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Abstract

Energy exchanges between large-scale ocean currents and mesoscale eddies play an important role in setting the large-scale

ocean circulation but are not fully captured in models. To better understand and quantify the ocean energy cycle, we apply

along-isopycnal spatial filtering to output from an isopycnal 1/32$ˆ\circ$ primitive equation model with idealized Atlantic and

Southern Ocean geometry and topography. We diagnose the energy cycle in two frameworks: (1) a non-thickness-weighted

framework, resulting in a Lorenz-like energy cycle, and (2) a thickness-weighted framework, resulting in the Bleck energy cycle.

This paper shows that (2) is the more useful framework for studying energy pathways when an isopycnal average is used. Next,

we investigate the Bleck cycle as a function of filter scale. Baroclinic conversion generates mesoscale eddy kinetic energy over a

wide range of scales, and peaks near the deformation scale at high latitudes, but below the deformation scale at low latitudes.

Away from topography, an inverse cascade transfers kinetic energy from the mesoscales to larger scales. The upscale energy

transfer peaks near the energy-containing scale at high latitudes, but below the deformation scale at low latitudes. Regions

downstream of topography are characterized by a downscale kinetic energy transfer, in which mesoscale eddies are generated

through barotropic instability. The scale- and flow-dependent energy pathways diagnosed in this paper provide a basis for

evaluating and developing scale- and flow-aware mesoscale eddy parameterizations.

1



Generated using the official AMS LATEX template v6.1 two-column layout. This work has been submitted for
publication. Copyright in this work may be transferred without further notice, and this version may no longer be
accessible.

Diagnosing scale-dependent energy cycles in a high-resolution isopycnal ocean model

Nora Loose,a Scott Bachman,b Ian Grooms,a Malte Jansenc

a Department of Applied Mathematics, University of Colorado, Boulder, CO 80309
b Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80301

c Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637

ABSTRACT: Energy exchanges between large-scale ocean currents and mesoscale eddies play an important role in setting the large-scale

ocean circulation but are not fully captured in models. To better understand and quantify the ocean energy cycle, we apply along-isopycnal

spatial filtering to output from an isopycnal 1/32◦ primitive equation model with idealized Atlantic and Southern Ocean geometry and

topography. We diagnose the energy cycle in two frameworks: (1) a non-thickness-weighted framework, resulting in a Lorenz-like energy

cycle, and (2) a thickness-weighted framework, resulting in the Bleck energy cycle. This paper shows that (2) is the more useful framework

for studying energy pathways when an isopycnal average is used. Next, we investigate the Bleck cycle as a function of filter scale. Baroclinic

conversion generates mesoscale eddy kinetic energy over a wide range of scales, and peaks near the deformation scale at high latitudes,

but below the deformation scale at low latitudes. Away from topography, an inverse cascade transfers kinetic energy from the mesoscales

to larger scales. The upscale energy transfer peaks near the energy-containing scale at high latitudes, but below the deformation scale at

low latitudes. Regions downstream of topography are characterized by a downscale kinetic energy transfer, in which mesoscale eddies

are generated through barotropic instability. The scale- and flow-dependent energy pathways diagnosed in this paper provide a basis for

evaluating and developing scale- and flow-aware mesoscale eddy parameterizations.

SIGNIFICANCE STATEMENT: Blowing winds pro-
vide a major energy source for the large-scale ocean circu-
lation. A substantial fraction of this energy is converted to
smaller-scale eddies, which swirl through the ocean as sea
cyclones. Ocean turbulence causes these eddies to transfer
part of their energy back to the large-scale ocean currents.
This ocean energy cycle is not fully simulated in numerical
models, but plays an important role in transporting heat,
carbon, and nutrients throughout the world’s oceans. The
purpose of this study is to quantify the ocean energy cycle
by using fine-scale idealized numerical simulations of the
Atlantic and Southern Oceans. Our results provide a ba-
sis for how to include unrepresented energy exchanges in
coarse global climate models.

1. Introduction

The ocean is a turbulent fluid, in which motions on
a wide range of scales–from thousands of kilometers to
centimeters–interact and exchange energy. One major

Corresponding author: Nora Loose, nora.loose@colorado.edu

cross-scale energy transfer is through baroclinic instability,
a process that extracts potential energy from the large-scale
ocean currents and generates mesoscale eddies near the
scale of the deformation radius, at horizontal scales of tens
to hundreds of kilometers (Charney 1947; Eady 1949; Gill
et al. 1974). Quasi-geostrophic (QG) turbulence theory
predicts that an inverse cascade transfers kinetic energy
from the mesoscales back to the large-scale flow. Energy
exchanges in the real ocean are more complex than in the
picture described above. For instance, interactions with to-
pography and loss of balance can trigger a forward energy
cascade, in which eddy energy is fluxed downscale rather
than upscale (e.g.,Molemaker et al. 2010;Gula et al. 2016).

The ocean energy cycle remains challenging to
constrain with observations, due to their limited spatial
and temporal coverage (Ferrari and Wunsch 2009). To
better understand and quantify energy exchanges across
scales, previous studies have diagnosed the ocean energy
cycle in numerical models, and four-box energy diagrams
have proven as a useful framework (e.g., Aiki and Richards
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2008; von Storch et al. 2012; Chen et al. 2014; Kang and
Curchitser 2015; Barthel et al. 2017). These diagrams
consist of four energy reservoirs: mean potential energy
(MPE), mean kinetic energy (MKE), eddy potential
energy (EPE), and eddy kinetic energy (EKE). The energy
exchanges between these four reservoirs crucially depend
on how the mean velocity is defined, and two main
approaches have been pursued. A Eulerian mean formu-
lation leads to a Lorenz energy diagram (Lorenz 1955),
while a thickness-weighted mean velocity formulation
(Young 2012) leads to a Bleck energy diagram (Bleck
1985). One major difference between these two diagram
types is the cross-scale energy transfer associated with
baroclinic instability (Plumb 1983; Aiki and Richards
2008). In the Lorenz diagram, baroclinic instability takes
the potential energy route: the energy transferred from
the large scales to the mesoscales originates in the MPE
reservoir. This energy route is consistent with the picture
that mesoscale eddies flatten isopycnals of the large-scale
currents, thus extracting large-scale potential energy.
In the Bleck diagram, baroclinic instability follows the
kinetic energy route, where the cross-scale energy transfer
originates in the MKE (rather than the MPE) reservoir.
This energy pathway is consistent with another effect
that mesoscale eddies have on the large-scale flow: they
vertically redistribute geostrophic momentum.

The Lorenz and Bleck energy diagrams are closely
linked to two distinct approaches to parameterize the
effect of baroclinic instability and mesoscale eddies
in ocean models. The Gent and McWilliams (1990)
parameterization introduces an eddy term in the tracer
(and thickness) equation, mimicking the extraction of
MPE by mesoscale eddies, consistent with the Lorenz
diagram. On the other hand, the Greatbatch and Lamb
(1990) parameterization places the eddy term in the
momentum equation, modifying the MKE reservoir
by vertically redistributing geostrophic momentum,
consistent with the Bleck diagram. Their close link to the
Gent and McWilliams (1990) and Greatbatch and Lamb
(1990) parameterizations make the Lorenz and Bleck
diagrams particularly useful for evaluating whether these
two mesoscale parameterizations extract energy from
the large-scale flow at the correct rate. One objective
of this work is to derive and compare the two energy
diagrams in an isopycnal model, with the eventual goal
to evaluate and improvemesoscale eddy parameterizations.

To make the Lorenz and Bleck energy diagrams most
suitable for diagnosing energy exchanges across spatial
scales and for evaluating mesoscale eddy parameteriza-
tions for a range of different horizontal model resolutions,
the definition of the mean and eddy energy reservoirs
should be tied to a spatial scale. Even still, most studies
that have investigated ocean models’ energy cycles or

cross-scale energy transfers have defined ‘mean’ and
‘eddies’ in terms of a temporal Reynolds average (e.g.,
Aiki and Richards 2008; von Storch et al. 2012; Chen et al.
2014; Kang and Curchitser 2015; Barthel et al. 2017),
or an ensemble average (e.g., Ajayi et al. 2021), with
the exception of few studies (e.g., Grooms et al. 2013;
Aluie et al. 2018), who investigated cross-scale energy
transfers using a spatial filter. In this paper, we present
scale-dependent energy diagrams, where we replace the
frequently used temporal Reynolds average by a spatial
filter.

