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Abstract

This paper describes magnetospheric waves of very long wavelength in thin magnetic filaments. We consider an average

magnetospheric configuration with zero ionospheric conductance and calculate waves using two different formulations: classic

interchange theory and ideal MHD. Classic interchange theory, which is developed in detail in this paper, is basically analytic

and is relatively straightforward to determine computationally, but it can’t offer very high accuracy.The two formalisms agree

well for the plasma sheet and also for the inner magnetosphere. The eigenfrequencies range over about a factor of seven, but

the formulations generally agree with a root-mean-square difference of the $log {10}$ of the ratio of the interchange to MHD

frequencies to be $\sim 0.054$. The pressure perturbations in the classic interchange theory are assumed constant along each

field line, but the MHD computed pressure perturbations along the field line vary in a range $\sim 30 \%$ in the plasma

sheet but are larger in the inner magnetosphere. The parallel and perpendicular displacements, which are very different in the

plasma sheet and inner magnetosphere, show good qualitative agreement between the two approaches. In the plasma sheet, the

perpendicular displacements are strongly concentrated in the equatorial plane, whereas the parallel displacements are spread

through most of the plasma sheet away from the equatorial plane; and can be regarded as buoyancy waves. In the inner

magnetosphere, the displacements are more sinusoidal and are more like conventional slow modes. The different forms of the

waves are best characterized by the flux tube entropy $PVˆ\gamma$.
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Key Points:5

• We extend the theory of classic interchange by calculating eigenmodes within a thin fil-6

ament approximation.7

• We compare the eigenmodes from interchange theory to those from ideal MHD in an av-8
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Abstract12

This paper describes magnetospheric waves of very long wavelength in thin magnetic fil-13

aments. We consider an average magnetospheric configuration with zero ionospheric conduc-14

tance and calculate waves using two different formulations: classic interchange theory and ideal15

MHD. Classic interchange theory, which is developed in detail in this paper, is basically analytic16

and is relatively straightforward to determine computationally, but it can’t offer very high accu-17

racy.18

The two formalisms agree well for the plasma sheet and also for the inner magnetosphere.19

The eigenfrequencies range over about a factor of seven, but the formulations generally agree with20

a root-mean-square difference between the logarithms of interchange and MHD frequencies to21

be ∼ 0.054. The pressure perturbations in the classic interchange theory are assumed constant22

along each field line, but the MHD computed pressure perturbations along the field line vary in23

a range ∼ 30% in the plasma sheet but are larger in the inner magnetosphere. The parallel and24

perpendicular displacements, which are very different in the plasma sheet and inner magneto-25

sphere, show good qualitative agreement between the two approaches. In the plasma sheet, the26

perpendicular displacements are strongly concentrated in the equatorial plane, whereas the par-27

allel displacements are spread through most of the plasma sheet away from the equatorial plane;28

and can be regarded as buoyancy waves. In the inner magnetosphere, the displacements are more29

sinusoidal and are more like conventional slow modes. The different forms of the waves are best30

characterized by the flux tube entropy PVγ.31

Plain Language Summary32

Ideal magnetohydrodynamic (MHD) ballooning and interchange disturbances have been33

studied extensively over the years as they are connected to potentially important phenomena in34

the magnetosphere. One such phenomenon consists of magnetospheric buoyancy waves which35

are analogous to atmospheric gravity waves, with magnetic tension force replacing gravity as the36

restoring force. There are different definitions of ideal ballooning and interchange. In our def-37

inition, ballooning is much more general, while interchange applies only to a much more lim-38

ited set of conditions, as it applies to the limit of long wavelengths and assumes pressure is con-39

stant along each field line. Focusing on waves and using a thin filament approach, we have ex-40

tended the classic theory of interchange by calculating eigenfrequencies and eigenfunctions for41

pure interchange models using an energy approach. The results are applied on an average force-42

balanced magnetosphere configuration and are compared to MHD ballooning oscillation eigen-43

frequencies and eigenfunctions. The two approaches show good agreement in the plasma sheet,44

but less so in the inner magnetosphere, where the MHD results qualitatively resemble MHD clas-45

sic slow modes rather than buoyancy waves.46

1 Introduction47

This paper explores the relationship between two kinds of linear MHD disturbances, namely48

interchange and ideal MHD ballooning. We consider the limit of zero ionospheric conductance.49

In that case, the square of the frequency ω2 is real. If ω2 > 0, it represents a wave, and ω2 <50

0, it represents a instability. In this paper, we are mostly concerned with waves. For simplicity,51

we consider even waves with k∥ ∼ 0 propagating in the meridional xz plane. (An even wave is52

one in which the displacement is symmetric about the equatorial plane.) We define k∥ B 2π/λ,53

where λ is the wavelength of the thin filament mode.54

We consider waves in thin magnetic filaments, which have been studied in various geome-55

tries (e.g., solar (Parker, 1981); and magnetosphere (Chen & Wolf, 1999; Wolf et al., 2012; Tof-56

foletto et al., 2020)). These structures are infinitesimally thin in the y-direction and also in the57

xz plane perpendicular to the magnetic field. They slide through the magnetospheric background58

without friction. In a uniform medium, there are three MHD wave modes (fast, intermediate, and59
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slow). The fast modes don’t propagate in thin filaments (Chen & Wolf, 1999). In the interme-60

diate (Alfvén) modes, which have been studied exhaustively in the magnetosphere, the pertur-61

bation velocities are in the ±y direction in the xz plane. We are most interested in the slow modes62

with perpendicular velocities in the xz plane, particularly the ones with very long wavelengths63

along the magnetic field (k∥ ≈ 0). In the xz plane, the Alfvén and slow modes decouple, and64

we discuss just the slow modes.65

Many space physicists have discussed ballooning and interchange (e.g. Panov et al. (2022);66

Khazanov et al. (2020); Sorathia et al. (2020); Southwood and Kivelson (1989); Mazur et al. (2013);67

