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Key Points:

« Commercial cloud services offer a more computational and cost-efficient approach
to Earth science data management and research.

e Zarr is a powerful, cloud-optimized file format being adopted by the Earth science
community for its ability to efficiently handle multi-dimensional datasets.

« Chunking strategy, including chunk shapes and sizes, affected the processing time
and memory usage of common data access and analysis operations.

» We found there are trade-offs in performance for time series and spatial operations,
but found a middle-range chunking strategy that allows good performance for both
operations.

Corresponding author: Dieu My T. Nguyen, dieumy.t.nguyen@nasa.gov



Abstract

There is increasing interest in adopting the commercial cloud for Earth science research
and data management, given the cost-saving storage, processing, and access efficiencies.

In this work, we evaluated the chunking strategies for storing and accessing multi-dimensional
datasets in the cloud. We transformed output from the Goddard Earth Observing Sys-

tem model from NetCDF format into a more analysis-ready and cloud-optimized format,
Zarr. We explored different strategies for chunking the data into units of different size
across the dataset’s temporal and spatial dimensions. We compared chunking strategies

in terms of their time and memory performance for common data operations, such as
extracting a time series at a location or a map at a designated time. The chunking strat-
egy significantly impacted the processing time and memory usage. In general, larger chunks
along the target dimension performed best. We found a trade-off in performance between
extracting time series and maps—Ilarge chunks along the time dimension performed best
for extracting time series but worst for maps, and vice versa. However, there were ver-
satile middle-range chunking strategies that performed well for both time-series and spa-
tial access. The chunking strategy also affected rechunking time and dataset compres-

sion: smaller chunks required more time to rechunk the original dataset, and larger chunks
resulted in smaller datasets. Overall, we provide initial benchmarks and generalized find-
ings focused on optimal chunking strategies for cloud-based storage and usage of large
multi-dimensional data.

1 Introduction

While data collection is imperative, the way data is managed and stored can greatly
affect how it is used and analyzed (Hey et al., 2009). There is an abundance of high-quality
Earth science data across many repositories, but accessing and sharing these datasets
can be difficult. The challenge of supporting massive data storage, processing, access,
and usage is a long-term bottleneck in Earth science research (Cui et al., 2010; Yang et
al., 2011).

Over the last decade, there has been a push to migrate data and models to the com-
mercial cloud (e.g., Amazon Web Services, AWS), which is envisioned to be the comput-
ing infrastructure for Earth science research (Yang et al., 2011; Zhuang et al., 2019). A
recent example of this migration and assessment of the benefits is a cloud-based data in-
gest, archive, and management system developed by the Earth Science Data System (ESDS)
program at National Aeronautics and Space Administration (NASA) (Ramachandran
et al., 2017). Benefits of the commercial cloud include cost savings from flexible and scal-
able storage and computing options (Ramachandran et al., 2017), and opportunities for
cloud-native “analysis-in-place” workflows that preclude the need to download and pro-
cess large datasets locally (Lynnes & Ramachandran, 2018; Zhuang et al., 2019). While
there are discussions across scientific disciplines and in developer communities about adopt-
ing the cloud and the challenges associated with cost and shifting the socio-technical paradigm
(Lynnes & Ramachandran, 2018), there is a lack of peer-reviewed literature on quanti-
tative and technical assessments of the feasibility of data management, conducting sci-
ence on the cloud, and general guidance on common requirements.

One feature contributing to the cloud’s efficiency and scalability is the object stor-
age architecture (Bucur et al., 2018), such as AWS Simple Storage Service (S3) (53, 2002).
In contrast with storage architectures that manage data as file hierarchies or block sys-
tems, object storage manages data stores as distinct objects that typically include the
data, metadata, and a universally unique identifier (Factor et al., 2005). Unlimited scal-
ability results from the system scaling out by adding storage nodes. Data retrieval in ob-
ject storage without file structures often may be faster, as each object can be found via
its identifying details rather than exact location (Gupta et al., 2020). Thus, object stor-
age on the cloud is suitable for large amounts of Earth science data. However, effective



use of object stores for large multi-dimensional datasets requires careful consideration
of data organization and chunking strategy.