In summary, this work has two main objectives:

1. To derive and compare the Lorenz and Bleck energy
cycles in an isopycnal model;

2. To explore the energy cycle as a function of scale.

To achieve these goals, we use output from a 1/32◦ prim-
itive equation model with intermediate idealization (Mar-
ques et al. 2022) and a spatial filtering operator (Grooms
et al. 2021) with different horizontal scales (from 0.5◦
to 4◦). In a follow-up paper we will use our diagnosed
scale-dependent energy cycles to evaluate mesoscale eddy
parameterizations.

2. Methods

a. Model configuration

We analyze output from an idealized 1/32◦ MOM6
simulation in the NeverWorld2 configuration (Marques
et al. 2022). NeverWorld2 uses a regular latitude/longitude
grid. The domain spans a single basin of 4000m depth
that extends over both hemispheres and has a re-entrant
channel in the Southern Hemisphere (Figure 1(a)). The
circumpolar channel is interrupted by a semi-circular ridge
of 2000m height, which is meant to mimic the Scotia
Arc across the Drake Passage. A broad abyssal ridge of
2000m height runs from north to south in the middle
of the basin, and represents an idealizedmid-Atlantic ridge.

NeverWorld2 uses a stacked shallow water model for-
mulation with # = 15 layers. The top layer is indexed by
= = 1, and the bottom layer by = = # . The thickness and
velocity equations in layer = are given by

mCℎ= +∇ · (ℎ=u=) = 0, (1)

mCu= +
5 + Z=
ℎ=

ẑ× (ℎ=u=) +∇ = = −∇"= +F E
= +F ℎ

= ,

(2)

where ℎ= is the layer thickness, ∇ the two-dimensional
gradient operator, u= = (D=, E=) the horizontal velocity,
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Fig. 1. NeverWorld2 configuration and flow: (a) ocean depth, (b) fixed zonal wind stress, and (c) 500-day averaged sea surface height (SSH).
The SSH gradients in (c) reveal the major circulation patterns: a circumpolar jet in the Southern Hemisphere, subtropical gyres in both hemispheres,
and a subpolar gyre in the Northern Hemisphere.

5 the Coriolis parameter, Z= = ẑ · (∇ ×u=) the relative
vorticity,  = = |u= |2/2 the kinetic energy density,
and "= =

∑=−1
:=0 6

′
:
[: the Montgomery potential. In

the Montgomery potential, 6′
:
= 6(d:+1 − d: )/d> and

[: = −� +
∑#
8=:+1 ℎ8 denote the reduced gravity and the

interface height between layer : and : + 1, respectively.
d> is the reference density, and � denotes the ocean depth
shown in Figure 1(a). Finally, F E

= and F ℎ
= are the vertical

and horizontal friction terms in the velocity equation.

The vertical friction term F E
= contains the effects of

wind forcing, vertical viscosity, and bottom drag. Nev-
erWorld2 purposefully does not employ a sophisticated
surface mixed layer scheme; the model setup is meant to
isolate mesoscale eddies from submesoscale processes
(Marques et al. 2022). While interactions between the
surface mixed layer and mesoscale eddy dynamics may
play an important role, incorporating them into our energy
diagnostics is beyond the scope of this work. Due to
non-represented mixed layer dynamics in NeverWorld2,
the surface stresses are handled in a simplified way: they
are applied as a uniform body-force distributed over
a fixed depth, the top 20m. Similarly, the background
vertical viscosity is enhanced from 10−4 m2 s−1 to 10−2

m2 s−1 over the top 20m. Hereafter, we will refer to the
top 20m as the “top boundary layer”.

Marques et al. (2022) describe NeverWorld2 simula-
tions where the top boundary layer is defined to have a
thickness of only 5m. This is the only aspect in which
the model setup for the simulation analyzed in this paper
differs from the one described in Marques et al. (2022).

We use the modified NeverWorld2 simulation because
we found that a deeper top boundary layer leads to more
realistic dissipation pathways, with more kinetic energy
being dissipated via bottom drag rather than via horizontal
friction.

The surface wind stress is prescribed and fixed in time,
with a zonally constant profile (Figure 1(b)). The bottom
stress uses a quadratic drag law. The horizontal friction
term F ℎ

= is given by the biharmonic Smagorinsky closure
(Griffies and Hallberg 2000) with a resolution-dependent
background viscosity. More details on the 1/32◦ Nev-
erWorld2 configuration can be found in Marques et al.
(2022).

b. Total energy budgets

In this work, we study conversions between depth-
integrated energy reservoirs. Before decomposing the en-
ergy reservoirs into their mean and eddy components, we
consider the total (undecomposed) energy budgets. The
depth-integrated potential energy (PE) is given by

PE =
#−1∑
==0

PE= =
1
2

#−1∑
==0

6′=[
2
=, (3)

and the depth-integrated kinetic energy (KE) by

KE =
#∑
==1

KE= =
1
2

#∑
==1

ℎ= |u= |2. (4)
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The summation in equations (3) and (4) goes from 0 to
# −1 and from 1 to # , respectively, because PE is defined
at layer interfaces while KE is defined at layer midpoints.
Using the continuity equation (1), the product rule, and
summing over all layers, we obtain the following evolution
equation for depth-integrated PE:

mC

(
#−1∑
==0

PE=

)
=

#−1∑
==0

6′=[=mC[= = −
#−1∑
==0

6′=[=

#∑
8==+1
∇ · (u8ℎ8)

= −
#∑
==1

"=∇ · (ℎ=u=). (5)

We obtain the KE equation for layer = by multiplying the
continuity equation (1) by |u= |2, taking the dot of ℎ=u=
with the velocity equation (2), and adding the two:

mC (KE=) =−∇ · (u=KE=) − ℎ=u= · ∇"=

+ ℎ=u= ·F E
= + ℎ=u= ·F ℎ

= . (6)

The equation for depth-integrated KE is simply obtained
by summing (6) over all layers.

c. Spatial filtering

To diagnose energy cycles that are scale-dependent,
we apply a spatial filter to 5-day averaged NeverWorld2
data. We use the python package gcm-filters (Loose
et al. 2022) whose underlying algorithm applies a discrete
Laplacian to smooth a field through an iterative process
that resembles diffusion (Grooms et al. 2021). For the
purpose of filtering, we treat the zonal and meridional
components of a vector field in the same way as scalar
fields, and apply a diffusion-based filter to each of the
vector components separately (rather than applying a
viscosity-based filter to the full vector field, see Grooms
et al. (2021)). We choose a Gaussian filter shape, which
results in a filter that resembles (but not equals) a Gaussian
convolution kernel. The filter employs a no-flux boundary
condition, ensuring conservation of the integral.

We filter our 1/32◦ NeverWorld2 data to four different
horizontal resolutions: 0.5◦, 1◦, 2◦, and 4◦. These
filter scales are meant to broadly reflect effective
resolutions of eddy-permitting to non-eddying global
ocean models. While today’s global ocean models
have grid scales that are typically finer than what is
represented by the range of our filter scales, past studies
have argued that a model’s effective resolution is larger
than its grid scale by a factor of anywhere between 2 and

20 (Skamarock 2004; Kent et al. 2014; Soufflet et al. 2016).

To achieve any of our four target filter resolutions, the
filter scale needs to be defined as a fixed coarsening factor
(16, 32, 64, 128, respectively) times the local grid scale.
Tying the filter scale to the spatially-varying local grid
scale, rather than choosing a fixed filter length scale of for
example 100 km, seems most relevant for the evaluation
of mesoscale eddy closures in ocean models. However,
a spatially varying filter scale comes at a cost: spatial
derivatives do not commute with the filter (Grooms et al.
2021), though time derivatives still do. Wewill account for
the lack of commutativity in the derivation of our energy
diagrams.

d. Energy reservoirs & diagrams

We derive energy diagrams in two distinct frameworks:
in a non-thickness-weighted averaged (non-TWA)
framework, and in a thickness-weighted averaged (TWA)
framework.

The definition of the mean and eddy potential energy
reservoirs is the same in these two frameworks:

MPE =
1
2

#−1∑
==0

6′=[
2
=, (7)

EPE = PE−MPE, (8)

where overbars denote a spatial filter applied along
isopycnals and on 5-day averaged data. We would like to
emphasize two points related to the overbar (our ‘mean’),
both of which hold true throughout this paper. First,
filtering along isopycnals is distinct from an Eulerian
average or filter; the latter filter is applied at constant
depth. Second, our overbar is not only a spatial filter, but
more accurately the composition of a 5-day mean (i.e., a
temporal filter) and a spatial filter.

