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Abstract

Tropical cyclones (TCs) and their economic cost risk under climate change are significant concerns globally. Previous studies

on TC damage functions and risk assessment are mostly performed based on modeling TC-level damage and thus obtaining the

annual average loss for a country or region. The scalability of these damage functions at finer scales has been less systematically

explored. In this study, we examine how the model structure, estimated parameters, and model performance of TC damage

functions vary with spatial scale. The comparisons are illustrated by fitting two types of damage functions based on reported

damage data at the county, province, and TC scales. We find that the newly proposed precipitation-calibrated sigmoidal damage

function significantly outperforms the wind-calibrated sigmoidal damage function at three scales of county, province and TC

event. Another type of power-law damage function that integrates hazard, exposure, and vulnerability complements the typical

sigmoidal damage function because it yields a better fit when estimating direct economic loss above the province scale. Our

work provides an empirical assessment of the role of spatial scale and damage function in TC economic impact evaluation and

demonstrates the importance of spatially scale-specific policy-making in TC risk management and climate adaptation strategies.
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Figures S1 to S2

Figure S1. 157 TCs affecting mainland China from 1990 to 2015.
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Abstract 21 

Tropical cyclones (TCs) and their economic cost risk under climate change are 22 

significant concerns globally. Previous studies on TC damage functions and risk 23 

assessment are mostly performed based on modeling TC-level damage and thus 24 

obtaining the annual average loss for a country or region. The scalability of these 25 

damage functions at finer scales has been less systematically explored. In this study, 26 

we examine how the model structure, estimated parameters, and model performance 27 

of TC damage functions vary with spatial scale. The comparisons are illustrated by 28 

fitting two types of damage functions based on reported damage data at the county, 29 

province, and TC scales. We find that the newly proposed precipitation-calibrated 30 

sigmoidal damage function significantly outperforms the wind-calibrated sigmoidal 31 

damage function at three scales of county, province and TC event. Another type of 32 

power-law damage function that integrates hazard, exposure, and vulnerability 33 

complements the typical sigmoidal damage function because it yields a better fit when 34 

estimating direct economic loss above the province scale. Our work provides an 35 

empirical assessment of the role of spatial scale and damage function in TC economic 36 

impact evaluation and demonstrates the importance of spatially scale-specific 37 

policy-making in TC risk management and climate adaptation strategies. 38 

Plain Language Summary 39 

Tropical cyclones (TCs), as typical extreme events in the warming climate, cause 40 

damage to buildings and infrastructures, and therefore significant economic loss. The 41 

function that relates the TC intensity to the economic loss is called TC damage 42 

function (DF). TC damage function can be categorized into two types: the sigmoidal 43 

function accounts for wind-speed distribution, and the power-law function relates 44 

losses to maximum wind speed. Both types are usually used to model the loss in all 45 

TC-affected areas of a country. However, it is questionable whether these DFs are 46 

applicable to finer scales. We wonder how spatial scale affect the structure, 47 

parameters, and performance of TC damage function. We used reported damage data 48 
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at the county-, province-, and TC-scale in China to explore it. Results first showed 49 

that the difference brought by type of DF is greater than that due to the spatial scale. 50 

The typical sigmoidal DF using wind intensity may lead to bias due to the neglect of 51 

TC-induced precipitation. Different types of DF are suitable for different scales. And 52 

different driving forces of damage are reflected at different scales. Such spatial scale 53 

dependence of TC damage function could be instructive in multi-scale TC risk 54 

analysis and management. 55 

 56 

1 Introduction 57 

Tropical cyclones (TCs) pose a major threat to both coastal and inland areas at a 58 

global scale, affecting 22 million people and causing annual average direct economic 59 

losses ranging from USD 29 to 89 billion (Eberenz et al., 2021; Geiger et al., 2018). A 60 

few studies agree that TCs may become stronger while debating whether and how TC 61 

frequency will change under a warming climate (Bhatia et al., 2018; Emanuel, 2013; 62 

Knutson et al., 2010; Walsh et al., 2016). In addition to the uncertainty of TC 63 

characteristics, due to the increasing exposed population and assets and changing 64 

vulnerability, there is a need to determine the potential risk from TCs for 65 

decision-makers at different levels, especially when TC risk is expressed by direct 66 

economic loss (DEL). Additionally, it is a fact that TC impacts for an individual event 67 

are felt over smaller areas, which can be corroborated by the tendency of a higher 68 

resolution of the hazard and exposure datasets used in risk analysis (Ward et al., 2020). 69 

Thus, there is still a large gap in understanding the economic impact of TCs at 70 

different spatial scales. 71 

 72 

Previous studies on modeling or predicting the economic impact of TCs can be 73 

classified into two groups according to the type of damage function used. The first 74 

type of damage function is sigmoidal curve-based, and the sigmoidal damage function 75 

proposed by Emanuel (2011) is a typical one. The TC damage function for the 76 
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spatially explicit modeling of the fraction of the property value damaged is 77 

constrained by a specified minimum threshold and an upper bound of 100% damage 78 

(Eberenz et al., 2021). The second type of damage function is power-law based. 79 

Pielke (2007) suggested a high power-law dependence of damage based on wind 80 

speed and first estimated future economic damage from TCs assuming damage as 81 

being proportional to the third, sixth, and ninth powers of wind speed. The empirical 82 

results presented by Nordhaus (2010) show that damage rises with the ninth power of 83 

maximum wind speed. The fundamental difference between these two types of 84 

damage functions is that the sigmoidal function accounts for local characteristics of 85 

the full wind-speed distribution, while the power-law function attributes losses solely 86 

to maximum wind speed at landfall in most cases. Geiger et al. (2016) referred to 87 

these two forms of damage function as local and global, respectively.  88 

 89 

Due to the limitations in the resolution of damage data reported for historical TC 90 

events, most studies have carried estimations at TC event scales, and therefore, most 91 

damage functions are also based on the TC scale. However, with the rapid 92 

socioeconomic development of coastal areas and the growing availability of detailed 93 

damage data, the need to understand physical risks from TCs at the province or county 94 

scale is increasingly expressed by coastal governments, investors, and companies. In 95 

addition to the need for practical disaster management, on the one hand, it is 96 

questionable using only landfall or maximum wind speed to represent the hazard 97 

intensity of TCs (i.e., global form) considering the vast area affected by TCs. On the 98 

other hand, it remains unknown whether the damage function in local form derived 99 

from TC scale applies to finer scales.  100 

 101 

Therefore, starting from the distinction between the two types of damage function, 102 

this study contributes to reaching a goal of understanding the effect of spatial scale on 103 

tropical cyclone damage function and a better connection of TC economic impact 104 

studies and TC risk management at different scales. The objectives of this study are to 105 

