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Abstract

Cirrus control the longwave radiative budget of the tropics. For the first time, we quantify the variability in cirrus properties and

longwave cloud radiative effects (CREs) that arises from using different bulk ice microphysical parameterizations within a single

global storm-resolving model. We run five-day meteorologically-nudged simulations with four commonly-used microphysics

schemes (M2005, Thompson, P3 and SAM1MOM) and evaluate them with satellite products and in situ observations. Tropical

average longwave CRE varies over 20 W m$ˆ{-2}$ between schemes. Within the Thompson scheme, rapid autoconversion

of cloud ice to snow leads to deficient anvil cirrus even with radiatively active snow. SAM1MOM, which uses saturation

adjustment for cloud ice, also has deficient anvil cirrus. M2005 and P3 simulate cirrus with realistic frozen water path, and P3

best reproduces observed longwave CRE. Even in those schemes, ice crystal number concentrations commonly hit limiters and

lack the observed variability and dependence on frozen water content.
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Key Points:11

• Global storm-resolving models are uniquely suited for microphysics sensitivity stud-12

ies.13

• Mean tropical longwave CRE biases vary over 20 W m−2 and cirrus coverage varies14

over a factor of two depending on microphysics.15

• Efficiency of cloud ice sublimation and conversion to snow, and limiters on cloud16

ice number affect simulated cirrus.17
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Abstract18

Cirrus control the longwave radiative budget of the tropics. For the first time, we19

quantify the variability in cirrus properties and longwave cloud radiative effects (CREs)20

that arises from using different bulk ice microphysical parameterizations within a sin-21

gle global storm-resolving model. We run five-day meteorologically-nudged simulations22

with four commonly-used microphysics schemes (M2005, Thompson, P3 and SAM1MOM)23

and evaluate them with satellite products and in situ observations. Tropical average long-24

wave CRE varies over 20 W m−2 between schemes. Within the Thompson scheme, rapid25

autoconversion of cloud ice to snow leads to deficient anvil cirrus even with radiatively26

active snow. SAM1MOM, which uses saturation adjustment for cloud ice, also has de-27

ficient anvil cirrus. M2005 and P3 simulate cirrus with realistic frozen water path, and28

P3 best reproduces observed longwave CRE. Even in those schemes, ice crystal number29

concentrations commonly hit limiters and lack the observed variability and dependence30

on frozen water content.31

Plain Language Summary32

Recently, advancements in computing capabilities have made it possible for atmo-33

spheric scientists to simulate Earth’s global atmosphere with higher resolution than ever34

before. This new generation of models, called global-storm resolving models, have a hor-35

izontal resolution of just a few kilometers, which is adequate to resolve thunderstorms.36

As a result, they simulate clouds more realistically than traditionally climate and weather37

models and are a great tool for diagnosing cloud biases in atmospheric models. Here, we38

run a single global storm-resolving model with four different representations of cloud physics39

called M2005, P3, SAM1MOM and Thompson. We evaluate simulated tropical cirrus40

clouds, which are stratiform ice clouds at the top of the troposphere that reduce the amount41

of infrared radiation emitted by the Earth, with satellite data to see which representa-42

tions have the best performance. We find that tropical cirrus cloud coverage varies over43

a factor of two across the different representations, leading to differences in the amounts44

of infrared radiation emitted by the Earth. SAM1MOM and Thompson make two few45

cirrus clouds causing too much infrared radiation to be emitted, M2005 makes slightly46

too many cirrus causing too little infrared radiation to be emitted, and P3 makes about47

the right amount.48
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1 Introduction49

Anvil cirrus, which flow outward from deep convective cores (Deng et al., 2016),50

reflect solar radiation and absorb longwave radiation from Earth’s surface and re-emit51

it at colder temperatures, thereby reducing outgoing longwave radiation and heating the52

atmosphere (Hartmann et al., 2001). Atmospheric models must adequately represent the53

formation, evolution and optical properties of anvil cirrus to reproduce the observed ra-54

diative budget of the tropics.55

Anvil cirrus are sensitive to the representation of deep convection and ice micro-56

physics. These influences are difficult to disentangle in coarse resolution global models,57

where both are parameterized. Global storm-resolving models, which typically have sub-58

