Connecting Space-Based Missions to Existing Communities: NASA Surface Biology and Geology (SBG), EU-Copernicus and the Global Lake Ecological Observatory Network (GLEON)

Stephanie Schollaert Uz¹, Paul Hanson², Kathleen Weathers³, Benjamin Poulter⁴, and Stefan Simis⁵

¹NASA Goddard Space Flight Center ²University of Wisconsin Madison ³Cary Institute of Ecosystem Studies ⁴NASA GSFC ⁵Plymouth Marine Laboratory

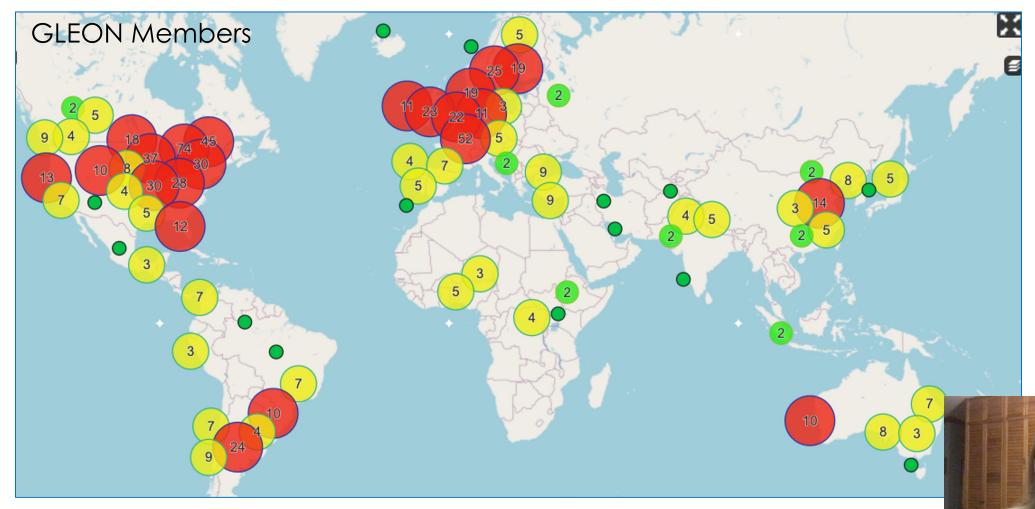
November 24, 2022

Abstract

Global environmental science challenges in the limnological research and applications communities can only be advanced when harnessing the collective expertise and capabilities of the satellite remote sensing community and well-established in situ communities such as the Global Lake Ecological Observatory Network (GLEON). At first glance, the groups seem wildly divergent: GLEON is a grass-roots effort which has been active since 2005 and connects researchers and practitioners from around the world to ask and answer questions about lake ecosystems. Earth observing missions can take a decade to plan, build, and launch. NASA and ESA have different missions as space agencies: one primarily focused on exploration and basic research with a year-to-year appropriations cycle, while the other presents a long-term commitment to address societal needs through the Copernicus program Sentinel satellite series. The Surface Biology and Geology (SBG) mission is a future NASA satellite that will launch toward the end of this decade as part of the Earth Systems Observatory. Working together to advance the science of lake ecosystem response to climate change, each group brings different complementary strengths and assets to this societal challenge. Increasing access through open science and cloud computing are creating opportunities for better collaboration. We describe our strategy for international engagement between these groups – cultural and methodological differences aside – to derive new information, learn new insights, and expand the body of knowledge around these unique natural resources.

Connecting Space-Based Missions to Existing Communities:

NASA Surface Biology and Geology (SBG), EU-Copernicus and the Global Lake Ecological Observatory Network (GLEON)


Stephanie Schollaert Uz¹, Paul C Hanson², Kathleen C Weathers³, Benjamin Poulter¹, Stefan Simis⁴

¹NASA Goddard Space Flight Center
 ²University of Wisconsin Madison
 ³Cary Institute of Ecosystem Studies
 ⁴Plymouth Marine Laboratory

Understand, Predict and Communicate the Role and Response of Lakes in a Changing Global Environment

890 members represent 62 countries 1/3 of members are graduate students Yuan Yang Lake, I Taiwan

Ormajärven, Finland

Lake Sunapee, USA

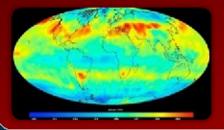
LSPA

Crystal Bog, USA

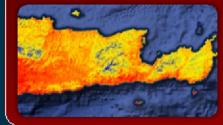
Lake Rotorua, NZ

Lake Plomo, Chile

Lake Erken, Sweden


Torrens Lake, Australia

Copernicus 2.0 – New Monitoring Missions



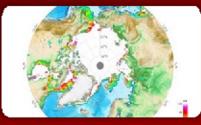
Anthropogenic CO₂ Mon. Mission

Causes of Climate Change

Land Surface Temperature Mission

Agriculture & Water Productivity

CRISTAL – Polar Ice & Snow Topography


Effects of Climate Change

CHIME – Hyperspectral Imaging Mission

Food Security, Soil, Biodiversity

CIMR – Passive Microwave Radiometer

Sea: Surface Temp. & Ice Concentration L-band SAR Mission Veg Gro Mo

Vegetation & Ground N Moisture

Current Earth Observing Fleet²⁰¹⁵

GRACE-FO (2)