(1) construct TC damage functions at different spatial scales in the forms of sigmoidal 106 
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curves and power-law-based models, (2) perform scale-dependence analysis, i.e., 107 

explore how the structure, parameters and performance of the damage function vary 108 

with spatial scale, and (3) discuss the implications in both damage function selection 109 

and risk management at different spatial scales. 110 

2 Data and Methods 111 

 112 

Figure 1 Schematic overview of the data and methods applied to explore the spatial 113 

scale-dependent effects of the TC damage functions over China. 114 

 115 

To explore the spatial scale dependence of the TC damage function over China, the 116 

data preparation process and scale-dependence analysis methods are illustrated in 117 

Figure 1. First, DEL records at different spatial scales are collected. For each DEL 118 

record, its corresponding hazard distribution is simulated or extracted based on the TC 119 

track and TC lifetime (Sect. 2.1.1.1). The hazard distribution determines the 120 

geographic extent of exposure and vulnerability, and thus the spatialization of 121 

exposure and vulnerability is completed (Sect. 2.1.1.2 to Sect. 2.1.1.3). Second, these 122 

spatially explicit data, together with DEL records at three different scales, form the 123 

“gridded datasets” and “integrated datasets” (Sect. 2.1.2), which are used in the 124 

estimation and comparison of sigmoidal and power-law damage functions, 125 

respectively (Sect. 2.2.1). Finally, the spatial scale dependence is analyzed from three 126 

subjects (Sect. 2.2.2). 127 
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2.1 Data 128 

2.1.1 Data source and preprocessing 129 

2.1.1.1 TC damage and hazard distribution 130 

TC damage data (i.e., DEL records) are required on different spatial scales to calibrate 131 

TC damage functions and compare their performance. We use DEL records from two 132 

sources. The first source records come from the Ministry of Emergency Management 133 

of the People’s Republic of China (MEM), setting the county as the basic statistical 134 

unit and collecting DEL records of 23 TC events from 2009-2015. The second source 135 

records come from the “National Climate Impact Assessment” compiled by the 136 

National Climate Center of China Meteorological Administration (CMA, 2016), 137 

setting the province as the basic statistical unit and collecting DEL records of 157 TC 138 

events from 1990-2015. In this study, we also define the DEL records from the first 139 

source as the “short sequence” and DEL records from the second source as the “long 140 

sequence”. Thus, all DEL records from the two sources are reorganized into 5 subsets 141 

with different spatial scales and sequence lengths (Figure 2). The reason for not fusing 142 

the DEL data from these two sources is that, this study is concerned with spatial scale 143 

dependence and therefore needs to ensure that the overall recorded DEL remains 144 

consistent across spatial scales. Some affected provinces did not have county-level 145 

DEL records, their damage data are only included in long sequence. The long 146 

sequences provide more reported samples on province- and TC event scale, as 147 

county-level TC damage data is not always available, the short sequences serve as a 148 

sensitivity complement in scale-dependence exploration, and the overall recorded 149 

DEL remains consistent across spatial scales. All economic values in this paper are 150 

deflated to the 2005 constant Chinese yuan (CNY). Note that the DEL data and asset 151 

value exposure are deflated by the consumer price index (CPI), and gross domestic 152 

product (GDP) values are deflated by the GDP deflator. The CPI and GDP deflator of 153 

China are available in the World Development Indicators from World Bank. 154 
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 155 

Figure 2 The DEL records with different spatial scales and sequence lengths in this 156 

study. The superscript 1 indicates that the source is CMA (2016), and the superscript 2 157 

indicates that the source is EME. 158 

 159 

For hazards, we consider that DEL is determined by both wind and TC-induced 160 

precipitation. Here, wind intensity is represented by wind fields, i.e., the geographic 161 

distribution of the 2 min-sustained wind speed at 10 m above ground per TC event, 162 

referred to as “wind speed” or “wind intensity” in the following sections. Wind speed 163 

is simulated at a horizontal resolution of 0.25°×0.25° from historical TC tracks as a 164 

function of time, location, the radius of maximum winds, and central and 165 

environmental pressure based on the revised hurricane pressure-wind model by 166 

Holland (2008). Historical TC tracks are obtained from the International Best Track 167 

Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010, 2018). The best 168 

track record of an individual TC includes the location of a TC every six hours from 169 

generation to extinction. The wind speeds of TCs are reported very differently by 170 

many international agencies. The wind speeds used in this study are from the CMA, 171 

and its wind speed averaging period is 2 minutes (Lu et al., 2021). Based on the 172 
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TC-scale DEL records, a total of 157 TC tracks affecting mainland China from 1990 173 

to 2015 are selected (Figure S1). Next, we use CLIMADA v1.4.1 (Bresch & 174 

Aznar-Siguan, 2021), a free, open-source software package written in Python 3.7 and 175 

made available online on GitHub, to generate the wind field for each selected TC 176 

track. For each grid point in the area within 500 km of the TC track and with the DEL 177 

record, if the wind intensity exceeds 17.2 m/s (~33 knots), the grid is considered to be 178 

affected by tropical storm or tropical cyclone (WMO, 2015). Tropical depression grids 179 

with wind speeds less than 17.2 m/s are not included. 180 

 181 

TC-induced precipitation intensity is represented by maximum daily precipitation 182 

during the TC lifetime. Historical precipitation can be obtained from CN05.1, which 183 

is a gridded daily scale observation dataset with a high spatial resolution of 184 

0.25°×0.25° over China (Wu et al., 2017) and comprises several variables, including 185 

daily precipitation. CN05.1 has been widely used to analyze observed climate features 186 

over China and to evaluate the performance of global and regional models 187 

(Bucchignani et al., 2017; Sun & Wang, 2015). According to the TC lifetime 188 

information derived from IBTrACS, the maximum daily precipitation during the TC 189 

lifetime of each grid is identified. For each grid point in the area within 500 km of the 190 