Liu (1997); Cowley et al. (2015); Schindler and Birn (2004); Pritchett and Coroniti (2010); Birn68

et al. (2011)). In our definition, ballooning is a much more general phenomenon than interchange.69

It includes both short and long wavelengths. Interchange applies only to a much more limited70

set of conditions. Specifically, it applies to the limit of long wavelengths (k∥ ≈ 0), and it also71

assumes pressure is constant along each field line. The theory of ballooning does not make that72

assumption. The theory of interchange is much easier to apply than the theory of ballooning. In-73

terchange theory was developed more than sixty years ago by Bernstein et al. (1958), in a clas-74

sic paper written early the controlled-fusion effort. Bernstein et al. (1958) included a full range75

of β. A much simpler version of interchange theory was based on the energy principle, a version76

that assumes low-β, was developed Chandrasekhar (1960) and used by many textbook authors77

(e.g., Schmidt (1979)). Most of this early work emphasized the threshold of interchange insta-78

bility. Our present paper, which is also based on the energy principle, uses the thin-filament ap-79

proximation for realistic magnetospheres. It is not limited to calculating the threshold ω2 = 0,80

and it includes the calculation of the eigenfrequencies and eigenfunctions.81

In a neutral atmosphere, the buoyancy force is due to gravity and is proportional to the en-82

tropy P/ργ. If the gradient of P/ργ is downward, the system is interchange unstable. If the gra-83

dient of P/ργ is upward, the system can show stable interchange waves. In the magnetosphere,84

gravity is unimportant, but there is an effective buoyancy that is proportional to the curvature of85

the magnetic field lines. For this magnetic buoyancy, the crucial physical quantity is the flux tube86

entropy PVγ. If the gradient of PVγ is earthward the system is unstable to interchange. If the gra-87

dient of PVγ is anti-earthward, the result is stable waves. In the simplest case, the equation that88

governs the frequency of the oscillation is the same as the Taylor-Goldstein equation, which gov-89

erns the oscillations of the neutral atmosphere. See Wolf et al. (2018) for details.90

In this paper, we consider wave motion as being confined to the xz plane. The case in which91

the gradient is not on a plane has been considered theoretically (Xing & Wolf, 2007; Khazanov92

et al., 2020) but the results conflict, and the situation has not been resolved. Section 2 of the pa-93

per uses analytic theory and the energy principle to derive formulas for the eigenfunctions and94

eigenfrequencies within the classic interchange theory. Section 3 displays the results of numer-95

ical calculations of eigenfunctions and eigenfrequencies, comparing the classic interchange the-96

ory with full MHD calculations for an average magnetosphere. Section 4 discusses the remark-97

able differences between plasma sheet and inner magnetosphere, for an average magnetosphere98

and the relationship between the flux tube entropy PVγ, the boundary between the unstable and99

stable region, and the accuracy by which we can estimate eigenfrequencies and eigenfunctions100

using full MHD and the interchange approximation. An appendix explains a numerical proce-101

dure to determine inner boundary conditions for the case of zero ionospheric conductance.102

2 Formulas for the Amplitudes and Buoyancy Frequency for Pure Interchange Oscil-103

lation of Thin Filaments104

Here we use an energy argument to derive the expressions for the field-transverse and field-105

aligned displacement eigenfunctions (ξ⊥, ξ∥) and eigenfrequency ωPI for the pure interchange106

oscillations of a thin filament. The interchange picture is idealized in the sense that it assumes107

that ξ⊥(s) displaces an equilibrium field line to the shape of an adjacent equilibrium field line and108

also that ξ∥ maintains pressure constancy along the displaced flux tube. These can be compared109

with the eigenfunctions and eigenfrequencies derived for MHD normal modes of the thin fila-110
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ment to determine how closely those normal modes resemble pure interchange modes, which are111

one type of idealization of a thin filament normal mode.112

Two Thin Filaments Set Oscillating by Interchange

(a)

(b)

y

(d)

x

z

(e)

(c)

(0)

s

Figure 1. Meridional (left) and equatorial (right) views of the oscillating 2-filament problem we are consid-

ering. The two filaments (brown and blue) contain identical amounts of magnetic flux Φ and have the same

flux tube entropy PV5/3 as the local background. The entropy gradients are anti-Earthward (to the right in

both images).

Consider the idealized situation of two adjacent thin filaments shown in Figure 1. In di-113

agram (a), we start with two thin filaments from the background that have the same magnetic flux114

Φ. Each matches the local background, so the system is in equilibrium. Between diagrams (a)115

and (b), an external force pushes the blue filament past the brown filament, displacing it to the116

flux tube volume previously occupied by the brown filament. The filaments have switched lo-117
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cations and the external force withdraws, leaving each filament occupying the same volume as118

the other had initially. Neither one is left with kinetic energy. However, they are now out of equi-119

librium with their surroundings. The gradient of PVγ propels the blue filament anti-Earthward120

and the brown filament Earthward. When they reach the positions they had originally occupied,121

they now have residual kinetic energy which propels them from their locations in (c) to their lo-122

cations in (d). By configuration (d), they have converted all of their kinetic energy into magnetic123

energy and have come to rest. This energy now propels them in the opposite directions, blue Earth-124

ward and brown anti-Earthward. When they reach configuration (e), the buoyancy forces have125

been reduced to zero and the velocities of the equatorial footprints have reversed relative to (c).126

These oscillations continue to repeat in the absence of any additional disturbances or damping.127

We will here analyze the oscillations of the thin filaments from an energy point of view un-128

der the interchange assumption. In configuration (b), the total energy is entirely potential, whereas,129

in configuration (c), it is entirely kinetic. Equating the potential energy in configuration (b) to130

the kinetic energy in configuration (c) will reveal the frequency of the oscillation.131