5 km horizontal grid spacing and explicit rather than parameterized deep convection,59

provide a unique opportunity to study how ice microphysics alone influences the repre-60

sentation of anvil cirrus.61

Nugent et al. (2022) and Turbeville et al. (2022) studied the representation of trop-62

ical deep convection, cirrus and top-of-atmosphere radiation across the set of global storm-63

resolving models participating in the DYnamics of the Atmospheric general circulation64

Modeled On Non-hydrostatic Domains (DYAMOND) project. Here, we take a comple-65

mentary approach, isolating the sensitivity of anvil cirrus to ice microphysics by running66

one such model with four different microphysics schemes. Sullivan and Voigt (2021) used67

regional storm-resolving simulations to show that the representation of ice microphysics68

exerted strong control over the radiative budget of the Asian monsoon region. We ex-69

tend their findings to the entire tropics and identify additional microphysical constraints70

on anvil cirrus properties.71

2 Data72

Four five-day global storm-resolving simulations are run with the Global System73

for Atmospheric Modelling (Khairoutdinov et al., 2022). They are set up identically, as74

described in Atlas et al. (2022), except that they are run with different bulk microphysics75

schemes: M2005 (Morrison et al., 2005), Thompson (Thompson et al., 2008), P3 (Morrison76

& Milbrandt, 2015) with one ice class, and SAM1MOM (Khairoutdinov & Randall, 2003).77

The differences between the schemes in their parameterizations of ice processes are sum-78

marized in Text S1. The simulations have approximately 4 km horizontal resolution in79
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the tropics and about 500 m vertical resolution between 5 and 19 km. They are initial-80

ized from ERA5 reanalysis (Hersbach et al., 2020) at 00 UTC 16 Feb. 2018. We analyze81

days 2-5 of the simulations (17-20 February 2018) throughout this study, allowing one82

day for model spinup, long enough for cloud statistics to equilibrate (?, ?). Simulated83

temperature and horizontal winds (but not humidity or clouds) are nudged to ERA5 re-84

analysis with a damping timescale of 24 hours. This nudging strategy ensures that the85

model output can faithfully be compared with coincident real-world observations and86

that differences between simulated clouds can primarily be attributed to the bulk mi-87

crophysics schemes.88

Simulated longwave and shortwave cloud radiative effects (CREs) are compared89

with coincident retrievals from Clouds and the Earth’s Radiant Energy System level 390

data (Doelling et al., 2013; NASA/LARC/SD/ASDC, 2017), referred to hereafter as CERES.91

CERES has hourly temporal resolution and 1◦ × 1◦ horizontal resolution.92

Retrieved frozen water content (FWC) and effective radii (re) from the DARDAR-93

CLOUD dataset (Delanoë & Hogan, 2010) versions V2.1.0 and V3.10 (Cazenave et al.,94

2019) and the Cloudsat and CALIPSO Ice Cloud Property Product (2C-ICE) (Deng et95

al., 2015) version RF05 are used to evaluate simulated anvil cirrus microphysics and macro-96

physics. These retrievals have a horizontal resolution of 1.4 km, comparable to that of97

the simulations. The vertical resolution of DARDAR and 2C-ICE are 60 m and 240 m,98

respectively. We use data from the Februaries of 2007-2012.99

Simulated microphysics are evaluated with in situ airborne observations of ice crys-100

tal number concentration and FWC (Krämer, Rolf, Spelten, Afchine, et al., 2020; Krämer,101

Rolf, & Spelten, 2020). We hereafter refer to this dataset as the ‘Microphysics Guide’.102

Text S2-S3 and Figures S1-S3 further discuss our use of DARDAR, 2C-ICE and the Mi-103

crophysics Guide.104

3 Microphysics schemes exhibit wide-ranging tropical longwave cloud105

radiative effects106

Figure 1 compares simulated CREs with CERES. Throughout this study, radia-107

tive fluxes are defined as positive downwards, so that negative CREs indicate energy lost108

from the Earth. Shortwave CRE biases (panel b) are largest and most scheme-dependent109

over the Southern Ocean, as discussed in Atlas et al. (2022); these are sensitive to all clouds,110
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Observations          Simulations
CERES          P3              M2005              Thompson              SAM1MOM

Zonally averaged cloud radiative effects (CREs) and biases

-   4.9 
    6.4
- 15.4
- 13.7 

 - 12.2 
 - 11.7
 -  4.7
 -  6.7 

Tropical 
average 
(W m-2)

Tropical 
average 
(W m-2)

a) b) c) d)

Figure 1. (a-b) Zonal average top of atmosphere CREs and (c-d) their biases vs. CERES.