Earth science datasets are often distributed as collections of hundreds to thousands
of Hierarchical Data Format (HDF; or a derivative format, Network Common Data Form,
NetCDF) files (Lucchesi, 2018; Rew & Davis, 1990; The HDF Group, 2000-2010). While
this format works well for traditional disk storage of the file system, it is not efficient for
cloud object storage (Abernathey et al., 2018). A cloud-friendly alternative is Zarr (Abernathey
et al., 2021). Like HDF, Zarr supports an arbitrary number of labeled dimensions and
is self-documenting. However, Zarr also offers additional advantages: the metadata (e.g.,
coordinate system used, date modified, etc.) can be consolidated and kept separate from
the data in a single file, and individual chunks are stored as separate objects that can
be retrieved independently in a thread-safe manner. Recent work comparing Zarr against
a traditional file type (GRIdded Binary Second Edition, GRIB2) used by National Oceanic
and Atmospheric Administration (NOAA) found that Zarr was significantly more effi-
cient (e.g., 40x faster time-series access) on both smaller and high-performance comput-
ing nodes (Gowan et al., 2022).

Most modern multi-dimensional array storage formats—including HDF5, NetCDF,
TIFF, and Zarr—allow control of how the data is stored and compressed, choices which
can have significant performance implications (Kang et al., 2020). For example, when
the entire dataset is serialized into a single block, a subsetting operation must read the
entire dataset into memory, which is wasteful. In contrast, when data is stored in smaller
chunks that can be read and written individually, subsetting operations only need to read
the chunks relevant to the requested subset, dramatically reducing I/O times (Rew, 2013;
Kang et al., 2020). However, this must be balanced against the overhead of each indi-
vidual read operation; for the same total amount of data read, fewer reads from larger
files will be faster than more reads from smaller files (Kang et al., 2020). Maximizing
application performance requires careful attention to chunking strategy, including total
chunk size and how this is distributed across dimensions.

In this paper, we explored the performance of various strategies for chunking a multi-

dimensional Earth science dataset by comparing the processing time and memory us-

age for common data access operations using a single processor to resemble simplified

use cases. We expected the best strategies will differ for each type of access, as differ-

ent dimensions need to be accessed for the appropriate operations. However, we also ex-
pected to find a range of chunking strategies that provide reasonable performance for

a variety of analyses. We provide comprehensive and quantitative benchmarks and gen-
eral guidance for the optimal chunking strategies for cloud storage of Earth science data.

2 Methods
2.1 Dataset

This study focused on outputs from the Goddard Earth Observing System (GEOS)
model (Rienecker et al., 2008), which simulates various meteorological, climatological,
and atmospheric chemistry processes. Among many other applications, GEOS is the model
underlying the Modern-Era Retrospective Analysis for Research and Applications (MERRA)
reanalysis product (Rienecker et al., 2011). GEOS outputs include over 100 variables dis-
tributed over multiple output streams, depending on the configuration. For this work,
we focused on one variable—Black Carbon Extinction Aerosol Optical Thickness (BCEXTTAU)—
from the Aerosol Diagnostics outputs (tavgl-2d_aer_Nx; M2T1INXAER) from the GEOS
Forward Processing (GEOS-FP) Data Assimilation System (DAS). The complete GEOS-
FP DAS output is available in its original format from the NASA Center for Climate Sim-
ulations (NCCS) data portal (https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/).
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Figure 1. Conceptual multi-dimensional dataset and chunking. A) The dataset rep-
resented as a data cube with default dimensions for time, longitude, and latitude. B) Various
chunking strategies affect chunk sizes in each dimension. C) Extracting a time series at a location
(e.g., longitude: -122.19, latitude: 47.61) as a line through the time dimension. D) Extracting a
map at a time step (e.g., 2020-06-01 T00:00:00) as a plane through a single time slice.

The original GEOS-FP output was produced and distributed in NetCDF-4 format,
with 1 global file per timestep. We transformed the dataset into Zarr archives. The data
was compressed using Zarr’s default compressor, Blosc, a meta-compressor that uses the
Zstandard (Zstd) algorithm, and results in level-3 compression. GEOS-FP contains 3-
dimensional fields (longitude, latitude, time), with a 1-hour reporting interval and spa-
tial resolution of 0.3125x0.25 degrees. The spatial bounds are -180 to 179.6875 degrees
longitude and -90 to 90 degrees latitude. Our combined dataset had a dimensionality of
5136 (time) x 1152 (longitude) x 721 (latitude) (Lucchesi, 2018). The default chunking
strategy of this dataset was: 5136 chunks (chunk size: 1) in time, 1 chunk (chunk size:
1152) in longitude, and 1 chunk (chunk size: 721) in latitude (Figure 1A). Data was stored
in an AWS S3 bucket.

