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Abstract

Time series datasets often have missing or corrupted entries, which need to be ignored in subsequent data analysis. For example,

in the context of space physics, calibration issues, satellite telemetry issues, and unexpected events can make parts of a time

series unusable. Various approaches exist to tackle this problem, including mean/median imputation, linear interpolation,

and autoregressive modeling. Here we study the utility of artificial neural networks (ANNs) to predict statistics, particularly

second-order structure functions, of turbulent time series concerning the solar wind. Using a dataset with artificial gaps, a

neural network is trained to predict second-order structure functions and then tested on an unseen dataset to quantify its

performance. A small feedforward ANN, with only 20 hidden neurons, can predict the large-scale fluctuation amplitudes better

than mean imputation or linear interpolation when the percentage of missing data is high. Although they perform worse than

the other methods when it comes to capturing both the shape and fluctuation amplitude together, their performance is better in

a statistical sense for large fractions of missing data. Caveats regarding their utility, the optimisation procedure, and potential

future improvements are discussed.
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Key Points:8

• Small artificial neural networks (ANNs) are good at predicting large scale values9

of structure functions.10
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and small scale values.14
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Abstract15

Time series datasets often have missing or corrupted entries, which need to be ignored16

in subsequent data analysis. For example, in the context of space physics, calibration17

issues, satellite telemetry issues, and unexpected events can make parts of a time series18

unusable. Various approaches exist to tackle this problem, including mean/median im-19

putation, linear interpolation, and autoregressive modeling. Here we study the utility20

of artificial neural networks (ANNs) to predict statistics, particularly second-order struc-21

ture functions, of turbulent time series concerning the solar wind. Using a dataset with22

artificial gaps, a neural network is trained to predict second-order structure functions23

and then tested on an unseen dataset to quantify its performance. A small feedforward24

ANN, with only 20 hidden neurons, can predict the large-scale fluctuation amplitudes25

better than mean imputation or linear interpolation when the percentage of missing data26

is high. Although, they perform worse than the other methods when it comes to cap-27

turing both the shape and fluctuation amplitude together, their performance is better28

in a statistical sense for large fractions of missing data. Caveats regarding their utility,29

the optimisation procedure, and potential future improvements are discussed.30

Plain Language Summary31

We explore the utility of machine learning to predict statistics of a turbulent sys-32

tem such as the solar wind, in cases involving large data gaps. It is shown that simple33

artificial neural networks (ANNs) are good at estimating large-scale features of second-34

order structure functions even for very large amounts of missing data. However, these35

simple ANNs are limited in estimating other features of the structure functions, such as36

inner and outer scales, and the inertial range slope. More sophisticated methods are re-37

quired to describe such features.38

1 Introduction39

Analyses of real-world time series are often hindered by incomplete datasets. This40

is very common for physiological, environmental, astronomical, and heliospheric time se-41

ries. The instrumentation used to take measurements may be prone to failure, or vari-42

ations in the environment itself may preclude data collection for certain periods. For ex-43

ample, time series of sea level and wave height based on radio signals are commonly in-44

complete due to radio interference, airborne seawater spray, and the loss of line-of-sight45

caused by large waves (Makarynskyy et al., 2005). In physiology, recordings of blood flow46

and other processes are often contaminated with artifacts due to movement of the sub-47

ject and improper interfacing with sensors (Pavlova et al., 2019), and removal of these48

leaves gaps in the series. Ground-based astronomical observations are affected by cloud49

cover and the maintenance and malfunction of instruments. In the case of in situ mea-50

surements of the solar wind, incomplete time series result from calibration, instrumen-51

tation, and telemetry issues (Rehfeld et al., 2011). Telemetry is a particular issue for the52

two Voyager spacecraft, which must align their data transmissions with NASA’s ground-53

based communication facilities, the Deep Space Network (Ludwig & Taylor, 2016; Gal-54

lana et al., 2016).55

Discontinuity in time series data represents a loss of information, affecting the statis-56

tics and in turn polluting predictions. This includes significant effects on frequency-domain57

