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Historic Trends and Sources of Year-over-Year Stability in Montana

Winter Wheat Yields
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1Montana State University

November 26, 2022

Abstract

Producers desire varieties that consistently perform with high yields and end-use qualities. Unlike easily recognized average

yield improvements, yield stability over time is less examined, especially when considering the role of breeding relative to other

factors like management and changing climatic conditions. Our study system was a 70-year historical dataset from which

we estimated the year-over-year stability of Triticum aestivum, winter wheat varieties released by Montana’s Agricultural

Experimental Station. We examined yield stability within six locations representing diverse growing conditions across Montana

and found evidence that breeding has improved stability at specific locations and not at others. Newer varieties showed improved

year-over-year stability at locations that tended to have the lowest yields and more extreme weather conditions, reflecting that

year-over-year stability has a genotype-by-environment component. We examined the role of climatic conditions, including

temperature and rainfall to understand if reduced climatic variability was driving patterns of improved stability at these sites.

However, the impact of breeding remained, or became evident when accounting for climatic variables. Together, these findings

suggest that breeding’s strong selective pressures improve second order traits.

Supplemental Information

Table S1. Montana Winter Wheat Varieties Examined

Release Year Variety Cumulative acres planted (thousands of acres), 1958 -2019* Varieties grown at least 10 years
1921 Karmont 2419 x
1926 Newturk 518 x
1932 Yogo 2128 x
1956 Itana 778 x
1956 Rego 111 x
1956 Westmont 165 x
1965 Sawmont - x
1967 Crest 67 x
1968 Froid 234 x
1971 Teton 30
1979 Redwin 6447 x
1981 Rosebud - x
1981 Winridge 87 x
1983 Cree 514 x
1984 Norwin 143 x
1988 Tiber 4347 x
1989 Judith 1155 x
1994 NuWest 125 x
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1995 Vanguard 1271 x
1996 Erhardt 67 x
1996 McGuire 50 x
1996 Rampart 4002 x
2001 BigSky 169 x
2001 NuSky - x
2003 Paul - x
2004 Genou 3840 x
2004 MT1159CL -
2005 Hyalite -
2005 Norris -
2005 Willow Creek 202
2005 Yellowstone 4354 x
2006 Bynum -
2010 Decade 835 x
2011 Bearpaw 232 x
2011 Judee 1515 x
2012 SY Clearstone 2CL 173
2013 Colter 14
2013 Warhorse 1210 x
2013 WB3768 -
2015 Northern -
2016 Loma 72
2016 Spur
2018 FourOsix
2018 MTF1435
2018 Ray
2019 Bobcat
2019 Flathead
2020 StandClear CLP

Fig. S1 Yield residuals do not demonstrate increasing robustness over time

2
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Residuals compared to fitted values from the linear regression fit of yield and year from data shown in Figure
1 at six locations are shown.

Fig. S2 Calculating a variety’s yield robustness using CV is dependent on the number of years
a variety was grown

a) The yield CVs are shown for each variety at each location grown and the corresponding number of years
used to calculate the CV. The solid blue line is the fit of a quadratic plateau model. b) For each research
centers, the yield CVs are shown for each variety and the corresponding number of years used to calculate
the CV.

3
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Fig. S3. Bootstrapping to calculate CV estimates and relate them to release year shows
variability across locations

CV was calculated using sampling with replacement from five measurements for each variety that was
measured at least five times. Linear regression was performed on CV values for release year. The p-value
was determined for comparing that slope to 0 using a t-test. This was repeating 1000 times and the density
of p-values is shown. The red vertical lines indicate p = 0.05. In a-c) results are shown across all locations.
In a) the p-value distribution is shown. In b) the distribution of R2 values is shown, and in c) the distribution
of the slope estimates across the 1000 bootstraps is shown. In d-i) the p-value distributions are shown for
the six locations.

4
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Fig. S4 Annual and monthly weather patterns 1949-2019

a-d) Historic annual values for average a) mean, b) maximum, c) minimum temperatures, and d) total
precipitation are shown for each location. The data was fit using linear regression to detect overall trends.
e-h) The mean monthly values from 1949-2019 for e) mean, f) maximum, g) minimum temperatures, and h)
total precipitation are shown for each research center.

Hosted file

essoar.10511090.1.docx available at https://authorea.com/users/556406/articles/606433-

historic-trends-and-sources-of-year-over-year-stability-in-montana-winter-wheat-yields
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ABSTRACT 10 

Producers desire varieties that consistently perform with high yields and end-use qualities. 11 

Unlike easily recognized average yield improvements, yield stability over time is less examined, 12 

especially when considering the role of breeding relative to other factors like management and 13 

changing climatic conditions. Our study system was a 70-year historical dataset from which we 14 

estimated the year-over-year stability of Triticum aestivum, winter wheat varieties released by 15 

Montana’s Agricultural Experimental Station. We examined yield stability within six locations 16 

representing diverse growing conditions across Montana and found evidence that breeding has 17 

improved stability at specific locations and not at others. Newer varieties showed improved year-18 

over-year stability at locations that tended to have the lowest yields and more extreme weather 19 

conditions, reflecting that year-over-year stability has a genotype-by-environment component. 20 



 

 

