Optimal Strategies for Storing Earth Science Datasets in the
Commercial Cloud

Dieu My T Nguyen!, Johana Chazaro Cortes?, Marina M Dunn?, and Alexey N
Shiklomanov*

!University of Colorado Boulder
2California Baptist University
3University of California Riverside
“NASA Goddard Space Flight Center

March 8, 2023

Impact of Chunk Size on Read Performance of Zarr
Data in Cloud-based Object Stores

Dieu My T. Nguyen'2, Johana Chazaro Cortes®*, Marina M. Dunn®%, Alexey
N. Shiklomanov®

1Goddard Earth Sciences Data and Information Services Center, NASA Goddard Space Flight Center,

Greenbelt, MD, United States
) 2 Adnet Systems, Inc., Bethesda, MD, United States
3Science Managed Cloud Environment, NASA Goddard Space Flight Center, Greenbelt, MD, United

States
4Navteca, LLC, Chevy Chase, MD, United States
5Bourns College of Engineering, University of California Riverside, Riverside, CA, United States
SBiospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, United States

Key Points:

« Commercial cloud services offer a more computational and cost-efficient approach
to Earth science data management and research.

e Zarr is a powerful, cloud-optimized file format being adopted by the Earth science
community for its ability to efficiently handle multi-dimensional datasets.

« Chunking strategy, including chunk shapes and sizes, affected the processing time
and memory usage of common data access and analysis operations.

» We found there are trade-offs in performance for time series and spatial operations,
but found a middle-range chunking strategy that allows good performance for both
operations.

Corresponding author: Dieu My T. Nguyen, dieumy.t.nguyen@nasa.gov

Abstract

There is increasing interest in adopting the commercial cloud for Earth science research
and data management, given the cost-saving storage, processing, and access efficiencies.

In this work, we evaluated the chunking strategies for storing and accessing multi-dimensional
datasets in the cloud. We transformed output from the Goddard Earth Observing Sys-

tem model from NetCDF format into a more analysis-ready and cloud-optimized format,
Zarr. We explored different strategies for chunking the data into units of different size
across the dataset’s temporal and spatial dimensions. We compared chunking strategies

in terms of their time and memory performance for common data operations, such as
extracting a time series at a location or a map at a designated time. The chunking strat-
egy significantly impacted the processing time and memory usage. In general, larger chunks
along the target dimension performed best. We found a trade-off in performance between
extracting time series and maps—Ilarge chunks along the time dimension performed best
for extracting time series but worst for maps, and vice versa. However, there were ver-
satile middle-range chunking strategies that performed well for both time-series and spa-
tial access. The chunking strategy also affected rechunking time and dataset compres-

sion: smaller chunks required more time to rechunk the original dataset, and larger chunks
resulted in smaller datasets. Overall, we provide initial benchmarks and generalized find-
ings focused on optimal chunking strategies for cloud-based storage and usage of large
multi-dimensional data.

1 Introduction

While data collection is imperative, the way data is managed and stored can greatly
affect how it is used and analyzed (Hey et al., 2009). There is an abundance of high-quality
Earth science data across many repositories, but accessing and sharing these datasets
can be difficult. The challenge of supporting massive data storage, processing, access,
and usage is a long-term bottleneck in Earth science research (Cui et al., 2010; Yang et
al., 2011).

Over the last decade, there has been a push to migrate data and models to the com-
mercial cloud (e.g., Amazon Web Services, AWS), which is envisioned to be the comput-
ing infrastructure for Earth science research (Yang et al., 2011; Zhuang et al., 2019). A
recent example of this migration and assessment of the benefits is a cloud-based data in-
gest, archive, and management system developed by the Earth Science Data System (ESDS)
program at National Aeronautics and Space Administration (NASA) (Ramachandran
et al., 2017). Benefits of the commercial cloud include cost savings from flexible and scal-
able storage and computing options (Ramachandran et al., 2017), and opportunities for
cloud-native “analysis-in-place” workflows that preclude the need to download and pro-
cess large datasets locally (Lynnes & Ramachandran, 2018; Zhuang et al., 2019). While
there are discussions across scientific disciplines and in developer communities about adopt-
ing the cloud and the challenges associated with cost and shifting the socio-technical paradigm
(Lynnes & Ramachandran, 2018), there is a lack of peer-reviewed literature on quanti-
tative and technical assessments of the feasibility of data management, conducting sci-
ence on the cloud, and general guidance on common requirements.