(spectral) and scale-domain analysis. An example is ‘spectral inheritance’ in which the58

gaps contaminate the rest of the data in the form of “spurious periodicities arising from59

the spectral properties of the sets of gaps” (Frick et al., 1998; Gallana et al., 2016). More60

generally, data gaps result in dirty spectra, which lead to poor estimation of power, par-61

ticularly at high frequencies (Munteanu et al., 2016). In radio and gamma-ray astron-62

omy, this causes issues for calculating the periodicity of stellar objects (VanderPlas, 2018).63
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In heliophysics it hinders our understanding of the spectral properties of turbulence (Gallana64

et al., 2016; Fraternale et al., 2019).65

Many different methods have been explored to deal with this issue of spectral es-66

timation from a time series that has gaps. A significant amount of literature has been67

dedicated to estimating the power spectra and periodicities of a gapped signal. We find68

that the methods of spectral estimation from sparse datasets can be grouped into two69

broad categories:70

1. Interpolation of missing values, followed by spectral estimation from the recon-71

structed signal72

2. Spectral estimation directly from the dataset with gaps73

The first category of techniques is regularly used in the space plasma literature.74

Often segments that are relatively continuous are selected to avoid large gaps. For ex-75

ample, Wu et al. (2013) and C. Chen et al. (2020) removed gaps larger than 5% and 1%76

respectively. The remaining small gaps are typically filled using linear interpolation (Burlaga,77

1991; Podesta et al., 2007). However, linear interpolation amounts to strong smoothing78

of part of the signal, which results in a loss of information at high frequencies (Frick et79

al., 1998). Because this effect becomes worse with increasing data loss, this technique80

is only feasible for relatively small gaps (Bavassano et al., 1982; Y. Chen et al., 2002).81

Furthermore, by excluding large segments of the data to avoid the gaps, a considerable82

amount of information about the system is lost. For this reason, interpolation methods83

that are more consistent with the spectral content of the observed data segments have84

also been used.85

For example, interpolation of sparse signals has also been achieved by modelling86

the signal as a stochastic process (specifically, that of fractional Brownian motion), and87

then further defining the process as a multi-point “bridge” between the prescribed (ob-88

served) measurements (Friedrich et al., 2020). A strategy for identifying the optimal Hurst89

exponent required by the fractional Brownian motion algorithm was proposed and tested90

by reconstructing velocity field measurements from a superfluid helium experiment.91

Singular spectrum analysis (SSA) is a non-parametric algorithm used for forecast-92

ing from gapped time series in a number of fields, including heliophysics (Schoellhamer,93

2001; Kondrashov et al., 2010). SSA involves reconstructing a signal from its principal94

components, and its benefits are that it requires no prior knowledge of the periodicities95

in the data, and it accounts for noise in the signal. However, the technique is especially96

sensitive to increasing gap sizes: the root mean-squared error was shown to increase sig-97

nificantly in a study investigating data gaps in soil respiration data (Zhao et al., 2020).98

SSA has been used for gap-filling of solar wind data (Kondrashov et al., 2010). However,99

this study also made use of continuous measurements of geomagnetic indices, which could100

potentially improve the performance of this method.101

ARIMA models are the standard models for forecasting time series, and these can102

be fitted to non-uniformly sampled data using a maximum likelihood technique (Harvey103

& Pierse, 1984; Broersen, 2006). This has been shown to result in much better estima-104

tion of time series parameters such as level, error variance, and slope of the time series,105

compared to simple mean imputation and linear interpolation (Velicer & Colby, 2005).106

A similar method of finding the best ARIMA model order based on maximising entropy107

has been applied to solar oscillation data (Brown & Christensen-Dalsgaard, 1990). Start-108

ing with some assumptions about the typical gap-lengths and the noise in the signal, the109

authors were able to reproduce unique spectral features.110

Neural networks, a prominent algorithm from machine learning, have also been used111

to fill gaps in time series. Specifically, a simple feed-forward neural network was found112

to accurately reproduce simulated stochastic processes and fill gaps that matched the113
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original power spectrum with up to 50% missing data (Comerford et al., 2015). Gener-114

ative adversarial networks (Y. Luo et al., 2018) and convolutional neural networks (Jang115

et al., 2020) have also been used to impute missing intervals.116

A comprehensive study of dealing with large data gaps in solar wind data used a117

combination of techniques to recover the spectrum from Voyager datasets (Gallana et118

al., 2016). This compared Fourier transforms of gap-free subsets; Fourier transforms of119

the correlation function of the data, with and without linear interpolation; maximum like-120

lihood recovery; and compressed sensing spectral estimation. All of these methods, apart121

from compressed sensing, fall into the first category of gapped estimation techniques. Ul-122

timately, this work was able to determine spectra over a very large range of frequencies123

and thereby extract information on various turbulent features.124

Moving now to the second category of spectral estimation methods, a continuous125

wavelet transform method has been used to perform spectral estimation directly from126

a gapped signal (Frick et al., 1998). Of direct relevance to our work, this technique has127

been applied to magnetic field time series in the solar system by Magrini et al. (2017)128

and de Souza Echer et al. (2021). In the first study, the wavelet method was compared129

with two polynomial interpolation methods for spectral analysis of artificially-gapped130

