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Abstract

The rapidly enhancing global hydrographic in-situ observations archive is data quality heterogeneous. Different data applications

(e.g., climate change science) require a high-performance quality control (QC) system to reliably identify outliers in profile data.

This study presents a new automatic QC procedure (CAS-Ocean Data Center quality control system; CODC-QC) for ocean in-

situ temperature outliers detection. Unlike many existing QC procedures, no assumption is made of a Gaussian distribution law

in CODC-QC as the oceanic variables are typically skewed. Instead, the 0.5% and 99.5% quantiles are used to define the local

temperature climatological ranges. Additionally, we constructed local climatological ranges for the vertical temperature gradient

which increased the ability of identifying spurious profiles. The performance of CODC-QC was evaluated using two benchmark

datasets. Results demonstrated that CODC-QC is effectively in removing spurious data and minimizing the percentage of

mistakenly flagged good data. Additionally, the CODC-QC was applied to the global World Ocean Database (WOD) historical

temperature profiles and a significant quality-dependent on instrumentation types was found. Finally, as ocean heat content

(OHC) is a fundamental indicator of climate change, the impact of different QC systems on OHC estimation is examined.

Results based on an existing mapping approach indicate that applying CODC-QC system leads to a 41.7 % (4.9%) difference

for linear trend of the global 0-2000m OHC changes within 1955-1990 (1991-2020) compared to the WOD-QC, implying a

non-negligible source of error in ocean warming estimate. The new QC procedure could support further improvement of the

oceanic climate records and other applications.
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Key Points

• A new climatological range-based automatic quality control algorithm for
ocean temperature observations was developed and evaluated.

• The new algorithm is effective in removing outliers meanwhile minimizing
the percentage of mistakenly discarding good data.

• A non-negligible impact of quality control in ocean heat content estimate
is found.

Abstract

The rapidly enhancing global hydrographic in-situ observations archive is data
quality heterogeneous. Different data applications (e.g., climate change science)
require a high-performance quality control (QC) system to reliably identify out-
liers in profile data. This study presents a new automatic QC procedure (CAS-
Ocean Data Center quality control system; CODC-QC) for ocean in-situ temper-
ature outliers detection. Unlike many existing QC procedures, no assumption
is made of a Gaussian distribution law in CODC-QC as the oceanic variables
are typically skewed. Instead, the 0.5% and 99.5% quantiles are used to define
the local temperature climatological ranges. Additionally, we constructed local
climatological ranges for the vertical temperature gradient which increased the
ability of identifying spurious profiles. The performance of CODC-QC was eval-
uated using two benchmark datasets. Results demonstrated that CODC-QC is
effectively in removing spurious data and minimizing the percentage of mistak-
enly flagged good data. Additionally, the CODC-QC was applied to the global
World Ocean Database (WOD) historical temperature profiles and a significant
quality-dependent on instrumentation types was found. Finally, as ocean heat
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content (OHC) is a fundamental indicator of climate change, the impact of dif-
ferent QC systems on OHC estimation is examined. Results based on an existing
mapping approach indicate that applying CODC-QC system leads to a 41.7 %
(4.9%) difference for linear trend of the global 0-2000m OHC changes within
1955-1990 (1991-2020) compared to the WOD-QC, implying a non-negligible
source of error in ocean warming estimate. The new QC procedure could sup-
port further improvement of the oceanic climate records and other applications.

Plain Language Summary

The global archive of hydrographic in-situ observations is data quality hetero-
geneous, and thus it needs to apply the quality control (QC) to support the
observation-based climate change science study (e.g., ocean warming monitor-
ing). There are several existing QC algorithms to identify outliers, but most of
them assume a Gaussian distribution law to the ocean variables, which is not an
accurate estimation. In this study, we present a new climatological range-based
automatic QC algorithm for ocean in-situ temperature observations. The new
local climatological temperature and temperature gradient ranges fields without
assuming any distribution laws are applied to this QC algorithm. Two bench-
mark datasets are used to assess the capability of effectively detecting outliers
with minimizing the possibility of mistakenly discarding good data. Finally, as
ocean heat content (OHC) is one of the most important indicators of climate
change (especially for oceans warming), the new QC algorithm was applied to
historical temperature datasets and calculated the OHC. A non-negligible im-
pact of QC on OHC estimate is found. This study will promote the important
role of QC for ocean and climate studies.

Keywords: Quality control, Temperature, Outlier, Climatology,
Ocean heat content, Climate

1. Introduction

First released in 1994 (Levitus & Boyer, 1994) the digital archive of hydro-
graphic data – the World Ocean Database (WOD) - now comprises about 20
million temperature profiles. There is an increasing demand for this data within
a broad scientific community (Stammer et al., 2019), governmental and non-
governmental organizations (IPCC, 2021), industry, fisheries (Brander, 2010)
and individuals. The characteristic feature of this archive is its heterogeneity
as it includes the data on temperature, salinity, and other oceanic parameters
measured by more than a dozen of instrumentation types during the past ~150
years (Davis et al. 2019).

Instruments and methods used by physical oceanographers undergone significant
changes during more than a century long history of observational oceanography.
Therefore, measuring temperature by means of mercury-in-glass thermometers
attached to the wire (old Nansen cast technique from 1890s) gave place to the
electronic instruments like ship-born CTD (Conductivity-Temperature-Depth
sonde) and XBT (eXpendable bathythermograph) during the late 1960s, fol-
lowed by the development and implementation of autonomous Argo profiling
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floats and gliders in this century (Garcia et al., 2018). Each instrumentation
provides data of different accuracy and quality, which depend on the measure-
ment devices, measurement techniques, operator experiences and weather con-
ditions. Additionally, the accuracy of the data is also linked to the respective
quality/accuracy requirements related to the scientific or other goals of the spe-
cific cruise or expedition. Whereas the accuracy of several tenth of degree might
be sufficient for the detection of oceanic fronts or the location of thermocline,
revealing secular temperature changes in the deep ocean requires the accuracy
of thousandth of a degree.

The other characteristic feature of the global oceanographic archive is the incom-
pleteness of the metadata which provide information on how the observations
have been done. The absence of the metadata is an obstacle for the data-quality
assessment and the development of correction schemes (see Cheng et al. (2014)
and Gouretski and Cheng (2020) for metadata problems related to XBT and
MBT profiles). Additionally, the hydrographic data are characterized by ran-
dom and systematic errors specific for each instrumentation type. Therefore,
quality control (QC) of observed data represents one of the most important
tasks for the development of an oceanographic database (Domingues & Palmer,
2015).In early years, the data to be analyzed were typically limited to the ob-
servations obtained during one or several cruises, so that the QC was usually
performed manually by the experts (Gronell & Wijffels, 2008). However, the
manual QC of large regional or global datasets is not feasible because of the
amount of data, so that the automated QC procedures (AutoQC) are required
(Goni et al., 2019; Roemmich et al., 2019). The first digital atlas of the world
ocean (Levitus, 1982) provides one of the first examples where the AutoQC was
implemented to the global dataset. In recent years, some novel methods (e.g.,
machine learning) related to AutoQC have been developed (e.g., Mieruch et al.
(2021); Ono et al. (2015); Sugiura and Hosoda (2020)).