TC track and with the DEL record, if the daily precipitation exceeds 25 mm, the grid 191 

is considered to be affected by TC-induced precipitation (Chen et al., 2011). 192 

2.1.1.2 Asset value exposure 193 

Asset value is considered a better indicator of DEL exposure than GDP for the 194 

assessment of natural hazard-induced disasters (UNISDR, 2015; Wu et al., 2019). 195 

Here, wind together with TC-induced precipitation determine the geographic extent of 196 

TC exposure and therefore the vulnerability of the exposed area. To match the hazard, 197 

exposure, and vulnerability in space, the resolution of asset value exposure and 198 

vulnerability needs to be spatialized to 0.25 degrees, which is consistent with that of 199 

CN05.1. For exposure, we generate gridded datasets of asset values based on the 200 

previous work of Wu et al. (2014; 2018), including a 30-arc-second spatial resolution 201 
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asset value map in 2015 and county-level asset value estimates from 1990 to 2015. 202 

Here, we first aggregate the 30-arc-second asset value map to 0.25 degrees, and then 203 

assume that the county-level spatial distribution of asset values from 1990 to 2015 is 204 

the same as in 2015. From this, by calculating the asset value weights for each grid 205 

within the county in 2015, combined with the county-level asset value estimates, the 206 

spatial distribution in 2015 can then be extended to other years: 207 

ki,j,t=Kj,t×weight
i,j,2015

                        (1) 208 

with 209 

weight
i,j,2015

=
ki,j,2015

Kj,2015
                            (2) 210 

where ki,j,t is the asset value in year t at grid i in county j, Kj,t is the county-level 211 

asset value, and weight
i,j,2015

 is the ratio of grid i to total county assets in 2015. 212 

2.1.1.3 Vulnerability 213 

For vulnerability, we use statistical data on GDP per capita and house structure to 214 

represent the socioeconomic and physical capacity to reduce the economic impact of 215 

TCs, respectively. GDP per capita at the county level from 1990 to 2015 are collected 216 

from the Chinese Socioeconomic Development Statistical Database (CSDSD, 217 

https://data.cnki.net/). Here, we assume that the GDP per capita of each county are 218 

uniformly distributed, that is, the GDP per capita of each 0.25-degree grid are equal to 219 

that of the county where the grid is located. 220 

 221 

House structure is described by the proportion of nonsteel-concrete residential 222 

buildings (NSCB). County-level statistics on residential buildings by different 223 

load-bearing frame structure types from population censuses are available for 2000 224 

and 2010 in China, which also can be accessed from CSDSD. Since such census data 225 

are not available for other years, we assume that the proportion of NSCB was constant 226 

for a county from 1990 to 2015, and we use the value of 2010 to represent the 227 

proportion of NSCB for the whole period. The proportion, always between 0 and 1, 228 

indicates the ratio of relatively vulnerable housing of a county. Similarly, we assume 229 
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that the proportion is uniformly distributed within a county. Although this ratio could 230 

not provide information on temporal variation of the house structure, it introduces 231 

spatial physical vulnerability and could indicate the possibility of capital stock 232 

transformed into economic damage from the mechanism. 233 

2.1.2 Dataset reconstruction 234 

After preprocessing the data, we complete the spatialization of TC hazard (by 235 

simulating the wind field and extracting the precipitation field from observed data), 236 

exposure (by upscaling and extending an existing asset value map), and vulnerability 237 

(by spatializing statistical data) at 0.25 degrees. These spatially explicit data, together 238 

with DEL records at three different scales, form the “gridded datasets” that are used 239 

for calibrating the sigmoidal damage function. A total of 56,023 grid points affected 240 

by TCs are included, and each grid point has 5 properties: wind speed, daily 241 

precipitation, asset value, GDP per capita, and the proportion of nonsteel-concrete 242 

residential buildings. 243 

 244 

Furthermore, we aggregate spatially explicit data to match DEL records at three 245 

different scales. For hazard, exposure, and vulnerability, different aggregate functions 246 

are used. We use the max and average function for wind and precipitation intensity to 247 

describe the potential maximum and mean intensity at the county, province, and TC 248 

levels, respectively. Four hazard variables, Wmax , Wavg , Pmax , and Pavg , are 249 

generated. Gridded asset value exposure (K) is aggregated using the sum function to 250 

show the total assets exposed by TCs. GDP per capita (I) and house structure (H) data 251 

are aggregated using the average function to determine the overall vulnerability of the 252 

exposed area. Finally, all aggregated variables, together with DEL records at three 253 

different scales, form the “aggregated datasets” that are used for estimating the 254 

integrated power-law damage function. More intuitively, each DEL record in Figure 2 255 

and 7 explanatory variables matching each record exactly form the aggregated 256 

datasets (see more in Figure S2). 257 

 258 
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2.2 Scale-dependence analysis 259 

2.2.1 Two types of damage functions 260 

The damage function, or impact/vulnerability function, relates the TC intensity to the 261 

damage it may cause. Earlier studies tended to suggest a high power-law dependence of 262 

damage on wind speed (Howard et al., 1972; Iman et al., 2005; Nordhaus, 2006, 2010; 263 

Pielke, 2007); that is, damage induced by TCs appears to rise with the third to ninth 264 

power of maximum wind speed. Starting from Mendelsohn et al. (2012), the damage 265 

function incorporates additional determinants. For example, Mendelsohn et al. (2012) 266 

assumed that damage is represented by the intensity and location of TCs, regressing 267 

damage per TC on intensity (measured as wind speed and minimum pressure, 268 

respectively), population density, and income. Here, all dependent and independent 269 

variables are converted into logarithmic form because the log-log function form is the 270 

best fit, as affirmed by various studies (Bakkensen & Mendelsohn, 2016; Geiger et al., 271 

2016). Therefore, the estimated coefficient of wind speed in the regression is the nth 272 

power of wind speed from previous studies. The US coefficient on wind speed is 4.95 273 