00

IIII EMIT

11+11

II+II GEDI

ICESAT-2

MICHAEL FREILICH

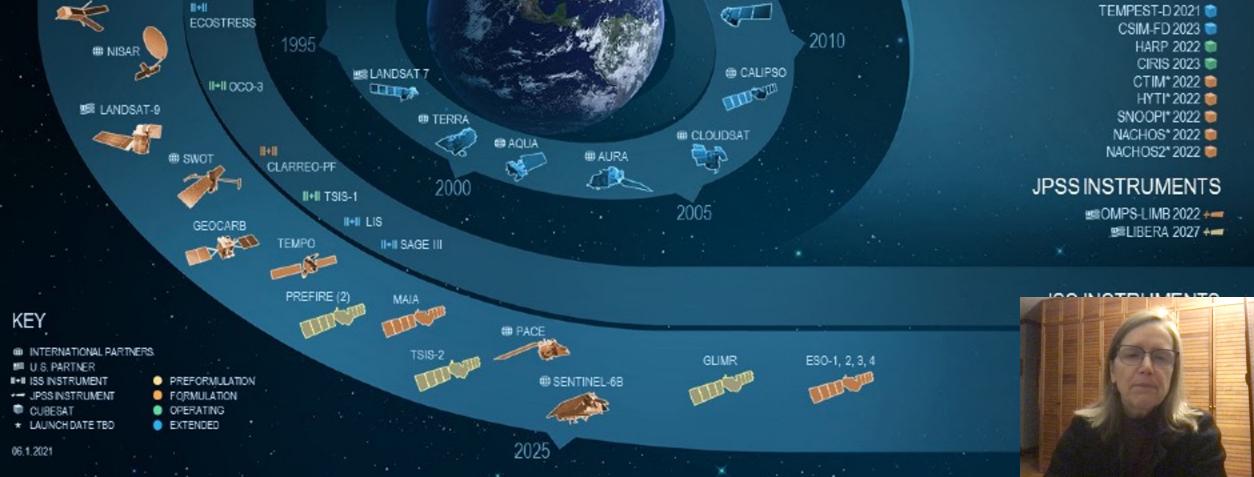
1.00

C SENTINEL-6

TROPICS (6)

(AL

2020



EARTH FLEET

INVEST/CUBESATS

TEMPEST-D 2021

OCO-2

GPM

SE LANDSAT 8

8000

SUCMI NPP

Current Earth Observing Fleet²⁰¹⁵

GRACE-FO (2)