The aim of AutoQC procedure is to identify and flag outliers, that is observations
which differ significantly from the majority of other data points in the population
(Tan et al., 2022). It should be noted that outliers not necessarily represent
erroneous data and can simply reflect the natural variability of the measured
variable. There is no rigid mathematical definition of an outlier. Therefore, any
QC procedure inherently possess a certain degree of subjectivity as the outliers
are defined by means of subjectively set thresholds (Argo, 2000).

Except for the surface measurements and the data from the underway thermo-
graphs, the global hydrographic archive essentially constitutes the archive of
profile data. Typically, a hydrographic profile consists of the number of ob-
servations at different depth levels between the ocean surface and the ocean
bottom. To increase the reliability in detection of erroneous data, a suite of
quality checks is applied to each profile. The checks in AutoQC can be sub-
divided in several groups: 1) comparison of each observation with predefined
local or global variable range; 2) checking profile shape; 3) comparing profile
attributes with those for the respective instrumentation type. The larger the
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number of distinct quality checks failed, the higher is the probability that the
flagged observation really represent an outlier.

Until recently, the AutoQC typically assumes the Gaussian distribution law,
with the outliers being defined as data points which deviate by more than pre-
defined multiple times the standard deviations from the mean. For example,
the WOD-QC procedure applies 3 to 5 standard deviation criteria in 5-degree
boxes (Garcia et al., 2018). Since statistical distributions of temperature, salin-
ity and other parameters in the ocean are skewed, Gouretski (2018) suggested
to use adjusted Tukey’s boxplot method for skewed distribution (Hubert & Van-
dervieren, 2008) to construct accepted local ranges of temperature and salinity
for AutoQCs.

The demand in the scientific community for a unified and broadly accepted qual-
ity controlled (QCed) global archive has led to the establishing of the IQuOD
– the international Quality-controlled Ocean Database initiative (Cowley et al.,
2021). One of the primary IQuOD goals is to arrive on a consistent QC standard.
The current work may be considered as a contribution to this joint effort and
is focused on the following issues: 1) to present a new multiple-check AutoQC
procedure which makes no assumption on the statistical distribution (we refer
to this procedure as CODC-QC system (Chinese Academy of Sciences - Ocean
Data Center (CODC) Quality Control system); 2) to conduct evaluation of the
above procedure using two large manually controlled hydrographic datasets; 3)
to apply the new procedure to the global hydrographic dataset and provide
quality assessment for its distinct components; 4) to quantify the impact of the
QC of temperature data on the ocean heat content (OHC) estimations.

As the shape of the temperature profiles is constrained by physical laws, checking
the vertical structure of temperature profiles provides an additional possibility
to identify spurious profiles. Existing AutoQC procedures imply a number of
overall gradient checks which prove the shape of the temperature profile (e.g.,
(Garcia et al., 2018)). Here, we developed and evaluated an additional local
vertical temperature gradient range check, where the local gradient ranges are
constructed (similar to local temperature climatological ranges) without assum-
ing the data distribution law.

Calculation of both temperature and temperature gradient climatological ranges
at a certain geographical point assumes the ergodic hypothesis in which the
average over time is assumed to be equal to the average over the statistical
ensemble of data within some radius (bubble) around the point of interest. As
another novelty of this study, the selection of data within the bubble takes into
account water mass characteristics and topographic barriers. Application of
the new QC scheme to two manually QC-ed benchmark datasets suggest the
improved ability of the new scheme to identify spurious temperature profiles. It
should be stressed here that the properly validated global hydrographic archive
is crucially important for OHC estimation (Cheng et al., 2017), which is a
primary indicator of human-induced climate change. We demonstrate that the
choice of the QC scheme exhibits not a negligible impact on the estimation of
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the long-term ocean warming.

In this study, we use a new hydrographic climatology complied in the Institute
of Atmospheric Physics (IAP). Specifically, two by-products of this climatology
are used: the local temperature climatological range (hereinafter IAP-T-range)
and the local vertical temperature gradient climatological range (hereinafter
IAP-TG-range). Both local climatological ranges are used to identify outliers
in the observed temperature profiles.

This manuscript is structured as follows: the data used for this study are de-
scribed in Section 2. The new CODC-QC procedure is outlined in the Section
3, with results being presented in section 4. In section 5, the performance of the
CODC-QC is compared with the performance of several other QC procedures.
In section 6, the application of the CODC-QC to the global WOD18 in-situ
dataset is analyzed. The impact of QC on OHC estimation is illustrated in
Section 7. Conclusions and discussions are presented in section 8.

2. Data

2.1 in-situ observations of temperature profiles

World Ocean Database 2018 (WOD18) (Garcia et al., 2018) is the main data
source for this study. We used temperature profiles obtained between January
1940 and December 2020 by the following instrumentation types: Ocean
Station Data (OSD), Conductivity-Temperature-Depth (CTD), eXpendable
bathythermographs (XBT), mechanical bathythermographs (MBT), Argo
profiling floats (PFL), drifting buoys (DRB), autonomous pinniped bathyther-
mographs (APB), mooring buoys (MRB), undulating oceanographic recorder
(UOR), Glider (GLD). In total, 16,804,361 temperature profiles were selected
for the analysis. The data coverage in the North Polar region was improved
by incorporating additional 52,253 non-WOD CTD profiles obtained from
the Alfred-Wegener-Institute, Bremerhaven, Germany, the Department of
Fisheries and Oceans of Canada, the Freshwater Institute, Bedford Institute
of Oceanography, Institute Maurice-Lamontagne, Northwest Atlantic Fisheries
Centre, and the Institute of Ocean Sciences.

2.2 Benchmark profile datasets

Two temperature profile datasets which undergone the ExpertQC were used as
benchmark datasets for this study: the QuOTA dataset and the WOCE one-
time dataset.

(1) QuOTA dataset
The Quality-controlled Ocean Temperature Archive (QuOTA) obtained from
the Commonwealth Scientific and Industrial Research Organization (CSIRO,
Australia) (Gronell & Wijffels, 2008; Wijffels et al., 2008) is used as a benchmark
dataset for QC procedure performance evaluation. The QuOTA dataset is a col-
lection of temperature profiles from the Indian Ocean obtained between 1772-
2005. The dataset is used as a benchmark because nearly 30% of the data were
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entirely under the expert (manual) QC. Among the total of 14,424,324 tempera-
ture measurements (36,785 profiles), 83.39% were flagged as good (flag=0,1,2,5),
and the remaining are flagged as bad (flag=3,4). About 80% of profiles in this
dataset are recorded by XBT, with the rest being mainly MBT and bottle pro-
files. Respectively, the overall quality flag statistics characterize rather the XBT
profiles.

(2) WOCE one-time dataset
The World Ocean Circulation Experiment (WOCE) conducted under the aus-
pice of the World Climate Research Program (WCRP, 1988a, 1988b) provided
the global-scale hydrographic dataset of outstanding quality, because individual
efforts were controlled and orchestrated by the WOCE hydrographic office, guar-
anteeing the high and uniform accuracy of the data (Gouretski & Jancke., 2001;
Gouretski & Koltermann, 2004). The CTD profiles from WOCE One-Time
Survey (King et al., 2001) were used for our purpose. In total, 8,793 profiles
(18,294,163 temperature measurements) between 1985-1997 were collected, with
nearly all data (18,052,052 measurements, 98.68%) are flagged as good (flag=2).
Due to the extremely high data quality this dataset is especially useful for the
evaluation of how well a QC procedure works in retaining good data, rather
than detecting the outliers.