We examined the role of climatic conditions, including temperature and rainfall to understand if 21 

reduced climatic variability was driving patterns of improved stability at these sites. However, 22 

the impact of breeding remained, or became evident when accounting for climatic variables. 23 

Together, these findings suggest that breeding’s strong selective pressures improve second order 24 

traits. 25 

INTRODUCTION 26 

Volatile crop yields caused by environmental extremes threaten our global food supply (Lobell et 27 

al., 2008). Further, producers lose economic value when crops grow variably across fields, due to 28 

increased difficulties in management and harvest and meeting end-use quality requirements. To 29 

counteract these obstacles, multiple approaches are taken to optimize yield stability and quality, 30 

including breeding and agronomic practices (Reckling et al., 2021). Crops grown at a specific 31 

geographic location experience not only varied weather and disease pressure year-over-year, but 32 

also microenvironmental differences within a field and stochastic errors during development 33 

(Lachowiec et al., 2015). Genotype greatly influences how plants withstand collective 34 

perturbations (Hill & Mulder, 2010), herein referred to as robustness. Because genotypes 35 

associated with differing degrees of robustness have been identified in plants (Hall et al., 2007; 36 

Jimenez-Gomez et al., 2011; Sangster et al., 2008), including crops (Fisher & Zamir, 2021; 37 

Makumburage & Stapleton, 2011; Ordas et al., 2008; Tollenaar & Wu, 1999), we hypothesize 38 

that breeding has increased crop robustness to such perturbations.  39 

Defining and measuring robustness is a complicated task. Not to be confused with the stability 40 

(or conversely, the plasticity) of a trait across geographic location, robustness is a way to 41 

describe the uniformity, repeatability, intra-genotypic variability (Bruijning et al., 2020), and 42 



 

 

predictability of a genotype within a location. In many studies examining agronomic traits, the 43 

coefficient of variation (CV) of a trait is calculated. CV traditionally is used to identify undesired 44 

high levels of variability to determine experimental validity (Bowman, 2001) but also potentially 45 

holds information about robustness (Fasoula & Fasoula, 2002). In agriculture, robustness also 46 

has been captured using many statistics like Ve (Schou et al., 2020) and heterogeneity of 47 

environmental variance (Hill & Mulder, 2010), among many others (Reckling et al., 2021), 48 

revealing how different genotypes can influence robustness. Using these and similar robustness 49 

statistics, the underlying genetic architecture and genetic loci controlling robustness have been 50 

identified (Fisher & Zamir, 2021; Hall et al., 2007; Sangster et al., 2008). 51 

Like most quantitative traits, robustness is affected not only by genotype, but also environment 52 

and the interaction of genotype and environment (Falconer & Mackay, 1996). Most commonly, 53 

how the environment affects robustness is measured within a single variety to assess the impact 54 

of different agronomic practices. Varied planting density (Lu et al., 2020), application of 55 

fertilizers, and irrigation (Kristensen et al., 2008; Kukal & Irmak, 2018) are examples of 56 

agronomic practices examined for impacts on robustness. Long-term studies have produced 57 

mixed findings regarding how robustness has changed over time in crops. An economic study of 58 

global wheat and maize yields produced since the Green Revolution show an increase in 59 

robustness over time (Gollin, 2006). In contrast, an agronomic study of a single, highly 60 

controlled, long-term site found both barley and wheat yields decreased in robustness, dependent 61 

on fertility management (Macholdt et al., 2021). A breeding study considering the impact of a 62 

small number of specific maize hybrids released over five decades, found increased robustness is 63 

associated with greater yields, due to improved stress tolerance (Tollenaar & Wu, 1999). 64 



 

 

Additional information is needed to understand how breeding, location, and management 65 

influence yield robustness. 66 

To explore how breeding affects robustness, we examined historical data collected on winter 67 

wheat grown in Montana. In Montana, winter wheat is one of the main cereal crops with a 68 

planting area of over 627,000 hectares in 2020, accounting for nearly $400 M in production 69 

value (National Agricultural Statistics Service, 2021). Since 1949, Montana’s winter wheat 70 

breeding program grew winter wheat systematically at multiple research centers across the state, 71 

collecting yield data. With these data, we examined yield year-to-year variability. We inspected 72 

how yield robustness varies with geographic location. Given the important role of weather 73 

variability from year-to-year at a specific location, we examined the impacts of temperature and 74 

precipitation on yields and its robustness. We propose the role of breeding in yield robustness 75 

based on examining the most grown Montana Agricultural Experiment Station varieties 76 

developed over the last 100 years. 77 

MATERIALS AND METHODS 78 

Data sets 79 

Yield data 80 

Winter wheat yields were obtained from the Montana Winter Wheat Breeding Program, reported 81 

as bushel per acre and converted to kg ha-1. The 48 varieties included those that have been 82 

planted across the state (Table S1, National Agricultural Statistics Service 1958-2019). The data 83 

include the yields of released winter wheat varieties tested in Montana from 1949 to 2019 at six 84 

research centers with the following soil types: Northern Agricultural Research Center with silt 85 

loam (48° 30′, 109° 48′; Havre, MT), Northwestern Agricultural Research Center with silt loam 86 

(48° 10′, 114° 15′; Kalispell/Creston, MT), Central Agricultural Research Center clay loam (47° 87 



 

 

03′, 109° 57′; Moccasin, MT), Southern Agricultural Research Center with silt loam (45° 55′, 88 