First, let us compute the potential energy of configuration (b).132

2.1 Potential Energy133

We calculate the change in potential energy in two steps. In the first step, we assume the134

blue filament in configuration (b) has moved to occupy the same volume as the brown filament135

had in configuration (a), and vice-versa. Since the two filaments have the same magnetic flux,136

the total magnetic energy is unchanged from (a) to (b).137

2.1.1 Step 1: Potential Energy Change Due to Exchange of Thin Filaments138

We calculate the change in potential energy going from configuration (a) to configuration139

(b). Configurations (a) and (c) are identical with respect to their kinetic energy, so we will use140

the (a) configuration label from now on rather than (c). The particle pressure part of the inter-141

nal energy of the two filaments (distinguished by their color box subscripts), in their initial con-142

figuration (a), is given by:143

U(a) = U(c) =
3
2

(
P(a)V(a) + P(a)V(a)

)
Φ. (1)

where Φ is the amount of magnetic flux in each flux tube. If we assume the process is adi-144

abatic, the particle pressure part of the internal energy of the two filaments in configuration (b)145

(in terms of the pressures and flux tube volumes which they occupied in configuration (a)) is given146

by:147

U(b) =
3
2

P(a)

V(a)
V(a)

5/3

V(a) + P(a)

V(a)
V(a)

5/3

V(a)

Φ. (2)

To first-order, the difference between the initial pressures and flux tube volumes in the brown148

and blue filaments is given by:149

V(a) = V(a) + V ′ξ⊥ (3)

P(a) = P(a) + P′ξ⊥, (4)

where the primes represent the derivatives in the tailward/poleward direction. The result-150

ing change in potential energy to second order in the small parameter ξ can therefore be written:151
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U(b) − U(a) = PVΦξ2
⊥

V ′

V

(
P′

P
+

5
3

V ′

V

)
. (5)

2.1.2 Step 2: Pressure Equilibrium Restoration by Adjacent Thin Filament Boundary152

Adjustment153

At this point, in configuration (b), the total pressure inside each of the filaments does not154

balance the local background pressure, because while the magnetic field inside the blue and brown155

filaments has not yet changed in the interchange, the particle pressure has. This is not important156

in very low β plasmas, but it is in high β plasmas.157

Without loss of generality, let us consider the blue filament closer to the Earth in config-158

uration (b). We will find the additional pressure available to this filament as a result of the ex-159

change.160

The total pressure in the filament closer to Earth in configurations (a) and (b), respectively,161

are given by:162

Ptot,(a) =

B2
(a)

2µ0
+ P(a) (6)

Ptot,(b) =

B2
(a)

2µ0
+ P(a)

V(a)
V(a)

5/3

, (7)

so that to first order (dropping the color box subscripts), we have:163

δP tot B Ptot,(b) − Ptot,(a) = Pξ⊥

(
P′

P
+

5
3

V ′

V

)
. (8)

Since the gradient of PV5/3 is anti-Earthwards, it follows that δP tot > δP tot . The blue164

filament is no longer in equilibrium with its surroundings, so it will have to expand. The brown165

filament will have to contract by an equal amount.166

To simplify things, we do not consider the azimuthal motion of the filaments. They are in-167

finitesimally thin azimuthally and infinitesimal motion in this direction introduces no changes168

in potential energy. Therefore the figures do not include the real, if unimportant, azimuthal slid-169

ing of the filaments around one another so that they may exchange locations.170

With the expansion of the blue filament towards equilibrium, the boundary between the brown171

and blue filaments needs to move up in the diagram. However, the boundary between the two fil-172

aments extends along the entire length of the filament, and the boundary location adjustment σ173

depends on the distance along the field line from the equatorial plane, which we designate s.174

Again, consider the blue filament in configuration (b) (with superfluous subscripts dropped).175

We allow the boundary between the two filaments to shift by σ(s) toward the brown filament as176

seen in Figure 2, so that:177

B f (s)
[
ξ⊥(s) + σ(s)

]
= B ξ⊥(s), (9)

where ξ⊥(s) is tailward and positive and B f is the final value of the magnetic field in the178

blue filament in configuration (b) after the pressure adjustment. The fractional perturbation of179

the magnetic inductance is thus given by:180
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Pressure Re-equilibration by Expansion and Contraction of Thin Filaments

Initial Boundary
Final Boundary

z=0

σ(0)>σ(s)

z

x y σ(0)

σ(s)

Figure 2. Meridional diagram of two adjacent thin filaments after they have exchanged locations. The thin

filament closer to the Earth is not in equilibrium and will have to expand to reach equilibrium as the other fil-

ament contracts. This shift of the boundary σ(s) between the two thin filaments depends on the field-aligned

coordinate s and takes its maximum value σ(0) in the equatorial plane. The entire initial and final boundary

location is shown. In the equatorial plane, the boundary has shifted anti-Earthward corresponding to the pole-

ward boundary shift of the footprint on the Earth. Recall that the ionospheric conductance is assumed to be

zero.

δB
B
= −

σ(s)
ξ⊥(s)

, (10)

where we continue to drop higher order contributions. The change in magnetic pressure181

of the blue filament, due to the boundary adjustment is, to first order,182

δ

(
B2

2µ0

)
= −

B2

µ0

σ(s)
ξ⊥(s)

. (11)

The corresponding fractional change in flux tube volume is:183

δV
V
= −

〈
δB(s)

B

〉
f t
=

〈
σ(s)
ξ⊥(s)

〉
f t
, (12)

where the angle bracket represents a flux tube average:184

⟨ f ⟩ f t =
1
V

∫
ds
B

f (s). (13)

Since we assume adiabaticity, we arrive at the following fractional change in particle pres-185

sure:186

δP
P
= −

5
3

〈
σ

ξ⊥

〉
f t
. (14)
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Finally, the fractional change in the total pressure due to the boundary adjustment is:187

