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Abstract

In the Katha Range of central Myanmar, lithologic tracers and pressure-temperature-deformation-time data identify Cambro-

Ordovician, Indian-affinity Tethyan Himalaya Series (THS), located ˜700 km from their easternmost outcrop in S-Tibet and

˜450 km from Himalayan rocks in the Eastern Himalayan Syntaxis (EHS). Metamorphism began at ˜65 Ma, peaked at ˜45

Ma (˜510°C, 0.93 GPa), and exhumation/cooling (˜25°C/Myr) occurred until ˜30 Ma in a subduction-early collision setting.

When the Burma microplate—part of the intra-Tethyan Incertus-arc—accreted to SE-Asia, its eastern boundary, the southern

continuation of the Indus-Yarlung suture (IYS), was reactivated as the Sagaing fault (SF), which propagated northward into

Indian rocks. In the Katha rocks, this strike-slip stage is marked by ˜4°C/Myr exhumation/cooling. Restoring the SF system

defines a continental collision-oceanic subduction transition junction, where the IYS bifurcates into the SF at the eastern edge

of the Burma microplate and the Jurassic ophiolite-Jadeite belt that includes the Incertus suture.
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Key Points:  16 

• Indian-affinity Tethyan Himalaya Series occur in central Myanmar, ~450 km south 17 

of the Himalayan rocks in the Eastern Himalayan Syntaxis 18 

• A low temperature-high pressure subduction-early collision setting was active at 19 

~65 Ma, peaked at ~45 Ma, and ended at ~30 Ma 20 

• The Sagaing transform fault reactivated the Indus-Yarlung suture, and imbricated 21 

the Indian rocks and the Burma microplate from ~30 Ma on  22 

 23 
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Abstract 25 

In the Katha Range of central Myanmar, lithologic tracers and pressure-temperature-26 

deformation-time data identify Cambro-Ordovician, Indian-affinity Tethyan Himalaya 27 

Series (THS), located ~700 km from their easternmost outcrop in S-Tibet and ~450 km 28 

from Himalayan rocks in the Eastern Himalayan Syntaxis (EHS). Metamorphism began at 29 

~65 Ma, peaked at ~45 Ma (~510°C, 0.93 GPa), and exhumation/cooling (~25°C/Myr) 30 

occurred until ~30 Ma in a subduction-early collision setting. When the Burma 31 

microplate—part of the intra-Tethyan Incertus-arc—accreted to SE-Asia, its eastern 32 

boundary, the southern continuation of the Indus-Yarlung suture (IYS), was reactivated 33 

as the Sagaing fault (SF), which propagated northward into Indian rocks. In the Katha 34 

rocks, this strike-slip stage is marked by ~4°C/Myr exhumation/cooling. Restoring the SF 35 

system defines a continental collision-oceanic subduction transition junction, where the 36 

IYS bifurcates into the SF at the eastern edge of the Burma microplate and the Jurassic 37 

ophiolite-Jadeite belt that includes the Incertus suture. 38 

 39 

Plain Language Summary 40 

Central Myanmar hosts rocks typical for the northernmost continental crust of the Indian 41 

continent. These rocks are now located ~700 km from their easternmost outcrop in S-42 

Tibet and ~450 km from Himalayan rocks in the Eastern Himalayan Syntaxis—the 43 

eastern edge of India. They record an oceanic subduction-early collision setting from ~65 44 

to 30 Ma. Our findings aid to the restauration of the Sagaing transform-fault (SF) system 45 

at the eastern edge of India. The SF system imbricated the Indian-affinity rocks, and the 46 

Burma microplate—part of the intra-Tethyan Incertus-arc. 47 

 48 

  49 



1. Introduction 50 

 51 

Indenter corners in collisional orogens—syntaxes—feature 3-D deformation with crustal 52 

thickening, lateral material flow, and transitions from continental to oceanic subduction. 53 

In the Cenozoic India-Asia collision zone, the underthrusting Indian craton has induced 54 

shortening in the Himalaya and Tibet, and lateral material flow out of the collision zone 55 