(with a standard error of 0.63), revealing that damage varies as the nearly fifth power of 274 

wind speed or a 20% increase in wind speed would double the damage (Mendelsohn et 275 

al., 2012). However, TC winds are commonly accompanied by intense precipitation, 276 

which can also cause significant damage. Bekkensen et al. (2018) performed a TC 277 

integrated damage assessment at the province scale with two characterizations, namely, 278 

wind + rain and wind-only, where the former damage function includes both wind and 279 

rain as explanatory variables while the latter includes only wind. 280 

 281 

In contrast to studies that attribute losses to maximum wind speed at the province or 282 

TC scale level, another strand of studies is devoted to characterizing the damage 283 

function that can describe the relationship between local wind speed and loss ratio. 284 

Emanuel (2011) proposed a damage function that produces positive values of damage 285 

only for wind speed over a specified threshold, and the mean damage ratio should 286 

vary as the cube of the wind speed over the threshold, and then the ratio approaches 287 
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100% at very high wind speed. An idealized sigmoidal damage function that satisfies 288 

these requirements is 289 

LR=
Vn

3

1+Vn
3                                (3) 290 

with 291 

vn=
MAX[(V-Vthresh),0]

Vhalf-Vthresh
                           (4) 292 

Equation (3) defines the loss rate LR as a function of wind speed (V). Fundamentally, 293 

LR is determined by two shape parameters, Vthresh and Vhalf. By varying the two 294 

parameters, the damage function can be fit to describe the vulnerability of various 295 

building types (Sealy & Strobl, 2017) or different countries and regions (Eberenz et 296 

al., 2021). 297 

 298 

In this study, the above two types of damage functions, i.e., the sigmoidal curve-based 299 

damage function and power-law damage function, are separately used to model the 300 

DEL from TCs in China at the county, province, and TC scales. Previous sigmoidal 301 

curve-based damage functions only consider the effect of wind intensity on damage, 302 

and its form is given in Equations 3 and 4, hereinafter referred to as the 303 

“wind-calibrated sigmoidal damage function”. In the same form, but using TC 304 

precipitation to represent the hazard, we propose a new TC damage function referred 305 

to as the “precipitation-calibrated sigmoidal damage function”, i.e., the loss rate LR 306 

is defined as a function of daily precipitation (P) and determined by two shape 307 

parameters, Pthresh and Phalf (see Equations 5 and 6). 308 

LR=
Pn

3

1+Pn
3                                  (5) 309 

Pn=
MAX[(P-Pthresh),0]

Phalf-Pthresh
                            (6) 310 

For the power-law damage function, we consider an integrated model with all three 311 

components (i.e., hazard, exposure, and vulnerability) introduced. The integrated 312 

model predicts the DEL given the explanatory variables from three components. We 313 

refer to it as the “integrated power-law damage function”, and the full equation is 314 

ln (DEL) =β
0
+β

H
ln (H) + β

E
ln (E) + β

V
ln (V)               (7) 315 
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where H, E, and V are hazard, exposure, and vulnerability variables, respectively. 316 

 317 

These two types of damage functions correspond to the two datasets reconstructed 318 

above. The sigmoidal damage functions convert the wind or precipitation intensity at 319 

each 0.25-degree grid point into a certain loss rate using the gridded datasets for 320 

parameter calibration and performance comparison. However, the integrated 321 

power-law damage function directly relates the DEL at the county, province, or TC 322 

scale to hazard, exposure, and vulnerability variables at the same spatial scale, using 323 

the aggregated datasets for parameter estimation. To compare the ability to reproduce 324 

the DEL under different damage functions and different spatial scales, the record 325 

damage ratio (RDR) is computed for each record R as the ratio of the simulated DEL 326 

over the reported DEL (Eberenz et al., 2021): 327 

RDRR=Simulated DELR/Reported DELR.                (8) 328 

If a RDR equals 1, it indicates a perfect fit between its corresponding simulated 329 

and reported DEL. A RDR greater than 1 indicates an overestimation of DEL; 330 

otherwise, an underestimation. In addition, to compare the ability to reproduce the 331 

total DEL under a certain spatial scale, the total damage ratio (TDR) is calculated 332 

as the sum of the simulated DEL divided by the sum of the reported DEL: 333 

TDRS=
∑ Simulated DELR

N
R=1

∑ Reported DELR
N
R=1

                             (9) 334 

where N is the number of DEL records R in subset S. Notably, records with a 335 

large DEL will have a significant impact on the value of the TDR. 336 

2.2.2 The subject of spatial scale dependence 337 

We follow the subject of spatial scale dependence proposed by Sandel (2015), i.e., TC 338 

damage functions are scale dependent when the model structure, estimated parameters 339 

or model performance varies with spatial scale. 340 

 341 

First, the scale-dependence of structure only occurs when the multiple variables 342 

included in a damage function vary with spatial scale or sequence length. Thus, we 343 

use an integrated power-law damage function to perform the scale-dependence of the 344 
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structure. Specifically, variable selection analysis is performed to illustrate how the 345 

variables selected to be included in an integrated damage function vary with spatial 346 

scale. Considering the integrity of the risk framework, at least one explanatory 347 

variable should be kept for each component of hazard, exposure, and vulnerability. 348 

Here, we use the root-mean-squared fraction (RMSF) as a cost function following 349 

Eberenz et al. (2021) to pick the optimal structure of the damage function: 350 

RMSF=exp(√
1

N
∑ [ ln(RDRR) ]

2N
R=1 ).                    (10) 351 

The RMSF is a measure of the spread in RDRs. The larger the relative deviation 352 

between the simulated and reported DEL for all records is, the larger the value of the 353 

RMSF. The most ideal value of the RMSF for a perfect fit of all records is 1. Therefore, 354 

we can obtain the optimal structure of the damage function by identifying the function 355 

associated with the smallest value of RMSF; see Sect. 3.1 for the results. 356 

 357 

Second, we use both types of damage functions to illustrate the scale dependence of 358 

the parameter. For two damage functions in sigmoidal form, similar parameter 359 

calibration procedures are adopted. In a function using the intensity of wind to 360 

represent hazard, the threshold wind speed Vthresh is set as 25.7 m/s, which was first 361 

proposed for the USA by Emanuel (2011) and then affirmed for China by Elliott et al. 362 

(2015). When  Vthresh is identified, Vhalf becomes the only parameter that determines 363 

the slope of a sigmoidal function. For the fitting of Vhalf, we use the RMSF again to 364 

find the optimal value of Vhalf under each spatial scale, i.e., the optimized Vhalf 365 

associated with optimal results for each cost function is identified. Thus, the value of 366 

optimized Vhalf is the parameter of the wind-calibrated sigmoidal damage function. 367 