δPtot(s)
P

= −
5
3

〈
σ

ξ⊥

〉
f t
−

B2

µ0P
σ(s)
ξ⊥(s)

. (15)

It would be advantageous to recast this exclusively in terms of the equatorial plane values188

rather than as a general function of s.189

This pressure adjustment just needs to balance out the additional pressure given by (8), which190

means that191

B2

µ0P
σ(s)
ξ⊥(s)

+
5
3

〈
σ

ξ⊥

〉
f t
= ξ⊥(s)

[
P′(s)

P
+

5
3

V ′(s)
V

]
. (16)

Since P and V are both constant along field lines and ξ⊥ is proportional to the distance be-192

tween nearby field lines, the right side of (16) is constant along field lines, and we can evaluate193

it in the equatorial plane (designated by an “e” subscript). Doing this and solving for the frac-194

tional shift in flux tube boundary, we arrive at the following expression:195

σ(s)
ξ⊥(s)

= β(s)
−5

6

〈
σ

ξ⊥

〉
f t
+
ξ⊥(0)

2

[
P′e
P
+

5
3

V ′e
V

] . (17)

Taking the flux tube average of both sides gives and solving for the flux tube averaged frac-196

tional boundary shift, we obtain:197

〈
σ

ξ⊥

〉
f t
=
ξ⊥(0)

2

⟨β⟩ f t(
1 + 5

6 ⟨β⟩ f t

) (
P′e
P
+

5
3

V ′e
V

)
. (18)

Now, let’s substitute (18) into (17) to arrive at:198

σ(s)
ξ⊥(s)

=
ξ⊥(0)

2
β(s)(

1 + 5
6 ⟨β⟩ f t

) (
P′e
P
+

5
3

V ′e
V

)
. (19)

Substitution of (18) and (19) into (15) finally yields an expression for the fractional change199

in total pressure which depends only on parameters evaluated at the equatorial plane:200

δPtot

P
= −ξ⊥(0)

(
P′e
P
+

5
3

V ′e
V

)
. (20)

Now that we know how much the boundary between the blue and brown filaments moves201

to bring the total pressures into equilibrium, we need to know how much that boundary shift re-202

duces the potential energy. Imagine there is a horizontal wall between the two filaments in Fig-203

ure 2. The work done on this wall would be:204

δW = −
1
2

∫
ds∆y(s)σ(s)

(
δP tot − δP tot

)
= −

∫
ds∆y(s)σ(s) δP tot , (21)

where ∆y(s) is the width of the filament in the y-direction, which is perpendicular to the205

plane of the field lines. The factor of 1/2 comes from the fact that the pressure imbalance goes206

from its maximum value of zero as the wall moves to its equilibrium position, and we have in the207

last step used the fact that δP tot = −δP tot . Now that we have eliminated the brown color box208

–8–
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subscript, we will again dispense with the blue color box subscript, which should be now again209

be taken as implicit. Now, we can utilize the fact that ∆y(s) ξ⊥(s) = Φ/B(s), so that (21) becomes:210

δW = −Φ
∫

ds
B
σ(s)
ξ⊥(s)

δPtot = −
1
2

PVΦ ξ2
⊥(0)

⟨β⟩ f t(
1 + 5

6 ⟨β⟩ f t

) (
P′e
P
+

5
3

V ′e
V

)2

. (22)

The total difference between the potential energy in state (b), with the boundary adjustment211

included, and state (a) is:212

∆U = U(b) − U(a) + δW. (23)

Using (5) and (22), we therefore obtain our final expression for the change in potential en-213

ergy:214

∆U = PVΦ ξ⊥(0)2 1
1 + 5

6 ⟨β⟩ f t

(
P′e
P
+

5
3

V ′e
V

) (
V ′e
V
−
⟨β⟩ f t

2
P′e
P

)
. (24)

The last two factors determine the sign of ω2. They are consistent with equation (2) of Xing215

and Wolf (2007), which came from equation (6.45) of Bernstein et al. (1958).216

2.2 Kinetic Energy217

Now that we have computed the total change in potential energy, let us turn to the maxi-218

mum kinetic energy of the filaments, which they have at configurations (c) and (e), for example,219

of Figure 1.220

Noon-Midnight Meridional Geometry of Adjacent Thin Filaments

ξ ψ δψ+( )o o�

Euler potential  α o

Euler potential  

ψ δψ+o o

ξ ψ δψ+⊥ ( )o oψ o

ξ ψ⊥ ( )o

α δα−o

ξ ψ( )o�

ψ δψ+

ψ

Figure 3. Geometry of adjacent thin filaments in Euler potential α used in the calculation of ξ∥. We imagine

this to be the noon-midnight meridional plane, so that the y-coordinate is fixed. Coordinate grid-lines are

drawn in the (α, ψ)-plane.

For an interchange motion, the displacement perpendicular to the field line is given by:221

ξ⊥ = −ξκ =
δα

|∇α|(s)
≡ hαδα (25)

where α is the Euler potential that specifies the field line. This equation guarantees that if222

the initial filament location coincides with a background field line that is labeled α = α0, then223

the displaced filament coincides with a background field line that is labeled α = α0 − δα. We224

–9–
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apply this to the midnight meridian (y = 0). The s-dependence of ξ∥ is determined by the as-225

sumption that pressure is constant on the field line defined by the displaced fluid elements.226

The geometry is shown in Figure 3. We use a second coordinate ψ, which is used to mea-227

sure the distance along the field line. Its gradient is in the midnight meridian plane and is orthog-228

onal to ∇α. The physical distance between ψ0 and ψ0+δψ0 on the field line α is hψ(α0, ψ0) δψ0229

and the physical distance along a ψ = constant line between field line α and field line α − δα230

is ξ⊥(α, ψ) = hα(α, ψ) δα.231

The number of particles on field line α0 between ψ0 and ψ0 + δψ0 has to be equal to the232

number of particles on field line α0 − δα between ψ and ψ + δψ, so that:233

n(α0 − δα)
B(α0 − δα, ψ)

hψ(α0 − δα,ψ) δψ =
n(α0)