Yellow lines delineate the tropical analysis region (20◦S - 20◦N).

but especially to marine boundary layer clouds because of their extensive coverage and111

substantial albedo. In this study, however, we focus on the region between the yellow112

parallel lines at 20◦N and 20◦S, hereafter referred to as ‘the tropics’. This is a region of113

strong sensitivity of longwave CRE, produced mainly by cirrus clouds, to the microphysics114

scheme (panel a).115

Longwave and shortwave CRE biases for the four schemes are plotted on panels116

c-d. Their area-weighted tropical means (printed on the plots) vary over ranges of 7.5117

and 22 W m−2, respectively. While all simulations are too bright in the shortwave, the118

sign of the longwave CRE bias differs between M2005, whose clouds have excessive long-119

wave CRE, and the other schemes. M2005 and P3 have smaller average longwave CRE120

biases than SAM1MOM and Thompson.121
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Figure 2. left: Snapshots of simulated FWP for columns with CTH > 10 km on the simula-

tions’ native grid. right: Coincident snapshots of longwave CRE bias compared to CERES on a

coarsened 1◦ x 1◦ grid.

4 Variability in anvil cirrus coverage and optical properties lead to di-122

verse longwave cloud radiative effects123

Figure 2 shows coincident snapshots at an arbitrarily-chosen time of simulated frozen124

water path (FWP, the sum of the cloud ice, snow and graupel water paths) for columns125

containing high cloud, on the left, and biases in simulated longwave CRE coarsened to126

a 1◦x1◦ grid, on the right. Cloud top height (CTH) is defined as the highest model level127

with FWC (the sum of the cloud ice, snow and graupel water contents) > 10−4 g m−3
128

(the limit of lidar detectability as discussed in Text S2). Columns are identified as con-129

taining high cloud if they have CTH ≥ 10 km. The fraction of columns within the mapped130

area that meet these criteria is listed in the title of each snapshot. The coarsened long-131

wave CRE bias is sensitive to both cloud fraction and cloud radiative properties. An-132

imation S1 loops through versions of Figure 2 for each of the 96 hours of model output133

within days 2-5 of the simulations, showing that each hourly snapshot is representative134

of the entire four day period.135

–6–
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a) b) c)

e)M2005

P3 
SAM1MOM

Thompson

d)

58

264

69

35

88 84

47
40

3930

2C-ICE    DARDAR V2.1.1               DARDAR V3.10     CERES

 P3                    M2005                   Thompson                       SAM1MOM

Figure 3. Tropical nighttime: a) PDF of FWP b) Mean longwave CRE, and c) Mean CTH,

both as binned by FWP. d) Box plots with medians (black lines and numbers printed above each

box) of frozen hydrometeor re. e) PDF of longwave CRE for 1◦ x 1◦ boxes. Only columns with

CTH > 10 km and grid cells with FWC > 10−4 g m−3 are used in panels a-d.

M2005 has the largest high cloud fraction and extensive areas of negative longwave136

cloud biases, associated with deep convection (FWP > 103 g m−2) and anvil cirrus (10137

≤ FWP ≤ 103 g m−2). Thompson and SAM1MOM have half of M2005’s cloud frac-138

tion and positive longwave biases in most areas of anvil cirrus. P3’s high cloud fraction139

lies between that of M2005 and Thompson/SAM1MOM. With a mixture of positive and140

negative biases associated with anvil cirrus, P3 has the fewest areas with large biases of141

either sign.142

Figure 3 statistically summarizes relationships between high cloud properties and143

longwave cloud biases, using CERES, DARDAR and 2C-ICE to provide observational144
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constraints on the simulations. The CALIPSO lidar used by DARDAR and 2C-ICE has145

greater sensitivity at night, during which it can detect FWCs ≥ 10−4 g m−3 (Text S2).146