108° 15′; Huntley, MT), Eastern Agricultural Research Center with clay loam (47° 40′, 104° 08′; 89 

Sidney, MT), and the Post Research Farm silt loam (45° 41′, 111° 00′; Bozeman, MT). Extreme 90 

winterkill resulting in zero yields were excluded from all analyses as outliers (Reckling et al., 91 

2021). Only dryland results were included with no additional irrigation. 92 

 93 

Weather data 94 

Weather data was obtained using the web interface and search capabilities provided by the 95 

National Oceanic and Atmospheric Administration’s National Centers for Environmental 96 

Information (https://www.ncdc.noaa.gov/cdo-web/search), accessed April 1, 2021. The datasets 97 

chosen were “Global Summary of the Month” and “Global Summary of the Year” ranging from 98 

January 1949 to December 2019. Weather stations were chosen for their proximity to the 99 

research centers and data availability. Data were obtained from Kalispell Glacier Airport (Station 100 

IDUSC00244558), Sidney (Station ID USC00247560), Huntley Experimental Station (Station 101 

ID USC00244345), and Moccasin Experiment Station (Station ID USC00245761). In Bozeman, 102 

two stations were needed to obtain desired weather data. From January 1949 to October 1966, 103 

data were obtained from Bozeman Montana State University (Station ID USC00241044), and 104 

from November 1966 to December 2019, data were obtained from Bozeman 6 W Experimental 105 

Farm, (Station ID USC00241047). In Havre, two stations were used to obtain data spanning the 106 

focus period: January 1949 to February 1961 Havre Weather Bureau (Station ID USW00024035) 107 

and March 1961 to December 2019 Havre Airport (Station ID USW00094). From each weather 108 

station, four metrics of weather were obtained: monthly average (TAVG), monthly minimum 109 

(TMIN), and monthly maximum (TMAX) air temperatures and monthly cumulative precipitation 110 



 

 

(PRCP). The percentage data coverage across the weather metrics follows: Bozeman-98.5%, 111 

Havre-100%, Huntley-96.4%, Kalispell-99.4%, Moccasin-95.8%, and Sidney-97.8%. 112 

 113 

Statistical analyses 114 

All statistical analyses were performed using R version 4.1.0 (R Development Core Team, 115 

2011). 116 

Yield analyses 117 

To examine the change in yields over time, we calculated the mean yield each year across 118 

varieties at the six research centers. We used a linear model to evaluate the rates of change when 119 

calculating the mean across locations per year and at each location separately.  120 

 121 

To examine the change in yield robustness over time, we utilized multiple approaches. First, we 122 

visually examined the residuals of the linear model capturing the relationship between yield and 123 

year. Second, we calculated the coefficient of variation (CV = 	 !
"#
) of yield of a variety across the 124 

years it was grown (Ray et al., 2015). Because the number of years a variety was tested was 125 

positively correlated with the CV (Fig. S2), we employed two alternative methods to account for 126 

this relationship. First, we observed a threshold in the impact of number of years grown on the 127 

CV and used a quadratic plateau model to estimate the transition point, implemented with the 128 

nlstools package in R (Baty et al., 2015). The 95% confidence interval for the transition point 129 

was 6.57-12.14, with an estimate of 9.36. Therefore, we used a threshold of greater than 9 years 130 

grown to estimate CV values for varieties. In a second approach, data were sampled with 131 

replacement to eliminate effect of number of years sampled on the CV. Varieties were filtered to 132 

those that included measurements from at least 5 years. For each bootstrap sample, five years of 133 



 

 

yield data were selected for each variety. The linear relationship between the CV of the 134 

bootstrapped samples and release year was computed. This process was repeated 1000 times, and 135 

the distributions of b, R2, and p-value for b for each bootstrapped sample was examined. 136 

Bootstrap estimates were calculated pooling across locations as well as for each individual 137 

location. 138 

 139 

Weather analyses 140 

To understand trends in weather metrics between 1949-2019, we examined annual mean values 141 

obtained for each location. The relationship between metrics and year were modeled with linear 142 

regression for each location. The change in each weather metric was calculated per decade using 143 

the slope estimate. Annual weather variability was examined by calculating a “moving CV” with 144 

a moving window of 30 years using the annual mean values for each weather metric.  145 

 146 

Seasonality in the weather metrics were also examined at each location to understand if certain 147 

months were highly variability in temperatures relative to others. The monthly means were 148 

calculated between the years of 1949-2019. Weather variability over time was examined by 149 

using the statistic CV after transforming the data to only include positive values by adding 30 to 150 

all values. The CV was then calculated for the monthly weather metrics obtained for each month.  151 

 152 

Combined weather and yield analyses 153 

Because weather data were available each year at each location, we examined the relationship 154 

between the weather metrics and yields. Using principal components analysis, we examined how 155 

the four weather metrics, release year (capturing the impact of breeding), and year grown 156 



 

 