One feature contributing to the cloud’s efficiency and scalability is the object stor-
age architecture (Bucur et al., 2018), such as AWS Simple Storage Service (S3) (53, 2002).
In contrast with storage architectures that manage data as file hierarchies or block sys-
tems, object storage manages data stores as distinct objects that typically include the
data, metadata, and a universally unique identifier (Factor et al., 2005). Unlimited scal-
ability results from the system scaling out by adding storage nodes. Data retrieval in ob-
ject storage without file structures often may be faster, as each object can be found via
its identifying details rather than exact location (Gupta et al., 2020). Thus, object stor-
age on the cloud is suitable for large amounts of Earth science data. However, effective

use of object stores for large multi-dimensional datasets requires careful consideration
of data organization and chunking strategy.

Earth science datasets are often distributed as collections of hundreds to thousands
of Hierarchical Data Format (HDF; or a derivative format, Network Common Data Form,
NetCDF) files (Lucchesi, 2018; Rew & Davis, 1990; The HDF Group, 2000-2010). While
this format works well for traditional disk storage of the file system, it is not efficient for
cloud object storage (Abernathey et al., 2018). A cloud-friendly alternative is Zarr (Abernathey
et al., 2021). Like HDF, Zarr supports an arbitrary number of labeled dimensions and
is self-documenting. However, Zarr also offers additional advantages: the metadata (e.g.,
coordinate system used, date modified, etc.) can be consolidated and kept separate from
the data in a single file, and individual chunks are stored as separate objects that can
be retrieved independently in a thread-safe manner. Recent work comparing Zarr against
a traditional file type (GRIdded Binary Second Edition, GRIB2) used by National Oceanic
and Atmospheric Administration (NOAA) found that Zarr was significantly more effi-
cient (e.g., 40x faster time-series access) on both smaller and high-performance comput-
ing nodes (Gowan et al., 2022).

Most modern multi-dimensional array storage formats—including HDF5, NetCDF,
TIFF, and Zarr—allow control of how the data is stored and compressed, choices which
can have significant performance implications (Kang et al., 2020). For example, when
the entire dataset is serialized into a single block, a subsetting operation must read the
entire dataset into memory, which is wasteful. In contrast, when data is stored in smaller
chunks that can be read and written individually, subsetting operations only need to read
the chunks relevant to the requested subset, dramatically reducing I/O times (Rew, 2013;
Kang et al., 2020). However, this must be balanced against the overhead of each indi-
vidual read operation; for the same total amount of data read, fewer reads from larger
files will be faster than more reads from smaller files (Kang et al., 2020). Maximizing
application performance requires careful attention to chunking strategy, including total
chunk size and how this is distributed across dimensions.

In this paper, we explored the performance of various strategies for chunking a multi-

dimensional Earth science dataset by comparing the processing time and memory us-

age for common data access operations using a single processor to resemble simplified

use cases. We expected the best strategies will differ for each type of access, as differ-

ent dimensions need to be accessed for the appropriate operations. However, we also ex-
pected to find a range of chunking strategies that provide reasonable performance for

a variety of analyses. We provide comprehensive and quantitative benchmarks and gen-
eral guidance for the optimal chunking strategies for cloud storage of Earth science data.

2 Methods
2.1 Dataset

This study focused on outputs from the Goddard Earth Observing System (GEOS)
model (Rienecker et al., 2008), which simulates various meteorological, climatological,
and atmospheric chemistry processes. Among many other applications, GEOS is the model
underlying the Modern-Era Retrospective Analysis for Research and Applications (MERRA)
reanalysis product (Rienecker et al., 2011). GEOS outputs include over 100 variables dis-
tributed over multiple output streams, depending on the configuration. For this work,
we focused on one variable—Black Carbon Extinction Aerosol Optical Thickness (BCEXTTAU)—
from the Aerosol Diagnostics outputs (tavgl-2d_aer_Nx; M2T1INXAER) from the GEOS
Forward Processing (GEOS-FP) Data Assimilation System (DAS). The complete GEOS-
FP DAS output is available in its original format from the NASA Center for Climate Sim-
ulations (NCCS) data portal (https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/).