B(α0, ψ0)
hψ(α0, ψ0) δψ0. (26)

From Figure 3, we can see that the relationship between δψ and δψ0 is given by:234

hψ(α0 − δα, ψ) δψ = hψ(α0, ψ0) δψ0

[
1 − κhαδα +

1
hψ

(
∂ξ∥

∂ψ

)
α

]
, (27)

where κ is the field line curvature. Flux tube particle conservation, with the application of235

this geometric relation, can be written:236

n(α0 − δα)
B(α0 − δα, ψ0 + δψ)

(
1 − κhαδα +

1
hψ

(
∂ξ∥

∂ψ

)
α

)
=

n(α0)
B(α0, ψ0)

. (28)

The difference between the magnetic fields that a given fluid element will experience in237

going from (α0, ψ0) to (α0 − δα, ψ0 + δψ) is:238

B(α0 − δα, ψ0 + δψ)
B(α0, ψ0)

= 1 −
1
B

(
∂B
∂α

)
ψ

δα +
1
B

(
∂B
∂ψ

)
α

(δψ − δψ0) . (29)

Conservation of particles in the context of frozen-in flux require that:239

n(α0 − δα)
n(α0)

=
V(α0)

V(α0 − δα)
≈ 1 +

1
V

dV
dα

δα. (30)

We use (29) to eliminate magnetic inductance, (30) to eliminate the densities, and the fact240

that δψ− δψ0 = ξ∥/hψ to rewrite (28) in the following form, retaining only first-order terms in241

δα:242

1
hψ

[(
∂ξ∥

∂ψ

)
α

−
ξ∥

B

(
∂B
∂ψ

)
α

]
=

1
hψ

(
∂
(
ξ∥/B

)
∂ψ

)
α

=

κhα − 1
V

dV
dα
−

1
B

(
∂B
∂α

)
ψ

 δα. (31)

This can easily be integrated in ψ to yield:243

ξ∥(ψ)
B(ψ)

= δα

∫ ψ

0

hψ(ψ′)dψ′

B(ψ′)

κhα − 1
V

dV
dα
−

1
B

(
∂B
∂α

)
ψ′

 , (32)

where we have made use of the fact that ξ∥(0) = 0.244

Now, we will make use of some geometry to recast our parallel displacement. We have:245
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(
∂hψ
∂α

)
ψ

= κhψhα, (33)

and we additionally note that one can commute the partial derivative past the integral (un-246

der an assumption of “smoothness”) to write:247

(
∂

∂α

∫ ψ

0

hψ(α, ψ′)dψ′

B(α, ψ′)

)
ψ

=

∫ ψ

0

(
∂hψ(α, ψ′)

∂α

)
ψ

dψ′

B
−

∫ ψ

0

hψ(α, ψ′)dψ′

B
1
B

(
∂B
∂α

)
ψ′

(34)

Technically, we are here assuming continuity of both hψ/B and
[
∂α

(
hψ/B

)]
ψ

in the domain248

of interest.249

Using these geometric constraints, we can rewrite equation (32) as:250

ξ∥(ψ) = B(ψ)
[
∂Vp(ψ)
∂α

−
Vp(ψ)
V(α)

dV(α)
dα

]
δα, (35)

where:251

Vp(α, ψ) =
∫ ψ

0

hψ(α, ψ′)dψ′

B(α, ψ′)
(36)

is the partial flux tube volume from the equatorial plane up to coordinate ψ. Equation (35)252

can now be rewritten in a slightly more general manner:253

ξ∥(ψ) = B(ψ)
(∂Vp(α, ψ)

∂sκ

)
ψ

−
Vp(ψ)
V(α)

(
∂V(α)
∂sκ

)
ψ

 δsκ (37)

where sκ is the distance perpendicular to the field line in the direction of the curvature vec-254

tor.255

The maximum kinetic energy in the two flux tubes that each contain unit flux Φ can be writ-256

ten:257

T = ρω2
PIΦ

∫
ds
B
ξ2
⊥

1 + ξ2
∥

ξ2
⊥

 , (38)

where ωPI is the pure interchange frequency associated with the thin filament oscillations.258

2.3 Eigenfrequency Formula259

Equating the maximum kinetic energy (38) to the maximum potential energy (24) and solv-260

ing for the frequency gives:261

ω2
PI =

P
ρ

( P′e
P +

5
3

V ′e
V

) (V ′e
V −

⟨β⟩ f t

2
P′e
P

)
(
1 + 5

6 ⟨β⟩ f t

) 〈
ξ⊥(s)2

ξ⊥(0)2

(
1 + ξ∥(s)2

ξ⊥(s)2

)〉
f t

(39)

where s = 0 represents the equatorial plane and ρ = mn is the mass density of the thin262

filament plasma. This is the oscillation frequency for the pure interchange modes.263

–11–



manuscript submitted to JGR: Space Physics

3 Results264

3.1 Average Magnetosphere265

Equilibrium Magnetic Field Lines for Average Magnetosphere

20.017.515.012.510.07.55.02.50.0
x

3

2

1

0

1

2

3

z

Figure 4. Plot of equilibrium field lines in the noon-midnight plane.

Background Field Profiles for Average Magnetosphere
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Figure 5. Plot of equilibrated magnetosphere models, showing on the left panel the pressure, Bz, and

density (left) along the tail axis and the flux tube volume (V, right), entropy PVγ and the flux tube-averaged

plasma beta ⟨β⟩ f t.