3. CODC-QC automated quality control procedure

3.1 CODC-QC quality control checks

Similar to other QC schemes, our CODC-QC consists of a series of quality checks
(Table. 1). Among the total of 13 checks, Checks 1-4 are not related to any
variables measured at depths. Checks 5-7 are related to the acceptable range
of the measured variable (temperature). Checks 8-12 are related to the vertical
structure (shape) of the profile. Checks 13 are applied only to profiles obtained
by specific instruments. In the following, the distinct checks are described in
detail.

In the CODC-QC, the definition of the QC flag is dichotomic for each check
at each observed depth, with 0 denoting the acceptable (good) value and 1
denoting the rejected (bad) value. Additionally, a final quality flag is provided
based on all distinct quality checks. The user can use the final quality flag or
make personal decision on the quality flag based on all distinct quality checks.
For more information about the CODC-QC system, please refer to the online
User Manual Document.

Table 1. Details of each Quality Control (QC) check of CODC-QC.

Order Name of checks Comments
(1) Basic information check Check whether date, time, location are in acceptable ranges.
(2) Sample level order check Check whether profile sample depths increase monotonically
(3) Instrument maximum depth check Check weather sample depth exceeds instrument type maximum depth
(4) Local bottom depth check Check whether sample depth exceeds local bottom depth
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(5) Profile range check Global range check Check whether temperature falls outside global limits
(6) Sea-water freezing point check Check whether temperature is lower than the freezing point temperature
(7) Local climatological range check Check whether temperature falls outside the local climatological limits
(8) Profile shape check Constant value check Check temperature profile for unrealistic thermostads
(9) Spike check Check whether temperature observation is a spike value
(10) Multiple extrema check Check whether the profile exhibit unrealistic number of temperature extrema
(11) Global vertical gradient check Check whether vertical temperature gradient falls outside the global limits
(12) Local gradient climatological range check Check whether vertical temperature gradient falls outside the local climatological limits
(13) Instrument specific check Only checks in XBT profiles related to wire stretch, leakage, hit bottom, wire break, etc.

(1) Basic information check

In case the year and/or date or geographical coordinates are missing or exceed
permitted range all levels of such profiles are flagged. This check has been
already applied in several existing QC schemes (e.g., Catherine et al. (2014);
Good et al. (2013); Intergovernmental Oceanographic Commission (2010); U.S.
Integrated Ocean Observing System (2015)).

(2) Sample level order check

It is common in the oceanographic practice to have monotonically increasing
sample depth of a hydrographic profile. The check proves whether sample depth
monotonically increases and flags all observations in case it does not.

(3) Instrument maximum depth check

Each instrument type is designed to operate within a certain depth range. For
instance, MBT cannot withhold pressure below 320 meters, and the maximum
sample depth for XBT probes is limited by the length of the wire which depends
on the probe type (Boyer et al., 2019). If an observed depth value falls outside
the nominal maximum depth for the corresponding instrumentation type, the
values below the nominal maximum depth are flagged. Additionally, for the
CTD and XTB profiles the depth levels above 2 and 3 meter respectively are
flagged according to the indication by Good et al. (2013).

(4) Local bottom depth check

This check identifies whether the deepest sampled level is larger than the local
bottom depth. The latest version of global 0.5 arc-second resolution digital
General Bathymetric Chart of the Oceans (GEBCO) (Tozer et al., 2019) pro-
vides the estimate of the local ocean bottom depth (D). Because of errors in the
digital bathymetry (see Fig. S3 in the supporting information for more details)
and due to the uncertainty in the profile location, a certain tolerance (d) is
permitted: 𝑑 = 30.0 + 𝐷 ∗ 0.087 for D < 1000m; 𝑑 = 80.0 for D > 1000m for
the profile located north of 60oS. Since the digital bathymetry is less reliable
around Antarctica, 𝑑 = 270 − 𝐷 ∗ 0.37 south of 60oS. Measurements at levels
deeper than D+d are flagged. Cases where the observed depth exceeds the bot-
tom depth may occur due to the wrong geographical position assignment (more
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typical for old historical profiles) or because some instruments (XBT, MBT)
continue data transmission after hitting the bottom.

(5) Global range check

The check aims to identify observations where temperature is grossly in error.
The global depth-dependent temperature range is based on all available profiles.
It is constructed using the upper and the lower boundaries of the 0.5% and
99.5% quantiles respectively. Similar range check was implemented in Inter-
governmental Oceanographic Commission (2010). Values exceeding the overall
depth-dependent range are flagged. For several regions of the world ocean hav-
ing specific thermohaline structure the overall global ranges were adjusted (e. g.
the Mediterranean Sea, Black Sea, Sulu Sea).

(6) Sea-water freezing point check

In addition to the global range check, observed temperature values are compared
with the sea water freezing point temperature defined by the following formula
(Intergovernmental Oceanographic Commission, 2010):

𝑇𝑓 = −0.0575 ∗ 𝑆 + 0.001710523 ∗ 𝑆 3
2 − 0.0002154996 ∗ 𝑆2 − 0.000753 ∗ 𝑃 (1)

Where 𝑇𝑓 is the freezing point temperature in degrees Celsius, S is the salinity
in PSU and P is the pressure in decibars. If the accompanying observed salinity
profile is absent (e.g., for XBT, MBT, APB, GLD temperature profiles), the
monthly climatological salinity reference from Cheng et al. (2020) was used.
Levels with temperatures smaller than 𝑇𝑓 are flagged.

(7) Local climatological range check

Whereas the global range check identifies observations which are grossly in error,
e.g., the so-called blunders, the local climatological range check proves whether
the observed values fall within the acceptable local monthly temperature clima-
tological range (i.e., IAP-T-range). The local ranges are constructed for the
nodes of the 1-degree box. Similar to the global temperature range, the 0.5%
and 99.5% quantiles define the minimum and the maximum local temperature
values at each depth, with details given below in the Section 4. All observa-
tions that fall outside the local monthly depth-dependent temperature range
are flagged.

(8) Constant value check

Some profiles are characterized by unrealistically thick layers where temperature
does not change with depth. In case of electronic instruments such apparent
thermostads can be caused by the malfunctioning of the temperature sensor
(CTD) or reversing thermometers (old Nansen casts) leading to “stuck values”
on the profile. All measurements within the detected thermostads are flagged.

(9) Spike check
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Spikes (e.g., temperature values strongly deviating from the neighbor measure-
ments above and below) occur typically due to the malfunction of electronic
instruments like CTD or XBT. In case of mechanical instruments (Nansen
casts, MBT) spikes occur mostly due to operators’ errors. Spike check has been
implemented in several QC schemes (Cabanes et al., 2021; Intergovernmental
Oceanographic Commission, 2010; Liu et al., 2017; Wong et al., 2020). In the
CODC-QC, for the three adjacent temperature measurements (denoted as Tk,
Tk+1,Tk+2), we calculate:

𝑆 = {𝑇𝑘+1 − (𝑇𝑘 + 𝑇𝑘+2) ∗ 0.5} − (|𝑇𝑘+2 − 𝑇𝑘| ∗ 0.5) (2)

If S is greater than the depth-dependent thresholds, 𝑇𝑘+1 is flagged and defined
as a spike. In addition, this spike check is not performed for the profiles with
low vertical resolution (see Gouretski (2018) for details).