OMNIWeb (near-Earth solar wind) data. It was found that all techniques perform sat-131

isfactorily for small gaps, but the wavelet method better estimates the energy of the sig-132

nal at certain scales for large gaps. In the second study, the wavelet method was used133

to find the dominant periodicities of magnetic field fluctuations in the magnetosphere134

of Jupiter.135

In an example of using neural networks in the second category of techniques, Randolph-136

Gips (2008) created a Cosine Neural Network, which is able to process and recognise miss-137

ing data without any prior imputation. This addresses the issue of how to represent miss-138

ing data to a neural network. It does this using ‘weighted norms’, parameters which re-139

duce to 0 when the corresponding input feature is missing. This informs the network to140

ignore these features for that instance.141

The present study further examines a machine learning approach to the second cat-142

egory of methods. Specifically, we investigate framing the estimation of high-quality statis-143

tics from a dataset with gaps as a supervised learning regression problem, bypassing in-144

terpolation and its attendant uncertainties entirely. Whereas the mapping from a com-145

plete dataset to its statistics is generally in the form of a simple function (e.g., the equa-146

tion for the mean or standard deviation), we are interested in whether a neural network147

- the ‘universal approximator’ - can learn a mapping from an incomplete dataset to the148

‘clean’ statistic that would have followed, had the complete dataset been available. This149

approach is taken because the primary goal is not to accurately reproduce the complete150

series itself, but rather the statistics calculated from the complete series. The focus here151

is not on understanding the relationship between input and output, but rather on find-152

ing an input-output mapping that achieves good performance on unseen gapped datasets.153

As a case study, this technique is applied to time series of the fluctuating interplanetary154

magnetic field, produced by the solar wind and measured by the NASA spacecraft Parker155

Solar Probe. The statistic we attempt to estimate is the second-order structure function156

(Sfn for brevity).157

The nth order Sfn for a time-varying signal a is defined as (Batchelor, 1953; Biskamp,158

2003)159

S(n)
a (τ) = ⟨|δa(t, τ)|n⟩ (1)

where a(t) is the scalar variable of interest, δa(t, τ) = a(t+ τ)−a(t) is the increment,160

n is the order, and ⟨⟩ denotes expectation over t. For a vector set of time series a(t) =161

(ax(t), ay(t), az(t)), the Sfnis defined as162

S(n)
a (τ) = ⟨|δa(t, τ)|n⟩ (2)
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where δa(t, τ) = a(t+τ)−a(t). The Sfns of various orders follow power-law behaviour163

in the inertial range. The Sfns, by themselves and in combinations, encode a significant164

amount of physics, such as the spread of energy across scales and the locality and inter-165

mittency of the turbulent structures (Biskamp, 2003; Panchev, 1971). In this paper, as166

a proof-of-concept, we stick to the second-order Sfn.167

After the clean, ‘true’ structure functions are calculated for a series of continuous168

segments of the time series, the segments are artificially gapped in several different ways.169

These segments are provided as the input data to the model, with the original structure170

functions as the target outputs. The model predictions are then compared with struc-171

ture functions calculated directly from the gapped intervals, and from gapped intervals172

with an interpolation technique applied. In this way we can compare the performance173

of each technique in approximating the true, ‘clean’ statistic of the original ungapped174

interval. The goal of estimating not just a single label or parameter but rather an ar-175

ray of values over a certain range also makes this approach unique.176

2 Data Preparation & Training177

The data used in this project were taken from the Parker Solar Probe’s (PSP) (Fox178

et al., 2016) fluxgate magnetometer (FGM) instrument (Bale et al., 2016). PSP is a space-179

craft launched in 2018 to study the physics of the inner heliosphere and the origins of180

the solar wind by flying very close to the Sun (as close as 9.9 solar radii during orbit 22181

in 2024). The FGM measures magnetic fields at a native cadence of 256 samples/second.182

We use data from November 2018, during the first “encounter” (E1) of PSP (Bale et al.,183

2019; Kasper et al., 2019). Encounter data are typically at the highest resolution. A 17-184

day gap-free interval from 2018-11-01 to 2018-11-18 was selected, which contained no miss-185

ing observations after performing down-sampling, justified in the following section. This186

final gap-free time series consisted of 1,950,000 points for each vector component Bx, By,187

