

waves, specifically, are important for the interaction between atmosphere and ocean, and thus key in modeling weather and

climate processes. Here, we investigate the improvements achievable from a large distributed sensor network combined with

advances in assimilation strategies. Wave spectra from a global network of over 600 Sofar Spotter buoys are assimilated into an

operational global wave forecast via optimal interpolation to update model spectra to best fit observations. We demonstrate

end-to-end improvements in forecast skill of significant wave height of 38\%, and up to 45\% for other bulk parameters. This

shows distributed observations of the air-sea interface, with advances in assimilation strategies, can reduce uncertainty in

forecasts to dramatically improve earth system modeling.
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Key Points:5

• A global network of over 600 drifting surface buoys reporting directional wave spec-6

tra every hour has been established.7

• Assimilation of wave spectra yields quantifiable wave forecast improvements over8

traditional assimilation using significant wave height.9

• Data from a new global ocean sensor and advances in wave data assimilation pro-10

vide a direct path to improved marine weather forecasts.11
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Abstract12

Historically, the sparseness of in situ open-ocean wave and weather observations has severely13

limited the forecast skill of weather over the ocean with major social and economic con-14

sequences for coastal communities and maritime industries. Ocean surface waves, specif-15

ically, are important for the interaction between atmosphere and ocean, and thus key16

in modeling weather and climate processes. Here, we investigate the improvements achiev-17

able from a large distributed sensor network combined with advances in assimilation strate-18

gies. Wave spectra from a global network of over 600 Sofar Spotter buoys are assimilated19

into an operational global wave forecast via optimal interpolation to update model spec-20

tra to best fit observations. We demonstrate end-to-end improvements in forecast skill21

of significant wave height of 38%, and up to 45% for other bulk parameters. This shows22

distributed observations of the air-sea interface, with advances in assimilation strategies,23

can reduce uncertainty in forecasts to dramatically improve earth system modeling.24

Plain Language Summary25

Historically, wave and weather observations are very sparse in the open ocean due26

to the cost and complexity of instruments and deployments. This lack of real-time weather27

information results in low-fidelity forecasts. Technological advances have led to the de-28

velopment of the Sofar sensor network, a distributed weather network spanning all the29

major oceans, consisting of over 600 free-drifting buoys that measure the ocean surface30

dynamics in great detail (including wave directional spectra). In this work we investi-31

gate how such large networks can be successfully used to meaningfully improve forecast32

accuracy using a new assimilation strategy to ingest the data into operational numer-33

ical forecast models. We show substantial improvements in forecast accuracy of the ocean34

wave field, which has broad implications for earth system modeling and will be directly35

relevant to coastal communities, marine renewable energy operations, and the efficiency36

of other maritime industries.37

1 Introduction38

The ability to observe and accurately predict the dynamics of the ocean interface39

is critically important for modeling air-sea exchanges, lower-atmosphere dynamics, safety40

at sea, and mitigation of coastal hazards due to extreme weather events. In general, the41

skill and accuracy of any weather forecast model fundamentally relies on the availabil-42

ity and successful assimilation of real-time data. In fact, data assimilation (DA) is widely43

deployed across all disciplines of operational numerical weather prediction and generally44

contributes as much to the skill of the forecast as the quality of the forecast model it-45

self (Kalnay, 2002; Buizza et al., 2005). With the increase in available data and advances46

in assimilation strategies, the balance of performance skill will further shift toward data47

and advances in DA. This work explores how new, globally distributed sensing paradigms48

combined with advances in assimilation strategies can rapidly accelerate our ability to49

predict the future state of the air-sea interface.50

Despite the importance of the air-sea interface for both ocean and lower-atmosphere51

dynamics, operational DA in wave models remains uncommon. This is in part due to52

a lack of suitable data, and in part due to the limitations of existing assimilation strate-53

gies that only adjust the total energy of the sea state, but not the distribution of energy.54