(capturing, at least, changes in agronomic practices) were acting in concert. We then calculated 157 

the residual CV (CVres) (Kukal & Irmak, 2018; Schou et al., 2020) by fitting a linear model with 158 

yields as the response variable and using the mean annual temperature and cumulative 159 

precipitation, which contributed most strongly to PC1 and PC2, and their interaction as the 160 

explanatory variables. Using the residuals from this model after transformation to positive values 161 

by adding the minimum residual, the CVres was calculated for each variety. Next, the relationship 162 

between CVres and release year was examined using linear regression.  163 

RESULTS 164 

Montana wheat yields have increased with varied impact on yield robustness 165 

To assess how winter wheat yields have changed historically, we focused on the most tested 166 

varieties in Montana’s winter wheat breeding program since the 1920s. We examined forty-eight 167 

varieties ranked on acreage planted in Montana after their release (Table S1, Montana 168 

Agriculture Statistics Service 1958-2019), assessing the results of yield trials across six research 169 

centers representing different production environments in Montana. We first examined winter 170 

wheat’s interannual improvement between 1949-2019 by calculating the mean yield each year. 171 

On average across the six locations, yields increased 43.55 kg ha-1 yr-1based on fitting a linear 172 

model (Fig. 1a). Depending on location, yields showed over a five-fold average improvement 173 

over the last 70 years (Fig. 1b). Huntley and Kalispell had the largest year-over-years gains (Fig. 174 

1c). These yield changes are not only dependent on breeding improvement but also on 175 

improvement in agronomic practices (Lanning et al., 2010) and changing climatic conditions and 176 

atmospheric CO2 (McGrath & Lobell, 2013). 177 



 

 

 178 

Fig. 1 Winter wheat yield increases across Montana from 1949-2019  179 

a) The average yields from Montana’s released varieties from breeding nurseries across six research centers 180 

is shown from 1949-2019. The linear regression fit is indicated with the solid black line, with adjusted R2 181 

and p-values for the slope shown. b) Yields from 1949-2019 is shown for each research station. The linear 182 

regression fit is indicated with the solid black line, with adjusted R2 and p-values for the slope displayed. c) 183 

The linear regression coefficient for yield and year for each research center from panel b) is indicated with 184 

the color scale for the corresponding county. 185 

 186 

In addition to observing increased yields over time, we hypothesized increased year-over-year 187 

yield stability. To distinguish stability year-over-year within a location from the more common 188 

definition of stability across geographic locations (Becker & Leon, 1988; Finlay & Wilkinson, 189 

1963), we will use the term robustness to refer to year-over-year stability. In other words, within 190 

a single geographic location we can describe how robust yields are to yearly fluctuations in 191 

weather, plot location at a research center, biotic stresses, and more. We hypothesized that the 192 

residuals of the linear regression models estimating the change in yield over time at each location 193 

would decrease with time. However, the residuals showed little change over time, except at 194 

Kalispell, where they instead appeared to increase, contrary to our prediction (Fig. S1). These 195 



 

 

data suggest that the collective impacts of changing agronomic practices, climate, breeding, etc. 196 

are not resulting in greater yield robustness, with Kalispell decreasing in robustness, and other 197 

locations unchanging. 198 

 199 

The association of variety release year and yield robustness depends on location 200 

Varieties were pooled together in the previous analyses, potentially obscuring the impact of 201 

breeding on robustness. Given that wheat is primarily released as inbred varieties, the selection 202 

pressure to increase yields during breeding may also tend to select genotypes with more narrower 203 

trait distributions (Gavrilets & Hastings, 1994; Wagner et al., 1997)—or more predictable 204 

genotypes. We first tested whether breeding could be a component affecting yield robustness by 205 

comparing the release year of a variety to its robustness using the statistic CV. We calculated the 206 

yield robustness for each variety across years planted at a single location; however, we observed 207 

that robustness was sensitive to the number of years it was grown (Fig. S2).  208 

 209 

To reduce or eliminate the impact of number of years grown on robustness, we used two 210 

approaches. First, based upon an estimated plateau in decreased robustness due to number of 211 

years grown (Fig. S2a), we set a conservative threshold of greater than 9 years planted for 212 

inclusion. This approach reduced the number of varieties included and eliminated those most 213 

recently publicly released from further analysis, because they have not existed long enough to be 214 

tested for 10 years. With these filtered data, we detected a very weak negative linear relationship 215 

between CV and release year among locations in this filtered dataset (Fig. 2a, Table 1).  216 



 

 

 217 

Fig. 2 Yield CV for varieties decreases with release year 218 

a) The yield CV was calculated for each variety at each research station for those grown at least 10 years. 219 

The solid line indicates the fit of yield CV and release year of corresponding variety from linear regression. 220 

b) The yield CV for each variety is shown. Black lines indicating the yield CV from each research center 221 

for which the variety was grown at least 10 years. The red lines indicate the mean yield CV for each 222 

variety, and the dotted black line shows the grand mean yield CV. The varieties are arranged in order of 223 

release.  224 

TABLE 1 Linear regression of variety yield CV on variety release year  225 

Location n b SEb R2 
All 138 -0.001071*** 0.0003359 +0.0651 

Havre 24 -0.002589*** 0.0004373 +0.5969 

Sidney 17 -0.003069*** 0.0009891 +0.4878 

Huntley 25 -0.001776*** 0.0006205 +0.2306 

Moccasin 26 -0.000475 0.0003297 +0.04118 

Bozeman 27 -0.000340 0.0004239 -0.01395 

Kalispell 19 +0.003141* 0.001137 +0.2693 
** Significant at the .01 probability level, *** Significant at the .001 probability level. 226 