(10) Multiple extrema check

This check identifies profiles with unrealistically big number of local temper-
ature extrema being similar to that used by Gouretski (2018). The selection
of the threshold (e.g., of the local maximum/minimum range) considers the
measurement precision and the typical scattering due to the fine temperature
micro-structure. All levels of profiles failing the check are flagged.

(11) Global gradient range check

This check identifies pairs of levels for which the vertical temperature gradient
exceeds the overall depth-dependent range, which is similar to the global range
check for temperature. Because vertical distribution of temperature with depth
is not-linear, the finite-difference estimates of the vertical gradient depends on
profile vertical resolution, with the magnitude of the calculated gradient de-
creasing with the increase of the vertical gap between the two layers. Therefore,
unlike other schemes (e.g., Garcia et al. (2018)), we apply different gradient
ranges depending on the profile vertical resolution. We calculate the tempera-
ture gradient (∇𝑇 ) at level k using central differences as follows:

(∇𝑇 )𝑘 = �T
�Z =

1
𝑛2 ∑𝑛2

𝑖=𝑘 𝑇𝑖− 1
𝑛1 ∑𝑘

𝑖=𝑘−𝑛1
𝑇𝑖

𝑍𝑘+𝑛2 −𝑍𝑘−𝑛1
(3)

Some instrumentation types provide temperature profiles which resolve the fine
thermal structure of the water column characterized by the high values of the
temperature gradient. Here, we are only interested in detecting the gradient
outliers for the vertical structures of a larger scale (i.e., scales larger than char-
acteristic scales of the ocean fine thermohaline structure). This is achieved by
choosing the smallest values of n1 and n2 in Equation (3) which corresponds to
the vertical gap (�Z) greater or equal to 10 meters empirically. The temperature
at level k for which the vertical gradient falls outside the global depth-dependent
gradient range is flagged.

(12) Local gradient climatological range check

This check is identical to the global gradient range check but with gradient
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ranges defined locally similar to the local climatological range check for tempera-
ture described in (7). Here, the IAP-TG-range is used as the local climatological
vertical gradient range (see Section 4 for details).

(13) Instrument specific checks

In the highly non-homogeneous archive like WOD, spurious temperature profiles
often exhibit features which are characteristic only to specific instrumentation
types. These features can be attributed to specific problems encountered during
the data acquisition. In this check, quality issues of XBT temperature profiles
related to wire stretch, wire insulation damage, leakage, wire noise or bottom
hit are detected. As suggested by Barton and Gonzalez (2016), if a tempera-
ture measurement at a specific level was linked to one of these problems, the
measurements below this level should be all flagged as bad.

3.2 Evaluation of the CODC-QC system

Currently, there are no unified standards to evaluate the performance of dif-
ferent QC schemes. The International Quality Controlled Ocean Database
(IQuOD) and Argo science teams provided useful practices (Cowley et al., 2021;
Domingues & Palmer, 2015; Roemmich et al., 2019; Wong et al., 2020). In this
study, we used two manually QC-ed datasets to evaluate the performance of
the new CODC-QC system of this study.

The dichotomous metrics of True Positive Rate (TPR), False Positive Rate
(FPR) and True Negative Rate (TNR) first proposed by Yerushalmy (1947) are
used for the QC performance evaluation. For each measurement, the benchmark
dataset provides truth pass and truth reject rates, and the AutoQC results (pass
and reject) are compared with the values for the benchmark dataset. TPR
characterizes how well the AutoQC detects bad data, while TNR and FPR
characterize the ability of the scheme to retain good data. The best AutoQC
procedure performance is achieved when the TPR and TNR are as high as
possible, and the FPR is as low as possible. The metrics are applied to the
observations at each observed level, rather than to entire observed profiles.

Additionally, the Open-sources Python project developed by IQuOD
(https://github.com/IQuOD/AutoQC) was used to compare the perfor-
mance of the CODC-QC with AutoQC procedures from four other institutions
(NOAA’s Atlantic Oceanographic and Meteorological Laboratory QC procedure
(AOML-QC; version 2018), Argo real-time QC procedure (Argo RTQC; version
2.5), Commonwealth Scientific and Industrial Research Organization QC
procedure (CSIRO-QC), and Integrated Climate Data Center of the University
of Hamburg QC procedure (ICDC-QC)) with using the above dichotomous
metrics.

4. Local climatological ranges for temperature (IAP-T-range) and for
the vertical temperature gradient (IAP-TG-range)

4.1 Definition of the acceptable range
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It will be shown below that checking the observed data against the local cli-
matological ranges for temperature and vertical temperature gradient (further
call for brevity temperature gradient) is most effective in identifying outliers
compared to other quality checks. As discussed in Section 1, acceptable ranges
for observed variables are often constructed under the assumption of Gaussian
distribution with Tukey’s box-plot method (McGill et al. 1978), which is of-
ten being applied to define the acceptable range. However, local distributions
of temperature and temperature gradient are typically skewed. The tempera-
ture skewness maps for selected levels (Fig. 1a, c) show the largest skewness
magnitude in the boundary currents regions (Fig. 1g), within the Antarctic Cir-
cumpolar Current (ACC) belt (Fig. 1e) and within the tropical and equatorial
zones. The temperature gradient skewness maps (Fig. 1b, d) are patchier and
demonstrate different patterns, with prevailing negative values (Fig. 1h) except
for the polar regions where temperature inversions occur (Fig. 1f).

Assumption of the symmetry of statistical distribution results in the undesirable
property of a QC to flag too many good data as outliers. Gouretski (2018) used
the adjusted boxplot method modified for skewed distributions (Vanderviere &
Huber, 2004). The QC scheme inter-comparisons study by Good et al (sub-
mitted) demonstrated significant improvement in the ability of that scheme to
identify outliers compared to the schemes assuming Gaussian distribution (e.g.,
WOD-QC and AOML-QC procedures). However, as noted by Adil and Irshad
(2015), the adjusted boxplot method works well only for highly skewed distribu-
tions (|skewness| ≥ 3), but produces fences larger than the extremes of the data
for smaller skewness values.

Here we present a different approach to construct the acceptable range without
any assumption on the statistical distribution law and define the lower fence
as the upper boundary of the 0.5% quantile and the upper fence as the lower
boundary of the 99.5% quantile. These boundaries represent the local climato-
logical temperature range (IAP-T-range) and the local climatological vertical
temperature gradient range (IAP-TG-range).
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Fig. 1 (a, c) The skewness of the temperature distribution in one-degree boxes
at 10m depth (January); (b, d) same as (a, c), but for the vertical temper-
ature gradient (July). The maps are based on all quality-controlled WOD18
temperature profiles between 1940 and 2020; (e-h) temperature histograms for
four selected locations: (A) the Weddell Sea, (B) south of Gulf Stream, (C) the
Antarctic Circumpolar Current (ACC), (D) off the Peru coast. The locations
are marked as black starts on maps in (a) and (b).

4.2 Initial data QC and interpolation

Temperature data discussed in Section 2.1 were used to construct local climato-
logical ranges for temperature (IAP-T-range) and temperature gradient (IAP-
TG-range). First, some crude QC checks was performed excluding observations
fail the basic information check, the instrument depth check, the local bottom
depth check, the global range check, levels order check, instrument maximum
depth check, global gradient range check, spike check, and constant value check
(see Section 3). Secondly, we interpolated temperature profiles to 119 standard
levels from surface to 6000m (1 m, 5–100 m in 5m intervals, 110–200 m in 10m in-
tervals, 220–400 m in 20m intervals, 425–700 m in 25m intervals, 750–2000 m in
50m intervals, and 2100–6000 m in 100m intervals) using the parabolic interpo-
lation (Reiniger and Ross 1968). The interpolation was not performed where the
interval between two adjacent levels exceeds a certain depth-dependent thresh-
old followed by Gouretski (2018).

