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pollutant, by reducing systematic bias in estimating PM2.5 empirically from speciation provided by MERRA-2 using a ML
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various meteorological parameters and aerosol species simulated by MERRA-2 and ground measurements from Environmental
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and reduced mean bias in the 0-10 μg m-3 range. We also used the Random Forest ML model for each EPA region using one year

of collocated datasets. The resulting ML models for each EPA region were validated and the aggregate data set has a Pearson
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Abstract 

Health and environmental hazards related to high pollutant concentrations have become a serious 

issue from the perspectives of public policy and human health. The objective of this research is to 

improve the estimation of grid-wise PM2.5, a criteria pollutant, by reducing systematic bias in 

estimating PM2.5 empirically from speciation provided by MERRA-2 using a ML approach. We 

present a unique application of machine learning (ML) for estimating hourly PM2.5 concentrations 

at grid points of Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2). The model was trained using various meteorological parameters and aerosol species 

simulated by MERRA-2 and ground measurements from Environmental Protection Agency (EPA) 

air quality system (AQS) stations. monitors. The ML approach significantly improved 

performance and reduced mean bias in the 0-10 µg m-3 range. We also used the Random Forest 

ML model for each EPA region using one year of collocated datasets. The resulting ML models 

for each EPA region were validated and the aggregate data set has a Pearson correlation of 0.88 

(RMSE = 4.8 µg m-3) and 0.82 (RMSE = 5.8 µg m-3) for training and testing, respectively. The 

correlation (and RMSE) increased to 0.89 (4.0), 0.95 (1.6), 0.94 (1.1) for daily, monthly, and yearly 

average comparisons. The results from initial implementation of the ML model for global region 

are encouraging but require more research and development to overcome challenges associated 

with data gaps in many parts of the world. 

Plain Language Summary: 

PM2.5 is one of the most important pollutants that is monitored globally since it is both a serious 

health and environment hazard. The monitoring helps in understanding the air quality and provide 

advisory to public. This advisory becomes more important in the scenarios of natural or 

anthropogenic events where there is a sudden increase in its concentration. Although a ground-

based monitor can detect a high episode, its spatial extent, however, cannot be detected. In order 

to understand the spatial spread, numerical model outputs like MERRA-2 provide a good 

estimation of various meteorology and aerosols at horizontally gridded location. However, due to 

coarse resolution and averaging of large grid box, results in certain uncertainties which leads to 

biases. In this study we implemented a machine learning model to provide better estimation of 

PM2.5 at grid-level using MERRA-2 as base model. The developed ML model estimated the PM2.5 

with good accuracy and very low biases.  

Keywords: ML, Random Forest, grided estimation, MERRA-2, PM2.5 



 

 

1. Introduction 

Deteriorating air quality has emerged as a major concern of the twentieth century since it impacts 

global climate change and health hazards, and significantly influences socioeconomic policies. Air 

pollution claims three times more lives than road traffic accidents globally (Myllyvirta, 2020; 

World Health Organization, 2018). In addition, a recent report from the Centre for Research on 

Energy and Clean Air (CERA) estimates economic costs resulting from air pollution to be 2.9 

trillion USD (Myllyvirta, 2020). According to the report, in 2018, PM2.5 (mass concentrations of 

fine particle less than 2.5 µm in aerodynamic diameter) caused 4.5 million premature deaths and 

was responsible for 1.8 billion days of work absence. In another report, the EPA (US EPA, 2015) 

estimated that after implementation of the Clean Air Act of 1970, 2.3 million premature deaths 

were avoided in the next 40 years. The report also estimated that the cost to benefit ratio was $1 

to $30 for moderate estimates; the high estimate was $1 to $90, and the low estimate was $1 to $3. 

These estimates imply that economic benefits exceeded costs by at least a factor of 3. Therefore, 

developing policies specific to environmental pollutants is of paramount importance, and 

estimating the quantity and impact of pollutants is a necessary step. 

With recent advancements in measurement techniques, remote sensing observations, ground and 

surface observations, determining the atmosphere’s composition (physical and chemical) and its 

constituents (ozone, SO2, PM2.5, NOx etc.) has become easier. Despite these advancements, 

generating a spatially complete dataset is still challenging. It is also difficult to collect in-situ 

measurements in remote geographical locations. Deploying a uniformly and densely distributed 

network of stations is not cost effective, and such a network would be demanding to manage. 

Satellite Remote sensing has its own limitations such as measuring under cloud cover (Christopher 

& Gupta, 2010), retrieving data in snowy regions, scanning complex surfaces, and detecting heavy 

aerosols layers near sources (Hoff & Christopher, 2009). Significant effort and resources have 

been devoted to developing systems that improve grid-wise estimation of atmospheric constituents 

and the state of the atmosphere. However, these systems have been limited by the quality and 

amount of data (Ghahremanloo et al., 2021) and by the performance of numerical and/or chemical 

transport models (Pouyaei et al., 2020). Addressing these limitations incorporates both in-situ 

measurements and remote sensing products into data assimilation techniques (Bocquet et al., 2019; 

Jung et al., 2019), which are limited by the availability of the respective data products. When 

combined with numerical modeling and data assimilation, these measurement methods provide the 

true state of the atmosphere at any given point in space and time. Over several decades, studies 

have reported significant advances in measuring and assessing surface features (Mulla, 2013) as 

well as forecasting and managing air quality (Mhawish et al., 2018). Satellite remote sensing data 

sets have contributed essential data pertaining to the global distribution (Christopher and Gupta, 

2020; Lee et al., 2016; Martin, 2008), evolution (Q. Zhang et al., 2012), and transport (Kim et al., 

2017; Y. Wu et al., 2018) of atmospheric pollutants. As such, methods to estimate surface 

concentrations of PM2.5 between in-situ measurement stations are essential to address the accuracy 

limitations of model simulations and spatial limitations of air quality stations.  