(e.g., Zhang et al., 2004; Zubovich et al., 2010). Pronounced lateral flow and clockwise 56 

vertical-axis rotations occur at the Eastern Himalayan Syntaxis (EHS) where the 57 

Himalayan continental subduction transitions into the highly-oblique Burma oceanic 58 

subduction zone and the Sagaing transform-fault (SF) system (Figure 1a). Paleomagnetic 59 

studies in the Burma microplate, and the Asian-affinity Tengchong (Lhasa) and Baoshan 60 

(Qiangtang-Sibumasu) blocks indicate 40‒90° clockwise, vertical-axis rotations in 61 

Myanmar and Yunnan since the Paleocene, changing the original ~W-strike of these 62 

blocks in Tibet to a ~N-strike south of the EHS (e.g., Kornfeld et al., 2014; Li et al., 2018, 63 

2020; Westerweel et al., 2019). 64 

 65 

Northward-widening cratonic India extends northeastward into the EHS region, and is 66 

rimmed in the east by the oceanic lithosphere of the Bay of Bengal. The current transition 67 

from continental collision to oceanic subduction must occur in the Indo-Burman Ranges 68 

(IBR), part of the Jurassic-Recent subduction-accretionary wedge that bounds the Indian 69 

plate in the east, because the footwall of the northern IBR is made up of the Indian 70 

continental crust of the Shillong Plateau (Figure 1a). The past position of this transition is 71 

unclear due to the intervening Burma microplate and the northward-growing SF system, 72 

disrupting the Burma microplate, the IBR wedge, and the southern prolongation of the 73 

Indus-Yarlung suture (IYS) between India and Asia (e.g., Baxter et al., 2011). 74 



75 

Figure 1. a) Eastern Himalayan Syntaxis and eastern margin of the Indian plate (modified from Robinson 76 

et al., 2014). Insert locates a) and shows Eurasia-fixed GNSS-derived displacement field. b) Geological map 77 

centered on the Katha Range modified from Geological Map of Myanmar (2014) and Wang & Burchfiel 78 

(1997). Sagaing transform-fault system modified from Morley & Arboit (2019) and Maurin et al. (2010). 79 

Yellow bars: studied traverses and samples. 80 

 81 

To account for the ≥50 Ma onset of the India-Asia collision (e.g., Hu et al., 2016), a northern 82 

extension of cratonic India has been proposed. This Greater India is envisioned as a 83 

<2000-km-wide northward-projecting entity, consisting of extended continental and 84 

oceanic Indian lithosphere (e.g., van Hinsbergen et al., 2012) that has along its northern 85 

rim the Tethyan Himalaya Series (THS), on which the ophiolites of the IYS were emplaced. 86 

 87 

Given that India’s northward motion has been accommodated by subduction/shortening 88 

of Greater Indian and cratonic Indian lithosphere, lateral material flow out of the collision 89 



zone, and northward propagation of the Burma subduction zone and the SF system, 90 

tracing the evolution of the continental collision-oceanic subduction transition, 91 

describing the initiation and evolution of the SF system, and reconstructing the eastern 92 

edge of Greater India are key aspects of understanding the India-Asia collision zone and 93 

of indenter corners in general. Here, we trace the eastern edge of India—represented by 94 

the THS—into central Myanmar. In the Katha Range, lithologic tracers and pressure-95 

temperature-deformation-time (P-T-d-t) data outline a piece of the basal Cambro-96 

Ordovician THS that experienced high-P‒low T metamorphism, exhumed rapidly in a 97 

subduction-early collisional setting, and was involved into the northward growth of the 98 

SF system. The Katha rocks allow the timing of the activity in the subduction-early 99 

collisional setting and of the onset of strike-slip faulting along the SF system, and aid in 100 

the restauration of the eastern margin of India. 101 

 102 

2. The eastern Himalayan Syntaxis Region 103 

 104 

Haproff et al. (2018, 2019, 2020) and Salvi et al. (2019) mapped the lithologic units of 105 