4.3 Water mass dependent data selection within the local influence
bubble

The local climatological ranges for temperature and temperature gradient are
calculated on 1-degree boxes at each standard level. For each grid point, the
surrounding profiles are selected within the 555 km radius (bubble) to guaran-
tee the sufficient number of profiles even in the data-gap regions (same as in
Gouretski (2018)), and 555 km is consistent with spatial decorrelation length
scale for inter-annual scale variability. The data selection is performed on the
monthly bases, with the required minimum number of profiles in the local bub-
ble set as 40 in the upper 250m, 30 between 250 and 450m, and 20 between 450
and 2000m (these thresholds are chosen empirically). If the number of profiles
for a climatological month is less than the above thresholds, the profiles from
the adjacent months are also used.

Except for some spatially homogeneous areas of the global ocean, selecting all
data within a bubble lead to the undesirable increase of the variable ranges be-
cause it might include profiles from different water masses. Here, we developed
an additional selection algorithm which takes into account the anisotropy of the
temperature distribution within the influence bubble. Firstly, we calculate tem-
perature and temperature gradient monthly means and standard deviations (�)
by all temperature profiles in each 1-degree box (background values in Fig.2a).
Secondly, for the central box of each influence bubble, we define the local tem-
perature range as [mean±�] (Fig.2b-d). Because of the higher variability of the
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temperature gradient, the gradient range for the center of the bubble is defined
as [mean±0.3*�] (0.3 is an empirical choice). Thirdly, the boxes within the in-
fluence bubble are ordered according to their mean values and the boxes whose
mean values fall within the range of the central box are retained (Fig.2a-d) for
the further analysis.

The examples of the data selection are shown in Fig. 2 for three locations in the
Pacific Ocean east of Japan. The box-mean temperatures in ascending order are
shown for each bubble along with the respective standard deviation (Fig.2b-d).
The histograms (Fig.2e-g) characterize the anisotropy of temperature distribu-
tion within each bubble. The northernmost location (Bubble A) is within the
cold Oyashio current, the southernmost location is within the Kuroshio exten-
sion (Bubble B), the central location (Bubble C) is within the Subarctic front.
In all three cases the water-mass dependent profile selection excludes the north-
ernmost and the southernmost 1°×1°-degree boxes within the bubbles, retaining
only the boxes with water mass characteristics similar to those of the central box.
For instance, water temperature at the central point of Bubble A is dominated
by the cold Oyashio current flowing from the north-east, so that predominantly
the boxes from the northern half of the bubble are selected. At the center of
the Bubble B the Kuroshio Extension waters flowing in the zonal direction dom-
inate, so that almost all boxes in west-east direction are retained except for the
southernmost and the northernmost parts of the bubble. Figs.2e-g show that
the statistical distributions in bubbles A and B are highly skewed. These exam-
ples illustrate that the additional selection of data is powerful to better estimate
the local climatological ranges because of the water mass properties are taken
into account.

Fig. 2 Illustration of the water mass dependent data selection method for
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three locations east of Japan: a) climatological temperature map at 10m depth
level in January and bubbles (A-C) with centers of the selected 1x1-degree boxes
(black), location of the central box is shown in red; (b-d) box mean temperatures
with respective within box standard deviations in ascending order for three
bubbles, vertical red lines denote the temperature range for box-selection; (e-d)
histograms of the temperature distribution within each bubble, vertical blue
lines indicate the local temperature climatological range for the new CODC-QC
system developed in this study.

4.4 Accounting for topographic barriers

As discussed in Shahzadi et al. (2021), artefacts due to neglecting of spatial
discontinuities are observed in some ocean climatologies. Fig.3 shows two exam-
ples of topographic barriers. Fig. 3a-c shows that although the data from the
selected boxes are statistically identified as the same water mass using the pro-
cedure described in Section 4.2-4.3, these boxes are located within two currents:
the Aleutian North Slope Current and the Alaska Coastal Current, with the
Alaska Peninsula as a topographic barrier between them. For the bubble imme-
diately south of Central America (Fig.3d-f), the statistical procedure chooses
the data both in the Atlantic and Pacific oceans which are disconnected from
each other. To cope with such situations, we take into account the distribution
of the bottom barriers between the bubble central and selected profiles and re-
tain only those profiles for which no topographic obstacle between the central
bubble point exists.
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Fig. 3. Two examples of box-selection without (a, d) and with (b, e) the ac-
count for topographic barriers: data selection bubble north of Alaska Peninsula
(a-b) and south of Central America (d-e). Monthly climatological temperature
distribution at 5m depth (January) is shown in the background; (c, f) shows
temperature histograms for data selection with and without account for topo-
graphic barriers.

4.5 Global fields of the local climatological range for temperature
(IAP-T-range)

Using vertically interpolated temperature profiles (see Section 4.2), the following
set of parameters was calculated for temperature: mean, median, standard devi-
ation, 99.5% quantile, 0.5% quantile, skewness, and kurtosis. Altogether these
parameters represent the IAP-T-range climatology, with quantile boundaries
corresponding to the local climatological ranges. Calculations were performed
on the 1°×1° grid at 119 levels. For each 1°×1° field, a nine-point mean filter
was applied to further exclude some outliners and ensure spatial coherency. For
temperature monthly climatological ranges are available for the layer 0-2000m
and seasonal ranges for 2000-4000m. Below 4000m, ranges are calculated using
all available data.

Fig. 4a-h shows the fields of IAP-T-range with local minimum and maximum
climatological temperature for four selected representative depth levels (The
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local temperature climatological mean, median, standard deviation fields are
shown in Fig. S1 in the supporting information). The respective ranges (Tmax-
Tmin) are shown in Fig.4i-l. At these depth levels, the maximum range is found
in the high-energetic regions of the ocean corresponding to the western boundary
currents like Gulf Stream, Kuroshio, Antarctic Circumpolar Current and to the
equatorial belt in the Pacific Ocean. Broad temperature range at the level 1600
m in the North Atlantic Ocean is linked to the spreading of the Mediterranean
water. The large-scale patterns are in agreement with previous studies (e.g.,
Antonov et al. (2004); Schmidtko et al. (2013) and Gouretski (2019)).

The performance of the local temperature climatology range check, driven by
the IAP-T-range, is illustrated by means of profiles from six locations in the
World Ocean (Fig. 5). Profiles were obtained by means of different instruments.
Among the six examples in two cases (Fig. 5a, c) all observations fall outside
the local climatological limit. In other cases, only a part of measurements is
flagged as outliers. For instance, the MBT profile (Fig. 5b) is characterized
by a shift below 50m level, with all data flagged below 60 m. Similar situation
can be seen for the XBT profile (Fig. 5f), where shift at ~75 m depth might
indicate wire stretching. For two Argo profiles (Fig. d,e), the erroneous data
were reported only at a number of levels.
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Fig. 4. The IAP-T-range temperature climatology (January) fields at several
representative levels including 10m, 150m, 600m, 1600m depths: (a, c, e, g)
local minimum values (Tmin), (b, d, f, h) local maximum values (Tmax), and
(i-l) local temperature climatological range (Tmax-Tmin).
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Fig. 5. Performance of the local climatological range check as applied to a num-
ber of temperature profiles. The local climatological maximum and minimum
values (IAP-T-range) are shown with blue dashed lines. Temperature profiles
are shown in green (good values) and red (bad values).