Several reanalysis techniques like Modern-Era Retrospective analysis for Research and 

Applications, Version 2 (MERRA-2) developed by NASA’s Global Modeling and Assimilation 

Office (GMAO) provide grid-wise concentrations of various aerosols contributing to the 

concentration of PM from 1980 to current. The concentrations of PM2.5 and PM10 can be estimated 

using empirical relationships from the aerosol products of the reanalysis (Buchard et al., 2016b). 

The reanalysis products provide the concentrations of the particulates (speciation). These 



 

 

particulate concentrations can be utilized to estimate PM2.5 (equation 1) and PM10 concentrations 

empirically. Many studies have utilized various methods to impute missing data by using local 

linear histogram‐matching (Storey et al., 2005), regression models (Eslami, Salman, et al., 2019; 

Ghahremanloo et al., 2021; Rulloni et al., 2012), inpainting algorithms (Bugeau et al., 2010; Liu 

et al., 2018), geostatistical approaches such as Kriging (Yu et al., 2011; C. Zhang et al., 2007), and 

deep learning algorithms (Li et al., 2017; Q. Zhang et al., 2018). Deep learning models (Y. LeCun 

et al., 2015) such as convolutional neural networks (CNN) show significant promise in addressing 

the limitations of missing data by modeling high-level abstractions within datasets (Bengio, 2009; 

Deng, 2014). Furthermore, CNN (Krizhevsky et al., 2017) are among the most successful and 

widely used approaches (Lecun & Bengio, 1995) in forecasting (Eslami, Choi, et al., 2019; Lops 

et al., 2019; Sayeed, Lops, et al., 2021; C.-Y. Zhang et al., 2015), speech recognition (Mikolov et 

al., 2011), and imputation (Li et al., 2017; Q. Zhang et al., 2018). Gupta et al., (2021) showed that 

among various Machine Learning (ML) models, Random Forest estimated PM2.5 hourly 

concentration with a correlation of 0.95 and mean bias (MB) of 0.03 µg m-3. They used various 

meteorology and aerosol diagnostic products from MERRA-2.  

Despite the efforts made, establishing a reliable and spatially complete dataset is still a challenge, 

primarily due to the lack of adequate ground-based observations, missing data due to cloud cover 

in passive satellite remote-sensing, and uncertainties in methods and outputs from methods. In this 

study we aim to address these issues and develop a ML model that can estimate hourly PM2.5 at 

MERRA-2 grid resolution by training data-driven models for the United States. To do this, several 

ML models were developed similar to the Gupta et al., (2021) model. The models were trained 

using in-situ measurements and MERRA-2 generated meteorology and aerosol diagnostic 

parameters. The developed models were then evaluated and selected based on their statistical 

performance. Once an ML model was selected, two different analyses were performed: regional 

analysis, wherein the selected model was optimized for the regions defined by the EPA, and 

comparative analysis with empirically estimated PM2.5 from MERRA-2. 

2. Data and Methods 

The proposed methodology focuses on the estimation of the hourly PM2.5 concentration based on 

the hourly time-averaged meteorology and aerosol products from MERRA-2. Figure 1 shows the 

process flow diagram of the proposed methodology. The methodology includes data retrieval from 

MERRA-2 and ground stations, spatial and temporal collocation, and model training. To determine 

the best model, various ML models were trained and evaluated based on several statistical 

parameters. The ML models were trained using meteorology and aerosol diagnostics from 

MERRA-2 reanalysis runs as input and spatio-temporal collocated ground measurements as 

output. The detail methodology is discussed in further sections.  



 

 

 

Figure 1: Schematic diagram of the methodology used for estimation of PM2.5. The color code of boxes represents the 

major steps in model development. The boxes in green represents data pre-processing; the blue boxes represent model 

selection, and the orange box represents model fitting. 

2.1. Models  

In this study, several ML models and a numerical model based on reanalysis were used and are 

described in detail in the following sections. 

2.1.1. MERRA-2 

MERRA-2 is a reanalysis model for the atmosphere developed by NASA’s GMAO (Gelaro et al., 

2017) and provide various meteorology and aerosol products from 1980 to current. MERRA-2 

uses the atmospheric model from Goddard Earth Observing System (GEOS; Molod et al., 2015; 

Rienecker et al., 2011) and the grid point statistical interpolation (GSI) analysis scheme (Kleist, 

Parrish, Derber, Treadon, Errico, et al., 2009; Kleist, Parrish, Derber, Treadon, Wu, et al., 2009; 

W.-S. Wu et al., 2002). The model uses cube-shaped horizontal discretization with approximate 

resolution of 0.5°x0.625° and has 72 vertical pressure layers (surface to 0.01 hPa). The MERRA-

2 model also uses a 3-dimensional variational (3DVAR) data assimilation algorithm based on 6-

hour update cycle of GSI for analysis. In addition, it applies first guess at appropriate time (FGAT) 



 

 

for computing departures (observation - background). These analyses are further applied to correct 

the background state using the incremental analysis update method (Bloom et al., 1996).  