In a function using the intensity of TC precipitation to represent hazard, the threshold 368 

daily precipitation intensity Pthresh is set as 25 mm (Chen et al., 2011; Ye et al., 369 

2020). Adopting the same calibration procedure, the Phalf associated with the optimal 370 

value of the RMSF is the parameter of the precipitation-calibrated sigmoidal damage 371 

function. For the integrated damage function in power-law form, parameters are 372 

estimated in the same structure to exclude the influence of explanatory variable 373 
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selection. That is, the natural log of DEL is a function of maximum wind intensity 374 

(Wmax), maximum precipitation intensity (Pmax), asset value exposed to TC (K), and 375 

GDP per capita (I). We select this functional form in line with previous literature 376 

(Bakkensen et al., 2018; Mendelsohn et al., 2012; Ye et al., 2020) and improve it in 377 

three ways: 1) the DEL is codetermined by hazard, exposure, and vulnerability; 2) in 378 

addition to wind, TC-induced precipitation is introduced to indicate hazard; and 3) the 379 

asset value instead of GDP exposed by TCs is introduced to represent exposure. Thus, 380 

β
Wmax

,  β
Pmax

, β
K

, and β
I
 are parameters of the integrated power-law damage 381 

function. The values of these parameters at different spatial scales are used to 382 

demonstrate the scale-dependent effect of the parameter (Sect. 3.2) and to compute the 383 

RDR for each record and the TDR for each subset, allowing for the comparison of 384 

model performance in Sect. 3.3. 385 

 386 

Finally, after parameter estimation, the scale dependence of performance can be 387 

analyzed; considering the fact that, on the one hand, the number of current DEL 388 

records must be much smaller than the total number of TC events causing damage, on 389 

the other hand, most previous studies have estimated DEL at the TC scale. Therefore, 390 

the scale dependence of performance is illustrated in two ways. One is how the 391 

performance changes when using parameters derived from a short sequence to 392 

evaluate DEL at a long sequence (Figure 6). Another is how the performance changes 393 

when using parameters derived from the TC scale to evaluate DEL at a finer scale 394 

(Figure 7).  395 

 396 

3 Results 397 

3.1 Scale dependence of the structure 398 

In this section, the integrated power-law damage function (Equation 7) is used to 399 

demonstrate how spatial scale and sequence length affect the structure of the TC 400 

damage functions. Table 1 lists the optimal combination of explanatory variables in 401 
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each case. For short sequences, the wind variable (i.e., Wmax) is always the most 402 

significant. Precipitation variables (i.e., Pmax and Pavg) are not always important, but 403 

their importance decreases as the spatial scale increases. In contrast, the significance 404 

of exposure variable K increases as the spatial scale increases. Similarly, for long 405 

sequences, the importance of the exposure variable increases with spatial scale, while 406 

the relative importance of hazard variables decreases with scale (though they are 407 

consistently significant at the 0.001 level). Unlike the short-sequence results, the wind 408 

variable is relatively less important than the precipitation variable. Comparing the 409 

selected variables on the same spatial scale but with different sequence lengths, an 410 

identical pattern is that the relative significance of the wind variable decreases with 411 

sequence length, but the relative significance of the precipitation variable increases 412 

with sequence length. In addition, the choice of two different vulnerability variables 413 

(i.e., physical vulnerability H and social vulnerability I) varies with the spatial scale 414 

and sequence length, but the pattern does not seem to be fixed. 415 

 416 

Table 1 417 

Variable selection results by spatial scale and sequence length  418 

Sequence 

Length 
Short Sequence  Long Sequence 

Spatial Scale County Province TC  Province TC 

1 Wmax
***

 Wmax
***

 Wmax
***

  Pmax
***

 K
***

 

2 Pmax
***

 Pmax
*
 K

**
  Wmax

***
 Pmax

***
 

3 I
***

 K
*
 H  H

***
 Wmax

***
 

4 K I Pavg  K
**

 I
***

 

RMSF 5.6 2.1 1.8  4.1 3.6 

R
2
 0.389 0.818 0.789  0.405 0.569 

Note. Selected variables are listed in the order of statistical significance. 
***

, 
**

, and 
*
 419 

indicate significance at the 0.001, 0.01, and 0.05 levels, respectively. The specific 420 

estimated coefficients are shown in Table S1. 421 

 422 

The partial regression plots more intuitively explain why the integrated power-law 423 

damage function has this structural scale dependence. Increasing the spatial scale, the 424 
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partial regression coefficient of precipitation variable Pmax becomes more negative 425 

(Figure 3b, Figure 3e), while the partial regression coefficient of exposure variable K 426 

becomes more positive (Figure 3c, Figure 3f) for both short and long sequences. That 427 

is, as the spatial scale increases, asset exposure tends to more significantly determine 428 

the amount of DEL, while the role of precipitation intensity is not as significant as it is 429 

for smaller scales. Less variation in the partial regression coefficient of wind variable 430 

Wmax at different spatial scales is observed, especially for the long-sequence case 431 

(Figure 3d). Combining the results of selected variables and partial regression plots on 432 

wind, precipitation, and exposure variables, it is suggested that 1) the global wind 433 

intensity is statistically associated with DEL at all spatial scales, and such a 434 

relationship tends to be consistent across spatial scales as the sequence is prolonged; 2) 435 

the contributions of global precipitation intensity and total asset exposure to DEL are 436 

spatial scale dependent in the structure of the power-law TC damage function; and 3) 437 

the choice of vulnerability indicator is spatial scale dependent. 438 

 439 

 440 

Figure 3 The partial regression plots based on the explanatory variables selected in 441 

Table 1.  442 
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 443 

3.2 Scale dependence of the parameter 444 

In this section, the sigmoidal damage function based on wind (Equation 3 and 445 

Equation 4) and precipitation (Equation 5 and Equation 6) and the integrated 446 

power-law damage function (Equation 7) are used to demonstrate how the spatial 447 

scale and sequence length affect the parameter of the TC damage functions. Figure 4 448 

represent the parameter comparison in sigmoidal form, using local maximum wind 449 

speed daily precipitation as indicators of hazard intensity, respectively. In addition to 450 

comparing the best fit of slope parameter Vhalf (Phalf) to simulate the DEL at county, 451 

province, and TC scales (Figure 4a, b), the individually fitted values of Vhalf (Phalf) 452 

for each DEL record are given to visualize the uncertainty in each subset (Figure 4c, 453 

d). 454 

 455 

For the short sequence, the calibrated Vhalf at the county, province, and TC scales is 456 

