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Abstract

Classification of weather systems provides a simple description of atmospheric circulations and bridges the gap between large-

scale atmospheric conditions and local-scale environmental variables. However, the existing classification methods are challenged

due to lack of labels and inaccurate similarity measures between data samples. In this letter, we propose a self-supervised

Spatiotemporal Contrastive Learning (SCL) framework for the classification of weather systems without manual labels. In

particular, we operate both spatial and temporal augmentation on multivariate meteorological data to fully explore temporal

context information and spatial stability in accordance with synoptic nature. With the classification results, we apply a

statistical downscaling method based on analog forecasting for the assessment and comparison of classification results. The

experimental results demonstrate that the proposed SCL model outperforms traditional classification methods.
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Based on Spatiotemporal Contrastive Learning2

Liwen Wang, Qian Li, Qi Lv3

1College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China4

Key Points:5

• A Spatiotemporal Contrastive Learning (SCL) convolutional neural network is pre-6

sented for the classification of weather systems without manual labels, fully uti-7

lizing temporal context information and spatial stability of element fields in ac-8

cordance with synoptic nature.9

• A statistical downscaling method is utilized to assess the model based on analog10

forecasting.11
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Abstract12

Classification of weather systems provides a simple description of atmospheric circula-13

tions and bridges the gap between large-scale atmospheric conditions and local-scale en-14

vironmental variables. However, the existing classification methods are challenged due15

to lack of labels and inaccurate similarity measures between data samples. In this let-16

ter, we propose a self-supervised Spatiotemporal Contrastive Learning (SCL) framework17

for the classification of weather systems without manual labels. In particular, we oper-18

ate both spatial and temporal augmentation on multivariate meteorological data to fully19

explore temporal context information and spatial stability in accordance with synoptic20

nature. With the classification results, we apply a statistical downscaling method based21

on analog forecasting for the assessment and comparison of classification results. The22

experimental results demonstrate that the proposed SCL model outperforms traditional23

classification methods.24

Plain Language Summary25

In recent years, deep learning has contributed greatly to the field of meteorology26

and we perform an investigation into the use of convolutional neural networks (CNNs)27

to classify typical weather systems without manual labels. Although CNNs have produced28

remarkable results in image classification, few works have evaluated their efficiency and29

accuracy in weather system classification. Highly accurate and automated weather sys-30

tem classification approaches, especially the technology of mining temporal context in-31

formation, are essential for discovering the relationships between atmospheric circula-32

tion and local weather, climate and environmental variables. Moreover, explicit classi-33

fication of typical weather systems would promote the study of climate change. There-34

fore, a discriminative and comprehensive weather system classification model, called SCL,35

is built for CNN training, which could achieve remarkable progress compared with con-36

ventional approaches. We also propose a method of generating pseudo labels for the train-37

ing of a linear classifier. Moreover, statistical downscaling forecasting is utilized to as-38

sess the classification results of SCL and various conventional methods.39

1 Introduction40

Classification of weather systems (CWS) refers to the categorization of high-dimensional41

multivariate meteorological data into a reasonable and manageable number of typical42

weather systems that share similar meteorological fields, physical characteristics and evo-43

lutionary trends. Therefore, CWS has been applied broadly in weather forecasts and44

statistical climatology. For example, CWS has been utilized to facilitate weather fore-45

casts, where each weather pattern of ensemble members is assigned to the closest match-46

ing type, hence reducing the ensemble forecasts to a sequence of circulation type prob-47

abilities (Chattopadhyay et al., 2020; Neal et al., 2016; Ohba et al., 2018). In climatol-48

ogy, classification helps to examine climate-scale changes in the frequency of circulation49

types (Luong et al., 2020; Lynch et al., 2006; Gibson et al., 2016).50

Subjective CWS is heavily dependent on expert experience, which makes it labor51

intensive and time consuming. Furthermore, subjective classification results lack gen-52

eralizability due to regional differences in underlying surfaces and atmospheric evolution53

laws. Therefore, a significant demand has arisen for objective classification with high ac-54

curacy in weather analysis. There are three main typical objective methods with computer-55

assisted analysis. The first is based on clustering, such as k-means clustering (Cuell &56