2.2 Chunking strategies

We performed this study on a high-performance computing cluster set up on AWS.
Each partition contained 30 compute nodes (chn.18xlarge) with 36 Intel Xeon Platinum
8124M 3.00GHz CPU cores, with 192GB of RAM. All code was developed in Python (ver-
sion 3.9.7). We used the Python package Xarray (0.19.0) (Hoyer & Hamman, 2017) for
working with labeled multi-dimensional data arrays and matplotlib (3.4.3) (Hunter, 2007)
for plotting.

We tested various chunking strategies, comparing performance for extracting time
series and maps. We used the Python package Rechunker (0.4.2), which allows efficient
and scalable manipulation of the chunk structure of Zarr datasets while preserving the
integrity of the underlying data (Augspurger & Abernathey, 2020). We rechunked the
data with various chunk sizes across longitude, latitude, and time (Figure 1B). Specif-
ically, we tested the following dimensional chunk sizes:

e Time: 1, 6, 12, 24, 48, 120, 720, 1440, 2160, 5136
« Longitude: 10, 50, 100, 1152
« Latitude: 10, 50, 100, 721

2.3 Experiments and performance metrics

We measured how each chunking strategy performed on two common operations:
1) extracting a time series at a coordinate, and spatially aggregated over a geographic
region; and 2) drawing a map at a specific datetime, and averaged over a temporal range
(Figure 1C). For each operation, our benchmark included both metadata querying and



the actual reading of the data into memory. We used Xarray’s sel() and isel() meth-
ods to “lazily” select the data (i.e. reading metadata and building a graph), and then
used the Dask compute () method to trigger the actual loading of the array as follows
(Hoyer & Hamman, 2017):

# Time series at a coordinate

data.sel(lat=47.61, lon=-122.19).compute()

# Map at a datetime

data.sel(time='2020-06-01") .isel(time=0) .compute ()

# Time series over a spatially-averaged region (Ohio, USA)
data.sel(lat=slice(38.21,42.25), lon=slice(-84.91,-80.5)).mean(['lat', 'lon']) .compute()
# Map over a temporally-averaged time range (6-hour range)
data.sel(time=slice('2020-06-01T00"', '2020-06-01T05"')) .mean(['date']) .compute ()

We performed these access operations using the output datasets produced by the
chunking strategies described above, and tracked their performance via several metrics.
We aimed to purely test the I/O component of data access, without the added compli-
cation and overhead associated with parallel execution. Therefore, we only used a sin-
gle core for reading any particular Zarr archive.

To avoid AWS caching issues where subsequent accesses are faster than the first
(see SI), we measured performance for only the first access. Time metrics allowed us to
assess the usability of the chunking strategies. We measured wall clock time using the
built-in Python module “time” (Van Rossum & Drake, 2009) as follows:

start = time.time()
data.sel(lat=47.61, lon=-122.19).compute ()
wall_time = time.time() - start

To compare wall times of various strategies, we defined the performance bias met-
ric as the largest wall time divided by smallest wall time, rounded to the nearest whole
number. In addition, we reported the processing speed (data points per second) for each
operation, calculated as length of data array / wall time. We also measured central pro-
cessing unit (CPU), and present these measurements in Supplementary Information Fig-
ure S4.

Peak memory usage informs us of the resource requirements needed for the oper-
ations. We used the memory_usage() method in the Python module “memory-profiler”
to output the memory (in MiB) used throughout the execution time over default inter-
vals of 0.1 sec (Pedregosa & Gervais, 2021), extracting the maximum memory as the peak
memory. We also computed the peak memory usage per data point (peak memory / length
of data array) as an indicator of “memory efficiency.”

We reported two other relevant metrics: (1) the time taken to rechunk the dataset
for each strategy, found by measuring the wall time for the entire rechunking pipeline
(including reading the default Zarr data archive, executing the rechunker, consolidating
the metadata, and saving the new Zarr archive to S3); and (2) the storage size of each
rechunked dataset stored on S3.