MERRA-2 also produces 3-hourly analyses of gridded aerosol diagnostics on a global scale by 

assimilating bias corrected-AOD at 550nm. The AOD values are retrieved from various satellite 

sources including Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very 

High Resolution Radiometer (AVHRR), and Multi-angle Imaging SpectroRadiometer (MISR) and 

the surface-based AErosol RObotic NETwork (AERONET) for data assimilation in MERRA-2 

(Randles et al., 2017). It is important to note that due to various data availability issues, specific 

sensor’s data assimilation into MERRA2 varies by years. For example, MODIS data assimilation 

were only after year 2000 and MISR data assimilation were discontinued after year 2015 (Randles 

et al., 2017).  The aerosol components (dust, sea salt, black carbon, organic carbon, and sulfate) 

are derived from simulating the Goddard Chemistry Aerosol Radiation and Transport (GOCART) 

model (Chin et al., 2002; Colarco et al., 2010) coupled with the GEOS atmospheric model. Since 

MERRA-2 provides both meteorological parameters and aerosol diagnostic species at a 

comparatively fine resolution of approximately 50km× 65km (0.5° latitude and 0.625° longitude) 

on a global scale, we used these derived products for this study. In addition, PM2.5 can be calculated 

using aerosol diagnostic products of MERRA-2, shown in equation 1 below (Buchard et al., 2016b; 

Malm et al., 1994, 2011). 

𝑃𝑀2.5 =  𝐷𝑈𝑆𝑇2.5 + 𝑆𝑆2.5 + 𝐵𝐶 + 𝑂𝐶 + 1.375 × 𝑆𝑂4                   (1) 

The equation shows the empirical relationship among the concentrations of PM2.5, black carbon 

(BC), organic carbon (OC), sulfate (SO4), dust (DUST2.5; size < 2.5µm) and sea salt (SS2.5; size < 

2.5µm). In this study, two different MERRA-2 products were used: a) time-averaged hourly 

meteorology diagnostics at various levels (M2T1NXSLV or tavg1_2d_slv_Nx) and b) time-

averaged hourly aerosol diagnostics at the surface and column AOD (M2T1NXAER or 

tavg1_2d_aer_Nx).  

2.1.2. Machine Learning Models 

From equation 1, the PM2.5 can be estimated at grid level, but the relationship has several missing 

terms, like nitrate and ammonium concentrations, (Buchard et al., 2016b, 2017) that may constitute 

the total PM2.5. Also, the equation assumes that OC, BC, and SO4 sizes are less than 2.5 µm. Due 

to these issues and model uncertainties, biases (low or high) can be introduced in PM2.5 

estimations.  The semi-volatile and volatile species can bias PM2.5 toward low or it may be high 

because of size growth due to soluble organic/inorganic species (Malm et al., 2011). Since ML 

models can help reduce systematic biases by handling complex non-linear relationships between 

meteorology and surface aerosols, we compared several regression and ML models as discussed 

below for estimating hourly PM2.5.  

 

The regression models used in this study were Ordinary Least Square (OLS), Ridge, and Lasso 

regression. The ML models used were Stochastic Gradient Descent (SGD), k-nearest neighbor 

(KNN), Adaptive Boosting (AdaBoost), Gradient Boost (GB), Extreme Gradient Boost (XGB), 

Support Vector Machine (SVM), and Random Forest (RF). The OLS model minimizes the residual 

sum of squares between inputs and output to fit a linear model with coefficients and intercepts. 

Alternatively, Ridge and Lasso Regression regularize model by imposing penalty  (Friedman et 

al., 2010; Koh et al., 2007; Rifkin and Lippert, 2007) In SGD, a linear model is fitted using an 

SGD learning method with penalties to minimize the loss function (Y. A. LeCun et al., 2012). 



 

 

KNN estimates a target (output) by interpolating the nearest neighbors of the target in the training 

set. In boosting methods like AdaBoost, GB, and XGB, the process depends on boosting the 

performance of weak learners, or the decision trees with single splits. In AdaBoost, more weight 

is given to observations that are difficult to classify. In the GB method, weak learners are boosted 

by optimization (minimizing loss) using gradient descent-like methods. XGB is an efficient and 

computationally fast implementation of the GB method. SVM is a supervised learning technique 

in which the model makes a discrete estimation based on best fit. The best fit line represents a 

hyperplane containing the maximum number of points. Unlike other regression models, SVM 

doesn’t try to minimize the loss function. Instead, it attempts to predict the best fit based on the 

distance between the hyperplane and boundary line. RF is a decision tree-based model that 

ensembles various models (trees) for estimations. It fits several decision trees on various sub-

samples of a dataset and improves accuracy by averaging and controlling overfitting.  

 

2.2. Data and Pre-processing 

The models were trained for the Continental United States (CONUS), Alaska, Puerto Rico, and 

Hawaii. Figure 2 shows the number of valid pairs of spatiotemporally collocated hourly observed, 

and MERRA-2 parameters at PM2.5 monitoring stations (AirNow). The reanalysis data was 

obtained from  

 

Figure 2: Locations of PM2.5 measurement stations in the United States binned by number of valid observations in the 

year 2018. Each circle represents the location of a measurement station, and the color represents the number of valid 

observations in the year 2018. 