00

II+II GEDI

ICESAT-2

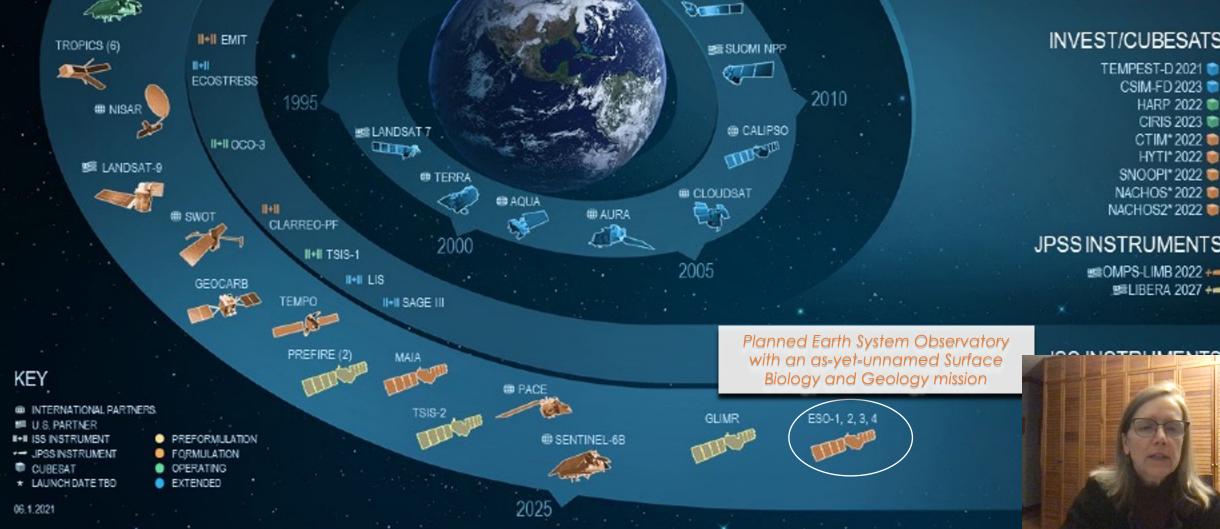
MICHAEL FREILICH

SENTINEL-6

Distant Co

2020

National Aeronautics and Space Administration


EARTH FLEET

INVEST/CUBESATS

CSIM-FD 2023 HARP 2022 CIRIS 2023 CTIM* 2022 HYTI* 2022 📦 SNOOPI* 2022 0 NACHOS* 2022 NACHOS2* 2022

JPSS INSTRUMENTS

#OMPS-LIMB 2022 +---LIBERA 2027 +

000-2

TAT

GPM

SE LANDSAT 8

SBG Architecture

SBG Heat

Wide-swath TIR imager and ASI VNIR camera

935 km

Sun-sync orbit (early PM) 5+ bands TIR, 2+ bands VNIR 935 km swath, 3 day revisit 60 meter GSD 0.2K NeDT SBG Constellation Pathfinder

185 km

SBG Light Wide-swath VSWIR spectrometer

Sun-sync orbit (late AM) 185 km swath 16 day revisit 10 nm, 200+ bands 30 meter GSD High SNR and radiometric performance

SBG Applications : Water Resources Management

Community survey and valuation study with RTI: 560 unique respondents, 21 different communities

76% from federal government, academia24% from NGO, private sector, state and local government

Relative Importance to User	Capability										
	Spectral			Spatial		Temporal					
	VIS-NIR	SWIR	TIR	VSWIR	TIR	VSWIR	TIR	Coincidence	Sensitivity	Latency^	
Hi	•					0			•	•	
Med		•					٠	•			
Low											

Is a significant benefit addressing unmet need(s)

^ Latency <48 hrs. - only if matched with useful revisit rates

Is benefit that adequately meets need(s)

Does not meet need(s) in some application(s)
 Does not meet need(s) in key applications

SBG Applications : Water Resources Management

Community survey and valuation study with RTI: 560 unique respondents, 21 different communities

76% from federal government, academia24% from NGO, private sector, state and local government

			A	lgal Bloon	n a nd Wa	iter Quality	,				
Relative Importance to User	Capability										
	Spectral			Spatial		Temporal					
	VIS-NIR	SWIR	TIR	VSWIR	TIR	VSWIR	TIR	Coincidence	Sensitivity	Latency^	
Hi	•		•	•	٠	0			٠	•	
Med		•					٠	•			
Low											

Legend: Users' assessment of the ability of an SBG capability to meet their needs in their priority applications:

- Is a significant benefit addressing unmet need(s)
- Is benefit that adequately meets need(s)

- Does not meet need(s) in some application(s)
 Does not meet need(s) in key applications
- ^ Latency <48 hrs. only if matched with useful revisit rates

Greatest opportunity: Inland/coastal water quality monitoring for health (importance to sector and dissatisfaction with current methods)

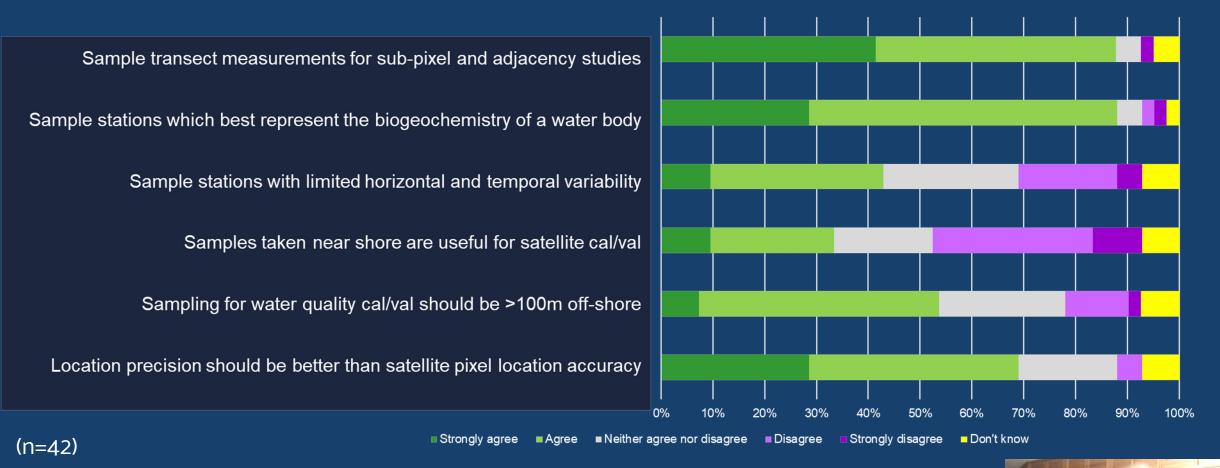
Water scenarios For Copernicus Exploitation (Water-ForCE)

Abundance of data collection: Aquatic vegetation, production, light and nutrients Particulate / dissolved matter, colour

Overall relatively good analysis of chlorophyll-*a*, water clarity, and nutrient concentrations measured in labs, but large gaps in biogeochemical variables.