Given the yield of a variety is sensitive to geographic location in which it was grown, we 227 

hypothesized that robustness of a variety also would depend on location. We examined the 228 

location-specific yield CV values for varieties grown over nine years and observed that the CV 229 



 

 

was not consistent across locations and could vary widely (Fig. 2b). Only two varieties, 230 

Yellowstone and Judee, showed CV values across all locations that were less than the overall 231 

mean. The impact of location on the relationship between release year and robustness suggests 232 

multiple potential explanations, including that the environmental conditions experienced at each 233 

locations drove the specific yield CV patterns observed over time. Indeed, when examining 234 

robustness within specific locations, we found different tendencies due to location between the 235 

relationship of release year and yield CV. Havre and Sidney showed the strongest relationship 236 

between release year and robustness (Fig. 3a, Table 1). Kalispell exhibited a pattern opposite to 237 

the other locations with robustness decreasing in more recently released varieties (Fig. 3a).  238 

 239 

Fig. 3 The relationship between yield CV and release year of a variety depends on location 240 

a) The Yield CV was calculated for each variety at each research station for those grown at least 10 years. 241 

The solid line indicates the fit of yield CV and release year of corresponding variety from linear regression. 242 

b) The yield CV is shown for each variety grown at least ten years at each research station (black lines). 243 

The mean yield CV for each research station is indicated with the red lines, and the grand mean is indicated 244 

with the dotted black line. 245 

 246 

The threshold-based approach used above to determine the minimum number of years from 247 

which to calculate robustness may be biased. It is possible that lines that were planted for many 248 



 

 

years may simply be more robust due to breeder selection. Therefore, we also performed a 249 

second, similar analysis using bootstrapping to understand the relationship between robustness 250 

and release year. In this approach, we calculated robustness using five randomly chosen yield 251 

values for each released line measured at least five years. Then we modelled the relationship 252 

between release year and robustness. We performed 1000 bootstraps and examined the summary 253 

statistics’ distributions for evidence of a relationship between release year and robustness. Using 254 

the data across locations, we observed a negative relationship between CV and release year 255 

(mean of 1000 bootstraps: b = -0.0125, P = 0.0197, R2 = 0.179, Fig. S3a-c), a very similar 256 

outcome as the threshold approach. Next, we performed this same bootstrap procedure for each 257 

location (Fig. S3d-i). Similar to the previous approach using a 10-year filter, we again found 258 

support for a negative relationship between release year and robustness in Havre and Huntley. At 259 

Kalispell and Sidney, the indication of relationships between robustness and release year was not 260 

as evident; the data do not support a relationship. 261 

 262 

To begin to understand why locations showed differences in the relationship between robustness 263 

and release year, we first examined the range of CV values. We noted that the CV varied with 264 

geographic location, with higher CV values at Huntley, Sidney, and Havre (Fig. 3b). We suspect 265 

that to observe a relationship between CV and release year, locations must have environments 266 

that have weather and field perturbations to be overcome, and the absence of this variability 267 

would prohibit observing a pattern. Thus, this analysis suggests that breeding has contributed to 268 

improved robustness in a manner that is dependent on location or can only be observed in certain 269 

locations or environmental conditions. 270 

 271 



 

 

We also found evidence that biotic perturbations influenced levels of robustness in a location-272 

specific manner. At Kalispell, Decade exhibited the lowest robustness in yield of the entire 273 

dataset (yield CV > 0.6, Fig. 3b). This is due to very large range of yields produced over 12 years 274 

of testing, ranging from 605.25 kg ha-1 to 9280.5 kg ha-1. The low yields for Decade were 275 

location specific and not observed at other sites. Examining the breeder’s notes, we found that 276 

second lowest value (1076 kg ha-1) measured was associated with stripe rust at Kalispell. The 277 

lowest value (605.25 kg ha-1) was the following year. In addition to the abiotic, agronomic 278 

practices, and breeding impacts considered, biotic stresses also can greatly impact the robustness 279 

measured. In this case, however, we observe that the robustness is associated with genotype, and 280 

conclude that Decade represents a genotype particularly susceptible relative to others tested at 281 

the same location and year (Kertho, 2014; Riveland et al., 2011) .  282 

 283 

Assessment of weather variability across locations 284 

We hypothesized that the differences in yield robustness between locations in part reflects the 285 

weather conditions experienced by a variety the years it was grown. Therefore, we first assessed 286 

mean weather patterns at the six locations at multiple scales, focusing on temperature and 287 

precipitation, both of which are critical input to crop yield (Kukal & Irmak, 2018). Between 288 

1949-2019, the six locations varied in average annual temperature and precipitation, with 289 

Huntley having the highest average annual temperatures and Havre having the lowest 290 

precipitation (Fig. S4a-d). At the same time, all six locations increased in maximum annual 291 

temperatures between 1949-2019 (Table 2). Sidney had the largest average annual temperature 292 

change between 1949 and 2019, increasing 0.41°C per decade. Sidney, Bozeman, and Moccasin 293 

also had increasing minimum average annual temperatures during this time. Precipitation trends 294 



 

 

also varied per location. Bozeman and Moccasin, which tended to have higher precipitation 295 

among these locations, were unchanged or tending towards decreasing during this time period, 296 

but Sidney had an annual average precipitation increasing 1.33 cm per decade between 1949-297 