The definition in (8) ensures that there is an exact de-
composition of the total energy reservoir, PE, into its mean
and eddy components. Similarly, we will enforce an exact
decomposition of KE into the MKE and EKE reservoirs.
The way in which this decomposition is performed differs
between the non-TWA and TWA frameworks.
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Fig. 2. (a),(b) Mean kinetic energy (MKE) and eddy kinetic energy (EKE) in the non-TWA framework for an arbitrary 5-day interval. (c),(d)
500-day averaged, zonally and meridionally integrated MKE and EKE in the non-TWA and TWA frameworks and, where the meridional integral
in (d) spans across the latitudes of the circumpolar channel. (a)-(d) use a filter scale of 1◦. (e) Topography along the latitude band of 50◦S.

1) Non-TWA framework

In the non-TWA framework, the mean and eddy kinetic
energy reservoirs are defined as

MKE =
1
2

#∑
==1

ℎ= |u= |2, (9)

EKE = KE− 1
2

#∑
==1

ℎ= |u= |2, (10)

where the overbar denotes the same along-isopycnal filter
as before. Figure 2 show MKE and EKE for the case
in which equations (9) and (10) use a spatial filter with
filter scale 1◦. Figures 2(a),(b) present MKE and EKE for
an arbitrary 5-day interval, while Figures 2(c),(d) show
zonally and meridionally integrated 〈MKE〉 and 〈EKE〉,
where 〈·〉 denotes a 500-day average, and the meridional
integral spans the latitudes of the circumpolar channel.
The fact that MKE is at least twice as large as EKE
(Figures 2(c),(d)) re-emphasizes that the filter scale does
not directly translate to the grid scale of a coarse model.
Indeed, a coarse non-eddying model of grid size 1◦ is not
expected to resolve most of the KE.

A vigorous mean and eddy kinetic energy field is
present in the circumpolar channel between 40◦S and
60◦S, but also in the western part between 30◦S and
40◦S, where the circumpolar flow sharply recirculates
downstream of Drake Passage (Figures 2(a)-(c)). Within
the channel, the flow is most energetic downstream of the
topographic features: downstream of Scotia Arc between
10◦E and 20◦E, and downstream of the mid-Atlantic
ridge between 45◦E and 50◦E (Figures 2(d),(e)). Near

40◦N a jet separates from the western boundary, similar
to the Gulf Stream (cf. Figure 1(c)), and both its mean
and eddy components are energetic. The equatorial
region is characterized by high MKE but low EKE
(Figures 2(a)-(c)), indicative of generally larger-scale
flows. In the mid-latitudes, another notable energetic
region is centered at ±15◦N (Figures 2(a)-(c)), which is
characterized by the westward subtropical return flows
(cf. Figure 1(c)).

Figure 3(a) shows the energy diagram derived in the
non-TWA framework (Appendices A1, A2), and the
energy pathways can be thought of as follows. Large-scale
wind-driven Ekman pumping builds up and maintains a
large reservoir of MPE (green arrow). The large-scale
ocean currents are unstable to baroclinic instability,
eventually converting MPE to EKE (red arrows). The
work done by eddy momentum fluxes, Π! , can transfer
energy between MKE and EKE in either direction (blue
arrow).

Our non-TWA diagram in Figure 3(a) resembles the
Lorenz diagram (Lorenz 1955), but we emphasize that we
have used isopycnal averaging, while the classical Lorenz
diagram is derived via Eulerian averaging. We hereafter
refer to our non-TWA energy cycle as a ‘Lorenz-like‘ en-
ergy cycle.

2) TWA framework

In the previous section, the mean velocity was defined
by simply applying the spatial filter to u=. In the TWA



6

Fig. 3. Energy diagrams that are obtained using an along-isopycnal filter in the (a) non-TWA and (b) TWA frameworks. Green arrows:
energy conversions associated with Ekman pumping. Red arrows: energy conversions associated with baroclinic instability. Blue arrows: energy
conversions associated with eddy momentum fluxes (equations (A9), (A16)). The term E (equation (A4)) is an extra term that arises due to the fact
that the filter does not commute with spatial derivatives. The three arrows that meet at the gray circle between the EPE and EKE reservoirs in either
diagram only differ by a flux divergence (equations (A13), (A12), (A19)), which integrates to zero over the domain.

framework we instead define the mean velocity as

û= =
ℎ=u=

ℎ̄=
; (11)

that is, the spatial filter is applied to the thickness-

multiplied velocity ℎ=u=, and the result is divided by the

filtered thickness. Thickness and KE are filtered as before.
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With this definition of the mean velocity, the kinetic
energy reservoirs are now specified as

MKE =
1
2

#∑
==1

ℎ= |û= |2, (12)

EKE = KE− 1
2

#∑
==1

ℎ= |û= |2. (13)

Despite the distinct definition of the MKE and EKE
reservoirs compared to the non-TWA framework, their
distribution is virtually identical (Figures 2(c),(d)).

While the sizes of the energy reservoirs are indistin-
guishable in the non-TWA and TWA frameworks, the
energy pathways between the reservoirs are inherently
different. Figure 3(b) shows the energy diagram derived in
the TWA framework (Appendices A1, A2), and the energy
pathways can be thought of as follows. The wind-induced
overturning (green arrow) is counteracted by the work of
the bolus velocity ubolus

= = û= − ū= (red arrow between
MPE and MKE), where the latter is included as part of
the residual mean velocity û= in the TWA framework.
The baroclinic instability pathway follows the kinetic
energy route, associated with a vertical redistribution of
momentum, and eventually transfers MKE to EKE (red
arrows). Π� represents the lateral (rather than the vertical)
redistribution of momentum by eddies, and can transfer
energy between MKE and EKE in either direction (blue
arrow).

The diagram in Figure 3(b) is the Bleck diagram (Bleck
1985), and is similar to the one derived byAiki et al. (2015),
except that the diagram here is for a stacked shallow wa-
ter system with more than just two layers. Moreover, we
use a spatial filter, rather than a temporal Reynolds aver-
age. Non-commutation of our spatial filter with deriva-
tives leads to extra terms in our diagram, such as E (equa-
tion (A4)).

3. Comparing the Lorenz and Bleck energy cycles

This section compares the Lorenz-like and Bleck energy
cycles for our NeverWorld2 data. To simplify the presenta-
tion, we only show results for one of our four filter scales:
1◦. We will vary the filter scale in section 4.

a. Wind work and dissipation

We first examine the external sources and sinks in our
energy cycles. NeverWorld2 does not include any surface
buoyancy fluxes, so external sources and sinks of energy
act exclusively on theMKE and EKE reservoirs via the hor-
izontal and vertical stresses, F ℎ

= and F E
= (Figure 3). The

vertical stresses can be further decomposed into contribu-
tions by wind stress, bottom drag, and vertical friction:

F E
= = F wind

= +F drag
= +F visc

= .

The stresses F E
= and F wind

= , along with their thickness-
weighted versions (ℎ=F E

= and ℎ=F
wind
= ) and energetic

effects (ℎ=u= ·F E
= and ℎ=u= ·F wind

= ), are model diagnos-
tics that are computed online and output as 5-day averages.
We separate the remainders F E

= −F wind
= , ℎ= (F E

= −F wind
= ),

and ℎ=u= · (F E
= −F wind

= ) offline into bottom drag and
vertical friction contributions, by classifying them as a
contribution by bottom drag if the lower interface of layer
= is within 5m from the bottom, and as a contribution by
vertical friction otherwise.1

The work done by either of the four stresses F ℎ , F wind,
F drag, and F visc on the total KE reservoir, i.e., the MKE
and EKE reservoirs taken together, is the same in the
non-TWA and TWA frameworks (Figure 3). It is given
by

∑#
==1 ℎ=u= ·F ∗= , for ∗ ∈ {ℎ, wind, drag, visc}, and is

shown in Figures 4(a)-(d) as a 500-day average. The
wind provides a large source of energy in the circumpolar
channel and to a lesser extent in the gyres (Figure 4(a)).
The channel is also the region where bottom drag, vertical
and horizontal friction dissipate the largest amounts of
energy (Figures 4(b)-(d)). The domain integrals of the
energy sources and sinks in Figures 4(a)-(d) are shown
by the black bars in Figures 4(e)-(h). (Note that these
integrals are equal to the integrals of the respective
unfiltered work,

∑#
==1 ℎ=u= ·F ∗= , because our spatial filter

conserves the domain integral.) Bottom drag acts as the
major KE sink, while horizontal and vertical friction
dissipate a much smaller fraction of the total KE.

