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Abstract

We present a labeled machine learning (ML) training dataset derived from Sentinel 1 C-band synthetic aperture radar (SAR)

data for flood events. In this paper, we detail the steps to collect, pre-process, label, curate, and catalog the training dataset.

Development of benchmark ML models and usage of the training datasets for a data science competition are also presented.
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Abstract8

We present a labeled machine learning (ML) training dataset derived from Sentinel 1 C-9

band synthetic aperture radar (SAR) data for flood events. In this paper, we detail the10

steps to collect, pre-process, label, curate, and catalog the training dataset. Development11

of benchmark ML models and usage of the training datasets for a data science compe-12

tition are also presented.13

1 Plain Language Summary14

We discuss a machine learning (ML) training dataset designed for detecting flood15

extent in open waters from the cross-polarized and co-polarized returns of free and open16

Sentinel-1C-band synthetic aperture radar (SAR). We demonstrate the need for curat-17

ing and providing this dataset, its detailed data structure, and the data processing pro-18

cedures involved in generating the dataset. We also discuss how we leveraged citizen sci-19

ence to accelerate ML research for detecting flood extents.20

2 Introduction21

Floods are major natural disasters and contribute to widespread property damage,22

loss of agricultural productivity, loss of lives, displacement of those affected, and long-23

term socioeconomic consequences (Dawson et al., 2009; Boros & Nagy, 2014; Long et al.,24

2014; Inambao, 2013). Knowing the spatial extent of floods is crucial for federal agen-25

cies, local authorities, and nonprofits in providing emergency procedures and disaster26

relief. Flooding is caused by 1) persistent, above-normal rainfall (Alias et al., 2016), 2)27

flash flooding from severe thunderstorms (Boardman et al., 1996), 3) coastal flooding dur-28

ing high tides and strong onshore flow (Spicer et al., 2019), 4) storm surge and river backup29

during landfalling tropical cyclones, and 5) inland heavy rains from dissipating storms30

(Ullman et al., 2019). These aforementioned hazardous conditions render monitoring flood31

events in-situ difficult.32

Remote sensing has been used extensively in the community to monitor these events33

(Sanyal & Lu, 2004; Schumann et al., 2009; Jain et al., 2005; Klemas, 2015). The tem-34

poral and spatial availability of remote sensing data provided by recent governmental35

and commercial satellites enable the community to make large scale analysis of flood events36

with greater detail than ever before. For example, synthetic aperture radar (SAR) (Curlander37

& McDonough, 1991) imagery has been used extensively for quantification and delineation38

of flood extents (Long et al., 2014; Matgen et al., 2011). Machine learning (ML) has also39

been leveraged for stochastically mapping the flood extents using SAR imagery (Benoudjit40

& Guida, 2019). Advancements in remote sensing coupled with the scalability of ML paradigms41

can vastly improve the volume and velocity of flood extent mapping.42

However, finding an optimal machine learning solution is an exhaustive process in43

itself. Citizen science has been used extensively to find the best solution for problems44

in both scientific and commercial sectors (Beaumont et al., 2014; Borne & Team, 2011).45

As part of incorporating citizen science and involving the broader science community to46

find the best solution, we created a human-curated, ML ready flood extent dataset that47

can be used by data scientists from all discipline and sectors. Furthermore, we designed48

and hosted a competition on flood detection using the aforementioned dataset to esti-49

mate the flood extent based on satellite imagery. The competition is showcased by the50

International Conference on Emerging Techniques in Computational Intelligence (ICETCI),51

2021.52

The details of the curated flood dataset are explained in the following section.53
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3 Overview of the Dataset54

3.1 Data Collection and Labeling55

SAR imagery for various flood events were acquired from the European Space Agency56

(ESA) Sentinel-1A and Sentinel-1B missions, offering C-band, dual polarized (co-pol VV57

and cross-pol VH) imagery for a number of flood events of interest for the following re-58

gions within the United States and globally.59

• Bangladesh (7150 sq. km.)60

• Florence (7197 sq. km.)61

• Nebraska (1741 sq. km.)62

• North Alabama (13789 sq. km.)63

• Red River North (6746 sq. km.)64

Figure 1. Data pre-processing & generation workflow

Images were processed to a radiometric and terrain-corrected (RTC) image of the65

radar amplitude, then converted to a grayscale image for visual analysis using the Hy-66

brid Pluggable Processing Pipeline or ”HyP3” system which takes the Sentinel archive67

and creates a set of processes to get to a consistent method of generating the VV / VH68

amplitude or power imagery. Here, emphasis was on the labeling of open water areas where69

specular reflection of the radar signal off of the relatively still, flat open water surface70

results in reduced backscatter, low amplitude, and an overall darkened appearance within71

the image. In normal conditions, ponds, lakes, and rivers will appear dark and usually72

include crisp edges where water adjoins the nearby vegetation and topography. Follow-73

ing heavy rains and flooding, additional dark features occur and often include expanded,74

flooding growth of dark regions along the normal water areas or standing water in fields75

or other topographic features where ponding of water is likely (Liang & Liu, 2020; Hor-76

ritt et al., 2001). Emphasis was made on the labeling of these features for generating the77

training dataset.78
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Flood domain experts reviewed the data before it was provided to Earth science79

students for labeling. Imagery for the various flood events were made available in the80