3 Results
3.1 Trade-offs between time-series and spatial access

Regarding the wall time for extracting a time series, larger time chunks and smaller
spatial chunks yielded the best performance (lowest wall time and highest processing speed)
(Figures 2A, Supplementary Information S1A). Wall time ranged from 0.065 sec (chunk
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Figure 2. Wall time and peak memory consumption by chunking strategy. Green
boxes highlight optimal strategies. Gray squares represent strategies omitted as they yield high
rechunking time and are not as realistic for common dataset usage. A-B) Heatmaps of wall time
(seconds) and peak memory (gigabytes) consumption of chunking strategies when drawing a time
series at a single coordinate. C-D) Heatmaps when drawing a map for a single timestep. E-F)
Heatmaps of the product of time series and map operations to show general efficient chunk size

guidance when drawing both time series and maps.

size: 5136 time x 10 longitude x 10 latitude) to 39.188 sec (1x1152x721). Meanwhile, for
extracting a map, smaller time chunks and larger spatial chunks yielded the best per-

formance (Figures 2C, S1C). Wall time ranged from 0.055 sec (1x1152x721) to 91.329

sec (5136x10x10). The optimal strategy for accommodating both access pattern types

had intermediate time and spatial chunk sizes, and had a product wall time of 0.867 sec
(120x50x100, Figure 2E). The highest average speed is 7.5x 105 data points per sec (1x1152x721,
Figure S1E). The optimal strategy for time-series access contiguous in the time dimen-

sion (5136x10x10) was 91.329 sec or 1405 times slower for extracting a map (Table 1).

The optimal strategy for a map containing contiguous chunks in the spatial dimensions
(1x1152x721) was 39.188 sec or 713 times slower for extracting a time series. The strat-



Chunking strategy Time series Map Performance bias

(time x longitude x latitude chunk) wall time (sec) wall time (sec) (highest/lowest)
Optimal for time access .
Contiguous in time dimension (5136x10x10) 0-065 91.329 1405
Optimal for spatial access
Contiguous in spatial dimensions (1x1152x721) 39.188 0-055 3
Optimal for time and spatial access (120x50x100) 0.479 1.808 4

Table 1. Comparing performance of optimal chunking strategies

egy optimal for both access patterns (120x50x100) took 0.479 sec for a time series and
1.808 sec for a map, with a low performance bias of 4. Finally, when correlating chunk
size in memory with processing speed for each access pattern, we found positive corre-
lations for both (Figure 3A). The highest speed was 1.50x107 sec for chunk size 3.32x
10° B or 3.32 MB.

Regarding peak memory consumption when extracting a time series, strategies with
larger time chunks and smaller spatial chunks produced the lowest peak memory over-
all and per data point (Figures 2B, S1B). Peak memory ranged from 0.203 GB (1440x10x10)
to 4.084 GB (120x1152x721). For extracting a map, strategies with larger spatial chunks
and smaller time chunks produced the lowest peak memory (Figure 2D, S1D). Peak mem-
ory ranged from 0.232 GB (6x1152x721) to 2.230 GB (720x100x100). Similar to wall time,
optimal strategies for the product of the two operations consisted of intermediate chunks
in the three dimensions (Figure 2F). The lowest product peak memory was 0.076 GB
(120x10x50), and the lowest average peak memory per data point was 0.019 MiB (1440x10x10,
Figure S1F). For the time-optimized strategy for time-series access (5136x10x10), the
peak memory was 1.497 GB, or 1.294 GB higher than the memory-optimized strategy
(1440x10x10). For the time-optimized strategy for spatial access (1x1152x721), the peak
memory was 0.285 GB, or 0.053 GB higher than the memory-optimized strategy (6x1152x721).
While there was no correlation between chunk size in memory and peak memory usage
per data point for individual operations, combining them produced a negative correla-
tion (Figure 3B). The overall lowest memory usage per data point was 2.66x10~* MiB
for chunk size 3.32 MB—the same chunk size for the highest speed above-mentioned. Ad-
ditionally, we observed a negative correlation between peak memory per data point and
processing speed (Figure 3C).

3.2 Chunking strategy affects rechunking time and storage size

To further assess the usability of chunking strategies and the tractability of chang-
ing default storage layouts, we tracked the rechunking time. Rechunking the dataset into
smaller chunks across all dimensions consumed the most time (bottom left corner, Fig-
ure 4A). On the other hand, the more data points grouped into a chunk (i.e., larger chunk
sizes), the quicker the rechunking process. We observed a wide range of rechunking times,
varying from 0.111 hours or 6.66 minutes (5136x100x100) to 46.516 hours (6x50x10). The
quickest rechunking strategy (5136x100x100) had high wall time and peak memory for
both tasks (48.408 sec and 1.626 GB, respectively). The time-optimized strategy sup-
porting multiple access patterns with low performance bias (48x100x100) took 0.374 hours
or 22.44 minutes to rechunk.