Bonsal, 2009; Esteban et al., 2006) or correlation-based methods (Brinkmann, 2000), in57

which element fields (temperature, humidity, etc.) are directly clustered into different58

groups in accordance with Euclidean distance between two samples. However, these meth-59

ods incur high computational costs and have difficulty converging on nonconvex mete-60

orological data. The second approach is based on the empirical orthogonal function (EOF)61
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(Dilinuer et al., 2021; Miró et al., 2018), which allows dominant spatial weather modes62

to be identified by means of matrix decomposition and samples to be classified through63

similarity search. However, this kind of methods assume a linear relationship between64

and within the elements for matrix decomposition and fail to utilize nonlinear relation-65

ship. For example, turbulence dominates the vertical exchange of elements such as mo-66

mentum, heat and moisture in the atmospheric boundary layer (Monin, 1967), which is67

a highly nonlinear system. The last approach is mainly based on neural networks, for68

example, self-organizing maps (SOMs) (Bao & Wallace, 2015; Berkovic, 2017; Da-wei et69

al., 2018), which project samples onto a two-dimensional lattice and classify them into70

major weather patterns. At present, the SOM method is superior to the first two objec-71

tive analysis approaches (Iseri et al., 2009), due to its ability to deal with nonlinear re-72

lationships.73

Nevertheless, previous computer-assisted methods are heavily reliant on Euclidean74

distance between lattice points for similarity measures, which are applicable only to low-75

dimensional data. On the other hand, current classification methods deal with data ma-76

trixes as separate linear arrays, thereby discarding temporal context information and in-77

ner spatial stability; thus, the accuracy and stability of the classification results are still78

unsatisfactory for meteorological data, which is characterized by high dimensions and79

multiple elements.80

In recent years, deep learning has achieved great progress in abstract representa-81

tion learning for high-dimensional data by virtue of its inherent highly nonlinear trans-82

formation characteristics. Research has begun to focus on how to integrate deep learn-83

ing into the meteorological field, fully utilize massive-scale observation data and build84

models that are more suitable for practical application needs to improve the refinement85

and accuracy of meteorological forecasts (Wu et al., 2021; Xing et al., 2021). To address86

the issues with the aforementioned methods, we propose a self-supervised Spatiotempo-87

ral Contrastive Learning (SCL) framework, in which a deep neural network for classi-88

fication is trained with pseudo labels based on contrastive learning, in order to learn the89

invariance of key features in weather systems after transformations and then perform CWS90

on unlabeled data. The rest of this letter is structured as follows. We introduce the an-91

alyzed data in section 2. Section 3 describes the proposed SCL model, and section 4 presents92

the experimental details, results and analysis. Finally, conclusions are summarized in93

section 5.94

2 Data95

In this study, the selected area for model training and testing is in East China, in96

the range of 105-125°E and 25-35°N, with a resolution of 0.25°×0.25°. The hourly grid-97

ded atmospheric data is constructed from the European Centre for Medium-Range Weather98

Forecasts Reanalysis v5 (ERA5) data from 2014 to 2019. In the training procedure, seven99

variables are used: u and v components of the wind at 850 hPa; relative humidity at 850100

hPa; temperature at 1000 hPa; geopotential height at 850 hPa; vertical velocity at 850101

hPa; total precipitation. The first six variables are physically related to the total pre-102

cipitation, which is the predictand. The u and v components of the wind can reveal low-103

level convergence and divergence, while the water vapor content of the lower atmosphere104

relates to relative humidity and surface temperature. The 850-hPa geopotential height105

and vertical velocity determine whether the initial conditions for precipitation are met.106

Then, an independent dataset in 2020 is utilized to test the model and perform synop-107

tic analysis on classification results.108
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3 Methodology109