ImageLabeler tool (ImageLabeler , 2021) developed by the NASA-IMPACT team. Mul-81

tiple dates of post-event scenes were generated as grayscale imagery enhanced to focus82

on the contrast of dark, open water features for visual identification. Detailed polygons83

were drawn for suspected water areas and vetted through discussion with other analysts84

and project team members with additional SAR imagery expertise. Areas that were “dark”85

in the SAR images and might not have been water bodies were particularly challenging86

to examine. Alternate data sources were used to make sure that they were permanent87

water bodies. These polygons represent the open water class as expert labels and were88

used to classify open water pixels relative to vegetation and other classes in the image.89

3.2 Data Preprocessing90

Following the data collection, the imagery is then preprocessed and converted to91

0-255 grayscale images using various GIS libraries. A total of 54 labeled GeoTiff files are92

converted into grayscale images before subsetting them into 256×256 tiles (scenes) by93

eliminating overlaps and omitting the tiles outside of the valid SAR boundary. In ad-94

dition to the flood data, World Water Bodies GeoTiff data from UCLA Geoportal (UCLA95

Geo-portal world water bodies, 2021) is also preprocessed into water body labels and pro-96

vided for the respective regions which should improve model training (see 1). Next, the97

data is divided into train (Nebraska, North Alabama, Bangladesh), validation (Florence),98

and test set (Red River North region). They are divided at geographically to make sure99

that the train-validation and test distributions are not similar:100

• train101

• validation102

• test103

Nebraska, north Alabama, Bangladesh and Florence regions are used for the train and104

validation set whereas the Red River North region is used for the test set. Each region105

directory contained the following sub-directories with the corresponding image types (nor-106

malized / contrast enhanced polarization amplitudes described above):107

• VV (polarization amplitude) (Fig. 2 top left)108

• VH (polarization amplitude) (Fig. 2 top right)109

• Water body label (Fig. 2 right)110

• Flood label (Fig. 2 left)111

3.3 Scientific utility of the flood dataset112

ML is being extensively used as part of many scientific workflows to solve many113

problems. Since ML models depend on the quality and quantity of the data they are trained114

on, it is necessary to provide such data for their training and continuous improvement.115

Most current practical examples of ML are applications of supervised learning (Supervised116

Learning: Model Popularity from Past to Present , 2018). Supervised learning is used when117

labeled data is available and the preferred target variables are known (Liu & Wu, 2012).118

Training data is used to help a system learn relationships of given inputs to a given out-119

put—for example, to recognize objects in an image or to transcribe human speech. More120

recently, advanced supervised learning algorithms have shown to outperform existing bench-121

marks in many applications. However, these advances can be traced back to the avail-122

ability of large scale training datasets. For example, ImageNet (Krizhevsky et al., 2012)123

for image classification tasks or the Spoken Wikipedia Corpora for speech recognition124

tasks, etc. If it wasn’t for these datasets we wouldn’t have had the cutting edge com-125
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Figure 2. SAR image tiles with flood areas in northern Alabama. Left to right and top to

bottom : VV, VH, Flood label, Water body label

puter vision and speech recognition that we have today. These datasets provided the clean126

and curated data that ML models are trained and tested on.127

Thus, by creating this dataset and making it open source (Gahlot et al., 2021) we128

want to lower the barrier to use machine learning for flood extent detection.129

4 Baseline models130

Two image segmentation models were trained on the flood data for generating model131

baseline. The models trained were:132

1. FPN (Feature Pyramid Network) (Ronneberger et al., 2015) with a ResNet50 back-133

bone. An FPN is a feature extractor that takes a single-scale image of an arbi-134

trary size as input and outputs proportionally sized feature maps at multiple lev-135

els, in a fully convolutional fashion.136

2. UNet (Lin et al., 2017) with a ResNet50 backbone. U-Net is an architecture for137

semantic segmentation. It consists of a contracting path and an expansive path.138

The contracting path follows the typical architecture of a convolutional network.139

Both networks were trained for 100 epochs without any regularization by stack-140

ing VV, VH and Water body label images as 3-channels of the input tensor. The mod-141

els were tested using the IOU scoring function also known as Jaccard Index given by Eq. 1.142