As a result, the benefits of assimilation into wave models is limited (Thomas, 1988; Li-55

onello et al., 1992; Smit et al., 2021). By limiting the assimilation to bulk energy cor-56

rections only, traditional wave assimilation cannot address errors across different length57

scales (e.g. swell or sea components). Consequently, the assimilation improvements usu-58

ally de-correlate on time scales of typical wind-wave coupling (i.e., under 24 hours) and59

there is limited value in adding more data to the DA. Fundamental to this, the wave prob-60

lem is an arbitrary mix of an initial value problem (swell) and boundary value problem61
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(sea), with very different persistence time scales. For example, swell fields exhibit lim-62

ited interaction with the atmosphere and DA error corrections can persist on the timescale63

of cross-basin propagation (2-3 weeks). In contrast, shorter waves (sea) are generally strongly64

coupled to local wind fields, which will dictate persistence of error corrections. To effec-65

tively assimilate into a spectral wave model and capture the range of persistence time66

scales, it is thus critical to correct errors in every component of the spectral distribution.67

For such a wave DA strategy to be effective, observations of the wave spectrum are68

necessary. However, these data have historically been exceedingly sparse – satellite re-69

mote sensing is generally limited to bulk parameters (e.g. total energy) and in-situ ob-70

servations were previously not available in the open ocean. Recently, through advances71

in mobile technology, satellite communication networks, and improvements in photovoltaic72

and battery technology, new compact sensor platforms have become available that can73

deliver scalable, in situ, long-dwell wave spectrum observations. To date, the largest of74

such wave observing system is the Sofar Spotter network, which is composed of over 60075

globally distributed, free-drifting marine weather buoys. (Raghukumar et al., 2019; Vo-76

ermans et al., 2020; Houghton et al., 2021). This distributed sensor network opens up77

the opportunity to develop the first operational spectral wave-DA.78

Given the historical rarity of buoy spectral information at scale, effective methods79

to assimilate those data remain uncommon and, to date, have not been widely opera-80

tionalized. A specific challenge, addressed in the work here, is buoy spectral information81

is only available as the one-dimensional frequency spectrum and first four directional Fourier82

components, rather than the two-dimensional frequency-directional (or wavenumber) spec-83

trum that is the model state (Kuik et al., 1988). Thus, an assimilation strategy that re-84

lates the observations to the model state is necessary.85

Previously, a few studies have explored optimal interpolation based methods for86

spectra-based assimilation using pitch-and-roll buoy data in a narrow geographic region87

(Hasselmann et al., 1997; Voorrips et al., 1997). In that method, the analysis was con-88

ducted by dividing the spectrum into discrete partitions and updating the model state89

based on the bulk statistics of each observed partition, substantially reducing the vari-90

ables describing the wave spectrum. The complexity was then primarily the partition-91

ing of the spectrum and the cross-assignment of partitions between model and observa-92

tions, which was accomplished with heuristic methods despite possible ambiguities.93

Here we present, in tandem, the establishment of a global distributed sensor net-94

work and an efficient method for assimilating the observations provided into an oper-95

ational wave forecast system. This work aims to evaluate the improved forecasting abil-96

ity made possible by the notable increase in available data, both in terms of geographic97

coverage and spectral detail. The two step spectra-based DA method outlined here is98

straightforward to implement and avoids ambiguity with cross-assignment between model99

and observations. Section 2 describes the buoy network, wave model, and assimilation100

framework. Results from a month-long reanalysis are presented in Section 3. Finally, im-101

pacts and conclusions are described in Section 4.102

2 Methods103

The DA strategy is built upon the previously established optimal interpolation frame-104

work described by Smit et al. (2021), where the initial wave field was updated via se-105

quential optimal interpolation of the observed significant wave height with scaling of the106

two-dimensional wave action density spectrum to match the analysis wave heights at all107

grid points. However, this approach has well-documented limitations (Lionello et al., 1992;108

Portilla-Yandún & Cavaleri, 2016). Specifically, by scaling the spectrum solely by a con-109

stant factor derived from the ratio of the analysis wave height to background wave height,110

model errors in period and direction were left uncorrected. Also, distinct contributions111
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Figure 1. The global Sofar Spotter network (yellow pentagons). Twenty-nine buoys (blue)

were randomly selected from the full network to be excluded from the analysis step to provide

independent observations to compare with the nowcasts and forecasts. Inset: The 42 cm diameter