India and Asia at the EHS (Dibang and Lohit valleys; Figure 1a), encountering the 106 

Gangdese arc (Asia), the IYS (Tidding-Mayoda mélange), and the Lesser Himalaya Series 107 

(LHS; India, Mayodia gneiss, Lalpani schist). The Greater Himalaya Series (GHS), THS, and 108 

Xigaze forearc basin (Asia) are absent. 109 

 110 

The NNE-trending Katha Range (Figure 1b) is bounded in the east by the 177‒163 Ma (U-111 

Pb zircon) Tagaung-Myitkyina suprasubduction-zone (ultra-)mafic rocks (Yang et al., 112 

2012; Liu et al., 2016), which are intruded by Gangdese-arc granitoids (Zhang et al., 2018). 113 

In the west, the Range is bounded by the Namyin strand of the SF system; rocks involved 114 



in its western strands include the Jurassic (Qiu et al., 2009; Shi et al., 2008) Jadeite belt 115 

(Figure 1b). Sericite-chlorite-biotite-garnet schist, locally with amphibole, talc, and 116 

kyanite, quartzite, and marble have been reported from the Katha Range; their 117 

stratigraphic age may cover the early Paleozoic to Triassic (e.g., Mitchell, 2018; Zhang et 118 

al., 2018). 119 

 120 

3. Katha Range: Lithology, Pressure-temperature-deformation-time 121 

Evolution 122 

 123 

Lithologically, we encountered porphyroblastic chloritoid-garnet-graphite micaschist, 124 

chlorite-chloritoid-bearing white-mica quartzite, and porphyroblastic staurolite-kyanite-125 

garnet quartz micaschist. Locally, the Katha schists and quartzites enclose m-thick meta-126 

acidite tectonites, dominated by phengite and porphyric quartz, interpreted as volcanic 127 

layers or small hypabyssal intrusions. We used zircon and rutile U-Pb geochronology to 128 

determine igneous emplacement ages, the maximum deposition age of the meta-129 

sedimentary rocks, and to establish correlations with rocks of the Himalaya and S-Tibet. 130 

Supporting information Text S1 provides the sample petrography, Text S2 outlines the 131 

geo-thermochronologic methods, and Tables S1 to S3 list their results and analytical data. 132 

 133 

Two meta-acidites yielded U-Pb zircon crystallization ages of 501 ± 9 and 530 ± 5 Ma (2s; 134 

Figure S1 in Supporting Information), both with major inheritance. Figure 2a compares 135 

the inherited (meta-acidites) and detrital (meta-sedimentary rocks) U-Pb zircon and 136 

rutile ages: the zircon age distributions of all samples are consimilar, with clusters at 137 

~500 and 1000 Ma; nearly all detrital rutile ages are at ~500 Ma. The youngest detrital 138 

zircon and rutile grains are 482 +7/-19 and 463 +8/-10 Ma, respectively, calculated with 139 



the “Youngest Zircon” routine and “3rd degree of youngest option” (Isoplot4.5; Ludwig, 140 

2008). These dates suggest a Cambro-Ordovician age for the studied Katha rocks. 141 

 142 

 143 

Figure 2. Cumulative probability plots of U-Pb zircon and rutile ages of a) samples from this study and 144 

sample 14M76 of Zhang et al. (2018), and b) their comparison with rocks from the central and eastern 145 

Himalaya. Ages used include 2s uncertainties and have 90‒110% 206Pb/238U–207Pb/206Pb age concordance. 146 

 147 

Figure 3a plots the Katha-rock P-T data together with THS data from central S-Tibet 148 

(Laskowski et al., 2016), eastern S-Tibet (Dunkl et al., 2011, Fang et al., 2020), and GHS 149 

and LHS data from Bhutan (Daniel et al., 2003). Table S4 of the Supporting Information 150 

summarizes our P-T results, and Text S1 details the petrology, derived from 151 

THERIAK/DOMINO equilibrium-assemblage calculations and conventional 152 

thermobarometry. Four meta-sedimentary rocks yielded prograde P-T data of 470‒153 