1We have to make this approximation because the thickness of the
bottom boundary layer was not saved as an online diagnostic. At loca-
tionswhere the bottomboundary layer is thicker than 5m, our calculation
may incorrectly attribute bottom drag to vertical friction contributions
(which is potentially the case over the mid-Atlantic ridge within the
channel, see Figures 4(b),(c)). However, the main conclusions from this
study are insensitive to the details of this offline attribution calculation.
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Figure 4(e) and Figures 5(a)-(d) show the decompo-
sition of total wind work into wind work on mean flow
vs. eddies in the non-TWA and TWA frameworks. In the
TWA framework, the wind work acts almost entirely on
the large-scale mean flow (blue bars in Figure 4(e), and
Figures 5(c),(d)), as expected. In contrast, in the non-TWA
framework, wind work on the mean flow overshoots
wind work on the total flow such that the wind acts as
an energy sink on the non-TWA eddies (orange bars in
Figure 4(e), and Figures 5(a),(b)). Eddy killing by wind is
a phenomenon observed in the real ocean (Rai et al. 2021)
but is not expected in NeverWorld2, which uses a wind
stress that is independent of the ocean currents (Duhaut
and Straub 2006; Renault et al. 2016).

The peculiar decomposition of total wind work in
the non-TWA framework shown in Figure 4(e) and
Figures 5(a),(b) is a n effect of using an isopycnal
non-thickness-weighted average. Wind stress F wind

= and
layer thickness ℎ= are anticorrelated (in both space and
time) for layers that straddle the lower interface of the
boundary layer over which the wind stress is distributed
(see also the Supplemental Material). Figure 5(g)
illustrates the spatial anticorrelation between F wind

= and
ℎ= for layer = = 7 and an arbitrary 5-day time interval.
The anticorrelation is captured by the wind work on
the TWA mean flow, û=ℎ=F

wind
= (Figure 3(b)). In

contrast, the wind work on the non-TWA mean flow,
ℎ̄=ū=F

wind
= (Figure 3(a)), misses this anticorrelation,

which results in the observed overshooting of the total
wind work (orange bar, Figure 4(e)). The excessive
wind work on the non-TWA mean flow goes in tandem
with apparent eddy damping by wind (blue shading in
layers 6 and 7 in Figure 5(e)), which results from the
introduction of a n unphysical “eddy Ekman transport”
contribution, even in the presence of a constant wind stress.

The excessive eddy damping by wind is not the
result of using a spatial filter; it would arise similarly
if we used an along-isopycnal non-thickness-weighted
temporal Reynolds average rather than a spatial filter
(Figure 5(f)). The explanation is that F wind

= and ℎ= are
anticorrelated in time, space, and even across ensembles.
In summary, computing non-TWA diagnostics along
isopycnals leads to results that have little physicalmeaning.

The unphysical nature of non-TWA wind work, which
was investigated in Figure 5, materializes similarly for
the work done by vertical friction. Vertical friction
F visc
= and layer thickness ℎ= show anticorrelation in

layers that straddle the lower interface of the mixed layer
over which vertical viscosity in enhanced. As before,
the non-TWA term ℎ̄=ū=F

visc
= (Figure 3(a)) misses this

anticorrelation, and the work of vertical friction on

the non-TWA mean flow overshoots the total vertical
friction work in amplitude (Figure 4(g)). Consequently,
the vertical friction work on the non-TWA eddies is of
opposite, i.e., positive, sign.

Bottom drag is a sink for MKE and EKE, and acts
mostly on the large scales, in both the non-TWA and TWA
frameworks (Figure 4(f)). There is no notable difference
between the two frameworks because relative thickness
variations of the bottom layer tend to be small.

Horizontal friction is expected to act predominantly on
the small scales. This is a necessary criterion for studying
inertial range dynamics, referred to as the inviscid criterion
by Aluie (2013). In the TWA framework, the inviscid
criterion is met: horizontal friction acts so dominantly
on the EKE reservoir that its contribution to the MKE
reservoir does not even appear (blue bars, Figure 4(h)).
In the non-TWA framework, however, horizontal friction
acts on both the MKE and EKE reservoirs (orange bars,
Figure 4(h)), violating the inviscid criterion. The fact that
the inviscid criterion is satisfied in a TWA framework but
violated in a non-TWA framework is consistent with the
theoretical predictions by Aluie (2013) and Zhao andAluie
(2018).

b. Routes of baroclinic instability

Figure 6 shows 500-day averages of the EKE production
terms, Σ! and Σ�, that are associated with baroclinic
instability (Figure 3). The largest energy source is found
in the circumpolar channel, and to a lesser degree in
the Gulf stream extension near 40◦N as well as in the
subtropical return flows (Figures 6(a)-(c)). Within the
channel, EKE production is increased downstream of
topography, downstream of Scotia Arc between 10◦E and
20◦E and downstream of the mid-Atlantic ridge eastward
of 30◦E. There are a few isolated locations where Σ! and
Σ� have negative sign, indicating that the eddies lose
energy in the process of baroclinic conversion. A negative
energy flux in a small portion of the domain is consistent
with previous studies (e.g., Chen et al. 2014).

Up to a flux divergence and the EPE tendency (both of
which are negligible when integrated over the domain),
Σ! and Σ� are equal to the conversion terms Γ! and Γ�
that leave the MPE and MKE reservoirs, respectively (Fig-
ure 3). Even though originating in distinct mean energy
reservoirs, the horizontal distributions of Σ! and Σ� are
broadly similar (Figures 6(a),(b)), with one important ex-
ception. A clear discrepancy can be seen in the channel
where the values of Σ! are enhanced by a factor of 2 to
3 compared to those of Σ� (Figure 6(c)). The enhanced
values of Σ! are found near the surface (not shown). The
superimposed surface signature is characterized by rel-
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Fig. 4. (a)-(d) 500-day average of kinetic energy sources and sinks: (a) wind work, (b) bottom drag, (c) vertical friction, (d) horizontal friction.
Note that the colorbar for (c),(d) is stretched by a factor of 4 compared to the colorbar for (a),(b). (e)-(h) The black bars show the spatial integrals
of the terms in (a)-(d). The colored bars show how the total work (black bar) decomposes into work on the mean flow vs. eddies in the non-TWA
and TWA frameworks (Figure 3), where all terms are integrated over the full domain and averaged over 500 days. All terms in this figure are for a
filter scale of 1◦.

atively large-scale features and resembles the horizontal
distribution of the wind work on the non-TWA eddies (Fig-
ure 5(b)), but of opposite sign. This resemblance suggests
that the high values in the non-TWA EKE production term
largely balance the excessive non-TWA eddy damping by
wind, and are likely an unphysical side effect of using an
along-isopycnal non-thickness-weighted average.

c. Work by eddy momentum fluxes

Figure 7 shows 500-day averages of the work done
by eddy momentum fluxes, Π! and Π�, representing
energy conversion between the MKE and EKE reservoirs

through lateral redistribution of momentum. Positive
values indicate that energy is converted from MKE to
EKE through barotropic (or horizontal shear) instability.
Negative values indicate that eddy momentum fluxes act to
strengthen the mean flow, suggesting a KE inverse cascade.

The largest amplitudes of Π! and Π� are found in the
channel (Figures 7(a)-(c)). Here, the terms have strong
spatial variations with fluctuations between positive and
negative values. Positive values are especially found
downstream of topography: downstream of Scotia Arc
near 10◦E and downstream of the mid-Atlantic ridge
between 30◦E and 50◦E. Enhanced barotropic instability
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Fig. 5. (a)-(d) 500-day averages of wind work on mean flow and eddies in the non-TWA and TWA frameworks (Figure 3) for a filter scale of
1◦, shown in the southern portion of the domain. The green line in (b) marks the cross-section at 50◦S, which is further investigated in (e)-(g). (e)
Wind work on non-TWA eddies (shading) as in (b), but now in longitude-depth space, along the latitude of 50◦S and restricted to the upper 500m.
The contours show the layer interfaces, and the number on the right denotes the layer number (counted from the top downwards). (f) As (e), but
re-computed with a temporal rather than a spatial filter: the overbar now denotes a 500-day average. The colorbar is shared by (a)-(f). (g) Zonal
component of Wind stress F wind

= (blue line) and layer thickness ℎ= (orange line) along the zonal section 50◦S for = = 7 and an arbitrary 5-day
interval.

downstream of topography, in tandem with enhanced
MKE to EKE conversion, is consistent with the results in
Barthel et al. (2017), who studied a two-layer ocean model
with different topographic obstacles.