J(A,B) =
|A ∩B|
|A ∪B|

(1)

where A and B are the estimated and reference flood masks respectively.143

–5–



manuscript submitted to AGU Journal

Figure 3. Train-validation scores for FPN Figure 4. Train-validation scores for UNet

4.1 Results144

Fig. 3 and Fig. 4 show the accuracy plots for Unet and Feature Pyramid Network145

respectively with ResNet50 backbone. The UNet training is noisy and relatively slower146

in comparison to the FPN training because for the same number of initial epochs FPN147

gives a higher accuracy. However, UNet closes in as the training progresses with each148

epoch.149

Figure 5. A sample UNet prediction

The IOU scores on the test set are 0.6021 and 0.6198 for FPN and UNet models,150

respectively. The difference in accuracies could be attributed to the initialization. The151

baseline models provide a starting point for more advanced deep learning techniques. Fig.152

5 shows a sample from Unet predictions. The image on the left is the actual VV sam-153

ple. The image in the center is the ground truth flood mask, and on the right is the pre-154

dicted flood mask overlaid on top of the actual image.155

5 Community Involvement156

The dataset was made publicly available (Gahlot et al., 2021) for a machine learn-157

ing competition which also helped in reaching out to the broader science community to158

solve the flood detection problem. The competition was organized in collaboration with159

the International Conference on Emerging Techniques in Computational Intelligence (ICTE)160

and Geoscience and Remote Sensing Society (GRSS). The competition commenced on161

April 15, 2021 and concluded on July 15, 2021. The competition received a total 137 par-162

ticipants and more than 200 submissions. The competition was hosted using the Codalab163

competition platform (ETCI flood competition portal , 2021) (ETCI competition page,164

2021) which is an open source, community driven data science competition platform.165
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There were total of 309 submissions from 142 participants. three winners were cho-166

sen based on their IOU score. All winners used some version of the UNet deep neural167

network with different pre- and post-processing steps. The highest IOU score achieved168

was 0.7681 followed by 0.7654 and 0.7506. The competition was divided into 2 phases169

(Phase 1: Development and Phase 2: Test)(ETCI competition page, 2021). Phase 1 ran170

from April 15 - May 15 and phase 2 from May 16 - June 15. The competition timeline171

is shown in Fig. 6.172

Figure 6. Best IOU scores and number of submissions throughout the competition

6 Conclusion173

Machine learning has become an important part of the workflows for solving many174

scientific problems which requires large amounts of clean data. The saying ”garbage in175

garbage out” hasn’t been more true in any other domain than it has been in ML (Geiger176

et al., 2020). This paper documents the process of generating and curating a high qual-177

ity flood data to help lower the barrier of entry for flood extent detection using machine178

learning, and how citizen science can be leveraged to involve the broader scientific com-179

munity and use its collective efforts to crowd source better machine learning solutions.180
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the competition and chairing this event at ICETCI and the students: Jacob Robinson,186

Kiahna Mollette, Kaitlyn Wheeler, Stefanie Mehlich and Zachary Helton; and research187

staff Ankur Shah and Ronan M. Lucey for their help curating dataset.188

Dataset for this research is available in this in-text data citation reference: (Gahlot189

et al., 2021) [CC-BY-4.0]. Such dataset must be findable and accessible from https://190

registry.mlhub.earth/10.34911/rdnt.ebk43x191

References192

Alias, N. E., Mohamad, H., Chin, W. Y., & Yusop, Z. (2016). Rainfall analysis of193

the kelantan big yellow flood 2014. Jurnal Teknologi , 78 (9-4).194

–7–



manuscript submitted to AGU Journal

Beaumont, C. N., Goodman, A. A., Kendrew, S., Williams, J. P., & Simpson, R.195

(2014). The milky way project: leveraging citizen science and machine learning196

to detect interstellar bubbles. The Astrophysical Journal Supplement Series,197

214 (1), 3.198

Benoudjit, A., & Guida, R. (2019). A novel fully automated mapping of the flood199

extent on sar images using a supervised classifier. Remote Sensing , 11 (7), 779.200

Boardman, J., Burt, T., Evans, R., Slattery, M., & Shuttleworth, H. (1996). Soil201

erosion and flooding as a result of a summer thunderstorm in oxfordshire and202

berkshire, may 1993. Applied Geography , 16 (1), 21–34.203

Borne, K., & Team, Z. (2011). The zooniverse: A framework for knowledge dis-204

covery from citizen science data. In Agu fall meeting abstracts (Vol. 2011, pp.205

ED23C–0650).206

Boros, L., & Nagy, G. (2014). The long-term socioeconomic consequences of the207

tisza flood of 2001 in szabolcs-szatmár-bereg county, hungary. Belvedere Merid-208

ionale, 26 (4), 122–130.209

Curlander, J. C., & McDonough, R. N. (1991). Synthetic aperture radar (Vol. 11).210