Spotter buoy represented by pentagonal icons on the map.

to the wave field, e.g. a swell component, could be incorrectly modified despite achiev-112

ing parity with the bulk significant wave height at that location. While this method was113

found to produce improvements in both model nowcasts and forecasts, substantially more114

information is available from the Spotter buoys beyond significant wave height, specif-115

ically the variance density spectrum and the four Fourier coefficients. To fully utilize these116

observational data to update the initial state of the operational forecast model, the op-117

timal interpolation framework is augmented here to update the wave Fourier coefficients118

on a per-frequency basis and subsequently reconstruct the two-dimensional model spec-119

tra.120

2.1 Spectral Buoy Data121

The wave spectra observations are provided by a global network of free-drifting Spot-122

ter buoys developed by Sofar Ocean (Figure 1). The Spotter buoy is lightweight and com-123

pact (5.4 kg, 42 cm-diameter approximate sphere) and reports the variance density spec-124

trum and Fourier coefficients along with sea surface temperature, surface drift, baromet-125

ric pressure, inferred wind and sound level in near-real time (see Raghukumar et al. (2019);126

Houghton et al. (2021) for further buoy description and validation). The free-drifting buoys127

provide observations from a network that evolves continuously due to the underlying global128

currents. Nearly three years of network growth have indicated the sustaining ability to129

collect long-dwell observations with reliable spatial coverage.130

The global Sofar Spotter network surpassed 600 buoys globally in March 2022 and131

is continuously expanding. The data is stored in a database with a modern API to fa-132

cilitate operational incorporation of buoy observations at an hourly cadence. As of De-133

cember 2020, all buoys in the network transmitted spectral data at frequencies from 0.293134

Hz to 0.8 Hz, with select buoys transmitting up to 1.25 Hz. The Spotter frequency grid135

is irregular, with higher resolution bins (0.0098 Hz bins) at frequencies below 0.3 Hz and136

lower resolution (0.029 Hz bins) at higher frequencies. The frequency dependent vari-137

ance density spectrum, eobs, and four Fourier coefficients, aobs1 , bobs1 , aobs2 , bobs2 (with obs
138

denoting observation), at each Spotter location were calculated at thirty minute inter-139
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vals and reported hourly (i.e. two observations per transmission). Derived wave param-140

eters such as wave height, mean period, and direction are calculated according to stan-141

dard oceanographic practice ((Kuik et al., 1988)). In order to assimilate the Spotter buoy142

spectra, the data were interpolated onto the irregular wave model spectral grid (described143

below) using linear interpolation.144

2.2 Wave Forecast Model145

The WAVEWATCH3 model (WW3; Tolman et al. (2019)) is implemented over the146

global ocean at 0.5 degree horizontal resolution and forced by near-surface winds from147

the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Fore-148

cast System (IFS) High Resolution (HRES) atmospheric and sea ice forecast. The model149

spectral space is discretized by 36 directions and 36 frequencies. Frequencies are loga-150

rithmically distributed with a growth factor of 1.1 from f1 = 0.035Hz to f3 = 0.98Hz151

(see ) for full model configuration details). Atmospheric forcing is updated every six hours,152

at which time a 4- or 10-day operational forecast is initialized from the corresponding153

analysis for that hour.154

The DA uses an hourly analysis cycle. This includes a one-hour WW3 forecast and155

an instantaneous analysis at the end of each hour to initialize the next forecast. The spectra-156

based DA method can be summarized as a two step process where (1) the variance den-157

sity and Fourier coefficients are optimally interpolated for every frequency bin to pro-158

duce analysis moments and (2) an analysis directional distribution is generated from a159

cost minimization targeted to match analysis moments and the model background di-160