Chunking strategies also affected the output archive storage size. Most chunking
strategies resulted in fairly similar archive storage sizes (Figure 4B). However, strate-
gies with large or contiguous spatial dimensions resulted in archive sizes at least 1 GB
or 10% smaller than the strategy with the largest archive (size: 9.824 GB, 40x10x10) (Fig-
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Figure 3. The relationship between performance metrics. Data presented in the
heatmaps in Figure S1 was gathered into seven groups based on the products of longitude and
latitude chunk sizes. Circles represent time series operations and triangles represent map oper-
ations. Solid lines represent p < 0.05; dashed lines represent p > 0.05). A) Scatter plot of the
log of the number of data points processed per second (processing speed) as a function of the log
of chunk size (bytes) and the best fit line on all data. B) Scatter plot and best fit line of the log
of peak memory usage per data point (memory demand in mebibytes) as a function of the log of
chunk size. C) Scatter plot and best fit line of the log of the processing speed as a function of the

log of the peak memory demand per data point.

ure 4B, 1152x721 column). The time-optimized chunking strategy (48x100x100) resulted
in an intermediate archive size of 9.137 GB.

4 Discussion

In line with similar studies for HDF formats (Rew, 2013; Jelenak, 2014), our re-
sults showed that optimal chunking strategies vary with access pattern, evidenced by trade-
offs in performance between time series and spatial access. When accessing data along
a particular dimension, larger chunks or a contiguous block in that dimension allow higher
performance gains, consistent with analytical models (Kang et al., 2020). Our results
indicated that the best strategy for extracting a time series contained larger time chunks
and smaller spatial chunks, while the best strategy for extracting a map contained smaller
time chunks and larger spatial chunks. With smaller chunks, more bits of data need to
be accessed in each I/O operation, and more time and instructions are needed to look
up all chunks (Worringen et al., 2003). Larger chunks or a contiguous block reduce the
number of chunks to find and load, decreasing processing time.

However, there might be diminishing returns for large chunks when considering mem-
ory usage. While wall time is important for responsiveness and usability, memory con-
straints determine whether an operation can be carried out at all without crashing (and
often killing the parent process). Chunks are all-or-nothing—the entire chunk must be
read into memory and uncompressed to operate on any of its data points. In our exper-
iments, the optimal strategy based on wall time for time series or spatial access had large
chunks along the respective dimension(s), but was not the least memory-intensive. Choice
of chunking strategy therefore needs to consider memory limitations of user systems; chunks
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Figure 4. The rechunking time and output archive size of different chunking
strategies. Gray squares represent omitted strategies. A) The time (hours) required to pro-

cess the rechunking strategies. B) Impact of respective chunking strategy on file size (gigabytes).

should be large enough to minimize processing time, but small enough to fit into mem-
ory.

While organizing multi-dimensional data into a contiguous block yields optimal per-
formance for dimension-targeted access, many applications require datasets to support
multiple different access patterns (especially for larger datasets, where creating copies
of multiple datasets with different strategies is expensive or impractical). To that end,
we identified the optimal strategy by wall time for extracting both time series and maps:
splitting data in all dimensions into intermediate-sized bits (48x100x100). This strat-
egy was much slower than the optimal strategy for each access pattern (e.g., 1.192 sec
vs. 0.020 sec for time-series access). However, performance improvements in user inter-
faces have diminishing returns, and this delay may be acceptable. For example, the 1.192
sec response here is well within the 2 second limit found in a study of user tolerance for
responsivity in a web application (Nah, 2004). This is especially the case given the dra-
matic improvement in support performance across multiple access patterns.

We also considered optimal chunk sizes in terms of their memory footprint. We ini-
tially consulted with groups in the geospatial developer community, such as Pangeo and
CarbonPlan, and compared our results to their recommendations. These recommenda-
tions range from 1 MB uncompressed (Miles et al., 2021), to 10 MB - 1 GB (Rocklin,
2015), to 50 MB - 100 MB (Signell, 2020) for common data operations. Though this guid-
ance provides suggestions for the overall chunk size, it does not provide recommenda-
tions for how chunks should be distributed across dimensions. Our findings show that
the optimal chunk sizes (~3.32 MB) for this case align most closely with the ~1 MB (un-
compressed) recommendation, but also most importantly provides more detailed infor-
mation on the performance implications of different chunking strategies across various
dimensions.