62.4, 60.9, and 52.9 m/s, respectively. For the long sequence, the calibrated Vhalf at 457 

the province and TC scales is 40.8 and 48.2 m/s, respectively. Comparing the position 458 

of calibrated Vhalf  and the interquartile range (IQR) containing 50% of the 459 

individually fitted DEL records, the former tends to be located at a very left position 460 

within the IQR, or even smaller than the IQR (Figure 4c). It is indicated that the 461 

calibrated optimal Vhalf  using local wind intensity is still unable to accurately 462 

describe the real damage function. This will be further analyzed and discussed in Sect. 463 

3.3 and Sect. 4.1. Conversely, the calibrated sigmoidal damage function based on 464 

local daily precipitation seems to be more ideal in interpreting each DEL sample since 465 

all calibrated Phalf are located within the corresponding IQR (Figure 4d), and the 466 

median values are very close to calibrated Phalf, especially for the long-sequence case. 467 

For the short sequence, the calibrated Phalf at the county, province, and TC scales is 468 

560, 528, and 624 mm, respectively. For the long sequence, the calibrated Phalf at the 469 

province and TC scales is 449 and 510 mm, respectively. It should be noted that the 470 

median of the individually fitted Phalf increases with the spatial scale, which is in line 471 
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with expectations. However, comparing the values of calibrated Phalf as the spatial 472 

scale increases, the case of province scale and short sequence breaks the rule. The 473 

value of 528 mm is the smallest for the short sequence, and it deviates the most from 474 

the median. This anomaly reveals the uncertainty of short sequences for calibration 475 

parameters. Another interesting fact is that prolonging the sequence length would lead 476 

to a smaller value of Phalf, which is confirmed both at the TC and province scales. 477 

This can be explained by the fact that the long sequence contains more small loss rate 478 

(LR) records (for long and short sequences, the median LR at the province scale is 479 

0.11% and 0.17%, and the median LR at the TC scale is 0.13% and 0.21%, 480 

respectively), since large damages are always rare. In general, the slope parameter 481 

Phalf is spatially scale dependent, as it tends to become larger with increasing scale, 482 

although it is more robust for long sequences. 483 

 484 

 485 

Figure 4 Calibrated results of sigmoidal damage function (DF) based on local wind (a) 486 

and precipitation (b) intensity for different spatial scales. The individually fitted 487 
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values of Vhalf (c) and Phalf (d) for each DEL record are shown in vertical lines, and 488 

their interquartile range and median in each subset are shown in black horizontal line 489 

segments and crosses, respectively. The fuchsia (blue) diamonds mark the position of 490 

Vhalf (Phalf) at different spatial scales. 491 

 492 

Instead of using local hazard intensity, the integrated power-law damage function using 493 

global hazard intensity also shows the scale dependence of the parameter. Taking the 494 

model structure proposed in Sect. 2.2.2 as an example, i.e., hazard is represented by 495 

global maximum wind intensity (Wmax) and maximum daily precipitation (Pmax), 496 

exposure is represented by asset exposure (K) and vulnerability is represented by GDP 497 

per capita (I). Figure 5 demonstrates the estimated regression coefficients varying 498 

with spatial scale and sequence length. For each case, the coefficient of Wmax is 499 

always significantly larger than zero, although it deviates from zero by different 500 

degrees. The coefficients of the other three explanatory variables can all be 501 

insignificant at certain spatial scales. Such parameter dependence is consistent with 502 

the structure-dependence results shown. For example, Wmax is always introduced as 503 

an explanatory variable in the optimal structure under each spatial scale and is 504 

statistically significant in Table 1. The coefficients of Pmax exhibit a more regular 505 

spatial scale dependence. Its value decreases with spatial scale, accompanied by a 506 

decrease in confidence (Figure 5b), which is consistent with the fact that its relative 507 

importance ranking decreases with scale (Table 1). The coefficient of K is not 508 

significantly different from zero at the county scale but is significant at the province 509 

and TC scales, especially for long sequences. This mutually corroborates the partial 510 

regression plots in Figure 3c and Figure 3f. In addition, it should be noted that the 511 

coefficient of I at the county scale is 0.58 and is positively significant. Given that the 512 

coefficient of K at the county scale is not significantly different from zero, GDP per 513 

capita represents exposure rather than expected social vulnerability. The case where 514 

all introduced explanatory variables are statistically significant is only shown at the 515 

TC scale for long sequences. The estimated coefficients, also called elasticity in such 516 

log-log relationships, of Wmax, Pmax, K and I are 1.95 [1.07 to 2.83, 95% confidence 517 

interval], 1.55 [0.93 to 2.20], 0.77 [0.48 to 1.07], and -1.14 [-1.77 to -0.51] , 518 
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respectively, indicating that a doubling of global maximum wind speed, global daily 519 

precipitation, asset exposure, and GDP per capita increase the TC scale’s DEL by 286% 520 

[110% to 611%], 193% [90% to 359%], 71% [39% to 110%], and -55% [-71% to 521 

-30%], respectively. Particularly, the coefficient of I is negatively significant, 522 

demonstrating that the impact of socioeconomic vulnerability on mitigating DEL, 523 

proxied by GDP per capita, is revealed for TC-scale and long-term estimation. The 524 

estimated elasticities of maximum wind speed are much smaller than the previous 525 

damage functions that did not consider the effect of TC-precipitation(Mendelsohn et 526 

al., 2012; Nordhaus, 2010). Our results show that DEL rises with less than third power 527 

of the maximum wind speed at the 95% confidence level, thus the higher power-law 528 

dependences of damage on wind speed overestimate the effect of wind.  529 

 530 

 531 

Figure 5 Regression coefficient of the integrated power-law damage function using 532 

global hazard intensity varying with spatial scale and sequence length. The 533 

explanatory variables used here are based on the selection in Sect. 2.2.2. The error 534 

bars show the 95% confidence interval of the coefficient. 535 
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3.3 Scale dependence of the performance 536 