rectional distribution. Details of these steps follow.161

2.3 Optimal interpolation of Fourier coefficients162

We define a reduced background state vector for DA as the variance density and
Fourier coefficients at each frequency (ebg, abg1 , bbg1 , abg2 , bbg2 , with bg denoting background).
These may be obtained from the full model background state at analysis time through
discrete approximations of the Fourier integrals of the directional distribution. Enumer-
ating the N equidistant (resolution ∆θ) model directions as θT = [θ1, . . . , θN ], the dis-
cretely sampled directional distribution Dj is defined as Dbg

j (f ;x) = Ebg
j /ebg, Ebg

j =
E(f, θj ;x) and

ebg(f ;x) = ∆θ
∑
θ

Ebg(f, θ;x).

The Fourier coefficients, m, of the directional distribution then follow as

mbg(f ;x) =


(2π)−1

abg1 (f ;x)

bbg1 (f ;x)

abg2 (f ;x)

bbg2 (f ;x)

 = ∆θ


(2π)−11T

cos(θT)
sin(θT)
cos(2θT)
sin(2θT)

Dbg(f,x) = MDbg(f,x) (1)

with DT = [D1, . . . , DN ], 1T = [11, . . . , 1N ] and M representing the discrete approxi-163

mation of the Fourier integration. The zeroth coefficient is known a-priori and describes164

the integration to one of the directional distribution in theta.165

The analysis Fourier coefficients man (an denoting analysis) and analysis variance
density ean are obtained through optimal interpolation from the analysis equation which
– following Smit et al. (2021) – is expressed as

yan = ybg + ρHT
(
HρHT + σI

)−1

︸ ︷︷ ︸
K

(
Hybg − yobs

)
(2)
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Here y(f) (analysis or background) is the state vector of the model with M grid points166

for a given frequency, and yobs = [yobsj (f), . . . , yobsJ (f)]T denotes the J observations of167

the state. Further, H is a J x M bi-linear interpolation matrix that projects model es-168

timates to observed locations. Lastly, K is the M x J Kalman Gain matrix that is de-169

pendent upon model error correlation, ρ, and relative observation errors σI. Here, I is170

the identity matrix and σ (set to 0.3 here, see Smit et al. (2021)) represents the obser-171

vational error scaled with a representative model error. Equivalent equations to (2) are172

used for the Fourier coefficients aan1 , ban1 , etc.173

Optimal interpolation requires a-priori specification of the error-covariances (cor-174

relations here), which in general are non-trivial to determine. Here, we take ρ to be isotropic,175

stationary, homogeneous and independent of frequency, and use a parameterized form176

as in Smit et al. (2021) that de-correlates over a characteristic distance of 300 km. Fur-177

ther, inter-coefficient errors are assumed to be uncorrelated, allowing for independent178

application of (2) to individual moments.179

2.4 Directional Reconstruction180

The OI step performs DA in observational space. To return to model space, a sub-
sequent step is needed to reconstruct the two-dimensional directional spectra at each model
grid point to serve as the initial condition for the forecast. However, the analysis Fourier
coefficients, man, do not uniquely determine the analysis directional distribution because
M is under-determined and not invertible. To uniquely specify the directional distribu-
tion, we assume that the model background distribution estimation, Dbg, is in general
skillful, and seek a distribution that minimizes the difference with the model background
under the constraints that Dan reproduces the analysis Fourier coefficients and is pos-
itive semi-definite. Considering a single frequency at a single location x, the analysis di-
rectional distribution is the solution of the quadratic-programming problem,

minDan [Dan −Dbg]T[Dan −Dbg]
subject to MDan = man

Dan ≥ 0
(3)

In practice, the reproduction of the Fourier coefficients is applied as a cost in addition181

to the difference from the background directional distribution and a least-squares bounded182

minimization is used. Following Equation 3, an analysis directional distribution is gen-183

erated for every model grid point. To return to the two-dimensional spectrum, the di-184

rectional distribution is then multiplied by ean(f), provided explicitly from the optimal185

interpolation step.186

The optimization approach with constraints, inspired by (Crosby et al., 2017), is187

chosen over other methods, such as maximum entropy estimation (Lygre & Krogstad,188