MERRA-2 for hourly averaged meteorology and aerosol components for the year 2018. Table 1 

lists all the parameters from MERRA-2 used in this study. In addition, the parameters listed in 

Table 1, sun-earth distance, solar zenith angle, latitude and longitude were also used as the input 

parameters for the model. These additional parameters accounts for change in season (sun-earth 

distance), diurnal cycle (solar zenith angle) and geographical location (latitude/longitude) in ML 

model. The parameters were selected based on a previous study by Gupta et al., (2021). The 



 

 

importance of meteorology factors such as temperature, humidity, surface condition, and 

vegetation is well known and critical in the formation and transport of aerosols via pressure, wind 

speed and direction (Gupta & Christopher, 2009; Pandis, 2004; Seinfeld & Pandis, 2016). The 

aerosols that represent surface PM2.5 were selected from the MERRA-2 aerosol diagnostic product. 

Additionally, to represent the total aerosols in the atmospheric column, total aerosol optical 

thickness (AOT) measured at 550nm from MERRA-2 was selected. 

Table 1: List of parameters from MERRA-2 reanalysis used as input to train ML models. 

Name Description Units  

Meteorology 

PS Surface Pressure Pa 

Q500 Specific Humidity at 500 hPa kg kg-1 

Q850 Specific Humidity at 850 hPa kg kg-1 

T850 Temperature at 850 hPa K 

T500 Temperature at 500 hPa K 

T10m Temperature at 10m K 

QV10m Specific Humidity kg kg-1 

WIND Windspeed at 10m m s-1 

Aerosols 

DUSMASS25  Dust Surface Mass Concentration - PM2.5 µg m-3 

OCSMASS  Organic Carbon Surface Mass Concentration µg m-3 

SO2SMASS  SO2 Surface Mass Concentration µg m-3 

SO4SMASS   SO4 Surface Mass Concentration µg m-3 

TOTEXTTAU  Total Aerosol Extinction AOT [550 nm] unitless 

BCSMASS  Black Carbon Surface Mass Concentration µg m-3 

SSSMASS25  Sea Salt Surface Mass Concentration - PM2.5 µg m-3 

 

Hourly concentration surface measurements of PM2.5 for 2018 were obtained from the AirNow 

network managed by the EPA. Several state, city, and county level data collection agencies share 

their data of various air quality parameters to the EPA which prepares, and quality checks the data. 

For this study, 882 unique monitoring sites were selected based on collocated data availability. 

The spatial collocation is performed by selecting the nearest MERRA-2 grid to the EPA 

monitoring station by spherical distance (< 38.5 kms; Gupta et al., 2021). Due to the coarse 

resolution of MERRA-2, some of the stations were assigned the same grid point. Temporal 

collocation was accomplished by selecting the same hour of data from both EPA monitor and 

MERRA-2 outputs. The final integrated datasets included 2,128,126 valid collocated data points. 

After collocating data, multiple ML models were trained with only 10% of data points which were 

randomly selected (212,813 of 2,128,126 valid data points). The data was further split into a 70:30 

ratio for model fitting and validation. Several regression and ML models were trained with 70% 



 

 

of the selected data (148969), and the remaining 30% (63844) was used for testing. The reduced 

sample size was only used to select the best-performing algorithm. The most successful ML model 

was evaluated further using full datasets. 

3. Results and Discussion 

To evaluate the models discussed in this study, a 10-fold cross validation algorithm was used. In 

this algorithm, 10 different sets of 9:1 train-test splits were created such that each set was unique, 

and when all the “test” samples in the 10 sets were combined gives the whole dataset. Each set 

was evaluated for various statistical performance parameters like root mean squared error (RMSE), 

mean bias (MB), Pearson linear correlation coefficient (R), slope of the fitted line, percentage 

error, and computational time. In addition to comparing the ML models, the performance was also 

evaluated compared to MERRA-2 estimated PM2.5 (Eq.1). 

3.1. Evaluation of ML Models 

All the ML models were trained and evaluated on several statistical parameters. Table 2 lists ML 

performance statistics for correlation, MB, RMSE, and computational time. The regression models 

(OLS, Ridge, Lasso) were fitted within a fraction of second and had similar RMSE and MB 

compared to other methods, but these models demonstrated very low correlation and high 

percentage error. KNN and SVM had low percentage error and better correlation than regression 

methods, but the computational time was much longer. GB and XGB had high percentage error 

and correlations of 0.66 for training and 0.61 for testing data. Adaboost was the least successful 

ML model. RF exhibited the highest correlations: 0.97 for training and 0.69 for testing. RF also  

Table 2: Performance metrics of all ML models used in the study. 

 Slope of fit Correlation (r) 
Mean Bias (MB) 

µg m-3
 

RMSE 

µg m-3
 

Time 

(sec) 

 Training Testing Training Testing Training Testing Training Testing  

OLS 0.22 0.22 0.47 0.47 0.00 -0.03 8.78 8.75 0.19 

Ridge 0.22 0.22 0.47 0.47 0.00 -0.03 8.78 8.75 0.09 

Lasso 0.12 0.13 0.41 0.41 0.00 -0.01 9.13 9.07 0.79 

SGD 0.26 0.26 0.46 0.46 0.05 0.02 8.88 8.86 1.34 

KNN 0.59 0.46 0.78 0.63 0.01 -0.03 6.18 7.78 1058.99 

SVM 0.26 0.24 0.60 0.57 -1.29 -1.33 8.24 8.34 3887.67 

Adaboost 0.60 0.55 0.31 0.29 41.30 41.25 45.32 45.35 41.67 

GB 0.38 0.35 0.66 0.61 0.00 -0.04 7.50 7.83 124.94 

XGB 0.37 0.34 0.66 0.61 0.00 -0.05 7.55 7.82 22.85 

RF 0.82 0.49 0.97 0.69 0.09 0.20 2.61 7.15 517.70 

 

returned low RMSE of 2.61 µg m-3 and 7.15 µg m-3 for training and testing, respectively. The 

computation time was less than 10 minutes, which was higher than most models, but RF 

outperformed all other ML models in other statistical metrics. The linear models like; OLS, Ridge, 

Lasso and SGD; it was expected to have a lower performance metrics due to non-linearity of PM2.5. 