In this section, the three damage functions that were parameterized in Sect 3.2: (1) 537 

sigmoidal damage function based on local wind and (2) precipitation intensity, and (3) 538 

integrated power-law damage function, are used to demonstrate how spatial scale and 539 

sequence length affect the performance. In scenarios using parameters derived from 540 

short sequences (SSs) to evaluate DEL at long sequences (LSs), the performance 541 

comparison by three damage functions is shown in Figure 6. In scenarios using 542 

parameters derived from the TC scale (TCS) to evaluate DEL at a finer scale, the 543 

performance comparison by three damage functions is shown in Figure 7. 544 

 545 

Obviously, the difference in performance brought by different damage functions is 546 

greater than the difference due to the inconsistent sequence length. Among the three 547 

functions we use, it is clear that the overall performance of the wind-calibrated 548 

damage function is the least ideal, both in terms of the spread of deviation of the 549 

individually simulated DEL from the reported DEL and the ratio of the total simulated 550 

DEL to the total reported DEL (Figure 6a). It is associated with the biasedly calibrated 551 

Vhalf in Figure 4. Calibrating the sigmoidal TC damage function with the wind field is 552 

not capable of adequately modeling the economic cost of TCs. The consequence of 553 

using the wind-calibrated damage function is that an impractically low value of Vhalf 554 

is obtained, and this is a kind of compensation for the fact that the wind field is not 555 

enough to represent TC hazard. Therefore, the highly simulated DEL for individual 556 

records and high TDR for all records are shown. The absence of the minimum and 557 

lower quartiles of the RDR at the province scale and long sequence is because 558 

approximately a quarter of the simulated DELs are equal to 0. This also illustrates the 559 

limitation of the wind-calibrated damage function, as the reported DEL actually exists, 560 

and the wind-calibrated damage function fails to reproduce it. It is further visualized 561 

in the case of TC Morakot and TC Lisa (Figure 8). The precipitation-calibrated and 562 

integrated power-law damage functions indicate better simulation results in regard to 563 

the RDR, but the former shows an overall overestimation in TDR (Figure 6b), and the 564 
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latter underestimates (Figure 6c). In the same form of damage function, the short 565 

sequence shows relatively better estimates of DEL due to its lower heterogeneity than 566 

the long sequence. In scenarios using parameters derived from SSs to evaluate DEL at 567 

LSs, worse performance is shown in the RDR, while better performance is shown in 568 

the TDR. For relative larger scales like province- and TC-scale, short sequence may 569 

be adequate to describe a robust relationship in both forms of damage function. 570 

 571 

 572 

Figure 6 Performance comparison of three damage functions (DFs) using parameters 573 

derived from short sequences to evaluate DEL at long sequences. (a) Sigmoidal DF 574 

based on local wind and (b) precipitation intensity, and (c) integrated power-law DF. 575 

Performance is represented by a boxplot of the RDR (i.e., the deviation of the 576 

individually simulated DEL from the reported DEL) and the TDR (i.e., the ratio of total 577 

simulated DEL to total reported DEL), respectively. 578 

 579 

Similarly, the difference brought by different damage functions is greater than the 580 

difference due to the inconsistent spatial scale. Here, we concentrate on 581 

precipitation-calibrated and integrated power-law damage functions for their better 582 

performance. First, for both types, the spread of the RDR at the TC scale is less 583 

variable than at the province/county scale for its minimum IQR. These results are 584 

consistent with the regularity presented by sequence length, i.e., a larger spatial scale 585 

and shorter sequence usually indicate a smaller sample size and thus reduce the 586 

intrasample heterogeneity, which is finally indicated as a smaller IQR in the boxplot. 587 
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Second, in terms of the TDR, the performance also improves with spatial scale. 588 

Except for the short-sequence case in Figure 7b, the value of the TDR at the province 589 

scale is higher than that at the county or TC scale. This result is consistent with the 590 

smallest value of Phalf for the province scale in Figure 4b. Again, the two types of 591 

damage function show opposite directions in the TDR. Combining the performance of 592 

the RDR and TDR, the precipitation-calibrated damage function in sigmoidal form is 593 

suitable for county-scale simulation, only biasing the TDR by a factor of less than 2. 594 

The power-law damage function is more effective at the province and TC scales. For 595 

most records, the simulated DEL and reported DEL deviate by less than 1 order of 596 

magnitude. However, when scaling the parameter of the TC scale to finer scales, the 597 

performance of sigmoidal precipitation-calibrated damage function at TC scale shows 598 

a worse simulation than its original results, which indicate a worse scalability 599 

compared with the power-law form. Thus, for such a sigmoidal form, it is particularly 600 

important to establish a spatial scale-specific damage function. 601 

 602 

 603 

Figure 7 Performance comparison of three damage functions (DFs) using parameters 604 

derived from the TC scale to evaluate DEL at the province-/county scale. Consistent 605 

with Figure 6, performance is represented by a boxplot of RDR and TDR, respectively. 606 

 607 
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4 Discussion 608 

4.1 Implications in TC risk management at different scales 609 

Generally, TC risk assessment is adopted from a global or national perspective. 610 

However, the DEL records with better resolution and details at subnational levels 611 

make TC risk assessment at a finer scale feasible. Our results provide a considerable 612 

reference for TC risk management at different scales. 613 

 614 

First, the type selection of the damage function should be spatially scale adaptive. For 615 

TC or province scales, it is more appropriate to use an integrated power-law damage 616 

function to perform TC risk assessments. A potential problem is that this may lead to a 617 

conservative assessment of future risk, given its underestimation of the TDR. At the 618 

county scale, it is advisable to employ the more scale-independent, 619 

precipitation-calibrated sigmoidal damage function. The consequent challenge is that 620 

there is much difficulty and uncertainty in predicting the spatial distribution of future 621 

exposure. 622 

 623 

Second, TC-induced precipitation tends to be more significant in determining 624 

exposure and therefore the economic cost of TCs. This is confirmed by the parameters 625 

and performances of the two separately calibrated sigmoidal functions. The hidden 626 

reason is that a grid with a maximum wind speed lower than Vthresh, i.e., 25.7 m/s, 627 

may be hit by heavy rainfall and suffer significant DEL as a result. Thus, 628 

wind-calibrated sigmoidal damage functions would fail in evaluating DEL for these 629 

regions. In our DEL records, Morakot in 2003 and Lisa in 1996 caused large damages 630 

of 2.4 and 1.6 billion CNY, respectively, to Fujian Province (Figure 8). The wind 631 

intensity on land was basically below 20 m/s, while the maximum daily precipitation 632 

reached 208 and 106 mm, respectively. Thus, while the wind and precipitation 633 

intensity are correlated in most cases, the sigmoidal damage function calibrated 634 

relying only on wind may lead to significant bias. This bias is mainly due to the 635 

underestimation of exposure by omitting the areas actually affected by TC-induced 636 
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precipitation. As a result, the steeper sigmoidal damage functions compared with the 637 

real case are calibrated because of the overestimated damage rate. We find that the 638 