We now plot the frequency ωPI and several others, for a magnetosphere model which rep-266

resents the xz plane of an average magnetosphere. We use the following background fields:267

1. Started with a K p = 2 Tsyganenko (1989) magnetic field model.268

2. Obtained pressure profile by combining a quiet curve from Lui et al. (1987) for |x| < 8 RE269

and Spence et al. (1989) for |x| > 8 RE .270

3. Relaxed the resulting magnetic field and pressure configuration to equilibrium in the xz271

plane using a 2-D, high-resolution version of the friction code (Lemon et al., 2003).272
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4. Densities were chosen using the K p = 2 Gallagher et al. (2000) model for |x| < 8 RE273

merged smoothly to a Tsyganenko and Mukai (2003) model for |x| > 10 RE .274

5. For a specified equatorial crossing point, a field line is traced to both the Northern and South-275

ern ionosphere.276

Figure 4, reproduced from Toffoletto et al. (2020), shows the corresponding field lines for277

the nightside of the background equilibrium. More details on the average magnetosphere model278

can be found in Wolf et al. (2018). Figure 5, reproduced from Wolf et al. (2018), shows the re-279

sulting equilibrated magnetosphere from the equilibrium code of pressure, number density, and280

Bz profiles along the tail axis, along with the flux tube volume, entropy PVγ, and flux tube-averaged281

plasma beta ⟨β⟩ f t. The magnetic field and pressure are also smoothed to remove any small grid-282

scale fluctuations introduced by the equilibrium code.283

3.2 Eigenfrequencies for an Average Magnetosphere284

Figure 6 plots three different eigenfrequencies: (i) the pure interchange oscillation frequency285

ωPI derived in equation 39; (ii) the oscillation frequencies ωMHD for MHD normal modes of thin286

filaments in an average magnetosphere (described in Section 3.1); and (iii) the frequency of os-287

cillations of the thin filament treated as a simple harmonic oscillator in a simple plasma sheet mag-288

netic field model with most of its mass concentrated at the equatorial plane (equation (33) of Wolf289

et al. (2012) and equation 42 below). The comparison between the first two of these is the most290

important, as it is one indicator of how much the MHD normal modes resemble those of clas-291

sic interchange theory, at least for an average magnetosphere.292

The main frequency we’re comparing to is that of the MHD thin filaments. In Toffoletto293

et al. (2020), numerical solutions to an eigenvalue problem consisting of two coupled differen-294

tial equations for the normal modes ξ⊥(s) and ξ∥(s) at different values of xeq. In effect, one ar-295

rives at a detailed picture for a realistic magnetosphere of the normal modes in the xz plane along296

with the corresponding buoyancy frequency ωb as a function of equatorial crossing point xeq. This297

frequency is determined numerically and has no analytic expression. These normal modes them-298

selves will be discussed in greater detail shortly. The MHD thin filament frequency has been de-299

termined numerically from the oscillations of the lowest even mode.300

We define relative differences from the MHD normal modes as follows:301

√√〈(
log10

[
ωPI

ωMHD

])2〉
xeq

= 0.054 (40)√√〈(
log10

[
ωW

ωMHD

])2〉
xeq

= 0.112 (41)

The first relative difference, again, is the most important for our purposes. The agreement302

between the frequency from the classic interchange theory and that of the MHD normal mode303

results is quite good. Note that here our differences contain averages over equatorial crossing point304

xeq, denoted ⟨ f ⟩xeq
.305

3.3 Eigenfunction Calculation306

We can also examine the normal mode eigenfunctions and compare them against the pure307

interchange modes for fieldlines that have various equatorial crossing points. The agreement is308

quite pronounced, especially in the plasma sheet. As one approaches the inner magnetosphere,309

the deviation between the parallel modes is greater. In the transition region between xeq = −11 RE310

and xeq = −6 RE , the perpendicular modes also deviate from one another, but the agreement311

is somewhat closer Earthward of that.312
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Buoyancy Frequencies as a Function of Equatorial Crossing Distance

17.515.012.510.07.55.02.5
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b(
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z)
PI

MHD
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Figure 6. Comparison of eigenfrequencies for pure interchange mode ωPI , MHD normal mode ωb (with

zero conductivity at the ionosphere), and a simple harmonic oscillator formula for a thin filament with mass

concentrated at the equatorial plane ωW . All three are plotted as a function of xeq, the equatorial crossing dis-

tance for the footprint of the filament in RE . They agree to within an order of magnitude (more details below).

This makes the classic interchange theory, which assumes that B⃗ · ∇p = 0, a useful simplified model for a

more realistic magnetosphere. Note that this result depends on the density model described in point 4 of the

preceding section. The sharp gradient in frequency at around xeq = 5 RE is due to the plasmapause.

Figure 7 shows displacements ξ∥ and ξκ = −ξ⊥ for seven filaments and for pure interchange313

and MHD full normal modes. We will begin by explaining how the displacements are calculated314

numerically for pure interchange. Note that these are the displacements normalized to their max-315

ima, denoted in Toffoletto et al. (2020) by Ξ. There is no loss of generality since the maxima are316

arbitrary. Also, note that each of the modes are normalized by the value max(|ξκ|, |ξ∥|). Note that317

a positive value of ξκ represents a fieldline that moves Earthward from its equilibrium point, while318

a positive/negative value of ξ∥ in the northern/southern hemisphere represents a fieldline that gets319

shorter whereby mass points on the fieldline move closer to the Earth.320

The algorithm for computing the displacements ξ⊥ and ξ∥ for the pure interchange and nor-321

mal modes, plotted in Figure 7 is as follows:322

1. The first step in this procedure involves determining the field line that crosses the equa-323

torial plane at a specified location x (labeled F0) and another nearby field line (labeled F1)324

that has equatorial crossing location x−δx, where δx is chosen to be a small number (typ-325

ically 0.1 RE). The background magnetic field is based on the same magnetic field model326

used in the Toffoletto et al. (2020), which is a Tsyganenko (1989) with an empirical back-327
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Displacement Eigenfunctions for Pure Interchange and MHD Thin Filaments
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Figure 7. Displacements of mass points parallel and perpendicular to the magnetic field lines at various

equatorial crossing points (xeq) from the inner magnetosphere to the further out in the plasma sheet. Solid

lines show the displacements according to the classic interchange theory, while dashed lines show the results

of MHD normal mode calculations. These deviate further from one another as one approaches the inner mag-

netosphere. Displacements are normalized to their maxima. Recall that ξκ = −ξ⊥.