Wiley, New York.211

Dawson, R. J., Dickson, M. E., Nicholls, R. J., Hall, J. W., Walkden, M. J., Stansby,212

P. K., . . . others (2009). Integrated analysis of risks of coastal flooding and213

cliff erosion under scenarios of long term change. Climatic Change, 95 (1),214

249–288.215

Etci competition page. (2021, Apr). Retrieved from https://nasa-impact.github216

.io/etci2021/217

Etci flood competition portal. (2021, Apr). Retrieved from https://competitions218

.codalab.org/competitions/30440219

Gahlot, S., Gurung, I., Molthan, A., & Maskey, M. (2021). Flood extent data for ma-220

chine learning. Radiant MLHub. Retrieved from https://registry.mlhub221

.earth/10.34911/rdnt.ebk43x doi: 10.34911/RDNT.EBK43X222

Geiger, R. S., Yu, K., Yang, Y., Dai, M., Qiu, J., Tang, R., & Huang, J. (2020).223

Garbage in, garbage out? do machine learning application papers in social224

computing report where human-labeled training data comes from? In Proceed-225

ings of the 2020 conference on fairness, accountability, and transparency (pp.226

325–336).227

Horritt, M. S., Mason, D. C., & Luckman, A. J. (2001). Flood boundary delineation228

from synthetic aperture radar imagery using a statistical active contour model.229

International Journal of Remote Sensing , 22 (13), 2489-2507. Retrieved from230

https://doi.org/10.1080/01431160116902 doi: 10.1080/01431160116902231

Imagelabeler. (2021). Retrieved from https://impact.earthdata.nasa.gov/232

labeler/233

Inambao, C. (2013). Namibia: Caprivi floods reach historic mark. Relief Web, Ac-234

cessed , 28 .235

Jain, S. K., Singh, R., Jain, M., & Lohani, A. (2005). Delineation of flood-prone236

areas using remote sensing techniques. Water resources management , 19 (4),237

333–347.238

Klemas, V. (2015). Remote sensing of floods and flood-prone areas: an overview.239

Journal of Coastal Research, 31 (4), 1005–1013.240

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with241

deep convolutional neural networks. Advances in neural information processing242

systems, 25 , 1097–1105.243

Liang, J., & Liu, D. (2020). A local thresholding approach to flood water delin-244

eation using sentinel-1 sar imagery. ISPRS journal of photogrammetry and re-245

mote sensing , 159 , 53–62.246

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017).247

Feature pyramid networks for object detection.248

–8–



manuscript submitted to AGU Journal

Liu, Q., & Wu, Y. (2012). Supervised learning. In N. M. Seel (Ed.), Encyclopedia of249

the sciences of learning (pp. 3243–3245). Boston, MA: Springer US. Retrieved250

from https://doi.org/10.1007/978-1-4419-1428-6 451 doi: 10.1007/978-1251

-4419-1428-6 451252

Long, S., Fatoyinbo, T. E., & Policelli, F. (2014). Flood extent mapping for namibia253

using change detection and thresholding with sar. Environmental Research Let-254

ters, 9 (3), 035002.255

Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., & Savenije, H.256

(2011). Towards an automated sar-based flood monitoring system: Lessons257

learned from two case studies. Physics and Chemistry of the Earth, Parts258

A/B/C , 36 (7-8), 241–252.259

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for260

biomedical image segmentation.261

Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management262

with special reference to monsoon asia: a review. Natural Hazards, 33 (2), 283–263

301.264

Schumann, G., Bates, P. D., Horritt, M. S., Matgen, P., & Pappenberger, F. (2009).265

Progress in integration of remote sensing–derived flood extent and stage data266

and hydraulic models. Reviews of Geophysics, 47 (4).267

Spicer, P., Huguenard, K., Ross, L., & Rickard, L. N. (2019). High-frequency268

tide-surge-river interaction in estuaries: Causes and implications for coastal269

flooding. Journal of Geophysical Research: Oceans, 124 (12), 9517–9530.270

Supervised learning: Model popularity from past to present. (2018). Retrieved271

from https://www.kdnuggets.com/2018/12/supervised-learning-model272

-popularity-from-past-present.html273

Ucla geo-portal world water bodies. (2021, Apr). Retrieved from https://apps.gis274

.ucla.edu/geodata/dataset/world water bodies275

Ullman, D. S., Ginis, I., Huang, W., Nowakowski, C., Chen, X., & Stempel, P.276

(2019). Assessing the multiple impacts of extreme hurricanes in southern new277

england, usa. Geosciences, 9 (6), 265.278

–9–