Centered at Scotia Arc, and to a lesser degree centered
at 50◦E, we see dipoles where Π! and Π� abruptly change
sign from high-amplitude positive to high-amplitude
negative values. At these locations, the respective EKE
transport term (Equations (A10) and (A17)) has a dipole

of the same sign (not shown). Our findings suggest
the following chain of events. Barotropic instability
releases energy to the eddies at (or just downstream of)
topography. EKE is then transported downstream, where
KE is transferred back from the eddies to the mean flow.
This chain of events is consistent with the results from an
idealized channel model in Youngs et al. (2017).

Outside of the channel, we observe a positive-negative
dipole in Π! and Π� along the continental slope at the
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Fig. 6. EKE production by baroclinic instability, for a filter scale of 1◦: (a) 〈Σ! 〉 in the non-TWA framework, and (b) 〈Σ� 〉 in the TWA framework,
where 〈·〉 denotes a 500-day average. (c) Zonal integral of the terms in (a) and (b).

Fig. 7. Work done by the eddy momentum fluxes, for a filter scale of 1◦: (a) 〈Π! 〉 in the non-TWA framework, and (b) 〈Π� 〉 in the TWA
framework, where 〈·〉 denotes a 500-day average. Positive values indicate that energy is converted fromMKE to EKE through barotropic instability.
Negative values indicate that eddy momentum fluxes act to strengthen the mean flow, suggesting a KE inverse cascade. (c) Zonal integral of the
terms in (a) and (b).

western boundary (Figures 7(a),(b)), again in concert with
a dipole of the same sign in the EKE transport term (not
shown). The chain of events described above applies for

the western boundary current flowing over the continental
slope as well. In the remainder of the domain, Π! and
Π� have negative values suggestive of an inverse KE
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cascade, which is strongest in the separated Gulf Stream
near 40◦N and the subtropical return flows centered at
±15◦N (Figure 7(c)).

Comparing the spatial distributions of Π! and Π� sug-
gests that the work done by eddy momentum fluxes is sim-
ilar in the non-TWA vs. TWA frameworks (Figures 7(a)-
(c)). We note that in the channel Π! is higher in amplitude
compared to Π� (Figure 7(c)). It is unclear whether this
difference is (partly) a side effect of Π! having to bal-
ance the unphysical energetic effects of the vertical surface
stresses on the MKE and EKE budgets, as it was the case
for Σ! (section 3b).

d. Summary of energy cycles

Figure 8 shows the domain-integrated energy conver-
sion terms in the Lorenz-like and Bleck energy cycles
(cf. Figure 3) averaged over 500 days, in units of GW.
The cycles highlighted in gray (Figures 3(a),(c)) are for
a filter scale of 1◦ and summarize the energy pathways
discussed in this section. Adding up the values for
the in- and outgoing arrows at each reservoir results in
minor imbalances of up to 6GW, which arise due to the
energy reservoirs’ tendencies, interpolation errors on the
numerical grid, and rounding values to GW.

We note that the domain integral of E (equation (A4)),
the term in Figure 3 arising from non-commutativity
of filter and spatial derivatives, is small and rounds to
0GW (not shown). However, the negligible energetic
effect of E does not imply that the filter effectively
commutes with spatial derivatives in all situations.
Indeed, if we commuted our spatial filter with ∇"= in
the baroclinic conversions Γ! and Γ� (Figure 3) and
computed −∑

= ℎ=u= ∇"= rather than −∑
= ℎ=u=∇"̄=,

we would obtain baroclinic conversions that integrate to
34GW less than the values shown by the diagonal red
arrows in Figure 8. Accounting for non-commutativity
of filter and derivatives–as we have done in Figure 3 and
throughout this work–is therefore crucial.

The thick arrows in the Lorenz-like cycle (Figure 8(a))
indicate energy conversion terms that have unphysical
(i.e., too large) values. In the case of EKE wind and
vertical friction work (right green and orange arrows), the
diagnosed work even points in the wrong direction. As
discussed in section 3a, the unphysical values originate
in applying an isopycnal non-thickness-weighted average.
Figure 8(a) shows how the unphysical nature of the MKE
and EKE source & sink terms discussed in section 3a
propagates throughout the entire energy cycle. Indeed, the
large and unphysical values for the wind work on the MKE
and EKE reservoirs have to be balanced by other terms.
These terms turn out to be the MKE to MPE conversion

(black thick arrow, Figure 8(a)), and further the baroclinic
instability pathway (red arrows, Figure 8(a)), because in
the KE energy budget (equation (6)) the surface vertical
stresses, ℎ=u= ·F E

= , are largely balanced by −ℎ=u= · ∇"=
(not shown); the latter term quantifies conversion from
KE to PE.

The Bleck diagram (Figure 8(c)) is the natural choice
when studying the energy cycle in isopycnal coordinates,
and reliably characterizes the NeverWorld2 energetics.
230/(400+87) = 47% of the energy that enters the MKE
reservoir via wind work and KE backscatter leaves the
MKE reservoir via bottom drag, while 216/(400+87) =
44% of the energy gets routed to the EKE reservoir via
baroclinic conversion. 87/217 = 40% of the energy that
arrives at the EKE reservoir by baroclinic conversion gets
transferred back to the mean flow, while the remaining
fraction gets dissipated by bottom drag and horizontal
friction.

The numbers reported in the previous paragraph hold
for a filter scale of 1◦ and in a domain-integrated sense.
As the filter scale is varied, the magnitude and relative
importance of the energy conversion terms change (Fig-
ures 8(b)-(e)). Moreover, Figures 4, 6 and 7 reveal that the
energy conversion terms have strong spatial variations. In
the next section, we will investigate the energy cycles in
Figures 8(b)-(e) more closely, both as a function of space
and filter scale.

4. Energy cycle as a function of scale

In this section, we explore the energy cycle as a function
of scale by applying different filter scales: 0.5◦, 1◦, 2◦,
and 4◦. Figure 9 attempts to put our four filter scales into
context with NeverWorld2’s KE spectra and characteristic
length scales: the energy-containing scale (black solid
vertical line) and the first deformation scale (black dotted
vertical line). The four colored wavenumber ranges
are estimates for where the four filter scales fit into the
spectrum. Each of the four filter scales is represented as an
entire range of wavenumbers because the corresponding
filter is anisotropic with different scales in zonal and
meridional direction; a degree in longitude is smaller
than a degree in latitude. We acknowledge that there is
additional ambiguity about how to assign a wavenumber
to each filter scale because our Gaussian filter is not
“sharp”, i.e., it does not cleanly separate scales below and
above the filter scale (Grooms et al. 2021). Finally, we
note that in Figure 9, we associate the filter scale with
only half of a wavelength (via :! = c/!), because our
Gaussian filter has a length scale qualitatively similar to a
boxcar filter whose width (not radius) is equal to the filter
scale (Grooms et al. 2021).
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(a) Lorenz-like energy cycle, filter scale: 1�
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MPE EPE

MKE EKE87

5

216

1

217

1

400 230 40 13 74 15

57

(d) Bleck energy cycle, filter scale: 2�
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(e) Bleck energy cycle, filter scale: 4�
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Fig. 8. (a) Lorenz-like and (b)-(e) Bleck energy diagrams (cf. Figure 3) diagnosed in the NeverWorld2 simulation for varying filter scales. The
values show the domain-integrated energy conversion terms, averaged over 500 days, in units of GW. Here, we converted the domain integrals from
m5 s−3 to GW = 109 kg m2 s−3 using NeverWorld2’s reference density of 1000 kg m−3. The thick arrows in (a) indicate energy conversion terms
that have unphysical (too large) values, due to applying isopycnal non-thickness-weighted averaging. The cycles with gray background are for a
filter scale of 1◦, and thus summarize the cycles discussed in section 3.

In the following, we only consider the TWA Bleck cycle
because the non-TWA Lorenz-like cycle has proven itself
as less useful (section 3). We further focus on the energy

pathways that affect the EKE budget. Figures 10 and 11
show the zonally and meridionally integrated EKE budget
for the four filter scales, where the meridional integral
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Fig. 9. 500-day averaged surface kinetic energy spectra at three lat-
itudes: (a) 40◦N, (b) 15◦N, and (c) 50◦S. The spectra are computed
with the Python package xrft (Uchida et al. 2021) from the surface
meridional eddy velocity fields defined as deviations from a 500-day
averaged meridional velocity. Linear detrending and a Hann smoothing
window are applied. In each panel, the vertical black solid line marks
the wavenumber :� at which the spectrum peaks, corresponding to the
energy-containing scale. The dotted vertical line shows the deformation
wavenumber :� = 1/!� with zonally averaged first baroclinic defor-
mation radius !� = 21/

√
5 2 +2V21 (Hallberg 2013), where 21 denotes

the first-mode internal gravity wave speed, 5 the Coriolis parameter, and
V = mH 5 its meridional gradient. The four colored wavenumber ranges
are estimates for where our four filter scales fit into the spectrum. The
low and high wavenumber ends of the ranges are given by :!H = c/!H
and :!G = c/!G , respectively, where !G,H = 4◦, 2◦, 1◦, 0.5◦. Note that
a degree in longitude is smaller than a degree in latitude, particularly at
high latitudes, i.e., in (a) and (c).

in Figure 11 only spans the latitudes of the circumpolar
channel. In both figures, the terms are averaged over 500

days as before.