 

 

RF performed better than boosting methods like Adaboost, graideint boost and XG, because it tries 

to reduce the variance instead of bias, which in the case of PM2,5 (having diurnal variation) 

improved the overall accuracy. Since, RF model is an ensemble of multiple predictive decision 

tree, it effectively reduces biases in estimation and hence have improved the performance over 

other techniques. Although, there are some inconsistencies in performance between training and 

testing in RF models, but 10-fold cross validation further improved the consistency (table 3). 

Therefore, for this study, we selected RF for further evaluations.  

Once the RF model was selected, 10-fold validation was performed with all valid data (2,128,126 

data points). From this data, 10 sets (folds) of training and testing with a 9:1 split were prepared. 

Each testing set contained a unique amount of data and, when combined, included all data. Table 

3 lists the performance statistics of all 10-folds. All folds performed similarly on all evaluation 

metrics, suggesting that the model was robust and could be used for any dataset combinations. 

Table 3: Performance of all 10-folds on testing sets. 

 Fold 
Number of Testing 

Data 
Slope of fit Correlation (r) 

Mean Bias 

(µg m-3) 

RMSE 

(µg m-3) 

1 212818 0.65 0.83 0.01183 5.53 

2 212817 0.59 0.80 -0.01882 6.28 

3 212815 0.63 0.82 -0.00564 5.73 

4 212813 0.63 0.83 0.00406 5.70 

5 212813 0.63 0.83 0.02189 5.61 

6 212813 0.64 0.83 -0.00492 5.56 

7 212812 0.64 0.83 -0.01886 5.51 

8 212811 0.63 0.82 -0.01508 5.67 

9 212808 0.64 0.82 0.02798 5.54 

10 212806 0.62 0.81 -0.00775 5.83 

Average 2128126 (Total) 0.63 0.82 -0.00053 5.70 

3.2. Model Performance on EPA regions 

In the next phase of RF model evaluation, the whole dataset was divided into 10 geographical 

regions assigned by the EPA (US EPA, 2020). Supplementary figure S1 shows each EPA region. 

Although Puerto Rico, Hawaii, and Alaska were assigned to regions 2, 9, and 10 respectively, they 

were evaluated separately as they are not part of CONUS. The RF model was trained with 70% of 

the data points from each region separately and tested on the remaining 30% of data with six 

different combinations of number of estimators (N), maximum depth (D), and minimum sample 

leaf (m), which are sklearn RF parameters. The best combination for each region was selected to 

further evaluate the RF model. Table 4 and figure 3 show the spatial distribution of correlation, 

mean bias, and RMSE for RF model performance against those measured at ground locations on 

test dataset. The correlations are higher for stations in western US but with high value of RMSE 

suggesting higher PM2.5 concentration compared to eastern US.  Regions 10, 9, Hawaii, and Alaska 

in the west performed the best in terms of correlations, earning greater than 0.90 for training and 

greater than 0.82 for testing. These regions have high number of valid data points overall and this 

helps in better training of model due to uniform distribution of data-points both spatially and 

temporally. Additionally, even though Hawaii and Alaska have lesser number of data-points it was 

amongst the best performing region due to uniform PM2,5 variability throughout the region. Region 

9, which includes California, Nevada, and Arizona, had the highest RMSE due to greater PM2,5 



 

 

concentrations (10.88±14.06 µg m-3) compared to other regions (8.45±8.62 µg m-3). 

Supplementary figure S2 shows the frequency distribution of observed PM2.5 by region. Puerto 

Rico and region 8, which includes Colorado, Utah, Montana, Wyoming, and North and South 

Dakota, have correlations ~0.88 for training and ~0.80 for testing. In the Northeast, regions 1 and 

2 had training correlations of 0.76 and 0.77, respectively, and about ~0.70 for testing. The lowest-

performing regions were from the Midwest (region 7: Kansas City) and Southeast (region 4: 

Atlanta). The performance of the ML model in estimating primary and secondary pollutants (like 

ozone, nitrogen dioxide, PM, etc.) is affected by several meteorological and anthropogenic factors 

such as urbanization, diurnal variability, wind speed and direction, and boundary layer height 

(vertical mixing) (Sayeed, Choi, et al., 2021). Since each EPA region in the US has its distinct 

anthropogenic (emission, urbanization etc.), geographic (geo location, elevation etc.) and 

meteorological (seasonality, diurnal variability) features and characteristics, it is challenging for a 

generalized model to have a similar performance in all regions.  

Table 4: Regional comparison of Random Forest model with best set of training parameters for each region. 