Thus, we use DARDAR and 2C-ICE data from the nighttime A-train overpass, which147

crosses the equator at approximately 1:30 AM local time. For consistency, we also sam-148

ple CERES and the simulations at night. FWCs < 10−4 g m−3 are filtered out of the149

simulations and satellite retrievals.150

In Figure 3a, we evaluate distributions of simulated FWP from columns contain-151

ing high cloud (CTH > 10 km) using DARDAR and 2C-ICE. The simulations and the152

two DARDAR datasets have unimodal distributions of FWP whereas 2C-ICE has a bi-153

modal distribution. The discrepancy between DARDAR and 2C-ICE for FWPs < 30 g154

m−3, noted by Hong et al. (2016), emphasizes limitations on constraining FWP from CALIPSO155

in tropical cirrus too thin to be detected by CloudSat. For FWPs between 30 g m−2 and156

300 g m−2, M2005 and P3 bracket the observations, with P3 slightly underestimating157

anvil cirrus coverage, and M2005 slightly overestimating it. SAM1MOM and Thomp-158

son starkly underestimate anvil cirrus coverage. Satellite retrievals from deep convec-159

tive cores (FWPs > 103 g m−2) are uncertain (Delanoë & Hogan, 2010) so the appar-160

ent low FWP bias of the simulations may not be concerning.161

Figure 3b shows mean longwave CRE as a function of FWP for the simulations,162

at the model 4 km grid resolution. M2005 has the strongest longwave CRE for FWPs163

between 10 and 103 g m−2, and Thompson has the weakest.164

Variability in longwave CRE for a fixed FWP can be caused by differences in cloud165

top temperature. In the tropics, cloud top temperature is tightly linked to CTH. Fig-166

ure 3c shows mean CTH as a function of FWP for the simulations and the satellite re-167

trievals. CTH is biased low in all simulations as explained later in this section. M2005168

has the highest CTH for FWPs > 1 g m−2, which contributes to its stronger longwave169

CRE in Figure 3b. However, CTH does not explain the differences in Figure 3b between170

SAM1MOM, Thompson and P3.171

Differences between the simulated longwave CRE in Figure 3b could also come from172

differences in effective radii (re). Figure 3d shows box plots of re of frozen hydromete-173

ors for the simulations, 2C-ICE and DARDAR V3.10 (the two versions of DARDAR have174

similar re). For M2005 and Thompson, re,avg is an optical depth preserving average of175

the cloud ice and snow effective radii, re,i and re,s, which is directly comparable to satellite-176

–8–
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retrieved re. For P3, there is only one frozen hydrometeor class and for SAM1MOM, only177

cloud ice is radiatively active, so the snow contribution to re is neglected.178

In M2005, the median re,avg is similar to the median re,i because cloud ice dom-179

inates the frozen hydrometeor mass (Figure 3d). In Thompson, the median re,avg is sim-180

ilar to the median re,s because snow dominates the frozen hydrometeor mass. This causes181

Thompson to have an unrealistically large re,avg, which contributes to it having the weak-182

est longwave CRE in Figure 3b. All simulations have larger average median re than ob-183

served, consistent with Stanford et al. (2017).184

Figure 3e shows the tail of the histogram of 1◦ x 1◦ nighttime longwave CRE for185

the four simulations and for CERES, which includes areas that contribute most to the186

tropical average and to differences between simulations and CERES. M2005 has too many187

areas with average longwave CRE > 100 W m−2 because it has more anvil cirrus than188

DARDAR and 2C-ICE (Figure 3a). Thompson and SAM1MOM have too few areas with189

average longwave CRE > 30 W m−2, due to deficient anvil cirrus and (for Thompson)190

unrealistically large re.191

Figure 4 compares simulated vertical profiles of thermodynamic and cloud prop-192

erties with two ERA5 datasets, DARDAR and 2C-ICE. Figure 4a shows temperature193

profiles from ERA5 on 37 pressure levels and 137 model levels. In all simulations, tem-194

perature was nudged to pressure-level data (black dots), linearly interpolated to the gSAM195

model levels. The ERA5 model level data (black line) better resolves the 16-18 km layer,196

which includes the cold point at 17.3 km. All simulations have a warm bias in that layer197