510°C, 1.0‒1.5 GPa and peak data at 490‒551°C, 0.8‒1.0 GPa; one sample has higher 154 

temperatures (prograde ~535°C, 1.0 GPa, peak ~650°C, 1.0 GPa). Figure 3b plots the 155 

Katha-rock T-t history. The meta-acidite zircon ages, the youngest detrital zircon age 156 

groups, and the detrital rutile ages (all U-Pb) indicate a Cambro-Ordovician intrusion 157 



(zircon) and cooling (rutile) event. U-Pb monazite and rutile, Rb-Sr phengite, 40Ar/39Ar 158 

phengite and biotite, zircon (ZFT) and apatite fission track (AFT), and zircon (U-Th)/He 159 

(ZHe) dates outline the Cenozoic evolution. We calculated closure-temperatures, Tc, with 160 

CLOSURE (Brandon et al., 1998). For Ar/Ar phengite, we used a Tc of ~450°C, accounting 161 

for slower diffusional loss at elevated pressures (e.g., Harrison et al., 2009; Warren et al., 162 

2012). Changes in the actual Tc have little effect on the first-order T-t history. 163 

 164 

 165 

Figure 3. Pressure-temperature-time-deformation (P-T-t-d) data. a) P-T of the Katha rocks and comparison 166 

with data from central and eastern S-Tibet and the eastern Himalaya. b) T-t paths, and c) structural data of 167 

the Katha rocks; see Figure 1b for traverses studied. 168 

 169 



Given a ~550°C Tc for the Rb-Sr phengite system (e.g., Blanckenburg et al., 1989)—higher 170 

than the average peak-T (~510°C)—the two dates ≥55 Ma likely are formation ages 171 

during prograde metamorphism (~483°C average T). The same may apply for the U-Pb 172 

rutile date (~50 Ma; Tc of 500‒650°C; e.g., Kooijman et al., 2010; Ewing et al., 2015) of 173 

quartzite 53101A, whose 500‒800°C T-range from Zr-in-rutile isopleths (Figure S1 of 174 

Supporting Information) indicates incomplete reset of detrital rutile. The 500‒550°C Zr-175 

in-rutile-derived T-range of 44‒36 Ma rutiles indicates metamorphic growth in meta-176 

acidite 5386A, different from the higher-T of inherited grains (Figure S1 of Supporting 177 

Information). Peak-T is likely best dated by the 48‒42 Ma monazite inclusions (~10 μm) 178 

in poikiloblastic kyanite of sample 4382. Taken together, the T-t path comprises prograde 179 

metamorphism from ~65 Ma to peak P-T at ~45 Ma (~55 km burial, assuming a lithostatic 180 

gradient of ~37 km/GPa), cooling at ~25°C/Myr to ~30 Ma, and cooling at ~4°C/Myr 181 

thereafter (Figure 3b). 182 

 183 

Figure 3c compiles structural data of the Katha rocks along two traverses. Bedding (s0) 184 

and foliation (s1) occupy a great-circle distribution, recording open to tight folds with 185 

~NNW-trending axes (B2), subparallel to mineral stretching lineation str1. S1 and str1 are 186 

associated with folded shear zones/bands that indicate ~NNW-SSE stretch with dominant 187 

top-to-SSE shear, also indicated by σ-clasts and asymmetric foliation boudinage. 188 

Overprinting a relict fabric, s1, str1, and the shear fabrics are outlined by the syn- to post-189 

peak P-T mineral assemblage; they likely record exhumation by crustal extension. The 190 

folds record the regional ~E-W shortening south of the EHS (e.g., Wang & Burchfiel, 1997). 191 

 192 

3. Discussion 193 

 194 



We focus on four salient questions: What Himalaya-Tibet series do the Katha rocks 195 

represent? How and when were they exhumed? Which position did they occupy in the 196 

evolution of the India-Asia collision system? When and how were they involved in the 197 

oblique plate boundary south of the EHS?  198 

 199 

Lithologically, the Katha rocks are part of the THS and most similar to the Cambro-200 