ground pressure that has been relaxed to equilibrium using a 2-D version of the friction328

technique (Lemon et al., 2003).329
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Equatorial crossing point

xeq(RE)
√〈(

ξPI
κ − ξ

MHD
κ

)2
〉

s

√〈(
ξPI
∥
− ξMHD
∥

)2
〉

s

- 3 0.0958 0.357
- 5 0.136 0.252
- 7 0.297 0.214
- 9 0.199 0.202

- 12 0.0336 0.151
- 15 0.0172 0.135
- 18 0.00983 0.0388

Table 1. Root-mean-square differences, averaged over a fieldline s, between the pure interchange (PI) and

MHD eigenfunctions for both the κ and parallel modes for various fieldlines that cross the equatorial plane at

x = xeq.

2. For each grid point on field line F0, the intersection point on field line F1 along the κ̂ is330

found.331

3. The distance from the grid point on field line F0 to the intersection point on field line F1332

is used to determine ξκ.333

4. Equation (37) is then used to compute ξ∥, by computing Vp(ψ), the flux tube volume V and334

using the locations of the two field lines F0 and F1 to compute the necessary derivatives.335

For the normal mode calculation, the basic procedure is described in Toffoletto et al. (2020),336

except that the ionospheric boundary condition is replaced with a zero conductance, to be con-337

sistent with the interchange assumption. The details of the boundary condition are described in338

the Appendix. To accurately reproduce the boundary condition, and satisfy equations (A4) and339

(A12) it was necessary to move the location of the inner boundary out to 2 RE . This is due to the340

limited number of grid points used to store the background magnetic field, which was a Carte-341

sian grid with a resolution of 0.03 RE .342

In addition to comparing the eigenmodes for the MHD thin filament calculation and those343

corresponding to a pure interchange assumption, we can examine just how much the pressure per-344

turbations deviate from constancy for the MHD thin filaments. For pure interchange modes, the345

δP would be constant.346

Table 1 shows the root-mean-square differences between the pure interchange and MHD347

normal modes at each equatorial crossing point value. Note that here our differences involve av-348

erages along the field line s. This is different than the flux tube average ⟨ f ⟩ f t defined above.349

4 Discussion and Conclusion350

The most striking feature of the eigenfunctions is how different they are in the plasma sheet351

and the inner magnetosphere. In the plasma sheet (xeq = −12 RE to xeq = −18 RE), ξ⊥ is very352

concentrated at the equatorial plane. ξ∥ = 0 at the equatorial plane (because of symmetry), but353 ∣∣∣ξ∥∣∣∣ has a very sharp maximum just off the equatorial plane. (See Figure 7.) Earthward of that max-354

imum,
∣∣∣ξ∥∣∣∣ gradually declines earthward. The total velocity is basically in the x-direction. It is355

also striking how similar the eigenfunctions for interchange and MHD modes are. The interchange356

and MHD eigenfunctions are a little different near the inner edge of the plasma sheet, but they357

are still very similar. Note that in the plasma sheet, ∇ log PVγ is tailward but very small (right358

side of Figure 5). We associate all of these features with buoyancy waves.359
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MHD Thin Filament Pressure Perturbation
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Figure 8. Plot of the pressure perturbation profiles along the field line coordinate s for the MHD thin fila-

ments at various equatorial crossing points xeq. They are normalized to the maximum pressure, given above

each panel. Note that the pressure perturbation deviates little from constancy out in the plasma sheet, but

deviates more substantially as one approaches the inner magnetosphere.

The form of the eigenfunctions are dramatically different for the inner magnetosphere (xeq =360

−3 RE to xeq = −7 RE). ξ⊥ and ξ∥ are now approximately sinusoidal and do not show strong peaks.361
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These eigenfunctions qualitatively resemble classic slow modes, and we don’t refer to them as362

buoyancy waves. The interchange and full MHD eigenfunctions are not exactly the same, but they363

are not strikingly different. ∇ log PVγ is tailward and much stronger than in the plasma sheet. The364

interchange and MHD eigenfrequencies are again very similar.365

Figure 8 indicates that δP always has a minimum at the equatorial plane. The δP varies very366

modestly for a filament that crosses the equatorial plane at xeq = −18 RE , and that is consis-367

tent with the fact that interchange and MHD eigenfrequencies and eigenfunctions are almost the368

same. δp varies more substantially as |x| decreases.369

It is helpful to discuss the Wolf 2012 formula displayed in Figure 6 in Wolf et al. (2012),370

which identifies the oscillation frequency with that of a simple harmonic oscillator undergoing371

small oscillations about the equatorial crossing point xeq of the filament. It assumes that the ef-372

fective net force on the filament is just the force difference between force transverse to the fil-373

ament and in the background. The magnetic field is assumed to have a simple form B⃗ = Bze +374

B′xzx̂, where Bze and B′x are constants. This approach uses Newton’s second law for the net force375

in the x-direction at the equator and treats the mass as oscillating with the equatorial crossing point376

at frequency ωW . The result is:377

ω2
W (x) =

πP
ρBz,eqVeq

1(
1 +

5⟨β⟩ f t

6

) K′eq

Keq
≈

(
0.0741 Hz2

)(
1 +

5⟨β⟩ f t

6

) Ti

Bz,eqVeq

K′eq

Keq
, (42)

where the prime denotes a derivative wrt to x in equatorial crossing point xeq. In this cal-378

culation, it was assumed that electrons are cold and ions are protons. Figure 6 indicates that the379