EPA Regions 

Number of valid 

data in region 
Correlation 

Mean Bias 

(µg m-3) 

RMSE 

(µg m-3) 
Number 

of 

Stations Train Test Train Test Train Test Train Test 

Region 1: Boston 81544 34948 0.76 0.70 -0.01 0.01 3.25 3.51 50 

Region 2: New York 

City 
45187 19366 0.77 0.69 0.00 -0.01 3.93 4.36 37 

Region 3: Philadelphia 95226 40812 0.70 0.63 0.00 0.00 4.29 4.56 65 

Region 4: Atlanta 174515 74793 0.65 0.59 0.00 0.00 4.20 4.34 129 

Region 5: Chicago 214164 91785 0.67 0.61 0.00 0.00 4.68 5.00 115 

Region 6: Dallas 105678 45291 0.71 0.66 0.00 0.01 4.48 4.62 63 

Region 7: Kansas City 75644 32419 0.69 0.61 0.00 0.01 4.62 4.91 36 

Region 8: Denver 85176 36505 0.87 0.78 0.00 0.04 4.71 5.80 56 

Region 9: San 

Francisco 
296181 126936 0.91 0.85 0.00 0.03 5.92 7.52 151 

Region 10: Seattle 276414 118464 0.94 0.87 0.00 -0.01 4.84 6.78 154 

Alaska 14932 6400 0.95 0.82 0.03 0.14 3.05 4.88 8 

Hawaii 22054 9452 0.94 0.82 0.01 0.01 2.74 4.67 13 

Puerto Rico 2968 1272 0.89 0.81 0.09 0.29 4.92 6.67 3 

 

It is also evident from figure 2 and supplementary figures S3 and S4 that regions with the larger 

concentrations range of PM2.5 performed better than regions with lower concentrations ranges. This 

suggests that the ML model is sensitive to concentration variability, performing better in regions 



 

 

with high PM2.5 compared to regions with 

uniform PM2.5. This is possibly due to the 

skewness of data (number of data-points with 

low concentrations far exceeds the high 

concentrations), while the higher 

representations of highs make the performance 

better, its lower representation makes the 

performance comparatively poor. This is an 

expected behavior of regression or ML based 

models where data distribution often force 

model to estimate mean better than extreme 

values (low and high) (Gupta et al., 2021; Gupta 

& Christopher, 2009; Ma et al., 2021). It was 

also noted that, in regions with less variability, 

the RF model performed better in areas with less 

than 30,000 data points, suggesting that adding 

more data to a less variable region makes the 

model susceptible to errors possibly due to 

overfitting.  

Next, we present results of inter-comparison of 

training and testing separately while combining 

data from all the regions (i.e., Table 4). Figure 4a 

shows density scatter plot of aggregated data 

points from all the regions together. The left 

panel shows training datasets while right panel is 

for testing datasets. The scatter plot 

demonstrates overall good correlations with 

consistent performance between training 

(r=0.88) and testing (r=0.82). The mean bias is 

close to zero in both datasets with RMSE changes 

from 4.8 µg m-3 in training to 5.8 µg m-3 in testing 

datasets. The slope values of (~0.7 and 0.62) 

implies overall underestimation of PM2.5 by ML 

models. We further evaluated the ML model 

performance by combining data from training and testing and presenting as diagnosis and 

prognosis errors in Figure 4 (b) and (c) respectively. The complete collocated dataset was sorted 

according to PM2.5, binned into bins with equal number of collocations (1000 data points), and 

then mean, median and standard deviation of each bin was calculated.  Orange dots and line show 

the mean.  The green dots and line show the median.  The grey shaded area indicates one standard 

deviation of each bin. The horizontal black dotted line denotes zero difference.  Positive values of 

bias indicate that estimated PM2.5 is higher than observed AirNow PM2.5 and vice-versa. The figure 

4(a) shows that ML model overestimates PM2.5 values when observed values are lower than 10 µg 

m-3 otherwise it underestimates for the remaining observed range of PM2.5. The negative bias is 

more stable for values lower than 100 µg m-3 but then decreases exponentially for the higher PM2.5 

values.  This behaviors of bias with observed PM2.5 suggest a manifestation of data distribution 

with  high density of low concentration values, produces better training for the ML model and 

Figure 3: Regional performance of Random Forest 

model on test dataset; Station-wise. a) Pearson 

correlation of RF model trained by region; b) MB of RF 

model trained by region; c) RMSE of RF model trained 

by region. 

(a) 

(b) 

(c) 



 

 

consistent with our previous findings (Gupta et al., 2021). Figure 4 (c) show bias as a function of 

estimated PM2.5 with more flat behavior for estimated PM2.5 values smaller than 100 µg m-3 but 

then underestimates. The diagnosis and prognosis error analysis are as expected and suggests that 

applying more advanced data sampling methods such as oversampling (Vu et al., 2022) may 

require to achieve better results for complete range of observed PM2.5.    