The EKE production by baroclinic instability, Σ� (red
line), increases steadily as we increase the filter scale from
0.5◦ to 4◦ but seems to have approximately saturated at
2◦ (Figures 8(b)-(e), 10, 11). These results suggest that
baroclinic instability creates EKE over a range of scales,
from below 0.5◦ to around 2◦, since Σ� integrates EKE
production over all scales below the filter scale. The
scale range bounded by 0.5◦ and 2◦ (pink, purple, and
orange ranges) encompasses the first deformation scale at
high latitudes (Figures 9(a),(c)) but falls below the first
deformation scale at low latitudes (Figure 9(b)).

Next, we examine the behavior of the work done by
eddy momentum fluxes, Π�, for varying filter scale. At
fixed latitude, the amplitude of −Π� (blue line) grows
as the filter scale is increased from 0.5◦ to 1◦, stays
approximately constant across filter scales of 1◦ and
2◦, and drops to values close to zero as the filter scale
is further increased to 4◦ (Figures 8(b)-(e), Figure 10).
These results suggest a KE inverse cascade on scales from
below 0.5◦ to around 2◦, with a peak between 1◦ and 2◦.
The 2◦ scale marks approximately the energy-containing
scale at high latitudes (Figures 9(a),(c)). The significant
negative values for Π� at the 0.5◦ scale (Figure 10(e))
imply that the small-scale end (or start) of the inverse
cascade lies well below the first deformation scale in our
entire domain (pink range vs. dotted line, Figures 9(a)-(c)).

In the previous paragraph, we have discussed Π� in
a zonally integrated picture. Figure 11 provides a more
detailed view of Π� as a function of longitude in the
channel, where Π� is sign-indefinite. Positive values
for Π� are found downstream of Scotia Arc, near 10◦E,
and downstream of the mid-Atlantic ridge, near 40◦E
and 45◦E, as already seen in Figure 7. Note that in
Figure 11, it is difficult to identify the exact lag between
the peaks of the Scotia Arc topography and Π�, due
to the semi-circular geometry of Scotia Arc (solid vs.
dotted lines, Figure 11(e)). The positive values for Π�
downstream of topography indicate that the downscale
energy transfer created by barotropic instability outpaces
an KE inverse cascade. With increasing filter scale,
the downscale energy transfer by barotropic instability
becomes larger (Figure 11(a)-(d)). Downstream of
locations with barotropic instability (positive Π�), there
is a strong upscale KE transfer (negative Π�), consistent
with the Π� dipoles that we observed in Figure 7.

Figure 12 shows the ratio of the zonal integrals of
Π� and Σ� for our four filter scales. Here, we have
applied a running mean with a latitude window of 10◦,
which smooths out strong latitudinal fluctuations in the
“raw” values of the computed ratio. In the following,
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Fig. 10. EKE budget in the TWA framework for filter scales of (a),(e) 0.5◦, (b),(f) 1◦, (c),(g) 2◦, (d),(h) 4◦. All EKE budget terms are zonally
integrated and averaged over 500 days. Panels (e)-(h) zoom in on the latitudes north of 20◦S, marked by the dashed boxes in panels (a)-(d).

we will only discuss the smoothed values (blue thick
lines rather than thin lines). A value of -1 indicates
that 100% of the energy that is routed to the EKE
reservoir via baroclinic conversion gets backscattered
to the mean flow by eddy momentum fluxes (in a
zonally integrated sense). A value of +1 implies mixed
instability, with barolinic and barotropic instability being
of the same amplitude (again in a zonally integrated sense).

Figure 12 highlights that the ratio of Π� to Σ� has
much stronger dependence on the latitude and dynamical
regime than on the filter scale, if one considers only the
three smallest filter scales (Figures 12(a)-(c)). The regions
of strongest relative backscatter, −Π�/Σ�, are marked
by the latitude bands shaded in gray. In the Gulf stream
region (centered at 40◦N) 70-80% of the energy gets
backscattered, in the subtropical return flows (centered at
±15◦N) relative backscatter measures 40-60%, and in the
recirculation region (centered at 35◦S) we find relative
backscatter of 70-100%. For a filter scale of 4◦, the
ratio Π�/Σ� is generally small in amplitude consistent
with our previous finding that at this filter scale the
EKE production Σ� is peaked while the work of eddy
momentum fluxes Π� is minimal (Figures 8(b)-(e)). In a
globally integrated sense, we find relative backscatter of

28%, 40%, 36%, and 11% for filter scales of 0.5◦, 1◦, 2◦,
and 4◦ (Figures 8(b)-(e)).

In the channel between 40◦S and 60◦S, we observe
relative backscatter of up to 40% (Figure 12). We note,
however, that the values between 40◦S and 60◦S have to
be treated with care because the zonally integrated metrics
in Figure 12 blur the topography-induced longitudinal
dependence of Σ� and Π�. Indeed, comparing Π� and
Σ� (blue vs. red lines) in Figure 11 reveals that relative
backscatter can take values larger than 100% near 15◦E.
As discussed before, these are the locations where Σ�
and Π� are likely to be spatially decoupled; the strong
upscale energy transfer (negative Π� of large amplitude)
is partially fed by EKE transported from upstream regions.

Relative backscatter of less than 100% in the majority
of the domain means that EKE gets extracted via other en-
ergy pathways: dissipation by bottom drag, vertical, and
horizontal friction (Figures 8(b)-(e), 10, 11). Bottom drag
is the dominant EKE sink; it increases with filter scale be-
cause increasing the filter scale makes the EKE reservoir
larger. The amount of EKE dissipation by horizontal fric-
tion stays constant when varying the filter scale, a conse-
quence of horizontal friction occurring only at the smallest
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Fig. 11. (a)-(d) As Figure 10, but now the EKE budget terms are
integrated meridionally (rather than zonally). The meridional integral
spans the latitudes of the circumpolar channel, from 60◦S to 40◦S. (e)
Topography along the latitude bands of 50◦S (solid line and shading)
and 45◦S (dotted line).

scales (smaller than our smallest filter scale of 0.5◦). The
amount of EKE dissipation by vertical friction increases
with filter scale, which may be an artifact of bottom drag
remnants improperly classified as vertical friction.

5. Summary and discussion

Incomplete knowledge of how energy is exchanged
across scales has inhibited oceanographers from fully ac-
counting for the ocean’s energy budget, and adequately rep-
resenting it in ocean models (Ferrari and Wunsch 2009).
To gain better insights into the ocean energy cycle, we de-
rived and investigated Lorenz-like and Bleck energy cycles
in a high-resolution isopycnal model via isopycnal averag-
ing. In contrast to most previous studies, we used a spatial
filter rather than a temporal Reynolds average. This en-
abled us to map out the energy cycle in scale, space, and
time, where we have focused on 500-day averaged budget
terms in this study. Our scale-dependent energy cycles
account for the non-commutativity of our filter with spa-
tial derivatives, and are consistent with parameterization
requirements of coarse-resolution climate simulations.

a. Lorenz versus Bleck cycle

Layer thickness and surface stresses in the top boundary
layer are anticorrelated, no matter (a) if the layered diag-
nostics originate from an isopycnal- or z-coordinate model
, and (b) what kind of surface mixed layer scheme is used:
simplified as in this study, or more sophisticated as in real-
istic models. An along-isopycnal, non-thickness-weighted
average (non-TWA) misses these anticorrelations, which
leads to an unphysical decomposition of the energetic ef-
fects of vertical stresses into non-TWAmean and eddy con-
tributions. The unphysical decomposition, in turn, leads to
a misleading Lorenz-like energy diagram. This problem
arises regardless of whether the non-TWAfilter is spatial or
temporal. We anticipate the deficiencies in the isopycnally
averaged Lorenz-like energy cycle to become less pro-
nounced if there are more (thus thinner) diagnosed model
layers than the 15 used in NeverWorld2, but the problem
will not be eliminated. We conclude that TWAprovides the
natural framework for isopycnal coordinates, and leads to
a Bleck energy cycle with well characterized energy path-
ways. We emphasize that the issues summarized above are
specific to isopycnally averaged data and that our results do
not raise concerns about using the Eulerian-mean Lorenz
energy cycle.