A) Data cube - default B) Example chunking C) Drawing time D) Drawing map
chunking strategy strategies series at a location at a time step

Time .
Chunk size: 1 hr]éitlllt:l:iselze' 721 grid points
Num chunks: 5136 Num chu nl.<5' 1 grap
Longitude) longitude: 12219 time: 2020-06-01

Chunk size: 1152 grid points latitude: 47.61 T00:00:00

Num chunks: 1

Figure 1. Conceptual multi-dimensional dataset and chunking. A) The dataset rep-
resented as a data cube with default dimensions for time, longitude, and latitude. B) Various
chunking strategies affect chunk sizes in each dimension. C) Extracting a time series at a location
(e.g., longitude: -122.19, latitude: 47.61) as a line through the time dimension. D) Extracting a
map at a time step (e.g., 2020-06-01 T00:00:00) as a plane through a single time slice.

The original GEOS-FP output was produced and distributed in NetCDF-4 format,
with 1 global file per timestep. We transformed the dataset into Zarr archives. The data
was compressed using Zarr’s default compressor, Blosc, a meta-compressor that uses the
Zstandard (Zstd) algorithm, and results in level-3 compression. GEOS-FP contains 3-
dimensional fields (longitude, latitude, time), with a 1-hour reporting interval and spa-
tial resolution of 0.3125x0.25 degrees. The spatial bounds are -180 to 179.6875 degrees
longitude and -90 to 90 degrees latitude. Our combined dataset had a dimensionality of
5136 (time) x 1152 (longitude) x 721 (latitude) (Lucchesi, 2018). The default chunking
strategy of this dataset was: 5136 chunks (chunk size: 1) in time, 1 chunk (chunk size:
1152) in longitude, and 1 chunk (chunk size: 721) in latitude (Figure 1A). Data was stored
in an AWS S3 bucket.

2.2 Chunking strategies

We performed this study on a high-performance computing cluster set up on AWS.
Each partition contained 30 compute nodes (chn.18xlarge) with 36 Intel Xeon Platinum
8124M 3.00GHz CPU cores, with 192GB of RAM. All code was developed in Python (ver-
sion 3.9.7). We used the Python package Xarray (0.19.0) (Hoyer & Hamman, 2017) for
working with labeled multi-dimensional data arrays and matplotlib (3.4.3) (Hunter, 2007)
for plotting.

We tested various chunking strategies, comparing performance for extracting time
series and maps. We used the Python package Rechunker (0.4.2), which allows efficient
and scalable manipulation of the chunk structure of Zarr datasets while preserving the
integrity of the underlying data (Augspurger & Abernathey, 2020). We rechunked the
data with various chunk sizes across longitude, latitude, and time (Figure 1B). Specif-
ically, we tested the following dimensional chunk sizes:

e Time: 1, 6, 12, 24, 48, 120, 720, 1440, 2160, 5136
« Longitude: 10, 50, 100, 1152
« Latitude: 10, 50, 100, 721

2.3 Experiments and performance metrics

We measured how each chunking strategy performed on two common operations:
1) extracting a time series at a coordinate, and spatially aggregated over a geographic
region; and 2) drawing a map at a specific datetime, and averaged over a temporal range
(Figure 1C). For each operation, our benchmark included both metadata querying and

the actual reading of the data into memory. We used Xarray’s sel() and isel() meth-
ods to “lazily” select the data (i.e. reading metadata and building a graph), and then
used the Dask compute () method to trigger the actual loading of the array as follows
(Hoyer & Hamman, 2017):

Time series at a coordinate

data.sel(lat=47.61, lon=-122.19).compute()

Map at a datetime

data.sel(time='2020-06-01") .isel(time=0) .compute ()

Time series over a spatially-averaged region (Ohio, USA)
data.sel(lat=slice(38.21,42.25), lon=slice(-84.91,-80.5)).mean(['lat', 'lon']) .compute()
Map over a temporally-averaged time range (6-hour range)
data.sel(time=slice('2020-06-01T00"', '2020-06-01T05"')) .mean(['date']) .compute ()

We performed these access operations using the output datasets produced by the
chunking strategies described above, and tracked their performance via several metrics.
We aimed to purely test the I/O component of data access, without the added compli-
cation and overhead associated with parallel execution. Therefore, we only used a sin-
gle core for reading any particular Zarr archive.