and a cold point near 16 km instead of 17.3 km.198

Figure 4b show profiles of average relative humidity with respect to ice (RHi). SAM1MOM199

has a lower average RHi than the other simulations and ERA5, particularly above 14200

km, possibly because it uses saturation adjustment for cloud ice, preventing RHi from201

ever exceeding 100%. The other simulations have higher RHi than ERA5 near the cold202

point, but ERA5 may be biased by its internal ice microphysical modeling assumptions203

in the tropical tropopause layer, where routine observations of the very low water va-204

por concentration are uncertain.205

Figure 4c shows profiles of cloud fraction. For all simulations, the altitudes of max-206

imum cloud fraction are 2 km lower than observed, likely due to their artificially low-207

–9–



manuscript submitted to Geophysical Research Letters

 ERA5 Model Levels                             ERA5 Pressure Levels     
2C-ICE   DARDAR V2.1.1           DARDAR V3.1

 P3                    M2005                   Thompson                       SAM1MOM

a) b) c) d)

Figure 4. Vertical profiles of tropical nighttime-mean a) temperature, b) RHi, c) cloud

fraction (FWC > 10−4 g m−3 only), and d) longwave radiative cooling.
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ered cold point altitude. Below 14.5 km, P3 agrees well with both DARDAR datasets208

and 2C-ICE, M2005 overestimates cloud fraction, and SAM1MOM and Thompson un-209

derestimate it. In M2005 and P3, cloud fraction increases monotonically up to the base210

of the tropical tropopause layer at 14 km. Thompson’s peak cloud fraction is only at 10.5211

km, likely due to excessively efficient conversion of cloud ice to quickly falling snow. SAM1MOM212

has a nearly constant cloud fraction throughout the troposphere.213

Figure 4d shows longwave radiative cooling profiles for the simulations. Cirrus clouds214

reduce radiative cooling by absorbing upwelling longwave radiation. M2005 has up to215

0.5 K day−1 less radiative cooling than the other simulations between 8 and 13 km due216

to its comparably large cirrus coverage. Thompson and SAM1MOM, which have the small-217

est cirrus coverage, correspondingly have the strongest longwave cooling. These results218

are consistent with the findings of Hu et al. (2021).219

Longwave CRE biases in the simulations can largely be explained by biases in the220

amount, the vertical structure, and the re of anvil cirrus, all of which can be estimated221

from spaceborne lidar and radar. These biases depend on the microphysics scheme; over-222

all P3 best matches remote-sensing observations, followed by M2005, with Thompson223

and SAM1MOM producing far too little tropical cirrus.224

5 Simulated ice crystal populations lack observed variability225

As a complementary test of the microphysics schemes, we compare simulated ice226

crystal number concentration (Nice) and FWC with in situ airborne observations from227

several tropical field studies, synthesized in the Microphysics Guide (see Text S3 and Fig-228

ure S3), which have been coarsened to 0.04 Hz to match the horizontal resolution of the229

simulations. All observational data is from heights above 10 km, and latitudes between230

20◦S and 20◦N; model histograms are accumulated from all post-spin-up output times231

(day and night) at all tropical high-cloud grid points.232

Figure 5 shows 2D histograms of FWC and Nice for M2005, P3, Thompson and in233

situ observations. SAM1MOM is omitted because it does not predict Nice for any hy-234

drometeor classes. Nice and FWC for M2005 and Thompson include cloud ice, graupel235

and snow. Vertical lines overlaid on the 2D histograms show limiters specified within the236

microphysics schemes. These limiters are designed to prevent algorithms within the schemes237

from producing physically implausible results; if the limiter is frequently active, this sug-238
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gests problems with parameterization assumptions made within the scheme. Dotted lines239

show limiters on total cloud ice concentration and dashed lines show limiters on the con-240

centration of ice particles produced through deposition nucleation, which is the domi-241

nant mode of nucleation within the temperature range investigated here. In Thompson,242

the two limiters are the same.243

In M2005 and P3, most grid cells have values of Nice that are very close to the smaller244

of these two limiters, which are 0.3 and 0.1 cm−3, respectively. They have higher mean245