Ordovician gneiss-schist unit in central S-Tibet (Laskowski et al., 2017). Figure 2b 201 

compares the inherited and detrital zircon ages of the Katha rocks with equivalents, i.e., 202 

the Cambro-Ordovician THS of central S-Tibet, the Nepal THS, the central Himalaya and 203 

Nepal GHS, the LHS units at the EHS, the IYS in the central Himalaya and at the EHS 204 

(Gehrels et al., 2011; Laskowski et al., 2016; Haproff et al., 2019); we chose these units 205 

because of their proximity to the EHS, P-T-t-d history (central Himalaya), and large 206 

database (Nepal). The Katha rocks compare best to the THS, and least to the IYS, LHS, and 207 

GHS rocks.  208 

Petrologically, the Katha-rock data (Figure 3a; red P-T path) are most similar to the 209 

THS data of central S-Tibet (Figure 3a; green P-T paths; Laskowski et al., 2016); there, 210 

metamorphism at ≥1.4 GPa, ≤600°C peaked at ~40 Ma and the rocks cooled rapidly 211 

through 39‒34 Ma. The basal THS rocks of eastern S-Tibet experienced comparable-T but 212 

lower-P (~600°C, 0.78 GPa; Dunkl et al., 2011; 510 ± 50°C, Fang et al., 2020; Figure 3a) 213 

and burial-early exhumation histories like those inferred for Katha (~49‒32 Ma; U-Pb 214 

zircon, K(Ar)/Ar mica; e.g., Ratschbacher et al., 1994; Aikman et al., 2008, 2012; Dunkl et 215 

al., 2011). Post-thrusting uppermost GHS granitoids in the same area have 48‒36 Ma U-216 

Pb zircon ages; the associated schists show higher-T and lower-P (~630‒660°C, 0.7‒0.8 217 

GPa; Ding et al., 2016a, b) than the Katha rocks. Different from the latter, both the THS and 218 

GHS rocks experienced Miocene rapid cooling (~18‒12 Ma; e.g., Aikman et al., 2008, 2012; 219 



Dunkl et al., 2011; Ding et al., 2016a). The IYS rocks of the southern EHS (Tidding-Mayodia 220 

mélange) record metamorphism and ~30°C/Myr cooling between 40‒30 Ma and rapid 221 

Miocene cooling (~11‒6 Ma; ZHe ages; Haproff et al., 2020), not documented in the Katha 222 

rocks. The Katha P-T-t data contrast with GHS and LHS data in Bhutan (Figure 3a; e.g., 223 

Daniel et al., 2003). Lithology and P-T-t evolution are compatible with the Katha rocks 224 

being a piece of the basal—Cambro-Ordovician—THS, now located ~700 km of the THS 225 

in eastern S-Tibet and ~450 km south of the Himalayan rocks in the Lohit valley at the 226 

southern edge of the EHS. 227 

 228 

Structural studies in eastern S-Tibet outlined top-to-S thrusts and S-facing folds, 229 

overprinted by N-facing folds close to the Great Counter Thrust along the IYS (e.g., 230 

Ratschbacher et al., 1994; Dunkl et al., 2011). Detachments—most with top-to-N 231 

kinematics—separate the GHS and THS and occur within the basal THS (e.g., Ding et al., 232 

2016a,b). In the southern EHS, Haproff et al. (2018) mapped thrusts with a ≤90° clockwise 233 

change in displacement directions. The Katha rocks preserve—besides relict 234 

deformation—fabrics akin to the normal-sense detachments in the THS. Assuming 60‒235 

90° clockwise rotation due to the motion of the Himalayan (THS of Katha) and Asian 236 

(Tengchong‒Gangdese) rocks of central and eastern Myanmar and Yunnan around the 237 