To avoid AWS caching issues where subsequent accesses are faster than the first
(see SI), we measured performance for only the first access. Time metrics allowed us to
assess the usability of the chunking strategies. We measured wall clock time using the
built-in Python module “time” (Van Rossum & Drake, 2009) as follows:

start = time.time()
data.sel(lat=47.61, lon=-122.19).compute ()
wall_time = time.time() - start

To compare wall times of various strategies, we defined the performance bias met-
ric as the largest wall time divided by smallest wall time, rounded to the nearest whole
number. In addition, we reported the processing speed (data points per second) for each
operation, calculated as length of data array / wall time. We also measured central pro-
cessing unit (CPU), and present these measurements in Supplementary Information Fig-
ure S4.

Peak memory usage informs us of the resource requirements needed for the oper-
ations. We used the memory_usage() method in the Python module “memory-profiler”
to output the memory (in MiB) used throughout the execution time over default inter-
vals of 0.1 sec (Pedregosa & Gervais, 2021), extracting the maximum memory as the peak
memory. We also computed the peak memory usage per data point (peak memory / length
of data array) as an indicator of “memory efficiency.”

We reported two other relevant metrics: (1) the time taken to rechunk the dataset
for each strategy, found by measuring the wall time for the entire rechunking pipeline
(including reading the default Zarr data archive, executing the rechunker, consolidating
the metadata, and saving the new Zarr archive to S3); and (2) the storage size of each
rechunked dataset stored on S3.

3 Results
3.1 Trade-offs between time-series and spatial access

Regarding the wall time for extracting a time series, larger time chunks and smaller
spatial chunks yielded the best performance (lowest wall time and highest processing speed)
(Figures 2A, Supplementary Information S1A). Wall time ranged from 0.065 sec (chunk

Wall time (sec) Peak memory (GB)

A) 5136 - ooes | 0142 0221 0163 0166 o:sa B)
2160- o112 (0478 0204 o185 0254 0489
1440- o106 o156 0176 0372 013 om 0320 H 1440~ 0203 0266 0226 0227 0238

0253

Q 720- 001 010 o013 0458 0305 ﬁ 0325 : 720 - P28 o215 o214 nzseﬂ
@
Drawing a i 120- oz o 120 - oz 020 BE
. . = X
time series § 43,ﬂ o2 ozm oon [ozer 0,300
S :
£ 2 i -0.275
-0.250
0225
C) 5136 D) s136-[
)) 0.60
0.55
g : [050
. @
Drawinga o 13 268 1zo,ﬁ o0 03 03 045
=3
map S won 26 1328 120 oom 1o [. oue oxe [IY 0w oo [[m
o -0.40
£ 24 - 4620 2615 1134 0977 0698 0575 035 0362 m 0321 0207 0359 0349 0395 0305
=
-4 -035
12- son2 [d888) 1516 1025 1218 o713 aamo 12- 03 [ossal ozt 021 ozme oz [a8
6- ey B 6- B oo o o om|om| 00
1- 1700 1768 oss2 | ouss 1- s 025
5 * 1) o [o
7 2160 - [] o
1440- 0091 (0470 0124 0160 0162 [CEEEY EXE 0.25
g = - -
2]
Product of x vosr [3168) 1416 | oser | oses osne 5 oo W o0 o2z [oes
. . 3
time series 5 4 ﬁum TR - | ons [o oom [
and map ¢
E - oo s EECRTEARERREY - orzr [oose ooss orzs

0120

0077 0083

-~ HHHH

[=} o o o o Q [=3 [=] [=] - o Qo O o o 9 9 [=3 o -
- '] Aol o - 0 o ['e] o N - 0 Aol o - 's) o ['s] o N
x x x - x x - x - ~ x x x - x x - x - ~

o o [=3 x o [=} x o x X o (=} f=3 x o (=3 x o x x
- - L & o w 9 o S « - - U S o v 9 o°o o o
- = L - S - - ® - o W

Longitude chunk size x Latitude chunk size Longitude chunk size x Latitude chunk size

Figure 2. Wall time and peak memory consumption by chunking strategy. Green
boxes highlight optimal strategies. Gray squares represent strategies omitted as they yield high
rechunking time and are not as realistic for common dataset usage. A-B) Heatmaps of wall time
(seconds) and peak memory (gigabytes) consumption of chunking strategies when drawing a time
series at a single coordinate. C-D) Heatmaps when drawing a map for a single timestep. E-F)
Heatmaps of the product of time series and map operations to show general efficient chunk size

guidance when drawing both time series and maps.

size: 5136 time x 10 longitude x 10 latitude) to 39.188 sec (1x1152x721). Meanwhile, for
extracting a map, smaller time chunks and larger spatial chunks yielded the best per-

formance (Figures 2C, S1C). Wall time ranged from 0.055 sec (1x1152x721) to 91.329

sec (5136x10x10). The optimal strategy for accommodating both access pattern types

had intermediate time and spatial chunk sizes, and had a product wall time of 0.867 sec
(120x50x100, Figure 2E). The highest average speed is 7.5x 105 data points per sec (1x1152x721,
Figure S1E). The optimal strategy for time-series access contiguous in the time dimen-

sion (5136x10x10) was 91.329 sec or 1405 times slower for extracting a map (Table 1).