 

 

Figure 4: a) Scatter plot of estimated PM2.5 by RF (aggregate of region models): left panel- training, right panel-

testing. Black dotted line represents 1:1 line whereas, blue dotted line represents linear fit to the data; b) Mean bias 

(µg m-3) in estimated PM2.5 by RF (aggregate of region models) as function of observed PM2.5. c) Mean bias (µg m-3) 

in estimated PM2.5 by RF (aggregate of region models) as function of estimated PM2.5. [Bias and RMSE in µg m-3] 

3.3. Comparison of RF model with MERRA-2 estimates 

The RF model estimates were compared to MERRA-2 estimated PM2.5. PM2.5 is not a direct 

product of MERRA-2, rather it was calculated empirically using equation 1. Additionally, 

(c) 

(b) 

(a) 



 

 

MERRA-2 has the advantage of providing data everywhere, even in places and times when 

observations are not available. However, MERRA-2 data is representative of a ~50x50 km2 grid 

box area and has limitations due to uncertainties in emissions (Buchard et al., 2016a)  Figure 5a&b 

shows the density scatter plot comparison of PM2.5 estimated by MERRA-2 (equation 1) and the 

RF model (MERRA-2-ML) respectively. The scatter plots are plotted with aggregate of all data 

(training and testing combined) with observations as x-axis and estimations as y-axis. The dotted 

black line represents the 1:1 line. These clearly show the larger scatter in MERRA-2 PM2.5 when 

comparing with ground monitors, with slope value of 1.15, mean bias of ~ 4.1 µg m-3 and RMSE 

of 28.7 µg m-3. The plot shows that the MERRA-2 estimates have high positive bias with low 

correlation (r=0.38). This is also evident in supplementary figure S5; during summer and spring, 

MERRA-2 estimates exhibit large biases, and MERRA-2-ML successfully reduced those biases. 

MERRA-2 shows a better agreement with Interagency Monitoring of Protected Visual 

Environments (IMPROVE) sites as compared to EPA- AQS sites as IMPROVE sites are generally 

 

 

 
Figure 5: Scatter plot comparison of: a) MERRA-2 estimated PM2.5; b) ML model (RF) estimated PM2.5; c) Daily 

estimated PM2.5 for MERRA-2-ML of all stations combined; d) Monthly estimated PM2.5 for MERRA-2-ML of all 

stations combined and; e) Yearly estimated PM2.5 for MERRA-2-ML of all stations combined; The color bar represents 

the number density. The black and blue dotted lines represent the 1:1 line and line of linear fit for the data respectively. 

Units are in µg m-3. 

located in rural remote areas having less emission variability (Buchard et al., 2016a). During fall 

and winter, the MERRA-2 overestimation was reduced, but the RF model still performed better. 

Figure 5 c, d, & e shows the scatter density plot for the RF model (MERRA-2-ML) where y-axis 

represents the estimation and x-axis represents the observations. The narrow spread and 



 

 

concentration of high density of points near 1:1 line suggest that the estimated PM2 .5 is in good 

agreement with observed PM2.5. Figure S6 shows the regional daily mean PM2.5 concentrations 

that were observed and the concentrations modeled by MERRA-2 and MERRA-2-ML. 

During the 2018 California wildfire season, very high PM2.5 concentrations were observed in 

August through September and again in November in regions 8, 9, and 10. MERRA-2 estimated 

high concentrations for these periods, but the estimates exhibited large overestimations with days 

exceeding observations by 75 µg m-3 (see figure S6). In contrast, the MERRA-2-ML (RF) model 

did not overestimate by 6 µg m-3 except for four days in Puerto Rico where bias was between 6-13 

µg m-3. Figure 5b shows the daily, monthly, and yearly scatter plots for observed and estimated 

PM2.5. As the averaging window increases, the correlation between observations and estimations 

also increases. The negative bias in lower range (<10 µg m-3) of observed PM2.5 remains an issue 

even for larger time averages. 

 

3.4. Assessment of Western US fires using estimated PM2.5 

To evaluate the RF model performance on the out-of-box scenarios, the model was tested by 

estimating hourly PM2.5 from August 20-27, 2020. The previously trained models (using 2018 

data) for each EPA region were used to estimate the hourly PM2.5 at each grid corresponding to 

MERRA-2 for the CONUS. This time period was selected because, during this period, several fires 

were reported in the western US. Figure 6 shows a series of corrected reflectance RGB images 

from Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) satellite. The superimposed 

red dots are fire locations detected by VIIRS (https://worldview.earthdata.nasa.gov/). The second 

column shows observed PM2.5 from the EPA AirNow network, and the last column includes maps 

of estimated PM2.5 using MERRA-2-ML. The data corresponds to 13:00 local time for a) Aug 20, 

2020, b) Aug 22, 2020, c) Aug 24, 2020, and d) Aug 26, 2020. The RGB images (column 1) shows 

fire locations (red dots) and smoke (grayish haze type looking feature in the image) transport across 

the western US. The AirNow network specifically in CA observed high PM2.5 (>60 µg m-3) values 

and corresponds to visible thick smoke plume seen in RGBs. It is important to note here that visible 

smoke in RGB can be located at any height in the atmosphere and not necessary affect surface air 

quality. By comparing the RGB and PM2.5 maps, it appears that spatial patterns in estimated 

MERRA2-ML PM2.5 matches with larger smoke plumes. The RF model was able to capture the 

movement of the plume from west to east during August 20-26, 2020. RF model results show a 

high concentration of PM2.5 east and northeast of the recorded fire on Aug 20, 2020, which is also 

evident from the VIIRS image as haze. The plume can be seen migrating from California in the 

west to the northern US, crossing over the Rocky Mountains, and then moving down toward the 

central US. A similar rise in PM2.5 is also seen in these regions, as estimated by the RF model. The 

ability of MERR2-ML to map the smoke plumes and provide corresponding surface PM2.5 in areas 

with sparse PM2.5 ground measurements can be very useful in time of increasing wildfires in the 

US. The refined MERRA2-ML data can also be used to inter-compare with other regional model 

outputs for both analysis and forecasting. 