b. Cross-scale energy transfers

Two energy pathways in the Bleck diagram are
particularly interesting since they describe cross-scale
energy transfers, between the mean flow and the eddies.
The first one is the baroclinic instability pathway, which
in the Bleck diagram converts MKE to eventually EKE
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Fig. 12. Ratio of the zonal integrals of the work done by eddy momentum fluxes and EKE production,
∫
〈Π� 〉3G/

∫
〈Σ� 〉3G, as a function of

latitude for filter scales of (a) 0.5◦, (b) 1◦, (c) 2◦, and (d) 4◦. All budget terms are averaged over 500 days. The thin lines show the values of the
“raw” ratios, and the thick lines a running mean with a latitude window of 10◦. The running mean smooths out strong fluctuations in latitudinal
direction. The missing values are around latitudes where the zonal integral of Σ� is smaller than 0.1 m4 s−3 (cf. Figure 10). The latitude ranges
shaded in gray identify the regions with strongest relative backscatter, i.e., most negative

∫
〈Π� 〉3G/

∫
〈Σ� 〉3G.

(Σ�). We found largest EKE production in the ACC-like
channel. In all regions, EKE production occurs over a
wide range of scales. At high latitudes, EKE production
peaks near the first deformation scale, broadly consistent
with 2-layer QG theory (Larichev and Held 1995; Held
and Larichev 1996). At low latitudes, EKE production
occurs on a wide range of scales that is entirely below the
first deformation scale. The latter result is in agreement
with the QG simulations in Roullet et al. (2012), who
show that in Charney-like regimes all scales below the first
deformation scale are energized by baroclinic instability.

The second cross-scale energy transfer is the work done
by eddy momentum fluxes (Π�). In the following, we
discuss the behavior and scale-dependence of Π�; first in
regions away from topography, and then in regions near
topography.

1) Away from topography

Away from topography, Π� is negative indicating a
KE inverse cascade. The upscale KE transfer peaks near
the energy-containing scale at high latitudes consistent
with Schlösser and Eden (2007); Kjellsson and Zanna
(2017), but below the deformation scale at low latitudes.
Likewise, we find that the small-scale end (or start) of the
inverse cascade lies well below the first deformation scale
in all regions. Prior observational and modeling studies
have suggested that at low latitudes the small-scale end
of the inverse cascade is at scales smaller than the first
deformation scale (e.g., Scott and Wang 2005; Schlösser
and Eden 2007; Tulloch et al. 2011), consistent with our
results. At high latitudes, however, these studies have
found an ocean inverse cascade predominantly on scales

larger than the deformation scale, in disagreement with
our findings. Our results support the conclusions by Arbic
et al. (2013) who analyze output from a realistic ocean
model of 1/32◦ horizontal resolution (which matches the
horizontal resolution of our simulation) and find a KE
inverse cascade at scales smaller than the deformation
scale at all latitudes (see their Figures 8-10). Arbic et al.
(2013) also discuss the possibility that data of lower
resolution may show a shifted inverse cascade biased to
larger scales. The upcoming high-resolution data from
wide-swath satellite altimeters (Fu et al. 2012) may shed
more light on the scales involved in the KE cascade.

For regions where Π� is negative (i.e., upscale), we de-
fine relative backscatter as the ratio between −Π� and
Σ�. Relative backscatter has strong sensitivity to the
flow regime but relatively small scale sensitivity within
the eddy-rich to eddy-permitting regime (which we hy-
pothesize the filter scale range between 0.5◦ to 2◦ to be
representitive of). In the eddy-permitting regime, relative
backscatter measures 35-40% globally (Figures 8(c),(d)),
but can take values up to 70-80% in western boundary jet
regions (Figures 12(b),(c)).

2) Near topography

Interactions with topography can change the horizontal
shear of ocean currents and make the mean flow unstable
to barotropic instability, generating eddies through the
work of eddy momentum fluxes. This is the picture that
we observed in the ACC-like channel, where a strong flow
interacts with topography. Regardless of the filter scale,
Π� is positive downstream of topography suggesting
that barotropic instability transfers KE downscale from
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the mean flow to the eddies. With larger filter scales,
the downscale energy transfer by barotropic instability
increases.

After receiving KE from the mean flow through
barotropic instability, the eddies transport KE downstream,
where (part of) the KE is transferred back to the mean flow
by eddy momentum fluxes. The upscale energy transfer
in these downstream regions (-Π�) can exceed the local
EKE production (Σ�), leading to a relative backscatter of
more than 100%. This highlights that here Σ� and Π� are
spatially decoupled and that the upscale energy transfer by
eddy momentum fluxes is partially fed by EKE transported
from upstream regions. The chain of events of topography-
induced barotropic instability, followed by a downstream
transport of EKE, and energy backscatter to the mean flow,
is consistent with the results from idealized channel mod-
els in Youngs et al. (2017) and Barthel et al. (2017). The
importance of EKE transport has been highlighted in ide-
alized modeling studies (e.g., Grooms et al. 2013; Grooms
2017), but requires more detailed assessment in more com-
plex models.

c. Caveats

Our energy cycles are diagnosed from a stacked
shallow water model, which misses many processes that
are present in the real ocean: surface buoyancy fluxes,
a mixed layer, air-sea interactions, diabatic processes,
and seasonal variations. For instance, Guo et al. (2022)
show that air-sea interactions and diabatic mixing modify
the energy cycle, and make baroclinic instability a less
efficient mechanism for EKE generation. This modifi-
cation would change the baroclinic instability pathway
in our energy cycles (red arrows, Figure 3) as follows:
Σ (transferring energy to the EKE reservoir) would be
of smaller amplitude than Γ (originating in the MPE
orMKE reservoirs), due to an alteration of the EPE budget.

Another aspect that has to be considered with caution
is that the diagnosed energy cycle may be sensitive to
the chosen horizontal eddy viscosity and viscosity scheme
in models (Jochum et al. 2008; Arbic et al. 2013; Pearson
et al. 2017). Further work is needed to assess how different
horizontal viscosity formulations affect EKE dissipation,
backscatter, and the entire energy cycle in ocean mod-
els, and how mesoscale eddy energy is dissipated in the
real ocean (Wunsch and Ferrari 2004; Ferrari and Wunsch
2009).

d. Implications for mesoscale eddy parameterizations

Our diagnosed energy cycles lend themselves to
evaluate the energetics of a wide range of mesoscale eddy
parameterizations: schemes that mimic energy extraction
by baroclinic instability from the mean flow (e.g., Gent

and McWilliams 1990; Visbeck et al. 1997; Marshall
et al. 2012; Greatbatch and Lamb 1990), Reynolds
stress parameterizations (e.g., Zanna et al. 2017), and
parameterizations that make use of an explicit eddy
energy budget (Marshall and Adcroft 2010; Jansen et al.
2015; Eden and Greatbatch 2008). The evaluation of
parameterizations via our diagnosed energy cycles is
the objective of a follow-up paper, and we confine our
discussion to only a few selected points in the following.

Bachman (2019) recently introduced the GM+E
parameterization, which considers the total depth-
integrated potential energy extracted by the GM (Gent
and McWilliams 1990) scheme and re-injects it into
the barotropic momentum via a negative harmonic
viscosity. An open question is how to specify the energy
throughput factor in the GM+E parameterization, which
represents the fraction of energy transferred from GM
to the Reynolds stress parameterization. Although the
GM+E parameterization was not developed for the TWA
framework, we hypothesize that our diagnostic −Π�/Σ�
may provide insights into how to choose the throughput
factor. On the other hand, we found that relative backscat-
ter depends on the flow regime in a complex manner,
and that Σ� and Π� may be spatially decoupled near
topography. This complexity advocates for employing a
parameterized eddy energy equation (Eden and Greatbatch
2008; Jansen et al. 2019; Mak et al. 2018), in which
EKE can be modulated by flow-dependent dissipation and
EKE transport before being backscattered to themean flow.