Bz, all three of which were used here. This series was then split into 195 vector time se-188

ries intervals of length 10,000.189

2.1 Input preparation190

The data needed to be prepared before training a neural network to make it eas-191

ier for the ANN to process data from different sources and intervals. We start with a set192

of time series intervals with 100% of measurements available, following the data normal-193

ization described below. 80% of intervals were used to train and validate the ANN, and194

the remaining 20% (39) were used for testing.195

Data normalization: The timescales and magnitudes of interest vary significantly196

from one system to another. For example, solar wind in the inner heliosphere has mag-197

netic field amplitudes in the ∼ 100nT range and a correlation time of ≈ 600s (Parashar198

et al., 2020; C. Chen et al., 2020), whereas the solar wind at 1AU has magnetic field am-199

plitudes in the ≈ 10nT range and a correlation time of ≈ 1hour (Isaacs et al., 2015;200

Jagarlamudi et al., 2019). On top of this variability, the time cadences of various instru-201

ments differ significantly. In order to train the ANN in a system-agnostic way, we nor-202

malized both the x-values (time series) and y-values (the fluctuation amplitudes) using203

the following methods. The time series were normalized by down-sampling to have 10,000204

samples across ≈ 15tcorr so that the training series has a sampling rate of δt ∼ 1.5 ×205

10−3Tcorr. Therefore, the time cadence for each interval was chosen so as to have ≈ 15tcorr206

sampled by 10,000 points. The amplitudes were normalized by subtracting the mean value207

µa from each value of each interval and then dividing by the standard deviation σa:208

a(t)norm =
a(t)− µa

σa
(3)
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Gapped series preparation: Each “good” time series of magnetic field is used to cre-209

ate 15 “bad” copies by removing random chunks of data. By having the same expected210

output for each of these copies, the aim here was to make the ANN indifferent to where211

and how large the gaps are, as well as giving us more data train on. Between 0% and212

50% of the data were removed from each interval in between 3 and 20 segments at ran-213

dom locations in the time series. The total percentage of data to remove and the num-214

ber of chunks in which to remove data were generated randomly, and 15 bad copies were215

created for each good copy. This provided us with 2340 series of bad data for training216

and validating the model. For the 39 test intervals, these were copied 5 times each and217

the gap percentage was expanded to be between 0% and 95% removed. This was done218

to test the algorithm’s performance on missing data in general, rather than just the gapped219

percentages it was trained on. This also allows us to test its performance ‘in the limit’,220

i.e. right up to only 5% data remaining, which will help us assess overfitting of the model.221

pics/ml_pipeline_schematic_v2.drawio.pdf

Figure 1. Diagram showing the workflow for adding artificial gaps and producing different

structure function estimations from each interval.

ANN input: 95% of the 2223 training series were used for training the ANN and222

5% (117) for validating the ANN during the training process. The input for the ANN223
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training program was a 3x10,000 array representing all of the three vector components224

(Bx,By,Bz), with the missing values replaced with zeros after re-normalization (essen-225

tially mean-imputing the fluctuation series). This zero padding implies artificial infor-226

mation insertion, hence we tried informing the ANN of this by training it with input (Bx,By,Bz,mask),227

where mask is an array of ones with zeros at locations of the gaps, thus extending each228

input to a dimension of 4x10,000. (As discussed in the results, what was found was that229

the addition of this mask in fact degraded the performance of the network, therefore, the230

results presented are for unmasked data.)231

ANN output: The corresponding expected output for the ANN is the second-order232

Sfn computed from the corresponding good time series. The Sfns were computed up233

to a maximum lag of 20% of the data size (nlag = 2000) (Matthaeus & Goldstein, 1982).234

The good and bad time series are arranged in random order to create the input matrix,235

with the appropriate expected outputs.236

Benchmarking the results: The second-order Sfns computed by the ANN are com-237

pared to the Sfns computed three ways: i) ignoring the gaps, ii) mean imputing the gaps,238

and iii) linearly interpolating the gaps. Fig. 1 shows the workflow of training the net-239

work. Table 1 details the final datasets used for training and evaluating the model.240

Data
source

Purpose Input
lengths

Output
lengths
(nlag)

% of each
input removed

No. of in-
stances

PSP Training set 30000 2000 0-50 2223
Validation set 30000 2000 0-50 117

Test set 30000 2000 0-95 195

Table 1. Dimensions of data used to build and evaluate the neural network model. Inputs

lengths are correct for the training runs with no indicator vector - those with the vector have

length 40,000 instead. ‘No. of instances’ refers to the count of intervals in the set after duplica-

tion of the original unique intervals.