 

 

 

 



 

 

 

 

  

 

 
Figure 6: Comparision of VIIRS true color images with observed and estimated PM2.5 for various days in August 2020 

at 13:00 Local Time: a) Aug 20, 2020; b) Aug 22, 2020; c) Aug 24, 2020; d) Aug 26, 2020. The true color images 

were created using NASA Worldview (https://worldview.earthdata.nasa.gov/). Units for both Observations and 

MERRA-2 PM2.5 are in µg m-3. 

(a) 

(b) 

(c) 

(d) 

https://worldview.earthdata.nasa.gov/


 

 

4. Global Implications and Challenges  

The new ML models presented here are 

designed to work only over the 

Continental United States (and perhaps 

other regions with similar 

environmental conditions).  

Implementing the similar ML for the 

global regions may be challenging and 

requires more extensive research 

development. In the CONUS we had a 

relatively good dense network of 

ground stations to work with: 800+ 

AirNow stations with distribution 

across various EPA regions. We were 

able to train the ML models by using 

relationships in input aerosols 

components and meteorological 

parameters from MERRA-2 to estimate 

surface PM2.5. The lack of ground 

monitors, varying amount of data 

availability, change in aerosol type, 

varying meteorological conditions, and 

aerosol transport in other parts of the 

world will make accurate estimation of 

PM2.5 from MERRA-2 a more complex 

problem. However, because the results 

over CONUS have been so encouraging, we decided to train a similar RF model for entire globe 

using same one year of collocated datasets using more than 3000+ ground station.  The ground 

data for global regions were collected from OpenAq platform (openaq.org). We had total six 

million plus collocated data points to train and test a ML model. Figure 7 presents the comparison 

between observed PM2.5 with ML estimated PM2.5 from MERRA-2 for the entire global data set, 

combining data for both training and testing of ML model (Random Forest). The results are 

surprisingly good. The global ML model has mean bias close to zero, with slope of 1.02 and RMSE 

of 6.4 µg m-3 globally.  These initial results and analysis are very encouraging, but more in-depth 

analysis for specific regions will be required to better understand the performance and limitation 

of ML approach before applying it operationally at global scale. 

5. Conclusions 

In this study, we developed ML models to estimate hourly PM2.5 using aerosol and meteorological 

parameters from MERRA-2 reanalysis for United States. Ten different ML algorithms were tested 

to select the best algorithm to accurately model the surface PM2.5. Comparing these ML algorithms 

showed that the Random Forest algorithm performed best and computationally faster than other 

ML algorithms like SGD, KNN, Adaboost, Gradient Boost and XGB, and linear regression models 

like Lasso and Ridge. The RF model correlation values were ~25% better for training and ~10% 

better for testing compared to KNN, which was the next best model. 

Figure 7. Density scatter plot of observed and ML estimated 

MERRA2 surface PM2.5 over global region. In this plot, data 

from both training and testing are combined. Solid black 

line is 1:1 line. 

Units are in µg m-3. 



 

 

The RF model was further evaluated with 10-fold cross validations. The cross validations were 

performed by dividing all valid data into ten sets. The sets had similar performance metrics and 

average correlations. Averaging all ten data sets, the overall correlation was 0.82, and the RMSE 

was 5.70 µg m-3 with mean bias close to zero. To further improve performance, separate regional 

RF models were developed with a combination of model parameters.  

Regional RF model performance improved from east to west. The best performing regions were 

regions 9 and 10, Alaska, Puerto Rico, and Hawaii. While variability in observed PM2.5 is the likely 

reason for favorable results in regions 9 and 10, better performance in Alaska, Puerto Rico, and 

Hawaii is likely due to fewer data points. Variability in large data sets produces a greater number 

of decision trees in the RF model which improves the performance. Attaining higher estimation 

accuracy for data sets with less variability can be achieved by using less data. However, using 

fewer data points might also induce more error in out-of-box scenarios. Therefore, larger data sets 

are preferable to smaller data sets despite having lower accuracy. This is one of the limitations of 

RF models.  

The RF model was also compared with MERRA-2 empirical estimation of PM2.5. The MERRA-2 

grid estimations (larger spatial area average) largely overestimated as compared the observed 

PM2.5 at point location by ground monitors. While the ML model has small and uniform bias 

throughout the day and in all seasons, MERRA-2 exhibits comparatively higher overestimation 

between 07:00 UTC and 13:00 UTC. MERRA-2 also produces a slightly lower mean of 

overestimation during winters, but all other seasons the mean was greater than 0. Since the ML 

model was better at estimating PM2.5 than empirical calculations from MERRA-2, it can be 

extended to other years and grids of MERRA-2 reanalysis while taking account in change in 

assimilation datasets into MERRA2 datasets. This could build a spatiotemporal trend for further 

research and model development. Another application of such algorithm could be bias-correction 

of PM2.5 forecasts from the GEOS-FP model at regional scales (Gupta et al., 2021).  

To further determine the robustness of the developed model, a special case of western US fires 

during August 20-26, 2020, was studied. The regionally trained model was used to estimate PM2.5 

at each MERRA-2 grid location for the period. The estimated values accurately represented the 

plume seen in VIIRS true color images and observed PM2.5, suggesting the RF model can perform 

well in the out-of-box scenarios as well. 
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Data Availability:  

The ground data used in the study are available through US EPA (https://www.epa.gov/outdoor-

air-quality-data), the MERRA2 data available through NASA EarthData 

(https://earthdata.nasa.gov/). We also plan to provide ML estimated PM2.5 through NASA’s 
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