Nice than the in situ observations and lack the observed variability in Nice and depen-246

dence of Nice on FWC. In the 2D histogram for P3, the grid cells between the two lim-247

iter values, which primarily have high FWCs, have experienced homogeneous freezing248

of cloud droplets. There is no homogeneous freezing of aerosol in any microphysics schemes249

used here. Thompson has many grid cells with tiny FWC and Nice and a subpopulation250

of grid cells dominated by snow (a large ratio of FWC to Nice) as a result of efficiently251

converting most cloud ice to snow. Although P3 lacks the observed variability, its mean252

Nice is closest to the observed mean.253

6 Conclusions254

Tropical longwave cloud radiative effects (CREs) simulated by a global storm-resolving255

model are sensitive to ice microphysics. Average biases in longwave CRE vary over a 22256

W m−2 range across four simulations which differ only in their microphysical schemes,257

due to variability in cirrus amount, thickness, cloud top height, and ice crystal number258

and size.259

Simulations run with Thompson and SAM1MOM microphysics had very weak long-260

wave CREs. The Thompson scheme quickly converts cloud ice to larger snow particles,261

which fall quickly and reduce cirrus cloud cover, and decrease the optical depth of the262

remaining cirrus, even though the snow is radiatively active. SAM1MOM’s small cirrus263

coverage may be related to the instantaneous sublimation of sedimenting cloud ice in sub-264

saturated conditions.265

The other two simulations, run with M2005 and P3 microphysics, had stronger long-266

wave CREs which agreed better with satellite observations. M2005’s cirrus coverage is267

larger than observed, causing it to overestimate longwave CRE. P3’s cirrus coverage is268

slightly smaller than observed, causing a slight underestimation of longwave CRE. Sim-269

–12–
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Total Cloud Ice Limiter  Deposition Nucleation Limiter

Influence of 
homogeneous 
dropet freezing

Figure 5. 2D histograms of FWC (on the y-axis) and Nice (on the x-axis). Dashed and dot-

ted lines indicate limiters on total cloud ice number concentration and cloud ice particles that

can be formed through deposition nucleation, respectively.
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ulated ice crystal number concentrations in M2005 and P3 ubiquitously hit arbitrary lim-270

iters within the microphysics schemes. As a result, typical ice crystal number concen-271

trations lack the observed variability and dependence on frozen water content. P3 lim-272

its ice concentrations to be a factor of three lower than M2005; this discrepancy may ac-273

count for most of their differences in anvil cirrus coverage and thickness. Overall, P3 per-274

formed most skillfully of the four tested schemes across our diverse suite of observational275

comparisons.276

Our results may have some sensitivity to model setup and forcing. The gSAM DYA-277

MOND simulation, run with SAM1MOM, agreed considerably better with observations278

in regional analyses of the tropics (Nugent et al., 2022; Turbeville et al., 2022) than the279

SAM1MOM simulation evaluated here. DYAMOND was free-running rather than nudged,280

in boreal summer rather than austral summer, and used a slightly different tuning of SAM1MOM.281

While the relative differences between microphysical parameterizations are likely insen-282

sitive to these configuration differences, they could have a larger effect on the observa-283

tional comparisons. We recommend further study of this important issue.284

Adequately representing tropical convectively initiated cirrus is necessary for con-285

straining tropical longwave CREs in global atmospheric models. Global storm-resolving286

models, which resolve deep convection, provide a unique opportunity to examine the sen-287

sitivities of anvil cirrus to the choice of ice microphysics scheme and identify important288

control parameters within schemes. We find that overly efficient autoconversion of cloud289

ice to snow causes deficient anvil cirrus. Tropical cirrus ice crystal formation and loss290

mechanisms need to be more realistically represented (a challenge), so that ice crystal291

number concentrations are not overly controlled by arbitrary limiters. While we focus292

on tropical cirrus here, global storm-resolving models have great potential for evaluat-293

ing and improving the microphysical representation of clouds and precipitation across294

all climate regimes.295

7 Open Research296

CERES(NASA/LARC/SD/ASDC, 2017), 2C-ICE R05 (https://www.cloudsat297

.cira.colostate.edu/data-products/2c-ice), DARDAR-CLOUD V2.1.0 and V3.10298

(http://www.icare.univ-lille1.fr), and the Microphysics Guide (Krämer, Rolf, &299