Previously, other projects such as Pangeo and Open Data Cube have shown that
the most effective way to read data is to use chunks 10 to 100 MB in size and to use mul-
tiple machines to access object storage simultaneously (e.g., via a Kubernetes cluster),
thereby avoiding the limitation of I/O bandwidth of a single machine. In our study, our
aim was to understand the effect of chunking in simple use cases of geospatial data ac-



cess, common for Earth Science scientists who may be new to the commercial cloud. Thus,
we simplify our tests to only the I/O components of data access without additional setup
and overhead from parallel execution. Although common for more advanced users — and
greatly facilitated through the native integration of parallel computing libraries like Dask
into data processing libraries like Xarray — parallel computing is often challenging for
less technical users, and can be impossible in strictly managed, cost-controlled cloud com-
puting deployments for data exploration (e.g., mybinder.org; NASA’s Multi-Mission Al-
gorithm Analysis Platform, MAAP) or “serverless” compute capabilities like Amazon
Web Services Lambda. Deploying a Kubernetes cluster in particular requires a great deal
of specific technical expertise that very few scientists typically have. That said, we rec-
ognize the interest and benefits of using parallel computing for cloud-native data access
and analysis, and we recommend a broader, more holistic study that factors in paral-
lelization for future work.

We also assessed how chunking strategy affects rechunking time and archive size,
which may be important in some data management contexts. From the default dataset
contiguous in the spatial dimensions, rechunking took the longest when all chunk sizes
were small, as many chunks need to be written and compressed. Rechunking time widely
ranges from as little as ~6.66 min for strategies with larger chunks in all dimensions to
as long as ~46 hours with smaller chunks. For near-real-time and operational data pipelines,
such as NASA’s Land Atmosphere Near real-time Capability for Earth Observing Sys-
tem (LANCE) data products that are available within 3 hours from satellite observa-
tions (NASA EOSDIS, 2019), and especially NOAA’s GOES satellites that produces crit-
ical weather data every 5 - 15 minutes (NOAA, n.d.), time invested in rechunking data
to facilitate analysis needs to be carefully weighted against latency requirements. Our
results show strategies with the smallest rechunking times may not be optimized for mul-
tiple access patterns, but the optimal strategy’s rechunking time of 22.44 minutes may
be tolerable for some applications. Also, time invested in rechunking may be offset by
accelerated product generation workflows, where such workflows are limited by I/O per-
formance. Archive size is also important for large Earth science datasets and limited stor-
age quotas. Consistent with literature (Tang et al., 2021), our results showed that larger
chunks have a greater compression effect, as they contain more repeated data patterns
compression libraries can target (Lelewer & Hirschberg, 1987; Fitriya et al., 2017). Al-
though compression efficiency decreased with smaller chunks, we gained higher speed and
access versatility.

Although the exact storage strategy specifics will vary by dataset, trends observed
in this work can be generalized for other applications. Further studies are needed on ef-
ficient chunking for other types of data encountered by Earth scientists, including sparse
gridded datasets, such as active fire detections from Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Justice et al., 2002). Trade-offs in chunking strategies might
become more significant for higher dimensional datasets, such as vertically-resolved grid-
ded time series produced by the GEOS Composition Forecasting (CF) model (Keller et
al., 2021). Another future direction is tracking performance for spatio-temporal anal-
yses simultaneously spanning multiple dimensions; namely, where data across every di-
mension may be needed (such as in Empirical Orthogonal Function, EOF, analysis), per-
formance may depend primarily on chunk size but not chunk distribution. We present
initial results as benchmarks for future studies on multi-dimensional Earth science or gen-
eral datasets that use cloud-optimized formats as part of a larger community effort to
establish scalable computing infrastructure supporting better scientific discovery and data
utilization.

5 Availability Statement

The GEOS-FP data used in the study was sourced from NASA’s GMAO Near-Real
Time Data Products available at: https://gmao.gsfc.nasa.gov/GMAO_products/NRT
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_products.php. All Python code is available at the GitHub repository under MIT Li-
cense: https://github.com/dieumynguyen/ZarrOptimalStorage. DOI: 10.5281/zen-
0d0.7422933 (Nguyen, 2022).
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