1986), as it allows for the inclusion of the additional information provided by the model189

background. This assumes that although the model may be incorrect, it provides a rea-190

sonable starting point to generate the analysis distribution and further encourages spa-191

tial coherence across the geographic domain despite each grid point being updated in-192

dependently. Further, this formulation is sufficiently computationally efficient to remain193

within operational time constraints.194

2.5 Reforecast Experiment195

The spectra-based data assimilation scheme is evaluated with an approximately 32196

day reforecast experiment starting February 20th, 2022 and ending March 24, 2022. Three197

experiments are run in order to assess the impact of the DA methods: a free-running forced198

WW3 model forecast, an hourly-cycled DA case assimilating significant wave height ob-199

servations (henceforth Hs-based), and an hourly-cycled DA case assimilating wave spec-200

tra observations as described above (henceforth spectra-based). For each experiment, a201
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4-day forecast is initialized every 12 hours from the analysis state (or forecast state in202

the case of the free-running model). Twenty-nine Spotter buoys are excluded from the203

DA experiments for evaluation. To ensure global coverage of excluded buoys, all buoys204

are first binned into ten regions by latitude and longitude, and a random selection of 10%205

in that bin were chosen to be excluded (see Figure 1). In addition to the bulk param-206

eters output hourly over the entire model domain, two-dimensional model spectra are207

output hourly at the excluded Spotter locations (with buoy drift neglected over forecast208

timescales).209

Forecast skill is evaluated by point-wise comparison of modeled variables to the Spot-210

ter observations. Spotter observations are linearly interpolated to the nearest hour and211

the modeled fields are bilinearly interpolated to the Spotter latitude and longitude.212

To assess model skill in different frequency ranges, specifically low frequency swell213

energy versus high frequency wind sea energy, the observed and modeled variance den-214

sity spectra (e(f)) are partitioned at 0.08789 Hz. Only observations for which the Spot-215

ters reported the presence of swell are used to calculate the corresponding root-mean-216

square error of these partitioned sea states. Following methods from Portilla et al. (2009)217

for partitioning one-dimensional spectra, an estimate of the ratio between the peak en-218

ergy of the wave system and the peak energy of a Pierson–Moskowitz spectrum with the219

same peak frequency, γ⋆, is calculated as an indicator of swell presence. Observations220

with a γ⋆ <0.5 are used to select the observations for assessment of swell forecast skill221

(see Supplement for further details).222

3 Results223

3.1 Spectral Updates224

The optimal interpolation step updates the frequency-binned moments to balance225

between the model background and observations. In general, this does not exactly match-226

ing either owing to the uncertainty prescribed to both the observations and forecasts in227

the relative standard deviation of the errors.228

Spotter-0890 (Figure 2a), which was excluded from the DA experiments, illustrates229

the impact of the assimilation of each observation type. For the spectra in Figure 2b,230

the observed and non-assimilated modeled variance density spectra are different. For the231

Hs-based assimilation, the distribution is altered with higher energy at the peak frequency232

and lower energy at the higher frequencies, still different from the Spotter observation.233

The variance density spectrum for the spectra-based assimilation (blue line), however,234

closely matches the Spotter observation of the peak frequency as well as the distribu-235

tion of energy across frequencies, particularly capturing the wind-sea peak at higher fre-236

quencies. Further, the Hs-based assimilation does little to improve agreement of the Fourier237

coefficients with the Spotter observations (Figure 2c-f) while the spectra-based assim-238

ilation results in a notable qualitative improvement in agreement. Finally, the two-dimensional239

spectra from the non-assimilated model (g), spectra-based assimilated model (h), and240

their difference (i) illustrates the impact of assimilation of spectral information from a241

network of buoys. Specifically, energy was modified in both direction and frequency space242

– decreasing the energy and shifting to slightly lower frequencies around 300◦, remov-243

ing a swell field around 100◦, and introducing a swell field around 200◦.244

3.2 Improvements to Bulk Statistics245

Direct validation of the analysis two-dimensional spectra, such as shown in Figure246

2h, remains challenging because directional wave buoys, like the Spotter, only provide247

the Fourier coefficients. However, an improved two-dimensional spectrum in the model248

–7–
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Figure 2. Model states from the different WW3 experiments at an excluded Spotter buoy

(SPOT-0980) on Friday, March 4, 2022 12:00 UTC. (a) The location of the Spotter in the North

Atlantic. (b) The variance density spectrum and (c-f) Fourier coefficients of the Spotter (yellow),

free-running WW3 forecast (grey), wave height-assimilated (pink) and spectra-assimilated (blue).