Spelten, 2020) are publicly available online. Simulated model output cannot be made300
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available due to the experimental nature of the simulations and the large storage space301

required.302
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Text S1: Description of ice microphysics in the four different microphysics schemes

In SAM1MOM (Khairoutdinov & Randall, 2003), two prognostic variables represent all water

species: (1) total water mass mixing ratio, which combines water vapor and non-precipitating

hydrometeors and (2) the precipitating hydrometeor mass mixing ratio. Both non-precipitating

(cloud liquid and cloud ice) and precipitating (rain, snow and graupel) hydrometeors are parti-

tioned between liquid and ice phases based on temperature, and ice phase precipitating hydrome-

teor mass is further partitioned between snow and graupel based on temperature. Only cloud ice

is radiatively active. SAM1MOM partitions total water into water vapor and cloud condensate

using saturation adjustment at all temperatures, including for cloud ice. This means that cloud

ice condenses and sublimates instantaneously at ice saturation. M2005 (Morrison et al., 2005)

predicts number and mass for three frozen hydrometeor classes (cloud ice, snow and graupel),

and cloud ice and snow are both radiatively active. Thompson (Thompson et al., 2008) predicts

mass for three frozen hydrometeor classes (cloud ice, snow and graupel) and number for cloud

ice only. Snow number is prescribed as a function of snow mass and temperature. Cloud ice and

snow are both radiatively active. P3 (Morrison & Milbrandt, 2015) is run with one radiatively

active ice class, for which it predicts mass, number, rime volume and rime mass.

M2005, Thompson and P3 heterogeneously nucleate ice through deposition and immersion

freezing. M2005 also includes contact nucleation. At the temperatures and heights examined

here, deposition nucleation dominates heterogeneous nucleation.

In M2005, deposition nucleation occurs when either ice supersaturation exceeds 8% or the air

is saturated with respect to liquid and colder than −12◦C. In Thompson, it occurs when either

ice supersaturation exceeds 25% or air is saturated with respect to liquid and colder than −12◦C.
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In P3, it occurs when the temperature is below −15◦C and ice supersaturation exceeds 5%. All

three schemes use the Cooper curve (Cooper, 1986) to specify the concentration of ice nucleating

particles for deposition nucleation and have limiters which specify a maximum concentration

of ice particles that can be formed by deposition nucleation. The limiters in P3, M2005, and

Thompson are .1, .25 and .5 cm−3, respectively.

All three microphysics schemes also support homogeneous freezing of droplets and raindrops

when the air temperature is < −40◦C but do not support homogeneous freezing of aerosol.

Limiters act to restrict the total concentrations of cloud ice particles to be no larger than 2, .3

and .25 cm−3 in P3, M2005 and Thompson, respectively.

Text S2: Processing of DARDAR and 2C-ICE

DARDAR and 2C-ICE both retrieve frozen water content (FWC) from Cloud-Aerosol Li-

dar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar attenuated backscatter and

CloudSat radar reflectivity. A major difference between the two retrievals is that 2C-ICE pa-

rameterizes radar reflectivity for grid cells where the cloud is too thin to be detected by the

CloudSat radar (Deng et al., 2015). Here, we compare retrievals of frozen water content (FWC)

and frozen water path (FWP) between DARDAR V3.10 and 2C-ICE to examine the impact of

that difference. Because the two versions of DARDAR are more similar to each other than they

are to the 2C-ICE, we only examine the newer version of DARDAR here.

Figure S1 shows distributions of FWC from the two satellite retrievals broken up into daytime

and nighttime measurements, and, in the bottom three rows, according to which instruments the

retrieval is coming from (lidar only, radar only or both). In general, retrieved FWCs are smaller

in 2C-ICE than in DARDAR. Most of this differences comes from lidar-only regions, where 2C-
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Figure S1. Distributions of FWC from nighttime and daytime measurements separately for

(top to bottom row) all data, regions sensed by both the radar and lidar, lidar only regions, and

radar only regions, for 2C-ICE (left) and DARDAR (right).
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Figure S2. Blue, orange and green lines show the average mass fraction of a column that is

sensed by the lidar only, radar only, and both instruments, respectively, as a function of column

FWP.