Wolf et al. (2012) formula is close to interchange and MHD frequencies. Ion temperature has keV380

units in the second formula. The same formula also is reasonably consistent with ULF wave ob-381

servations (Figure 4 of Panov et al. (2013)). It is remarkable that equation (42) was derived the382

plasma sheet (B⃗ = Bze + B′xzx̂), but it also works quite well for the inner magnetosphere. It is383

not clear why that is true, it could be that the determining factor for the eigenfrequencies is the384

∇ log PVγ; we will address this in a future study.385

Both the classic interchange and MHD thin filament treatments made use of simplifying386

assumptions beyond the standard assumptions implicit in the relevant theories. Some of these387

simplifications are shared between the two treatments. For example, both are one-dimensional,388

neglecting motion of the flux tubes transverse to the noon-midnight meridional (xz−)plane. How-389

ever, for the interchange of two flux tubes to occur, they must move past one another in such a390

way that both cannot remain in-plane. Both treatments also ignore feedback from the background391

fields, assuming that the filaments glide freely through the magnetosphere without influence from392

their surroundings.393

However, the difference in simplifying assumptions between the two models is more rel-394

evant to their comparison than the oversimplifications they share. For example, the MHD thin395

filament code neglects feedback not only from the background, but from any other filament. This396

coupling is explicitly included in the classic interchange derivations performed above, hence the397

need for color indices to reference specific filaments. Strictly speaking, the coupling to the other398

filament must be included to properly compare some features of the MHD thin filament model399

to the classic interchange model. It is surprising how well the frequencies agree given that the400

MHD thin filament code neglects this important coupling aspect of the interchange process.401

Appendix A Conductivity Model402

In this section, we derive boundary conditions that are suitable for comparing the classic403

interchange theory with the modes one obtains from MHD calculations for thin filaments. To mean-404

ingfully include the interchange of flux tubes, we must use zero ionospheric conductance, as the405

filaments must be free to move in the ionosphere.406
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Figure A1. Shown above is an individual magnetic field line, along with all of the relevant unit vectors

used in various calculations throughout this paper. There are three coordinate systems: one is the standard

fixed Cartesian xyz coordinate system, second is relative to the Earthward boundary footprint of the field line,

normal n̂ and tangential t̂ to that boundary, and the third is local and relative to the field-line directions, with

field-transverse κ̂ and field-aligned b̂ unit vectors. Note that ⊥̂ = −κ̂.

Let n̂ be the outward normal to the modeling region, ŷ the dawn-to-dusk direction trans-407

verse to the plane of calculation and t̂ the northward tangent to the boundary. Note that we have408

ŷ = b̂ × κ̂ = n̂ × t̂. See Figure A1 above for a reminder of the various coordinate systems and409

unit vectors involved in our calculations.410

Boundary conditions on the velocity:411

v⃗ = v∥b̂ +
Eyŷ × B⃗

B2 (A1)

will be translated into conditions on the linear wave displacements ξ∥ and ξκ using v⃗ = −iωξ⃗.412

The normal boundary velocity vanishes v⃗ · n̂ = 0, giving us a condition on the parallel413

displacement:414

ξ∥ =
1
iω

b̂ · t̂

b̂ · n̂

Ey

B
. (A2)

We can similarly determine the curvature-directed boundary displacement in terms of the415

fields:416

ξκ = −
1
iω

Ey

B
. (A3)
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This allows us to arrive at one boundary condition relating the two displacements:417

ξ∥ = −
b̂ · t̂

b̂ · n̂
ξκ. (A4)

Our second boundary condition can be obtained from the tangential boundary velocity:418

v⃗ · t̂ =
Ey

Bn

[(
κ̂ · t̂

) (
b̂ · n̂

)
−

(
b̂ · t̂

)2
]
, (A5)

which in general depends on the conductance of the boundary. Note that we have abbre-419

viated B⃗ · n̂ as Bn. The current line density along the west side of the filament (y = ϵ) is given420

by:421

j⃗ = −
ŷ × ∆B⃗
µ0

δ(y − ϵ), (A6)

where ∆B⃗ B B⃗ f ilament−B⃗background. This current is completed across the ionospheric foot-422

print by the Pedersen conduction current, so we have:423

ΣpEy = −
∆B⃗ · t̂
µ0

. (A7)

We write ∆B⃗·t̂ in terms of the linear wave displacements using equations (21)−(25) and424

(44)−(45) from Toffoletto et al. (2020) and eliminate the electric field from the tangent bound-425

ary velocity using (A7) to arrive at the following condition:426

fs

(
b̂ · t̂

) (
∂sξ∥ −

∂sB
B
ξ∥ − 2κξκ

)
+

(
κ̂ · t̂

)
(∂sξκ −Cξκ) = iωµ0Σp

Bn

B

[(
b̂ · t̂

)
ξ∥ +

(
κ̂ · t̂

)
ξκ

][(
κ̂ · t̂

) (
b̂ · n̂

)
−

(
b̂ · t̂

)2
] , (A8)

where:427

fs B
c2

s

c2
s + c2

A

, (A9)

fA B
c2

A

c2
s + c2

A

, (A10)

C B κ̂ ·
[
(κ̂ · ∇) b̂

]
. (A11)

This is a general condition for thin filament calculations that work for boundary orienta-428

tion and ionospheric conductance. However, as mentioned above, compatibility with the clas-429

sic interchange theory demands that the ionospheric conductance vanish. Assuming zero con-430

ductance and fs ≪ 1, we arrive at our second boundary condition:431

∂sξκ = Cξκ, (A12)

where C has been calculated numerically. We can see that the zero conductance case has432

mixed (Neumann and Dirichlet) boundary conditions. The reason that ∂sξκ must be a nonvan-433

ishing fraction of ξκ is that the direction of the background field lines depends on position so that434

the filament line must rotate when displaced in order to remain parallel to the local background.435
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