Moments are calculated from the WW3 model spectra. (g-h) The two-dimensional wave spec-

trum from the free-running WW3 forecast and spectra-assimilated DA case. (i) The difference

between the two spectra.
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Figure 3. Root-mean-square error (RMSE) of bulk wave parameters in the analyses and

forecasts up to four days from all three WW3 experiments. No assimilation (grey), Hs-based

assimilation (pink), and spectra-based assimilation (blue) were assessed at all Spotter locations.

Approximately 25,000 observation-model pairs were used to estimate the RMSE.

will propagate forward in time and space and manifest in the bulk parameters of the down-249

stream wave field.250

Substantial improvements are observed in forecast skill when evaluated against Spot-251

ter bulk parameter observations (Figure 3). Significant wave height error in the anal-252

ysis is reduced by approximately 44% by the Hs-based assimilation approach and 38%253

by the spectra-based approach. At 24-hour lead times, the error is reduced by 8.2% and254

7.5% for Hs-based and spectra-based, respectively. At even longer lead times, the error255

reductions decay asymptotically to zero, with negligible forecast skill improvement be-256

yond 4 days.257

Five other bulk parameters – peak period Tp, mean period Tm, directional width258

σθ, peak direction Dp, and mean direction Dm – consistently exhibited the largest er-259

ror reductions in the spectra-based DA case, with up to 45% reduction in errors for di-260

rectional width in the analyses and persistent reductions of 1-2% in 4-day forecasts across261

bulk parameters.262

The full advantage of the spectra-based approach is illustrated in the bulk param-263

eters describing period and direction. The Hs-based approach does lead to some improve-264

ments in these bulk parameters despite no direct incorporation of this information into265

the assimilation scheme. Specifically, the Hs-based approach scales the energy spectrum266

equivalently across all frequencies, therefore not initially impacting the peak direction267

or frequency. However, as different portions of the wave spectrum relax to the forcing268

field (wind) at different rates (the higher frequencies adjusting the most rapidly), the scal-269

ing of the energy spectrum and subsequent relaxation to the background forcing will ul-270

timately modify the shape of the energy spectrum, in turn impacting the period and di-271

rection properties of the wave field. This evolution of the spectra results in the interme-272

–9–
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Figure 4. Wind sea significant wave height (left) and swell significant wave height (right)

root-mean-square error normalized against the non-assimilated error (grey) for the Hs-based as-

similation (pink) and spectra-based assimilation (blue) for observations with swell energy present

(see supplement for further details).

diate improvements to the frequency and direction properties following the Hs-based ap-273

proach. The spectra-based approach, on the other hand, explicitly updates the spectrum274

to better match the Fourier coefficients, manifesting in marked improvements to all bulk275

parameters. In particular, the improvements to the bulk parameters extend to longer lead276

times, indicating the value of correcting the frequency and direction information to sub-277

sequently propagate across the geographic domain. While most modeling efforts are eval-278

uated in terms of significant wave height (likely because this is the primary open ocean279

data available), other parameters of the wave field are equally important to accurately280

represent (e.g., large container vessels can be extremely vulnerable to specific frequency281

waves even at low magnitudes, swell can steer wind stress, and short waves impact air-282

sea fluxes).283

The approximately equivalent performance of the two assimilation strategies (Hs-284

based and spectra-based) when evaluated on just significant wave height is likely a re-285

sult of the spectra-based approach having additional constraints beyond the significant286

wave height target. Competing costs in reconstructing the directional distribution would287