2019. For a better resolved perspective of seasonal temperatures at each location, we calculated 298 

the monthly means from 1949-2019 (Fig. S4e-g). Havre and Sidney experienced the most 299 

extreme temperatures, not only facing high mean, minimum and maximum temperatures in the 300 

summer months, but also the lowest temperatures in the winter months relative to the other four 301 

locations. Monthly total precipitation means were also calculated for each month from 1949-302 

2019 (Fig. S4g). Kalispell has higher rainfall, especially during the winter and early spring, 303 

relative to the other locations. Total monthly precipitation varied much more from month to 304 

month and across locations relative to temperature (Fig. S4d).  305 

TABLE 2 Linear regression coefficients from regression of weather metrics on year from 1949-2019. 306 
 b ´ 10a 

Location Temperature 
annual 
mean  

Temperature 
annual 

maximum  

Temperature 
annual 

minimum 

Precipitation 
annual 

cumulative 
Havre 0.09212 0.17410* 0.01086 0.00453 
Sidney 0.41412*** 0.39452*** 0.43258*** 1.33099* 
Huntley 0.15281* 0.19018* 0.11719 0.80292 
Bozeman 0.16543** 0.19713** 0.13363** -0.15007 
Moccasin 0.22628** 0.19209* 0.24095*** -0.03251 
Kalispell 0.11965** 0.16146** 0.07672 0.19277 
* Significant at the .05 probability level, ** Significant at the .01 probability level, *** Significant at the .001 307 
probability level. aTo indicate trends per decade, yearly coefficients are shown multiplied by 10. 308 
 309 

Using these monthly and annual weather metrics, we examined weather variability over time in 310 

the dataset. We calculated monthly CV statistics for the mean, minimum, and maximum 311 

temperatures, and the precipitation at each location from 1949-2019 (Fig. 4a-d). For all three 312 



 

 

summaries of temperature, we observed high CV in the fall and winter months, with a peak in 313 

January. Across locations, Havre and Sidney ranked as having the highest CV values during 314 

these winter months. In contrast, during the spring and summer months of winter wheat growth, 315 

the temperature CV were indistinguishable among locations, indicating little year-over-year 316 

variation in monthly temperatures. These patterns suggested that if year-over-year variability is 317 

impacting yield robustness, the source may be variation in the fall and winter months. Because 318 

winter wheat is planted in the fall and vernalizes over winter, temperature throughout winter also 319 

has direct impacts on the plants, including winter kill. Year-over-year precipitation showed a 320 

different pattern from temperature, with more CV values ranging from 0.40 – 1.15, again with 321 

Sidney and Havre exhibiting a tendency for more variability.  322 

 323 

Fig. 4 Climate metrics show location-specific patterns in variability 324 

a-d) The CV of monthly values from 1949-2019 for a) mean, b) maximum, c) minimum temperatures, and 325 

d) total precipitation are shown for each research center. e-h) CV values calculated from a 30-year moving 326 

window are displayed for each location for the average e) mean, f) maximum, g) minimum temperatures, 327 

and h) total precipitation. 328 

 329 

Overall Montana’s weather variability is projected to increase based on climate models 330 

(Whitlock et al., 2017). We used two approaches to examine historical trends in weather 331 



 

 

variability at the six locations examined. First, we calculated a “moving CV”, based upon the 332 

annual temperature and precipitation values, using window sizes of 30 years, a standard in 333 

calculating climate normal (U.S. Climate Normals, 2021). Contrary to our expectation that 334 

weather variability is generally increasing, we observed that historic weather variability 335 

depended on location (Fig. 4e-h). Fitting a linear model to the moving CV values, we found that 336 

Bozeman weather in fact was converging for minimum temperature variability but showed no 337 

change for other weather metrics (Table 3). At Kalispell, all measures of temperature were 338 

converging, with precipitation variability remaining steady, consistent with previous patterns 339 

observed in Montana (Zhang et al., 2021). At Havre, Sidney, Huntley and Moccasin, the 340 

different weather metrics showed mixed patterns of variability (Table 3). Sidney, for example 341 

was diverging in all temperature metrics but converging for precipitation. Moreover, an abrupt 342 

upward variability shift in all three temperature metrics occurred in Sidney in approximately 343 

1986 (Fig. 4e-g). We confirmed this shift was not due to changes in equipment at the Sidney 344 

weather station or missing weather data (only found in 2010s), but we have not identified sources 345 

of this shift. Out of the 24 weather-location combinations, eight showed convergence in weather 346 

variability, eight with divergence, and eight with no change. 347 

 348 
  349 



 

 

TABLE 3 Linear regression coefficients from 30-year moving window CV of multiple weather metrics 350 
on year from 1954-2004. 351 

 b 

Location 

Temperature 
annual 

mean CV 

Temperature 
annual 

maximum CV 

Temperature 
annual 

minimum CV 

Precipitation 
annual 

cumulative CV 
Havre 3.625´10-5 1.947´10-4** -2.460´10-4** 1.6190´10-3** 

Sidney 3.411´10-4** 4.423´10-4** 2.817´10-4** -1.2177´10-3** 

Huntley -2.430´10-5 -1.332´10-4** 1.390´10-4** 1.729´10-4 

Bozeman -4.244´10-5 7.501´10-5 -2.238´10-4** 1.507´10-4 

Moccasin 1.766´10-4** 2.102´10-4** -5.304´10-5 -5.766´10-4** 

Kalispell -1.069´10-4** -7.245´10-5* -2.398´10-4** -1.416´10-4 
* Significant at the .05 probability level, ** Significant at the .01 probability level. 352 
 353 