ICE returns FWCs that are one order of magnitude smaller on average than those retrieved by

DARDAR. 2C-ICE also has a more bimodal distribution than DARDAR for radar-only regions.

The two retrievals agree best for regions with both instruments.

DARDAR’s retrievals show a greater diurnal dependence, particular in the lidar-only regions,

due to the fact that the lidar is more sensitive at night. Because DARDAR has greater sensitivity

at night, we restrict our comparisons between the simulations and satellite retrievals to nighttime

measurements. Additionally, because DARDAR cannot detect FWCs < 10−4 g m−3 at night,

we filter FWCs smaller than that out of both the simulated output and the satellite retrievals

before computing FWP.

Given that the retrievals diverge most from each other in lidar only regions, we examine

the mass fraction that comes from lidar-only regions, radar-only regions and regions with both

instruments as a function of FWP in Figure S2 (left y-axis). Distributions of FWP are overlaid

(right y-axis). For FWPs> 30 g m−2, most of the FWP comes from regions with both instruments
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or with radar only. Accordingly, the two retrievals agree well within this range. For FWPs < 30

g m−2, the satellite retrievals are very different from each other and do not provide as tight a

constraint on the simulations.

Text S3: Processing of the Microphysics Guide

The Microphysics Guide (Krämer, Rolf, Spelten, Afchine, et al., 2020; Krämer, Rolf, & Spel-

ten, 2020) includes quality controlled microphysics and thermodynamics observations from 24

field campaigns. Five of those campaigns measured FWC and ice crystal number concentration

(Nice) at latitudes between 20◦S and 20◦N and altitudes > 10 km, including Airborne Tropi-

cal TRopopause EXperiment (Jensen et al., 2017, ATTREX), Convective Transport of Active

Species in the Tropics EXperiment (Pan et al., 2017, CONTRAST), Aerosol, Cloud, Precipita-

tion, and Radiation Interactions and Dynamics of Convective Cloud Systems (Wendisch et al.,

2016, ACRIDICON), Tropical Composition, Cloud and Climate Coupling Experiment (Toon et

al., 2010, TC4), and Pacific Oxidants, Sulfur, Ice, Dehydration, and cONvection (POSIDON).

Figure S3 shows the flight tracks from all five campaigns, and lists the instruments used to

measure or compute FWC and Nice.

All data in the Microphysics Guide has a resolution of 1 Hz. Air speeds in the upper troposphere

are typically 200 m s−1, so we coarsened the data to .04 Hz (or 25 seconds) so that each data

point would correspond to an approximately 5 km horizontal distance, and better match the

spacial scale of the simulated output. The numbers next to the flight campaign names in Figure

S3 are the number of .04 Hz in-cloud data points that match the latitude and altitude criteria.

6



Ice crystal number concentration: Fast Cloud Droplet Probe (FCDP) 
and 2-Dimensional Stereo Probe (2DS)
Frozen water content: NOAA Water

Ice crystal number concentration and Frozen water content: Cloud 
Droplet Probe (CDP) and 2-Dimensional Cloud Probe (2DC)

Ice crystal number concentration and Frozen water content: New 
Ice eXpEriment-Cloud and Aerosol Particle Spectrometer (NIXE-CAPS)

Same instruments as ATTREX

Ice crystal number concentration: 2-Dimensional Stereo Probe (2DS)
Frozen water content: Closed-Path Laser Hygrometer (CPL)

Figure S3. Campaign flight tracks in magenta with white overlay indicating in-cloud data

above 10 km and within 20◦N and 20◦S. Map titles include the campaign name and the number

of .04 Hz data points used in parentheses. Below each map, instruments used to measure or

compute FWC and Nice are listed.
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Movie S1. For each hour of output from days 2-5 of the simulations, we show left: Snapshots

of simulated frozen water path (FWP, including cloud ice, snow and graupel) for columns with

cloud top height (CTH) > 10 km on the simulations’ native grid and right: Coincident snapshots

of longwave CRE bias compared to CERES on a coarsened 1◦ x 1◦ grid. At high zenith angles,

CERES sometimes mistakes land for cloud, causing a positive (blue) bias over the land. This is

especially evident over Africa.
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