3.1 The Framework for SCL110

Inspired by Chen et al. (2020) and Qian et al. (2021), we propose a self-supervised111

framework based on contrastive learning for representation learning on multivariate me-112

teorological data, in which spatiotemporal transformations are applied for data augmen-113

tation in order to utilize the invariance of key features after transformations. Contrastive114

learning (Jaiswal et al., 2020) is a discriminative approach that aims to group similar115

samples closer in the embedding space while spreading diverse dissimilar samples far-116

ther from each other.117

As depicted in Figure 1, given an initial dataset of N samples with C elements, we118

randomly sample a minibatch of n examples and operate spatial augmentation (Fi ∼119

Γ) (described in section 3.2.1) and temporal augmentation (ti ∼ τ) (described in sec-120

tion 3.2.2) on xi and xj , which are any two examples derived from the minibatch, to ob-121

tain 4 augmented data samples, among which (Ai, A′
i) and (Aj , A′

j) are positive pairs122

while (Ai, Aj), (Ai, A′
j), (A′

i, Aj) and (A′
i, A′

j) are negative pairs. After feature extrac-123

tion, a contrastive loss is utilized to group positive pairs closer and separate negative pairs124

farther from each other.125

Figure 1. Overview of the proposed SCL framework.

3.2 Data Augmentation126

In the field of machine learning, data augmentation methods mainly utilize the strong127

correlations between augmented and original samples to expand the training set. In this128

process, key features should still be retained. In addition, in contrastive learning, sam-129

ple pairs are built based on the prior knowledge that the labels remain the same after130

various augmentation operations so as to reduce the workload of manual labeling, which131

is a key step in contrastive learning for teaching a model to differentiate positive sam-132

ples from negative ones. In this letter, we augment the dataset from the perspectives of133

both space and time by utilizing spatial stability and temporal invariance in weather sys-134

tems. Figure 2 shows augmented samples with spatiotemporal augmentation operators135

–4–



manuscript submitted to Geophysical Research Letters

Figure 2. Illustrations of spatiotemporal augmentation operators.

3.2.1 Spatial Transformations136

As a general rule, a certain spatial displacement of a weather system does not change137

the overall attributes of the synoptic situation. For example, an area controlled by a trough138

of low pressure could consistently be characterized by cloudy and rainy conditions, last-139

ing for several days, although the meteorological elements (wind, humidity, etc.) at in-140

dividual grid points would not remain constant. Based on this assumption, three kinds141

of spatial transformations are introduced in SCL for dataset augmentation, namely, re-142

sizing, random cropping and mean filtering, to change grid point values while ensuring143

that the system type, structures and dominant characteristics of the original data remain144

constant.145

The first spatial transformation is to resize the original data matrixes from (40, 80)146

to (100, 200) through bicubic interpolation; then, we randomly crop 90×180 patches as147

augmented samples. Furthermore, mean filtering is applied to filter out random fluctu-148

ations of the multivariate meteorological data by sliding a 5×5 mean filter across data,149

replacing the center value with the average of all pixel values in the window.150

3.2.2 Temporal Transformations151

Weather systems are relatively stable on a certain time scale; for example, samples152

from consecutive time instances generally belong to the same weather system, and the153

shorter the time interval is, the more similar the weather characteristics are. However,154

current classification methods assume independence between samples during analysis,155

thereby discarding temporal context information. Inspired by Qian et al. (2021), this pa-156

per takes as prior knowledge that different samples from adjacent time tend to belong157

to the same weather system; accordingly, data samples separated by short time inter-158

vals are treated as positive samples, while samples from different periods are treated as159

negative samples. In this way, pseudo labels are established for all training samples on160

the basis of temporal correlation, thereby reducing the workload of sample labeling.161