4.6 Global fields of the local climatological range for the vertical tem-
perature gradient (IAP-TG-range)

Similar to the global fields of IAP-T-range discussed in Section 4.5, the 99.5%
and 0.5% quantiles of temperature gradient within the local influence bubble are
set as the upper and lower climatological limits. In a deviation from temperature
ranges for the vertical temperature gradient were calculated only within the layer
0-2000m. Since temperature distribution with depth is not linear, the estimation
of the vertical temperature gradient depends on the vertical spacing between the
two levels where the gradient is calculated. Increasing vertical spacing between
the observed levels leads in general to the decrease of the gradient magnitude
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(because the noise will be exacerbated when calculating derivatives using higher
resolution profiles). Respectively the gradient climatological ranges used for the
QC of profiles must take into account the spacing between the observed levels.
We note that the vertical resolution (�Z) differs considerably among different
instrumentation types. For instance, the common vertical resolution for CTD
profiles in the WOD archive is 2 decibars, whereas the historical Nansen bottle
casts rarely have observations at more than 15-20m, with spacing between the
observed levels typically increasing with depth from 5-10m near the surface to
several hundred meters in the lower part of the profile. Fig. 6 shows the overall
IAP-TG-range versus depth for five values of the vertical spacing.

Local minimum and maximum temperature gradient climatological values, along
with the local range are shown in Fig.7 for four selected levels (The local temper-
ature gradient climatological mean, median, standard deviation fields are shown
in Fig. S2 in the supporting information). For the uppermost level (10 m), a
clear asymmetry between the Northern and the Southern Hemispheres can be
seen both in minimum and maximum values, with much higher gradient mag-
nitudes in the Northern hemisphere. At a deeper level (160m), the asymmetry
in two hemispheres vanishes, with the maximum width of the range occurring
in the near-equatorial belt. This is mainly because of the water column change
induced by the switch between El-Nino and La-Nina regimes. The pattern of
the gradient range becomes patchier with increasing depth. At 600m level, the
widest range is found mostly off the eastern coasts of the Atlantic, Indian and
Pacific oceans. There is a broad agreement of the IAP-TG-range climatology
with a number of existing studies (Luyten et al., 1983; Neal et al., 1969; Oakey
& Elliott, 1977; Wang et al., 2000).

Similar to Fig. 5 for temperature, Fig. 8 provides several examples of the
temperature gradient check performance. The gradient range check identifies
some spurious temperature inversions (Fig.8b) and spikes (Fig. 8 c,d) that could
not be detected by the local temperature climatological range check or global
vertical gradient check.
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Fig. 6. Global vertical temperature gradient range (IAP-TG-range) for July
as a function of vertical spacing (�Z) indicated by different colors. The dashed
lines indicate the lower bound and the solid lines indicate the upper bound.
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Fig. 7. The IAP-TG-range temperature gradient climatology (July) at 10m,
150m, 600m, 1600m depth levels: (a, c, e, g) the local minimum value (TGmin);
(b, d, f, h) the local maximum value (TGmax), and (i-l) the local temperature
gradient climatological range (TGmax-TGmin). All fields correspond to the ver-
tical spacing �Z=10m.
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Fig. 8. Performance of the local temperature gradient climatological range
check as applied to four temperature profiles. The local minimum and maxi-
mum gradient values (IAP-TG-range) are shown in blue. Temperature or the
corresponding vertical temperature gradient are shown in green (good values)
and red (bad values).

5. The evaluation of the CODC-QC procedure performance using
benchmark datasets

We used two benchmark datasets (QuOTA and WOCE), which have been rigor-
ously QC-ed by experts (see sections 3.1, 3.4 for details) to evaluate the perfor-
mance of the CODC-QC. Table 2 summarizes the TPR, FPR and TNR for the
new CODC-QC and other four QC systems, whereas Table 3 summarizes the
contribution of different CODC-QC quality checks to the benchmark metrics.
The CODC-QC demonstrates the highest TPR (~67%) in the QuOTA dataset,
mainly attributed to the local climatological range check and local gradient cli-
matological range check. Note that QC system from Atlantic Oceanographic and
Meteorological Laboratory (AOML-QC) applies climatological mean plus/minus

23



4-sigma range fromWorld Ocean Atlas 2018 (WOA18) (Locarnini et al., 2019) to
define the local range, which yields the second highest TPR of 40.22%. For the
WOCE dataset, the TNR of the CODC-QC is ~98%, meaning that only 2% of
good data are flagged as bad by the QC procedure. This 2% false rejection rate
(~5% for the QuOTA dataset) is mainly attributed to the local climatological
range checks (see Table 3).

According to Table 3, the local temperature climatological range check is the
most effective part of the QC procedure (highest TPR equal to 51.00%). The
local temperature gradient climatological range check and the instrument spe-
cific check play a secondary role. However, these three checks also contribute
the largest FPR (~1% in total). In total, the CODC-QC can detect 66.97%
bad data in the QuOTA dataset, with a trade-off of rejecting 5.45% good data
in the QuOTA dataset and retaining 98.09% good data in the WOCE dataset.
These results suggest that the local climatological range check and the local ver-
tical gradient range check are the most important modules in the CODC-QC,
consistent with the previous understanding for example in Gouretski (2018).

It should be noted that both WOCE and QuOTA benchmark datasets have
their limitations. WOCE dataset is represented (in our case) only by the CTD
profiles, and QuOTA dataset includes only XBT, MBT, and Bottle data. Both
datasets represent only a minor fraction of the entire global hydrographic archive
and do not cover the Arctic Ocean and many marginal or closed oceanic basins.

Table 2. The TPR, FPR rates for the QuOTA dataset and TNR rate for the
WOCE dataset for five QC systems.

QC institutes QuOTA WOCE
TPR FPR TNR

CSIRO-QC 16.28% 0.32% 99.99%
ICDC-QC 33.17% 0.89% 90.77%
Argo RTQC 2.44% 0.06% 99.99%
AOML-QC 40.22% 2.17% 45.73%
CODC-QC 66.97% 5.45% 98.09%

Table 3. The TPR, FPR and TNR rates for distinct quality checks of the
CODC-QC for the QuOTA and WOCE benchmark datasets.

QC checks of CODC-QC QuOTA WOCE
TPR FPR TNR

Basic information check / 0% 100%
Sample level order check / 0% 100%
Instrument maximum depth check 0.01% 0.01% 99.94%
Local bottom depth check 1.21% 0.06% 99.93%
Global range check 17.70% 0.02% 99.99%
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QC checks of CODC-QC QuOTA WOCE
Freezing point check 0.06% 0.01% 99.99%
Local climatological range check 51.00% 1.88% 98.96%
Constant value check 4.07% 0.01% 99.99%
Spike check 0.11% 0% 100%
Multiple extrema check 9.55% 0.71% 100%
Global vertical gradient check 21.34% 0.04% 99.99%
Local gradient climatological range check 44.03% 2.95% 99.49%
Instrument specific check (XBT) 43.82% 2.88% 100%
TOTAL 66.97% 5.45% 98.09%

To further illustrate the capability of the CODC-QC in detecting bad data, we
provide composite plots of temperature profiles before and after the application
of the CODC-QC and ICDC-QC procedures to the same arbitrarily selected
profiles from the QuOTA dataset (Fig. 9). The raw profiles (Fig. 9a) include
many erroneous observations distributed over the whole depth-temperature
space. Comparison shows that the CODC-QC is superior in the ability to
detect outliers compared to the ICDC-QC (Fig. 9 c,d), with the subset of the
retained good observations being very similar to the benchmark data after the
ExpertQC (Fig. 9b)
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Fig. 9. Application of three AutoQC procedures to 3000 temperature profiles
arbitrarily selected from the QuOTA dataset: (a) raw profiles; (b) profiles after
removing data flagged by manual/expert QC; (c) same as (b) but for the ICDC-
QC; (d) same as (b) but for the CODC-QC; (e) location of selected profiles.