then lead to less direct matching of the bulk parameter of significant wave height, de-288

spite better agreement with the spectral shape, with the largest impact at the zero-hour289

lead time.290

While the bulk statistic of total significant wave height is most effectively addressed291

by Hs-based assimilation (Figure 3), when we consider the significant wave height of wind292

sea (higher frequency) versus swell (lower frequency), a differentiation of the effective-293

ness of the two assimilation methods becomes clear (Figure 4). Because the wind seas294

are tightly coupled to the surface winds, any modifications to the initial condition of the295

high frequency wave field rapidly relax to the wind forcing. However, the propagation296

of low frequency swell waves is, to the first-order, an initial value problem, and there-297

fore ideally suited to improvement via DA. By updating the wave fields with spectra-298

based assimilation, the initial state of the swell is better represented and more accurately299

propagated forward in time. The error of specifically swell-containing events was reduced300

up to 25% in the analysis, with persistent improvement of approximately 5% out to four301

days (Figure 4).302
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4 Discussion and Conclusions303

Accurately predicting marine weather is critical to industry, society and the envi-304

ronment – from reducing global shipping emissions and safety risks, to mitigating coastal305

hazards. Observations and their effective utilization in numerical models play an out-306

size role in progressing forecasting ability and, for the first time, in situ observations of307

directional wave spectra are available in the open ocean at a sufficient density for im-308

pact at global scales. The operational assimilation scheme described here specifically il-309

lustrates the capacity for wave spectral observations to improve forecast accuracy of bulk310

parameters and spectral characteristics. The incorporation of the wave spectral data in311

the operational assimilation scheme quantitatively improves the forecast skill of signif-312

icant wave height up to 38% over the free-running WW3 model, and was further shown313

to outperform the Hs-based DA in forecasting period and direction, with particular suc-314

cess for swell-dominated fields.315

This work focuses on demonstrating the impact of distributed spectral observations316

on wave forecast skill, but the potential for improvements is not limited to waves alone.317

All interactions between oceans and the atmosphere are influenced by the ocean surface318

(Cavaleri et al., 2012), with exchange processes typically strongly dependent on the spec-319

tral distribution of energy. Consequently, through coupled data assimilation, a path ex-320

ists to use spectral observations to improve exchanges between ocean and atmosphere,321

thus improving earth system modeling more broadly. Overall, this work describes the322

realization of observational networks to provide the needed data with proven accuracy323

and reliability for such advances in operational models and lays the groundwork for broad324

progress in coupled earth systems modeling.325
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1 Supplementary1

Following Portilla et al. (2009), an estimate of the ratio between the peak energy
of the wave spectrum and the peak energy of a Pierson–Moskowitz (PM) spectrum with
the same peak frequency, γ⋆, was calculated. Specifically,

γ⋆ =
Eobs(fp)

αg2(2π)−4f−5
p e−5/4γ

(1)

where γ = 1 and α = αPM = 0.0081.2

In that work, observations with a γ⋆ < 1 were considered swell. Here, a stricter3

threshold of γ⋆ < 0.5 was used to select the observations at which swell forecast skill4

was assessed in order to clearly assess wave fields where energy was present in the lower5

frequency bins. The relationship between γ⋆ and the distribution of energy across fre-6

quencies can be seen in Figure 1, where observations with a peak period proportionally7

higher than the mean period had a lower γ⋆.8

Figure 1. Scatter plot of mean period and peak period from the Spotter observations used in

the sea versus swell significant wave height analysis, colored by γ⋆.

–1–



manuscript submitted to Geophysical Research Letters

References9

Portilla, J., Ocampo-Torres, F. J., & Monbaliu, J. (2009, 1). Spectral Par-10

titioning and Identification of Wind Sea and Swell. Journal of Atmo-11

spheric and Oceanic Technology , 26 (1), 107–122. Retrieved from https://12

journals.ametsoc.org/view/journals/atot/26/1/2008jtecho609 1.xml13

doi: 10.1175/2008JTECHO609.114

–2–