3 Model training and testing241

Using a feedforward neural network, a multi-output regression model was built in242

Python using the Tensorflow package (Abadi et al., 2015). The workflow to ensure a good243

model fit was the following:244

1. Train the model until the early-stopping criterion is reached (see below)245

2. Evaluate the model on the test data, checking for overfitting and underfitting by246

visual inspection of the predictions247

3. Adjust the model hyperparameters (number of hidden layers and/or number of248

nodes)249

4. Repeat 2-3 until a good fit is achieved250

5. Compare final model predictions with output from other, non-ML methods251

The loss function used to calculate the error for this network was the Mean Squared252

Error, or MSE. The overall error for one epoch of the network MSEoverall is calculated253

as the MSE for a single instance MSEi, averaged over all the instances (2223 for the PSP254

training set). (One epoch is one iteration through every instance in the training set.)255
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MSEi =
1

nlag

nlag∑
j=1

(S2ij,pred − S2ij,true)
2 (4)

where S2ij,pred is the predicted value of the second-order Sfn for the ith interval256

at lag j, S2ij,true is the corresponding ‘ground truth’ value, and nlag is the number of257

lags for which the Sfn has been computed. As is standard for neural networks, this value258

is minimised through the process of backpropagation of error via gradient descent, and259

each weight and bias is adjusted according to the learning rate and the weight’s contri-260

bution to the overall error, calculated using partial derivatives.261

For each epoch of training, the training loss and the validation loss were used to262

check whether the model is still improving. (A sustained increase in the validation loss263

indicates that the model is beginning to overfit.) Accordingly, training was stopped when264

the validation loss was reduced by no more than 0.01 over 10 epochs, which we call the265

EarlyStopping criterion.266

The Sfn values decrease by a few orders of magnitude going from large to small267

lags. This could potentially bias the MSE on large-scale predictions. Hence, the mean268

squared error (MSE) on the test set was not be used in isolation to evaluate this par-269

ticular regression problem. It was complemented with the mean absolute percentage er-270

ror (MAPE) to quantify the model’s performance.271

MAPEi =
1

nlag

nlag∑
j=1

∣∣∣∣S2ij,true − S2ij,pred

S2ij,true

∣∣∣∣ (5)

where S2ij,pred is the predicted value of the second-order Sfn for the ith interval272

at lag j, S2ij,true is the corresponding ‘ground truth’ value, and nlag is the number of273

lags for which the Sfn has been computed.274

3.1 Optimising the network: selection of hyperparameters275

Part of the challenge of using neural networks is finding the optimal structure or276

‘architecture’ so as to get the best performance on the test set. A step-wise trial-and-277

error approach was used to approximately find the best architecture instead of using an278

automated determination of an optimal architecture (R. Luo et al., 2018; Koza & Rice,279

1991). This involved iterating through different numbers of both hidden layers and the280

nodes in each hidden layer. In principle a single hidden layer is sufficient to approximate281

any continuous function (a ‘universal approximator’ (Cybenko, 1989)), but the capac-282

ity of the network increases as the number of hidden layers and nodes increases. The num-283

ber of layers and nodes was slowly increased until the model appeared to be overfitting.284

A Rectified Linear Unit (ReLU) activation function was used for each hidden layer, and285

linear activation was used for the output layer (Ramachandran et al., 2017). The Adam286

Optimizer, a common adaptive optimizer that automatically adjusts the learning, was287

used with the default value of 0.001. (Higher values of the initial value of this optimizer288

were found to degrade the performance of the model.) The number of training epochs289

was controlled by the EarlyStopping criteria, as described in the previous section.290