In this letter, the following time series sampling strategy is adopted: given a sam-162

pling interval of t hours and an initial sample xi at time H, the sample x′
i at time H+163

ti is selected to form a positive pair (xi, x′
i) with the initial sample. The sampling in-164

terval ti is selected from a distribution τ(t) over [0, T ], and the probability distribution165

P decreases monotonically with increasing time (discretely from 0 to 180 hours). In this166

way, samples separated by shorter time intervals are pulled closer in the embedding space.167
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3.3 Representation Learning Based on Contrastive Learning168

Abstract representations for multivariate meteorological data are extracted using169

an encoder f(·), as depicted in Figure 1. We adopt ResNet18 (He et al., 2016) as the base170

encoder, that is hi = f(Ai)) = ResNet(Ai). Then, we use a multilayer perceptron with171

one hidden layer (and rectified linear unit (ReLU) activation), denoted by g(·), to map172

the output hi to the embedding space where the contrastive loss is applied, and thus ob-173

tain the feature, that is, zi = g(hi).174

After feature extraction, a contrastive loss is constructed to ensure that positive175

samples are close in the embedding space while negative samples are far away to drive176

the learning of abstract representations for samples of similar weather systems. We do177

not apply this contrastive loss directly to hi because Chen et al. (2020) has verified that178

it is beneficial to define the contrastive loss based on z rather than h. We sample N raw179

weather clips and obtain 2N augmented views, consisting of one positive pair and 2(N−180

1) negative pairs. Let sim(zi, z
′
i) = z⊤i z′i/∥zi∥∥z′i∥ denote the dot product between the181

l2-normalized zi and z′i, the loss function for a positive pair of examples (zi, z
′
i) is defined182

as183

ℓi,i′ = − log
exp (sim (zi, z

′
i) /σ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /σ)
(1)

where 1[k ̸=i] ∈ {0, 1} is an indicator function evaluating to 1 if k ̸= i and σ de-184

notes a temperature parameter. The final loss is computed across all positive pairs, both185

(zi, z
′
i) and (z′i, zi), in a minibatch.186

4 Experimental Results187

To verify our model, we conduct experiments on Ubuntu 20.04 with a single RTX188

3090 GPU. The Adam optimizer is adopted for parameter optimization. We apply a mini-189

batch size of 256 and an initial learning rate of 3e-4 to train ResNet18. First, we com-190

pare our model with traditional methods (k-means and SOM). Then, we conduct abla-191

tion studies to verify the selection of augmentation operators and parameters of contrastive192

learning. Finally, the hourly precipitation is used to assess the classification results, for193

which the skill score (Ss↑) (Perkins et al., 2007a), brier score (Sb↓) and mean absolute194

error (MAE↓) are used as evaluation metrics.195

4.1 Evaluation Metrics196

Considering the difficulty of obtaining manual labels for CWS, we focus on ana-197

log forecasting (prediction with similar patterns) to assess the classification results, based198

on the premise that the better classification results are, the more accurate the analog199

forecasting results will be; this approach has also been applied to assess CWS models200

by Nishiyama et al. (2004), Pu and Zhihong (2016) and Xianghua et al. (2018).201

Specifically, we utilize precipitation probability density functions (PDFs) (Nishiyama202

et al., 2004; Perkins et al., 2007b; Yin et al., 2011) for a more complete assessment of203

a climate model’s capacity to forecast the complete range of observations at daily time204

scales. These PDFs are less likely to be influenced by observation errors than the mean205

or standard deviation. To measure the common area between two PDFs, the metric Ss206

is used, which is calculated as the cumulative minimum value of each binned value be-207

tween the two distributions, expressed as follows:208

Ss =

n∑
1

min(Pm, Po) (2)
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where n is the number of bins used to calculate the PDF for a given region (16 by de-
fault), Pm is the frequency of values in a given bin from the model, and Po is the fre-
quency of values in a given bin from the observed data. If a model inaccurately classi-
fies weather systems and forecasts the observed PDF poorly, it will have a skill score close
to zero with negligible overlap between the observed and modeled PDFs. This provides
a robust and comparable measure of the relative similarity between modeled PDFs and
observed PDFs. To measure the accuracy of probabilistic forecasts, we adopt the brier
score (Sb), which quantitatively represents the region where the predicted and observed
PDFs do not coincide, expressed as follows:

Sb =
1

n

n∑
i=1

(Pm − Po)
2 (3)

The closer Sb is to zero, the smaller the PDF difference between forecasting and obser-209

vation is. Therefore, a lower value of Sb and a higher value of Ss indicate better clas-210

sification performance.211

To further measure the difference between forecasts and observations, we also use212

the MAE of hourly precipitation to comprehensively assess our model.213

4.2 Evaluation of Data Augmentation214

Figure 3. Skill scores (↑) under individual or composition of data augmentation, applied only
to one branch. For all columns but the last, diagonal entries correspond to single transformation,
and off-diagonals correspond to composition of two transformations (applied sequentially). The
last column reflects the average over the row. If a model classifies weather systems perfectly, the
skill score will equal to one.

To verify the performance of different types of spatial augmentations, ten spatial215

transformations are tested in this letter. We evaluate their performance both separately216

and in combination. Figure 3 shows that when augmentations are combined, the con-217

trastive prediction task becomes more difficult, but the quality of representation could218

be improved because more redundant information is eliminated while only key features219
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are retained, which helps the SCL model learn more robust features. The combination220

of augmentations that yields the best result is resizing and kernel5×5. In addition, ran-221

dom cropping outperforms other single spatial augmentations. We observe that blurring222

also achieves good performance while sobel filters and prewitt filters have a detrimen-223

tal impact on data augmentation because such excessive transformations can destroy key224

features in weather systems. Therefore, it is beneficial to combine random cropping with225

resizing and kernel5×5 to help our model learn more generalizable features.226

4.3 Synoptic Interpretation of SCL clustering227

The classification results are shown in Figure 4 in 2020. The frequencies of each228

type, denoted by h, evenly distribute in [4%, 11%], showing that SCL achieves good per-229

formance in separating dissimilar systems and grouping similar systems and could fairly230

reveal characteristics of local climate. The 850 hPa geopotential height field, lying be-231

tween 1200 m and 1900 m, is selected for analysis, which represents a strong correlation232

with the near-surface boundary layer, and will not be significantly affected by small lo-233

cal topographic features.234

Figure 4. SCL classification results for the 850 hPa geopotential height fields
(gpm), obtained by averaging data samples in the same category. Results are arranged
in chronological order. The corresponding occurrence frequencies are presented in the lower plots,
arranged in chronological order, from January to December.
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For simplicity, we set the number of weather types to 16. The study area is located235

on the eastern coast of the subtropical continent, where tropical marine air mass and po-236

lar continental air mass alternately dominate and compete for each other (Ke-yi et al.,237

2020). As a result, the four seasons are distinct with different circulation characteristics,238

as depicted in Figure 4.239

In the upper left and bottom right corners of Figure 4, the weather types (1,1), (1,2),240

(4,2), (4,3) and (4,4) are in winter, mainly dominated by the Siberia high. The western241

Pacific shows a lower pressure field due to the land-sea thermal contrast. Weather types242

(2,4), (3,1) and (3,2) indicate that the study area is influenced by the Qinghai-Tibet high243

pressure system in summer. Autumn ((3,4) and (4,1)) is the transitional season from sum-244

mer to winter, when the angle of solar radiation decreases. In early September ((3,3) and245