6. Application of the CODC-QC to the global hydrographic dataset

The new system was applied to the WOD18 global archive of temperature pro-
files. The yearly rejection rates were calculated for nine WOD instrumentation
type groups (Fig. 10). The rejection rate is defined as the ratio of the num-
ber of observations flagged as bad to the total number of observations. For
the entire WOD18 dataset (1940 to 2020), 9.02% (218,319,199) measurements
were rejected. Among the distinct data sets the CTD, and PFL data exhibit
the lowest rejection rate, being superior in accuracy and quality than the XBT
and old instruments like MBT and Nansen casts (Locarnini et al., 2019). XBT
data have the highest rejection rate (15.18%) because of numerous instrument-
specific data quality issues (see the discussion below). The overall rejection rate

26



is 6.23% if not accounting for XBT data.

For each of the nine instrumental types, the local climatological range checks
result in the largest outlier percentages. The variation of the rejection rates
over time is evident for all instrument types. For instance, the OSD profiles are
characterized by high rejection rates during the 1940s (the years of the Second
World War). Here, the failure of the local bottom depth check is attributed to
the higher uncertainty in profile positioning. Higher percentage of outliers for
Argo profiles before 1996 corresponds to the initial stage of the float deployment
with technological improvements leading to the reduction of the outlier rate
afterwards. The time dependency for the XBT rejection rate is more complex.
Before 1987 the rejection rate remains rather stable (8-10%), increasing since
then up to 22% in 2010. We explain this by the increasing number of T7
and DB profiles which are more prone to different kind of errors compared to
the shallower T4 and T6 probes, especially in the deeper ocean below 760m
(Figs. 11, 12), which is beyond the nominal depth specified by manufactures
but these deep layer data are always being retained in the database. The outlier
percentage for the MBT data remains rather stable (5-8%) between 1940 and
1985 indicating that the instrumentation type has not undergone any significant
changes. The rejection rate for the MRB exhibits strong time variability and
can be mainly attributed to the malfunction of instruments anchored at several
mooring sites. A high percentage of outliers for DRB profiles in 2013 is linked
to the wrong geographic coordinates. Finally, for the relatively small dataset
obtained by GLD (glider), the CODC-QC identifies a high outlier percentage
for the profiles around Australia.
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Fig. 10. Yearly percentage of data rejected by each quality checks for nine
instrumentation types: CTD, OSD, PFL, XBT, MBT, APB, MRB, DRB, GLD.
Black dashed line is the yearly rejection rate based on all distinct checks (this
value is less than the sum of the individual check percentages because many
measurements are flagged by several distinct checks in parallel. The overall
rejection rate is shown at the top of each plot.

Fig. 11 shows the percentage of rejected data versus sample depth. The
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CTD, PFL, and OSD data (the most accurate instrumentation types within
the archive) are characterized by the rejection rate only slightly changing with
depth. The exception is the CTD data from the near-surface levels shallower
than 2 dbar which often correspond to the measurements registered during the
sensor adjustment time before the downward cast begins. The outlier percent-
age change with depth is most prominent for the XBT and APB data. The
sudden increase of the percentage for the XBT data is observed below the nom-
inal maximum depth of T7 and DB probes at 760 m. Below that level the XBT
acquisition systems often continue data registration, though the data become
less reliable due to increased risk of the wire break, current leakage, wire stretch
and bottom hit. The explanation of the increased rejection rate below 600 m
for APB profiles require further investigation, one possible reason is the marine
mammals barely dive into the deep layers below 600m (Boehlert et al., 2001).

Fig. 11. (a) Percentage of outliers for different instrument types versus sample
depth after applying the CODC-QC. The overall rejection rate is shown in
dashed black line and different instruments in different colors. (b) is the zoomed
version of (a) with XBT and APB removed.

In addition to the distributions of outlier percentage versus time and sample
depth, we also provide spatial rejection rate maps for six most numerous in-
strumentation types: OSD, CTD, PFL, APB, MBT, and XBT (Fig. 12). The
three most accurate types (OSD, CTD, and PFL) are characterized by low (less
than 1%) outlier percentage for the most regions of the world ocean. A some-
what higher percentages are found within the regions with high eddy-activity
like Gulf Stream, Kuroshio, Antarctic Circumpolar Current, Agulhas Return
Current, Brazil current. This spatial pattern indicates the need for further ad-
justment of the local climatological limits for temperature and temperature gra-
dient. The map for the XBT outlier percentage reveals a very non-homogeneous
spatial pattern, with high rejection rates specific to a few routine XBT lines,
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e.g., Suez channel to Australia, Tasmania to Antarctica. This provides a metric
for assessing the quality of the XBT cruise lines.

Fig. 12. The percentage of temperature outliers within 1x1-degree boxes for
six main instrumentation types (CTD, OSD, PFL, MBT, XBT, APB) after
applying the CODC-QC system.

Further we note that one strength of the CODC-QC is to better detect the
quality issues related to XBT data, which have been raised in several stud-
ies (Cheng et al., 2016; Gouretski & Koltermann, 2007; Hanawa et al., 1995).
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Specifically, these quality issues can be linked to the wire damage (e.g., wire
break, wire insulation damage, wire leakage, wire stretch), problems with the
launcher (e.g., false launch trigger, faulty launcher breech contact), probe, and
bottom hit. Many studies developed AutoQC methods to detect these problems
(Bailey et al., 1994; Daneshzadeh et al., 1994; Thadathil et al., 2001). Fig. 13
demonstrates the effectiveness of the CODC-QC for the detection of the spu-
rious XBT profiles. Fig. 13a shows the mean and standard deviation of the
temperature anomalies within 2005-2017 for the North Pacific relative to the
monthly climatology. Application of the CODC-QC reduces the overall stan-
dard deviation, which decreases monotonically below the seasonal thermocline.
Using the WOD-QC flag leads to the larger standard deviation and results in a
spurious large magnitude of variation around 900m, that is below the terminate
depth for DB and T7 probes. The composite plots of the XBT temperature
profiles (Fig. 13b, c) demonstrate that the CODC-QC effectively removes spuri-
ous profiles, especially for the XBT profiles below the maximum nominal depth
(~760m) of T7 and DB deep probes.

Finally, we note that the CODC-QC has rejected 9.04% data, which is 6.8
times more than the WOD-QC (1.32%) and 2.1 times more than the ICDC-
QC system (4.24%). Note that both WOD-QC and ICDC-QC does not have
the local temperature gradient climatological range and the XBT instrument
specific check, so it is natural that this system leads to lower rejection rate.
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Fig. 13. (a) The north Pacific 1x1o grid-averaged monthly QCed temperature
anomaly profiles (relative to 2008-2012 climatology referenced from Cheng et
al. (2017)) with 1 time standard deviation envelope. (b-c) are corresponding
individual XBT profiles after the application of the WOD-QC and the CODC-
QC.