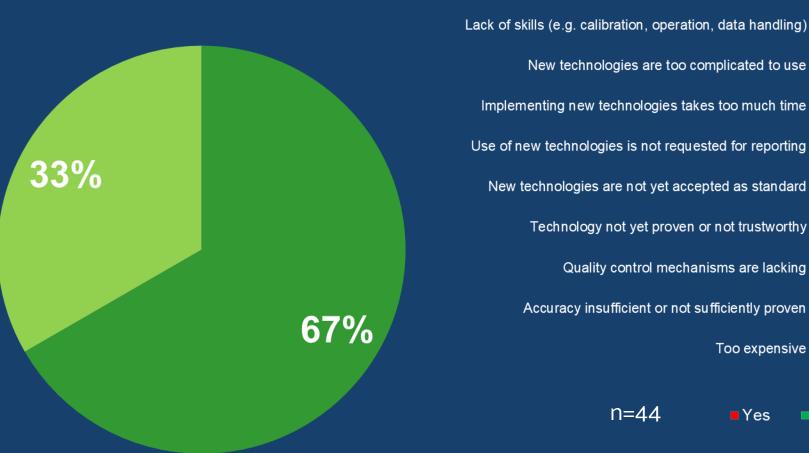
Formulate approach to improve bio-geochemical data collection.

water quality data users (n=37)


Water-ForCE received funding from the European Union's Horizon 2020

Overall **bek** of particle/dissolved optical properties, colour indices and reflectance components being collected

Investigate in situ community support barriers, and pathways to enhance bio-optical data collection rates



Data quality recommendations: location, resolution, precision

General agreement on precision, transect requirements and representativeness. **Discuss**: benefits of including **stable (trend/baseline) vs variable (cal/val range) stations**.

Willingness to use emerging technologies, barriers to uptake

Barriers to uptake

Do you use spectroradiometers in your data collection?

n=40

No: other reasons

Other reasons:

- Do not collect
- Plan to start the collection
- Radiometric data is collected by partners

Objectives of Connection

Mutual interest to advance the science of lake ecosystem response to climate change

Explore socio-technological areas for collaboration: establishing a framework for sustained monitoring and data collection for satellite calibration/validation

Collaborate with complementary U.S. and international missions

Share data sets and methodologies, engaging the GLEON community around space-based observing challenges

The GLEON Fellowship Program

Cohort 5: Lake Expedition 2022 Recruiting 10-12 graduate students

Why?

- Supporting science formulation for SBG
- Future of science includes collaboration
- Creates the transdisciplinary network needed for the science of remote sensing of inland lake water quality

How?

• Develop technical skills

Interpretation of satellite data and high frequency/complex database construction and synthesis, modeling

Create products

Open source models, publications, presentations

- Learn, utilize leadership & collaborative skills
 Facilitation, conflict mediation, network science
- Engage GLEON and NASA Networks toward sustained observing for cal/val of satellite products

Network science Modeling Big data

<u>Cohort 1, 2013</u> U.S. Water quality Lake metabolism

<u>Cohort 2, 2015</u> Carbon cycling Lake salt

<u>Cohort 3, 2017</u> Bayesian blooms

<u>Cohort 4,</u> Changing lake Machine lee

Additional information:

Today 17:00-19:00:

H45S-1404 - Connecting Lake Observatories to Space-Based Missions: Global Lake Ecological Observatory Network (GLEON), NASA Surface Biology and Geology (SBG), and the Environmental Data Initiative (EDI) Convention Center - Poster Hall, D-F and online

NASA Surface Biology and Geology (SBG) - <u>https://sbg.jpl.nasa.gov/</u>

EU Water scenarios For Copernicus Exploitation (Water-ForCE) - https://waterforce.eu/

Global Lake Ecological Observatory Network - https://gleon.org/

References:

Schollaert Uz, S., T. Culver, J. Luvall, C. Lee, D. Lapidus, M. Gallaher, (in revision), Assessing the Applications Potential of a NASA SBG Mission through a User Needs Valuation Study: Key Points and Lessons Learned. Journal of Geophys. Res. Biogeosciences

Simis, S.G.H., Horsburgh, N., Walker, P., Ogashawara, I., Cillero, C. (2021). Survey response of the H2020 Water-ForCE expert meeting on: In situ calibration and validation of satellite products of water quality and hydrology. doi: 10.5281/zenodo.5119010