(3,4)), there is frequent southward movement of cold air into the middle and lower reaches246

of the Yangtze River, prompting a rapid southward movement of warm and humid air247

that remains there in summer (Lei et al., 2021; Ming et al., 2019). Therefore, in Septem-248

ber and October, the surface of the middle and lower reaches of the Yangtze River is of-249

ten controlled by a cold high-pressure zone (fang Sang, 2012). However, the Pacific sub-250

tropical high pressure in summer has not returned south, so this area remains under the251

control of high pressure (Qin et al., 2022). After October ((4,2) and (4,3)), the upper252

subtropical high moves southward, and the middle and lower reaches of the Yangtze River253

come under the control of the western wind belt, resulting in more rainfall than in au-254

tumn (Shengnan & Zhihong, 2019; Ke-yi et al., 2020).255

Based on the relationship between the geopotential field and wind, in the middle 256

and lower reaches of the Yangtze River, the northerly wind in winter ((4,3),(4,4) and257

(1,1)) comes from the interior of the continent, and the southerly wind in summer comes258

from the ocean, forming a monsoon climate pattern with simultaneous rain and heat.259

The summer monsoon wind is southeasterly, and the winter monsoon wind is northwest-260

erly (Shengnan & Zhihong, 2019). In early July ((3,1)), the middle and lower reaches261

of the Yangtze River are controlled by the subtropical high-pressure zone. It is obvious262

that the subtropical high gradually moves north from January to July ((1,1) → (2,4)),263

while the Siberia High moves north too, backwards from August to December ((3,2) →264

(4,4)). In general, weather systems are separate from each other and could reveal the key265

features of local climate.266

4.4 Comparison with Traditional Methods267

Table 1. Performance assessment of SCL and traditional methods with different similarity met-
rics. SCL∗ refers to SCL ending with a clustering module (k-means by default); SCL† and SCL‡

indicate that only apply spatial and temporal augmentations are applied respectively.

Method MAE(mm)(↓) Ss(↑) Sb(↓)
k-means-l1 0.128 0.541 1.369× 10−3

k-means-l2 0.121 0.510 1.715× 10−3

k-means-cosine 0.177 0.478 1.762× 10−3

SOM-l1 0.164 0.388 2.001× 10−3

SOM-l2 0.133 0.530 1.779× 10−3

SOM-cosine 0.191 0.461 1.945× 10−3

SCL∗ 0.095 0.538 1.37× 10−3

SCL† 0.085 0.790 8.60× 10−4

SCL‡ 0.069 0.801 7.32× 10−4

SCL 0.060 0.843 3.94× 10−4
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Our model is compared with commonly used traditional methods, k-means and SOM,268

in terms of the accuracy and stability of the results. Similarity research in traditional269

methods is necessary, and we choose l1 distance, l2 distance and cosine distance to mea-270

sure to what extent two samples are similar.271

After feature extraction, the labels calculated from hourly precipitation are utilized272

for the training of a linear classifier. We also replace the linear classifier with a cluster-273

ing module in the embedding space (the default clustering algorithm is k-means), de-274

noted by SCL∗, to verify the effectiveness of representations learned in SCL.275

As illustrated in table 1, SCL shows competitive performance compared with tra-276

ditional models. Both spatial (SCL†) and temporal (SCL‡) augmentation can separately277

improve the classification performance separately, and their combination yields the best278

performance. SCL∗ (ending with a clustering module) still outperforms the traditional279

methods, which shows that our framework can extract effective representations from the280

raw data.281

5 Conclusion282

Based on the establishment of relationships between meteorological elements and283

weather systems, CWS has been widely used in the fields of weather forecasts and cli-284

mate research. However, a lack of manual labels and inaccurate similarity measures limit285

the accuracy and stability of current methods. Inspired by contrastive learning proposed286

in recent years, we constructed a spatiotemporal contrastive learning model to address287

this issue. Temporal context information and spatial stability have been fully explored288

in accordance with synoptic nature to enhance the capacity of a model to learn key fea-289

tures of weather systems. In addition, a statistical downscaling rainfall prediction method290

based on analog forecasting is used to assess the model. As illustrated in experiments,291

SCL with spatiotemporal augmentation outperforms traditional classification methods292

in terms of accuracy. In future work, we will focus on representation learning and clas-293

sification for weather processes instead of individual samples, taking advantage of RNN-294

based networks.295
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