7. Impact of the QC procedures on the estimation of the OHC time
evolution.

One of the key applications of in-situ ocean temperature observations is the
estimation of the OHC change over time, which is a key indicator for climate
change. Roemmich et al. (2019), Cowley et al. (2021) and Cheng et al. (2022)
suggest that QC is one of the most important uncertainty sources contributing to
the estimated OHC. Here we investigate the impact of QC on OHC by applying
two AutoQC systems, including the CODC-QC and the WOD-QC. The OHC
time series is calculated following the method developed by Cheng et al. (2017).
The estimates of OHC are done using only the data which passed quality checks
of the respective QC system.

A notable difference in OHC time series for the layer 0-2000 m are found for
the two QC systems throughout the 1955-2020 period (Fig. 14a). For 1955 to
1990, the linear trend of OHC0-2000m for CODC-QC is 0.17±0.01W/m2, being
41.7% larger than the trend estimate for WOD-QC. For 1991-2020, the warming
rates are 0.64±0.02 W/m2 and 0.61±0.02W/m2 for CODC-QC and WOD-QC
respectively, with the former being 4.9% higher. Even after the full-scale imple-
mentation of Argo floats (i.e., since about 2005) with better data quality and
improved data coverage, the difference in OHC trend between CODC-QC and
WOD-QC still amounts to 4.3%. These tests indicate that the choice of the QC
procedure is a non-negligible source of uncertainty in OHC estimation.

Besides trends, the month-to-month variation of the rate of change of OHC,
quantified by the standard deviation of the detrended OHC time series, is 17.6%
smaller in CODC-QC than WOD-QC (Fig.14b), with standard deviation values
of 6.09 W/m2 for CODC-QC and 7.38 W/m2 for WOD-QC. Trenberth et al.
(2016) argued that the observed short-term OHC variability is unrealistically
large because of the data noise. Therefore, the reduction of the variance when
applying the new CODC-QC system implies that it has an advantage to reduce
the noise of OHC and improve the estimate.

To examine the local impact of QC procedures on OHC estimates, we show
the local OHC linear trend differences (OHC-WOD-QC minus OHC-CODC-
QC) for three selected time periods (Fig. 15). The differences due to the QC
procedures are largest for two earlier time periods: 1960-1979 and 1980-1999.
But the differences are generally negative for 1960-1979 (up to –3 W m-2) and
positive for 1980-1999 (up to 3 W m-2), implying a significant impact of QC on
decadal scale OHC variation. For the latest period 200-2020 the impact of the
QC procedure is much smaller (maximum of –1.5 W m-2) and mostly negative
over the global oceans, indicating the improved overall data quality with Argo
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profiles dominating in the hydrographic archive. The pattern and signs are the
differences are not fully explained in this study because it is associated with the
underlying gap-filling strategy which requires further exploration.

In summary, our tests indicate that the choice of the QC procedure represents
a non-negligible factor in OHC estimation: QC in different performances could
potentially lead to a large difference of the OHC. However, we note that the
impact of QC is investigated for only two AutoQC systems and Cheng et al.
(2017) mapping method in this study, a comprehensive assessment of the QC’s
impact remains a research priority.

Fig. 14 (a) Global ocean heat content (OHC) anomaly (J) from 1955 to 2020
(layer 0-2000m, baseline reference climatology 1981-2010) based on WOD-QC
and CODC-QC. The thick dashed lines represent the linear trends calculated as
the least square fit for three time periods (1955-1990, 1991-2020, 2005-2020); (b)
monthly rates (dash lines) of OHC change (J/m2) (global area, layer 0-2000m)
based on WOD-QC and CODC-QC. The rate is calculated as a simple one-sided
difference as in Trenberth et al. (2016). The solid line is the 12-month running
mean.
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Fig. 15. Difference (OHC-WOD-QC minus OHC-CODC-QC) of the spatial
linear trends of 0-2000m OHC (W/m2) for three time periods (a) 1960-1979, (b)
1980-1999, and (c) 2000-2020.

8. Conclusions

In this study, we presented a new AutoQC system (CODC-QC) for the in-
situ temperature observations. The novel feature of the QC procedure is the
improved local climatological range checks, with the local temperature gradient
climatological range climatology (using the IAP-TG-range field) added by the
local temperature climatological range check (using the IAP-T-range field).

The performance of the CODC-QC is also evaluated using two benchmarks
manual QCed datasets and compared the performance with other three AutoQC
systems. We show that our new system is superior in its ability to retain good
data and to flag outliers, compared to several available schemes.

The new QC procedure was applied to the global archive of temperature profiles
(i.e., the WOD18). Based on the outlier statistics we find the CTD and Argo
float data being superior in quality followed by the old Nansen cast, MBT
and APB instrumentation groups. XBTs represent the instrumentation group
with the highest percentage of outliers due to the numerous instrument specific
quality issues.

Finally, we estimated the impact of QC on the estimation of global and regional
OHC change by testing CODC-QC and WOD-QC procedures. We found that
the difference between the calculated linear OHC trend amounts to 41.67%,
4.92% and 4.34% for the time periods 1955 to 1990, 1991 to 2020 and 2005
to 2020 respectively. Application of the more stringent CODC-QC procedure
leads to the increased warming trend. In addition, the CODC-QC reduces the
month-to-month variation of the global ocean warming rate estimate by 17.55%.

It is worthwhile to discuss some potential improvements on QC system, which
deserves further studies. For example: (1) one task of QC system is to identify
spurious profiles that break the physical laws, this means that the vertical struc-
ture of temperature profiles should be better defined and used in QC system.
Currently, only vertical gradient information is used because of the difficulty
in defining the “shape” of a profile. A possible solution is that the applica-
tion of machine learning approach (i.e., artificial intelligence QC), which is a
non-parameterized approach and does not require an explicit definition of the
‘profile shape’. This could be a useful addition to the traditional AutoQC (e.g.,
Mieruch et al. (2021)). (2) The extreme events should be treated specifically
in QC system in the future, for examples, the marine heat waves and tropical
cyclones will lead to a dramatic change of ocean conditions, which is likely to
be flagged by most of the QC systems including the CODC-QC. Thus, cause is
needed when applying the QC flags to study these extreme events.
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All the data we used here are freely accessible. The WOD18 temperature
data can be easily downloaded in the NCEI/NOAA data access pool (https:
//www.ncei.noaa.gov/access/world-ocean-database-select/dbsearch.html).
The QuOTA dataset and WOCE one-time profile dataset can be freely down-
loaded via CSIRO data pool (https://doi.org/10.25919/5ec357563bd3e) and the
U.S. National Ocean Data Center (https://www.ncei.noaa.gov/access/metadat
a/landing-page/bin/iso?id=gov.noaa.nodc:NODC-WOCE-GDR), respectively.
The code of CODC-QC is available as an Open-Source Python package that is
freely available from Github (https://github.com/zqtzt/CODCQC) under the
Apache-2.0 License. The average run time to quality control a typical temper-
ature profile is ~0.08s. More information of the algorithm and data reported
in this study (including climatologies development and CODC-QCed data) are
available via http://www.ocean.iap.ac.cn/.
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