4 Results291

Given the requirement to fit the correct shape of the predicted outputs without re-292

gression to the mean curve, a visual inspection of the predicted curves against the ex-293

pected curves for a sample of test intervals was required. After running several differ-294

ent iterations it was found that 10 or more layers always lead to regression to the mean,295
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where virtually the same curve was predicted for every input interval (Bello, 1992). The296

best network configuration from those that were tried - i.e., that which produced smooth297

curves with shapes that at least partly matched the different shapes of the expected out-298

puts - was one with 2 hidden layers, each with 10 nodes. A schematic diagram of this299

configuration is shown in Figure 2. We note that the input and the output layers require300

the largest number of parameters, 300,010 and 22,000, respectively in this case. Any ad-301

ditional hidden layers having order 10 neurons contribute order 100 parameters only to302

the list of trainable parameters. This final configuration was then applied to four dif-303

ferent variations of the input data: mean-imputed and linearly interpolated gapped in-304

tervals, each with and without the additional missing data indicator vector. Ultimately,305

the linearly interpolated data with no missing data indicator gave the best results for306

this network configuration. This configuration was run three times to check the results,307

because slightly different results will occur each time due to different initial randomisa-308

tion of the weights. The EarlyStopping criterion led to training being stopped after be-309

tween 25 and 33 epochs. The mean test error on the PSP test intervals was 3.76. It is310

important to note the unusual machine learning workflow used here: this test error was311

not the best values out of all the network configurations attempted. The conventionally312

used measure of model performance(MSEoverall) is a very limited measure because it313

can easily regress to the mean while trying to reduce the MSEoverall, given the range314

of variation in individual expected outputs. Further investigations into designing robust315

measures of model performance when predicting arrays of logarithmically spaced values316

is needed.317

Once a good network configuration and input data structure were found, its ap-318

proximation ability was compared with the alternative interpolation methods discussed319

previously, as well as naive calculation of the structure functions directly from the gapped320

intervals.. We start with a case study in Figure 3 of two versions of two unique inter-321

vals, with each version representing different gaps removed from the original interval.322

In the first interval, 1a, with 10% data missing, the ANN output does not improve323

upon the Sfns calculated from the mean-imputed or linearly-interpolated intervals, both324

of which stay very close to the true curve. As the amount of missing data increases to325

43% in interval 1b, the Sfn calculated from the gapped interval diverges significantly326

from the true Sfn. However, the other estimations stay relatively close to the true curve,327

with the L-INT curve in particular remaining a very good estimation. The ANN pre-328

diction shows undesired fluctuations in log-log space at smaller lags, similar to the pre-329

diction for 1a.330

Interval 2a, with 37% data missing, shows an interval with an ANN prediction that331

is significantly smoother than and superior to the Sfn calculated from the gapped in-332

terval, but is inferior to the simpler methods of imputation and interpolation, both of333

which have a shape that is closer to that of the true curve. In spite of this, the Sfn at334

large lags is better predicted by the ANN. As mentioned before, given that the Sfn de-335

creases by a few orders of magnitude from large to small lags, small lags contribute very336

little to MSE. Hence, it is expected that such predictions could produce better MSE per-337

formance for the ANN when large amounts of data are missing. For the extreme data338

loss example in interval 2b, with 87% missing data, the ANN prediction is clearly the339

best at getting close to the true Sfn, especially at large lags. This foreshadows the ul-340

timate conclusion on the utility of the neural network, which seems to perform best, rel-341

ative to other methods, when dealing with large data loss.342

The performance of each method, including the Sfns calculated from the un-filled343

gapped intervals, was evaluated using the following measures:344

• Average MSE (MSEoverall =
1
n

∑n
i=1 MSEi) across all expected-observed Sfn pairs345

(recall this was the loss function used to train the neural network - see Equation346

4).347
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pics/neural_net_diagram_final.png

Figure 2. Schematic diagram of the final ANN architecture. The inputs consist of 3 x 10,000

stacked vector components, and the outputs consist of 1 x 2,000 second-order structure functions.

The number of hidden layers and nodes were chosen by iteratively increasing the size of each

hyperparameter and visually inspecting the predictions made by the trained network for each

architecture.

• Average MAPE (MAPEoverall =
1
n

∑n
i=1 MAPEi) across all expected-observed348

Sfn pairs. This loss function is easier to interpret than the MSE in terms of rel-349

ative error and is scale-independent. It is also more stringent than MSE because350

it evaluates the method’s performance in predicting both the large-scale and small-351

scale values. Both MSEoverall and MAPEoverall are given in Table 2.352

• Scatterplots and corresponding linear regression lines of MSE and MAPE against353

% data missing of individual test intervals. This shows us the how each method354

performs with increasing data loss shown in Figures 4 and 5.355

Before discussing the results, it is important to recall the pipeline of Sfn inputs356

and outputs. As shown in Figure 1, we calculate Sfns from the original clean series (true357

Sfn), the gapped series, the mean-imputed series and the linear interpolated series us-358
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pics/PSP_case_studies_plot_final.pdf