EHS, the top-to-SSE flow in the Katha THS rocks restores to top-to-~E flow, deflected ~90° 238 

from the typical top-to-N flow in S-Tibet. The younger, ~NNW-trending folds parallel the 239 

present-day structural grain and appear unrotated. 240 

 241 

Whereas the exhumation history is comparable to other THS localities, two aspects of the 242 

Katha rocks stand out: the lack of a Miocene cooling event and the top-to-~E normal-sense 243 

exhumation. We attribute the ~45‒30 Ma rapid cooling as due to exhumation from ~55-244 



km-depth in a subduction-early collision setting at the leading edge of Greater India, as 245 

observed in other THS rocks. The top-to-~E exhumation kinematics may indicate that the 246 

Katha rocks were positioned at the easternmost end of the Himalaya.  247 

 248 

The initiation of the SF system has been bracketed to middle Miocene-early Pliocene, 249 

based on the onset of seafloor spreading in the Andaman rift (e.g., Bertrand & Rangin, 250 

2003). Morley & Arboit (2019) proposed a 28‒27 Ma onset, based on the age of the basal 251 

strata in a releasing-bend basin (Minwun basin, Figure 1b) along a SF strand in northern 252 

Myanmar. The change from ~25 to ~4°C/Myr cooling of the Katha rocks at ~30 Ma may 253 

signify their involvement into the SF system, when it started to interact with the THS 254 

thrust-fold belt that acquired a ~N-strike during the northward propagation of India’s 255 

eastern tip. The movement around the EHS also allowed the Katha rocks to escape the 256 

intense shortening at the collision front, thus a Miocene overprint.  257 

 258 

Figure 4 summarizes our proposed evolution of the EHS and the SF system: At ~60 Ma 259 

(Figure 4a), the Incertus-arc system—which the Burma microplate was part of—260 

terminated (Westerweel et al., 2019). The highly-oblique plate boundary along Greater 261 

India’s eastern margin offset the Burma microplate (at ~5°N) from the leading Greater 262 

India subduction in the north; collision with the Indian margin rotated it ~40° clockwise 263 

(~60‒40 Ma; Li et al., 2020). Continental subduction may have started at ≥47 Ma at both 264 

syntaxes, as indicated in the western Himalaya (Tso Morari; Donaldson et al., 2013) and 265 

the Katha range. The IYS at the eastern edge of the Burma microplate was reactivated as 266 

the SF system (Figure 4b); its ~30 Ma initiation terminated the Katha-rock exhumation in 267 

the subduction-collision setting and the transition to strike-slip motion with little 268 

exhumation. The SF system connected with the THS thrust-fold belt at the EHS, where the 269 



THS were later subducted together with the GHS (Haproff et al., 2020). Figures 4c and 4d 270 

show the evolution of the SF system: the eastern Namyin strand allows restoration of the 271 

Jadeite belt to the south, at least to the southern tip of the Indian rocks—south of the Katha 272 

Range; a western strand and the Kabaw fault allows restoration of the Jurassic ophiolite 273 

belt, connecting it to the south of the Jadeite belt. The entire area south of the EHS—274 

including the SF system—experienced clockwise rotation and ~E-W shortening during 275 

the evolution of the Burma subduction system and the collision of the northward-moving 276 

Burma microplate with the Shillong plateau. 277 

 278 

 279 

Figure 4. The Katha Range in the evolution of the Eastern Himalayan Syntaxis (EHS) and the Sagaing fault 280 

system (SF). a) Incipient Himalaya formation following Incertus-arc subduction with the Burma microplate 281 

at the arc’s eastern end. b) Development of the SF system along the Indus-Yarlung suture (IYS) and its 282 

connection with the Tethyan-Himalaya fold-thrust belt. c) Major fault systems of the EHS. d) Restoration of 283 

the imbrication of the Incertus-arc subduction system at the western margin of the Burma microplate. 284 



Growth of the SF system isolated the Jadeite belts and imbricated the Indian rocks of the Katha and Kumon 285 

Ranges. 286 
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