A final remark is that the scale-dependence of our diag-
nosed energy cycles provides a means of testing whether
mesoscale eddy parameterizations scale correctly for dif-
ferent model resolutions. Developing scale- and flow-
aware parameterizations is an ongoing research topic (e.g.,
Fox-Kemper and Menemenlis 2008; Bachman et al. 2017;
Pearson et al. 2017), as we are entering the era of cli-
mate models in the ‘gray-zone‘, where eddies are partially
resolved in some but not all regions of the global ocean
(Hallberg 2013). We hope that our diagnosed energy cy-
cles provide a useful framework for evaluating and im-
proving scale-aware mesoscale eddy parameterizations in
ocean models.
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APPENDIX

A1. Mean and eddy potential energy budgets

The budget for MPE is identical in the non-TWA and
TWA frameworks, and the same holds true for the EPE
budget. To obtain the MPE budget, we first filter the thick-
ness equation (1) and depth-integrated PE equation (5),
and obtain

mC ℎ̄= = −∇ · (ℎ=u=), (A1)

mC

(
#−1∑
==0

PE=

)
= −

#∑
==1

"=∇ · (ℎ=u=). (A2)

Using the definition of MPE (7) and the filtered thickness
equation (A2), we perform a similar calculation as in equa-
tion (5) and obtain

mC (MPE) = −
#∑
==1

"̄=∇ · (ℎ=u=)

= −∇ ·
(
#∑
==1

ℎ=u="̄=

)
+
#∑
==1

ℎ=u=∇"̄= +E,

(A3)

where

E =
#∑
==1

(
∇ · (ℎ=u=) −∇ · (ℎ=u=)

)
"̄= (A4)

is an extra term that arises because the filter does not
commute with spatial derivatives. Note that the two
last terms in equation (A3) appear as energy transfers
in and out of the MPE reservoir in Figures 3(a),(b),
where Figure 3(b) uses identity (11). The first term in
equation (A3) is a flux divergence that integrates to zero
over the domain, and does not enter the energy conversion
diagrams.

The EPE budget is obtained by subtracting the MPE
budget (A3) from the filtered PE budget (A2):

mC (EPE) = −
#∑
==1

(
"=∇ · (ℎ=u=) − "̄=∇ · (ℎ=u=)

)
. (A5)

A2. Mean and eddy kinetic energy budgets

We filter the KE budget (6), and obtain

mC (KE=) = −∇ · (u=KE=) − ℎ=u= · ∇"=

+ ℎ=u= ·F E
= + ℎ=u= ·F ℎ

= . (A6)

The filtered KE budget will enter the EKE budgets in both
the non-TWA and TWA frameworks.

a. Non-TWA Framework

First, we filter the velocity equation (2) and obtain

mC ū= +u= · ∇u= +f ×u= = −∇"= +F E
= +F ℎ

= , (A7)

where we denote f = 5 ẑ and we have used the identity
u= · ∇u= = (∇ ×u=) ×u= + ∇ =. We obtain the MKE
budget by multiplying the filtered thickness equation (A1)
with 1

2 |ū= |
2, adding this to ℎ̄=ū= times the filtered velocity

equation (A7), and summing over all layers:

mC (MKE) =−
#∑
==1
∇ ·

(
ū=

ℎ̄= |ū= |2
2

)
−

#∑
==1

ℎ̄=ū= · ∇"=

−Π! +
#∑
==1

ℎ̄=ū= ·F E
= +

#∑
==1

ℎ̄=ū= ·F ℎ
= , (A8)
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where

Π! =

#∑
==1

ℎ̄=ū= ·f ×u= +
#∑
==1

ℎ̄=ū= ·
(
u= · ∇u= − ū= · ∇ū=

)
+
#∑
==1

|ū= |2
2

(
∇ · (ℎ=u=) −∇ · ( ℎ̄=ū=)

)
(A9)

is the work done by eddy momentum fluxes. Note

that (A9) contains a Coriolis term, which would not

appear if we had used a Reynolds average rather than

a spatial filter. Such terms specific to spatial filtering

have been referred to as Leonard stresses (Leonard

1975). The first term on the right hand side of (A8)

is the advection of MKE by the mean flow, which

integrates to zero over the domain, and does not enter

the energy conversion diagram. The remaining terms on

the right hand side of (A8) appear as conversion terms

starting fromor ending in theMKE reservoir in Figure 3(a).

We obtain the EKE budget by subtracting the MKE

budget (A8) from the filtered KE budget (A6):

mC (EKE) = −T ! +Σ! +Π!

+
#∑
==1

(
ℎ=u= ·F E

= − ℎ̄=ū= ·F E
=

)
+
#∑
==1

(
ℎ=u= ·F ℎ

= − ℎ̄=ū= ·F ℎ
=

)
where

T ! =
#∑
==1

[
∇ · (u=KE=) −∇ ·

(
ū=

ℎ̄= |ū= |2
2

)]
, (A10)

Σ! = −
#∑
==1

(
ℎ=u=∇"= − ℎ̄=ū=∇"=

)
(A11)

are the EKE transport and production terms, respectively.
Note that

Σ! = −
#∑
==1

(
ℎ=u=∇"̄= − ℎ̄=ū=∇"=

)
−E︸                                         ︷︷                                         ︸

Γ! , Figure 3(a)

+
#∑
==1

(
"=∇ · (ℎ=u=) − "̄=∇ · (ℎ=u=)

)
︸                                          ︷︷                                          ︸

−mCEPE

+D, (A12)

where

D = −
#∑
==1

(
∇ · (ℎ=u="=) −∇ · (ℎ=u="̄=)

)
. (A13)

Identity (A12) shows that the three arrows that meet at the
gray circle in Figure 3(a) only differ by the flux divergence
D, which integrates to zero over the domain.

b. TWA Framework

First, we derive a budget for the filtered thickness-
multiplied velocity, ℎ=u=. To this aim, we multiply the
velocity equation (2) by ℎ=, the thickness equation (1) by
u=, add the two, and filter:

mC (ℎ=u=) + ℎ=u= · ∇u= +u=∇ · (ℎ=u=) +f × ℎ=u=

= −ℎ=∇"= + ℎ=F E
= + ℎ=F ℎ

= .

(A14)

The time derivative of MKE (equation (12)) in the TWA
framework can be written as

mC (MKE) =
#∑
==1

(
û=·mC (ℎ=u=) −

|û= |2
2

mC ℎ̄=

)
.
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Using this identity together with equations (A1) and (A14),
we obtain

mC (MKE) = −
#∑
==1
∇ ·

(
û=

ℎ̄= |û= |2
2

)
−Π�

−
#∑
==1

ℎ̄=û= · ∇"̄= −E

+
#∑
==1

ℎ̄=û= ·
(
∇"̄= −�∇"=) +E

+
#∑
==1

û= · ℎ=F E
= +

#∑
==1

û= · ℎ=F ℎ
= , (A15)

where

Π� =

#∑
==1

û= ·f × ℎ=u=

+
#∑
==1

û= ·
(
ℎ=u= · ∇u= +u=∇ · (ℎ=u=)

−ℎ̄=û= · ∇û= −
û=
2

[
∇ · ( ℎ̄=û=) +∇ · (ℎ=u=)

] )
(A16)

is the work done by eddy momentum fluxes. In
analogy to equation (A9), equation (A16) contains a
Coriolis term, which is specific to the spatial filtering
approach. The first term on the right hand side of
(A15) is the advection of MKE by the mean flow, which
integrates to zero over the domain, and does not enter
the energy conversion diagram. The remaining terms on
the right hand side of (A15) appear as conversion terms
starting fromor ending in theMKE reservoir in Figure 3(b).

We obtain theTWAEKEbudget by subtracting theMKE
budget (A15) from the filtered KE budget (A6):

mC (EKE) = −T � +Σ� +Π�

+
#∑
==1

(
ℎ=u= ·F E

= − û= · ℎ=F E
=

)
+
#∑
==1

(
ℎ=u= ·F ℎ

= − û= · ℎ=F ℎ
=

)

where

T � =
#∑
==1

[
∇ · (u=KE=) −∇ ·

(
û=

ℎ̄= |û= |2
2

)]
, (A17)

Σ� = −
#∑
==1

(
ℎ=u=∇"= − ℎ̄=û=�∇"=) (A18)

are the EKE transport and production terms, respectively.
Note that

Σ� = −
#∑
==1

ℎ̄=û= ·
(
∇"̄= −�∇"=) −E︸                                   ︷︷                                   ︸

Γ� , Figure 3(b)

+
#∑
==1

(
"=∇ · (ℎ=u=) − "̄=∇ · (ℎ=u=)

)
︸                                          ︷︷                                          ︸

−mCEPE

+D, (A19)

in analogy to identity (A12).
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