Figure 3. Results of the four different Sfnapproximation methods for two unique (normal-

ized) PSP intervals that have been gapped in two different ways. (For simplicity, only one of

three vector components for each input interval has been shown, but this still illustrates the num-

ber and size of the gaps, which were consistent between components.) Note that the log-log plot

emphasises differences between the curves at small lags (a.k.a., high frequencies).

ing Equation 2. In accordance with our model development, we also use the linearly in-359

terpolated series as input to the neural network model to produce our fourth estimate360

of Sfn to compare with the true Sfn.361

The overall results shown in Table 2, suggest that, for overall average performance,362

the GAPS (calculation from gapped series) method is the worst Sfn approximation method363

across the board with MSE ≈ 6700 and MAPE = 4.68. L-INT (calculation for lin-364

early interpolated series) performs the best with MSE = 2.98 and MAPE = 0.28.365

The relative performance of M-IMP (calculation from mean-imputed series) and ANN366

vary between evaluation methods. When using MSE, ANN is the second best approx-367

imation method, but when using MAPE it is third best, behind M-IMP.368
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Spacecraft Performance SF calculated from SF estimated using
measure GAPS M-IMP L-INT ANN

PSP MSE 6713.49 7.53 2.98 3.37
MAPE 4.68 0.45 0.28 1.66

Table 2. Calculated performance measures for each Sfnapproximation method. Bolded

figures are the lowest of each row. GAPS: Gapped interval with no imputation. M-IMP:

Gapped interval with mean (0) imputation. L-INT: Gapped interval with linear interpolation of

gaps. ANN: Artificial neural network model.

pics/PSP_MSE_plot.pdf

Figure 4. Scatter plot of MSE against proportion of data removed for the PSP test interval

with overlaid linear regression lines and confidence regions from other panels. The line for the

GAPS method (no imputation) is not shown here as it quickly disappears from the plotting area,

and Table 2 shows it is clearly inferior to the other methods.

However, these overall measures do not take into account the variation in their per-369

formance as a function of the degree of sparsity. Hence, we take a statistical approach370
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to quantify the performance with increasing sparsity. Figure 4 shows the scatter plots371

of MSE versus percentage of missing data for each set of test intervals for each method,372

overlain with linear regression lines of best fit. As seen in the middle two panels, the MSE373

tends to increase with increasing sparsity for M-IMP and L-INT. This is to be expected:374

as the amount of data missing increases, the Sfn estimation gets worse for these meth-375

ods. However, there is distinct funnelling on the plots, representing heteroskedasticity376

or unequal variance in MSE for different proportions missing. For low % missing values,377

around less than 20% missing, there is a very small range of MSE values for the impu-378

tation methods. This means that the accuracy of the Sfn estimations do not vary much379

for small percentage of missing data. On the other hand, as the amount of missing data380

increases, not only does the average error increase, but also the variation in error. This381

shows that intervals with large amounts of data missing can, in some cases, produce Sfns quite382

similar to the true Sfns, if imputation is performed. This is especially true for intervals383

that have been linearly interpolated - we can see in the L-INT scatterplot that there are384

intervals with up to 90% missing that have very low MSE values. This is due to the im-385

portance of not only the size of the gaps, but where the gaps are in the interval: if the386

removed data does not significantly depart from the overall trend, linear interpolation387

will result in a Sfn not very different from the expected curve. On the other hand, M-388

IMP does not show similarly low MSE values beyond about 45% missing, though there389

is still distinctly increasing variance.390

In stark contrast to the M-IMP and L-INT methods, the MSE of the ANN model391

predictions are largely indifferent to the proportion of data missing. There is a constant392

band of MSE values across this scatterplot, and the Pearson correlation coefficient, a mea-393

sure of the linear association between two variables, is very close to 0 for this method394

(-0.06).395

As a way of establishing the comparative usefulness of each method, linear regres-396

sion lines were fit to the data. Although fitting a linear model is inappropriate for this397

data due to the unequal variance present in the M-IMP and L-INT methods, it still pro-398

vides a useful indicator of the typical values of MSE for different proportions missing.399

What really distinguishes these methods, as shown in Figure 4, are the slopes of the re-400

gression lines. MSE increases the fastest for the M-IMP method, and this association401

is also that with the highest correlation between MSE and % missing (0.87). Next is the402

L-INT method, and this association has the next highest correlation (0.70). Finally, the403