Accounting for weather demonstrates remaining geographic influences on robustness 354 

Weather, breeding, and agronomic practice are expected to impact yield CV at all locations but 355 

are not independent of one another. For example, while year grown reflects improvement in 356 

agronomic practices, it also captures increasing temperatures and is strongly correlated to release 357 

year. Therefore, we first examined the relationships among release year (to reflect breeding), 358 

year grown (to reflect agronomic practice at least), and the four weather metrics using principal 359 

component analysis. The first dimension described 47.8% of the variation (Fig. 5a), primarily 360 

capturing the three temperature metrics, along with a substantial contribution of year and release 361 

year. The second dimension was driven by year and release year, representing an addition 27.4% 362 

of the variation, which showed a close visual association with yield increase, as expected (Fig. 363 

5b). The third dimension describing 17.4% of the variation primarily represented precipitation 364 

differences (Fig. 5a). Because of the inter-relatedness of weather, agronomic practices, and 365 

breeding due to their correlations with time, we isolated their potential impacts on yields. A 366 

partial correlation analysis showed that after accounting for the correlations between release 367 



 

 

year, weather metrics, and year, a remaining correlation of r = 0.0583 was remaining between 368 

yield and release year of varieties examined (Table 4) though the strongest correlation with yield 369 

was with precipitation (r = 0.29).  370 

 371 

Fig. 5 Non-independence of multiple metrics affecting robustness  372 

a) Bar chart of percent of variance explained per principal component. b) Loadings of metrics to each 373 

component (labeled Dim1, Dim2). c) Biplot for each variety tested, colored by yield. 374 

  375 



 

 

TABLE 4 Partial correlationsa analysis among yield and potential explanatory factors, all locations 376 

  (ºC)   

 Yield 

Temperature 
annual 
mean 

Temperature 
annual 

maximum 

Temperature 
annual 

minimum 

Precipitation 
annual 

cumulative 
(cm) Year 

Temperature 
annual 
mean  

-0.0013      

Temperature 
annual 

maximum 

-0.0024 0.9994***     

Temperature 
annual 

minimum 

0.0112 0.9984*** -0.9965***    

Precipitation 
annual 

cumulative  

0.2929*** 0.0548* -0.0682** -0.0400   

Year 0.2026*** 0.0257 -0.0238 -0.0225 -0.1124***  

Release year 0.0583* -0.0220 0.0218 0.0202 0.0293 0.8551*** 

* Significant at the .05 probability level, ** Significant at the .01 probability level, *** Significant at the .001 377 
probability level. aPearson correlation coefficients given. 378 
 379 

With this firmer basis of how yields are collectively affected by weather, we next aimed to parse 380 

out the impact of weather for influencing yield robustness in these data. We revisited the filtered 381 

dataset with years grown greater than nine, to avoid the impact of years grown. We obtained the 382 

corresponding average annual temperature and annual average precipitation for each variety 383 

during the specific years it was grown. Due to missing weather station data, we were unable to 384 

include data for some years. We modeled how yields at each location were affected by average 385 

temperature and precipitation, the largest contributors to principal components 1 and 3, as well as 386 

their interaction. Finally, we recalculated each varieties’ yield robustness as the CVres based on 387 

the residuals of the models following the approach by Schou et al (2020). Overall, we observed 388 

similar patterns as before. Havre continued to show a strong negative relationship between 389 



 

 

release year and CVres even after removing the impact of average temperature and precipitation 390 

(Fig. 6). Sidney and Huntley showed less strong relationships once removing the impact of 391 

weather. We detected no relationship between release year and CVres in Bozeman, and in 392 

Kalispell, the opposite pattern was again found. In contrast, we noted a non-linear relationship in 393 

Moccasin, with a decrease in CVres after the year 2000. Overall, even after some correction for 394 

weather differences, we continued to observe location specific impacts on robustness, pointing to 395 

many other factors involved in influencing patterns of robustness over time. 396 

 397 

Fig. 6 The relationship between yield CVres and release year of a variety is dependent on location 398 

After modeling the impact of average temperature and precipitation on yield, yield CVres was calculated at 399 

each research station for each variety grown at least 10 years and plotted against the variety release year. 400 

Adjusted R2 and p-values for the regression coefficient are displayed.  401 

 402 

DISCUSSION 403 

Historical data collected from specific varieties of winter wheat grown at defined locations in 404 

Montana enable studies of the change in year-over-year stability, or robustness, of yields over 405 



 

 

time. It is important to consider to which perturbations the trait is robust (Wagner, 2007). 406 