TDRs in Figure 7e are overestimated, which again demonstrates that characterizing 639 

DEL by wind alone may lead to a misestimation. Additionally, based on the sigmoidal 640 

form, damage functions calibrated by precipitation alone have a better performance 641 

instead. It can be interpreted that the geographic extent of TC exposure is mainly 642 

determined by the intensity of precipitation rather than wind. 643 

 644 

Third, spatial heterogeneity determines the driving force of DEL at different scales, 645 

thus providing some novel insights for TC risk management and climate adaptation 646 

strategies. Within a relatively limited county region, the precise spatialization of asset 647 

value exposure is vital. The sigmoidal damage function, which is considered to be 648 

suitable for the county scale, inherently depends on accurate exposure data to 649 

determine the amount of DEL. That is, for county-level risk assessment, a precise 650 

knowledge of the spatial distribution of fixed assets may be more decisive than 651 

previous perceptions. At the province scale, the role of physical vulnerability in 652 

mitigating and adapting TCs is highlighted for long sequences. This is particularly 653 

illuminating for provinces with potential increases in TC frequency under climate 654 

change. Considering the long-term TC risk, these provincial decision-makers can 655 

place a higher priority on some hard defenses. For TC scales, the coefficients of 656 

hazard, exposure, and vulnerability variables are all significant, suggesting the need 657 

for multidimensional risk management. Notably, the coefficient of GDP per capita is 658 

significantly negative, implying that reducing socioeconomic vulnerability is an 659 

effective way to mitigate the impact of TCs. From the supply–demand relationship 660 

perspective, increases in income increase the demand for safety and therefore enable 661 

individuals to employ costly precautionary engineering and nonengineering measures 662 

(Wu et al., 2018). Consequently, the trade-off between the increase in resilience 663 

against TCs and exposure brought by development is a challenging choice in regard to 664 

socioeconomic pathway for national policy-makers. 665 
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 666 

Figure 8 The wind and precipitation fields of TC Morakot in 2003 and TC Lisa in 1996. 667 

The blue lines are contours of maximum daily precipitation of 25 mm. The orange lines 668 

are contours of the maximum wind speed of 20 m/s. 669 

 670 

4.2 Limitations 671 

There are some limitations in our study. First, our spatial resolution of hazard, 672 

exposure, and vulnerability of 0.25 degrees may be coarse for county-level estimation. 673 

This may primarily affect the accuracy of county-level exposure, resulting in an over- 674 

or underestimation of the actual loss rate. Second, the hazard is represented by wind 675 

fields modeled from TC track data and precipitation fields reconstructed from the 676 

observation dataset. The vulnerability is represented by the spatiotemporally 677 

heterogeneous GDP per capita and the spatially heterogeneous proportion of 678 

nonsteel-concrete residential buildings. We did not explicitly quantify the 679 

uncertainties from the two representations of hazards and did not include extra 680 

indicators to describe TC vulnerability. Rather, the robustness of our results was 681 

confirmed based on the full exploration of the most pervasive hazard and vulnerability 682 

data and fine DEL records in China. 683 

5 Conclusion 684 

Based on historical reported DEL at the county, province, and TC scales across 685 

mainland China, we first reproduce the hazard, exposure, and vulnerability based on 686 

each record. To distinguish between different types of damage functions, we 687 
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summarize two forms: a sigmoidal form that simulates damage by identifying the loss 688 

rate of each grid point and a power-law form that estimates damage by identifying the 689 

statistical relationship between hazard, exposure, and vulnerability. In the former form, 690 

in addition to identifying the loss rate by wind intensity, we inventively use the 691 

TC-induced precipitation field to represent hazards and determine the geographic 692 

extent of exposure and vulnerability. We further parameterize and then compare the 693 

two types of TC damage functions at different spatial scales. Detailed spatial 694 

scale-dependence analysis is illustrated in three subjects: model structure, calibrated 695 

or estimated parameters, and model performance. Except for the first subject, all three 696 

damage functions are used to demonstrate the effect of spatial scale on model 697 

parameter and performance. Additional comparison is also performed between short 698 

and long sequences, as a sensitivity complement in scale-dependence exploration. 699 

Overall, the spatial scale dependence of the sigmoidal damage function is mainly 700 

reflected in the difference in the calibrated value of Phalf (Vhalf) and the real hazard 701 

intensity at which the relative impact reaches 50% of the asset exposure. The scale 702 

dependence of the power-law damage function is mainly reflected in the different 703 

driving forces of DEL at different spatial scales. 704 

 705 

The correlations between spatial scale, functional form, representation of hazard, and 706 

the applicability of a TC damage function challenge our understanding of disaster risk 707 

mitigation and adaptation. Based on our findings, we suggest that different TC risk 708 

assessment methods and climate adaptation strategies should be adopted at different 709 

spatial scales. For the smaller county scale, the use of a precipitation-calibrated 710 

sigmoidal damage function and concerns about current and future exposure are 711 

significant. For the larger province and TC scales, an integrated power-law damage 712 

function could provide a better fit of DEL and could improve the risk assessment for 713 

annual average loss per county or province. Furthermore, the possible strategic 714 

direction of reducing vulnerability also varies with spatial scale. It is practical for 715 

developing provinces to increase investment in hard defenses to improve physical 716 

vulnerability. From the perspective of the whole country, comprehensive measures, 717 
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including zoning regulations, early warning systems and emergency response systems, 718 

are required to enhance socioeconomic vulnerability. 719 
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