ANN has a very flat slope with a correlation close to 0. This result shows that the abil-404

ity of the neural network to approximate the true Sfn is much less affected by increas-405

ing amounts of missing data than the other two methods. However, this does not make406

it the best Sfn approximation method for any bad dataset. What we can see in Fig-407

ure 4 is that up to about 50% missing data, the simple imputation methods have lower408

typical values of MSE than the neural network. At values greater than 50%, the neu-409

ral network, on average, produces the best estimations of the three approaches, accord-410

ing to the MSE metric. This, however, could be a result of the dominance of large lag411

values of the Sfn controlling the MSE.412

To quantify the performance of a method to predict not only the large lag value413

but also the small lag values, we use the mean amplitude percent error (MAPE). The414

MAPE measure, shown in Figure 5, shows much less heteroskedasticity for the L-INT415

and M-IMP methods, with M-IMP in particular showing a much stronger linear relation-416

ship between % missing and MAPE, producing a correlation of 0.98. The ANN method417

has a small positive slope and a relatively constant band of scatter, with correlation of418

0.04. Overlaying the regression lines in Figure 5, we see that the neural network linear419

regression line remains above that of both other methods for all gap percentages. Based420

on these findings, it seems reasonable to use L-INT for data gaps as large as ∼ 20%.421

Overall, we find that the ANN is largely indifferent to the proportion of data miss-422

ing in its approximations of the true Sfn. However, this means that the worst predic-423
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tions for inputs with little or no data missing are as bad as those for inputs with at least424

90% data missing.425

pics/PSP_MAPE_plot.pdf

Figure 5. Scatter plot of MAPE against proportion of data removed for the PSP test inter-

vals with overlaid linear regression lines and confidence regions. The line for the GAPS method

(no imputation) is not shown here as it quickly disappears from the plotting area shows it is

clearly inferior to the other methods.

5 Conclusions426

Gaps are a common problem in almost all fields that deal with time series. The field427

is mature with many ways of filling the gaps, including mean-imputation, linear inter-428

polation, maximum likelihood estimation of ARIMA models (Velicer & Colby, 2005), sin-429

gular spectrum analysis (Schoellhamer, 2001), and artificial neural networks (ANNs) (Comerford430

et al., 2015). Our interest here is not in prediction, but in gleaning the best estimates431

of statistics of the system without having to reconstruct the time series. In particular,432

we studied the potential of simple feedforward artificial neural networks to predict tur-433

bulent statistics of solar wind magnetic field measurements. In space plasma physics, an434
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accurate description of the Sfn in the inertial range of the structure function is desir-435

able. This is particularly important to estimate not only the slope of the structure func-436

tion in the inertial range, but also to estimate the inner and outer scales of turbulence.437

Starting with “good” time series with 100% coverage, we created “bad” time se-438

ries for which the second-order structure functions were estimated in four ways: i) di-439

rect computation ignoring gaps, ii) mean imputation of the gaps, iii) linear interpola-440

tion across the gap, and iv) a trained ANN.441

ANNs do not seem to be the panacea that one might naively hope for in such a sit-442

uation. As reflected by the error functions of MSE and MAPE, the ANN seems to some-443

what learn to estimate the large-scale values of the structure function. This is not very444

surprising as the large lag Sfn values approach the mean-squared value of the fluctu-445

ation amplitudes. Given the trend in error with increasing data loss, the ANN is more446

useful for large portions of missing data, but over the entire range of data loss it tends447

to perform worse than simpler methods. However, it is worth noting that with only 20448

neurons (and about 322,000 trainable parameters), ANN performs comparably to L-INT449

or M-IMP methods, and with MSE as the cost function it even outperforms these two450

methods for large gaps in the data. The case of MAPE as cost function is not very at-451

tractive but that may be improved by either changing the training strategy or the net-452

work architecture.453

Our results indicate that to achieve a reasonable description of turbulent statis-454

tics for gapped time series, one needs to go beyond simple-minded feedforward ANNs.455

Possible improvements to ANNs could include grey-box modeling with turbulence physics456

incorporated into the input, and more advanced architectures such as LSTM networks457

or autoencoders.458

It may also be the case that even the performance of this simple feedforward ANN459

structure could be improved through better optimisation of the model weights, biases,460

and hyperparameters (in particular, the number of hidden layers and nodes). To this end,461

a reliable method of avoiding over-fitting when trying to predict the shape of a curve,462

rather than a scalar output, is an important issue to address. This will be explored in463

follow-up studies, along with other ways of representing the missing data when feeding464

it into the network.465
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