Examining the robustness of repeated organs formed on an individual, such as tillers in wheat, 407 

reveals robustness to stochastic errors of development. Examining individual plants within a 408 

single plot reveals robustness to microenvironmental variation as well as developmental 409 

differences. On a larger scale, measuring robustness across multiple plots captures robustness to 410 

field variation, and finally, robustness has also been considered across years, revealing 411 

robustness to weather or variation in agronomic practices at the very least. In this experiment, we 412 

measured aggregate robustness across these levels (Falconer & Mackay, 1996) and detected 413 

tendencies for robustness to increase over time, dependent on breeding, but this was dependent 414 

on geographic location. 415 

 416 

A simple examination of the residuals of a linear fit of yield over time as a proxy for robustness 417 

did not point to improved robustness over time. This approach cannot distinguish varieties, 418 

agronomic practices, weather changes or other influences on yield. For example, improved 419 

management and other non-genetic inputs at these research sites are known to affect yields. A 420 

study of spring wheat at these six research centers from 1950-2007 found that the variety 421 

“Thatcher” showed increased grain yields throughout this period, ranging from 14.8 kg ha-1 yr-1 422 

in Moccasin to 50.8 kg ha-1 yr-1 in Kalispell (Lanning et al., 2010). However, examining 423 

robustness of each variety separately by calculating a standardized variance using the statistic 424 

CV showed that more recently released varieties tend to be more robust (Fig. 2, 3). Importantly, 425 

estimating robustness requires a sufficiently large dataset. We found that estimates of robustness 426 

using the statistic CV was dependent on the number of years a variety was grown. If a variety 427 

was only grown for a few years, the CV was not representative of robustness. We detected a 428 



 

 

plateau of approximately 10 years of data as sufficient to estimate robustness using CV (Fig. 429 

S2a). We speculate that this plateau represents the number of years needed for a variety to 430 

experience an extreme weather event on average.  431 

 432 

Geographic location was a strong indicator of whether robustness increased with breeding. The 433 

relationship between robustness and release year is observed at Havre, Sidney, and Huntley (Fig. 434 

3a) and not at the other locations. We noted several potential shared characteristics at Havre, 435 

Sidney and Huntley that may contribute to these locations demonstrating improved robustness. 436 

First, Havre, Sidney, and Huntley had the lowest starting yields (Fig. 1c) in the 1950s. It is 437 

possible that these locations had the most to gain in both yield mean and robustness relative to 438 

the other locations. Accordingly, the CV values across varieties tended to be higher and cover a 439 

broad range at these locations (Fig. 3b), relative to Moccasin and Bozeman. Notably, Havre, 440 

Sidney, and Huntley represent where most of the wheat is grown in the state by producers 441 

(National Agricultural Statistics Service, 2021), possibly reflecting a focus of breeders to 442 

optimize wheat’s growth to those locations and/or that robustness improvement had the most 443 

impact in locations with more extreme temperatures. Indeed, Havre, Sidney, and Huntley have 444 

had the highest summer temperatures, with Sidney and Havre also having the lowest winter 445 

temperatures (Fig. S4e-g). The greater tolerance of perturbations at these highly variable 446 

locations is consistent with observations in other crops, such as maize yields increasing due to 447 

reduced plant-to-plant variability (Tollenaar & Wu, 1999). Kalispell stands out from the other 448 

locations that comprise the primary focus of the breeding program and represents a region of the 449 

state more like eastern Washington. The selected lines are not well-adapted to this region, and 450 

the decrease in robustness in Kalispell may reflect this. Pathogen and herbivore pressure also 451 



 

 

vary over the years and were not considered in this study. Wheat stem sawfly and stripe rust have 452 

devastating impacts on yields that can be location specific and breeding has focused on 453 

producing resistant varieties that likely contribute to improved robustness. Finally, we also note 454 

that management also did vary across research centers: during this period, Havre and Huntley 455 

transitioned from tillage to chemical fallow, increasing soil moisture (Lenssen et al., 2007), 456 

while other sites maintained tillage, including Sidney.  457 

 458 

Weather conditions greatly impact yields of crops, evidenced by both the great impacts that 459 

droughts and floods have on yields (Ray et al., 2015) within a region and how wheat yields are 460 

sensitive to one-degree changes in temperatures in controlled conditions (Lanning et al., 2010). 461 

We surmised that variability in weather conditions from year to year should be reflected in the 462 

robustness of crops. Upon examining climate patterns of temperature and precipitation, we found 463 

that temperatures are increasing at all research centers, and precipitation is unchanging or 464 

increasing (Table 2). Second, the variabilities of weather metrics showed patterns of 465 

convergence, divergence, and no change (Table 3). No general statements could be made to 466 

relate change in robustness in yields as dependent on weather variability. After removing the 467 

effect of weather metrics assessed, we continued to detect relationships between robustness and 468 

release year. Havre continued to show a strong negative relationship between release year and 469 

CVres. Sidney and Huntley showed less strong relationships once removing the impact of 470 

weather. In the case of Sidney, this possibly reflects a tendency towards less variable 471 

precipitation (Fig. 4h, pink line) and at Huntley, this could reflect convergence in maximum 472 

temperatures (Fig. 4f, orange line).  473 

 474 



 

 

Overall, in this historical wheat dataset spanning 70 years, we can detect a signal that yield 475 

robustness is dependent on breeding and location across many levels of perturbations, from 476 

within plant to across years. Because of the extensive confounding of management and 477 

environmental conditions, such as global CO2 levels, the impact of breeding could best be tested 478 

compared by growing historical varieties at the same site and time for multiple seasons to 479 

estimate robustness. This work reveals how breeding influences robustness and how environment 480 

influences its evolution—an inadvertent evolutionary selection experiment. 481 
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