The optimal strategy for a map containing contiguous chunks in the spatial dimensions
(1x1152x721) was 39.188 sec or 713 times slower for extracting a time series. The strat-

Chunking strategy Time series Map Performance bias

(time x longitude x latitude chunk) wall time (sec) wall time (sec) (highest/lowest)
Optimal for time access .
Contiguous in time dimension (5136x10x10) 0-065 91.329 1405
Optimal for spatial access
Contiguous in spatial dimensions (1x1152x721) 39.188 0-055 3
Optimal for time and spatial access (120x50x100) 0.479 1.808 4

Table 1. Comparing performance of optimal chunking strategies

egy optimal for both access patterns (120x50x100) took 0.479 sec for a time series and
1.808 sec for a map, with a low performance bias of 4. Finally, when correlating chunk
size in memory with processing speed for each access pattern, we found positive corre-
lations for both (Figure 3A). The highest speed was 1.50x107 sec for chunk size 3.32x
10° B or 3.32 MB.

Regarding peak memory consumption when extracting a time series, strategies with
larger time chunks and smaller spatial chunks produced the lowest peak memory over-
all and per data point (Figures 2B, S1B). Peak memory ranged from 0.203 GB (1440x10x10)
to 4.084 GB (120x1152x721). For extracting a map, strategies with larger spatial chunks
and smaller time chunks produced the lowest peak memory (Figure 2D, S1D). Peak mem-
ory ranged from 0.232 GB (6x1152x721) to 2.230 GB (720x100x100). Similar to wall time,
optimal strategies for the product of the two operations consisted of intermediate chunks
in the three dimensions (Figure 2F). The lowest product peak memory was 0.076 GB
(120x10x50), and the lowest average peak memory per data point was 0.019 MiB (1440x10x10,
Figure S1F). For the time-optimized strategy for time-series access (5136x10x10), the
peak memory was 1.497 GB, or 1.294 GB higher than the memory-optimized strategy
(1440x10x10). For the time-optimized strategy for spatial access (1x1152x721), the peak
memory was 0.285 GB, or 0.053 GB higher than the memory-optimized strategy (6x1152x721).
While there was no correlation between chunk size in memory and peak memory usage
per data point for individual operations, combining them produced a negative correla-
tion (Figure 3B). The overall lowest memory usage per data point was 2.66x10~* MiB
for chunk size 3.32 MB—the same chunk size for the highest speed above-mentioned. Ad-
ditionally, we observed a negative correlation between peak memory per data point and
processing speed (Figure 3C).

3.2 Chunking strategy affects rechunking time and storage size

To further assess the usability of chunking strategies and the tractability of chang-
ing default storage layouts, we tracked the rechunking time. Rechunking the dataset into
smaller chunks across all dimensions consumed the most time (bottom left corner, Fig-
ure 4A). On the other hand, the more data points grouped into a chunk (i.e., larger chunk
sizes), the quicker the rechunking process. We observed a wide range of rechunking times,
varying from 0.111 hours or 6.66 minutes (5136x100x100) to 46.516 hours (6x50x10). The
quickest rechunking strategy (5136x100x100) had high wall time and peak memory for
both tasks (48.408 sec and 1.626 GB, respectively). The time-optimized strategy sup-
porting multiple access patterns with low performance bias (48x100x100) took 0.374 hours
or 22.44 minutes to rechunk.

Chunking strategies also affected the output archive storage size. Most chunking
strategies resulted in fairly similar archive storage sizes (Figure 4B). However, strate-
gies with large or contiguous spatial dimensions resulted in archive sizes at least 1 GB
or 10% smaller than the strategy with the largest archive (size: 9.824 GB, 40x10x10) (Fig-

A)) 0
E @ 40
— 7] AlS 10 3 L —
o103 s 3 810",
n 3 £ g »n
= 6 | o] -1 [
310 3 810 3 g
12] - i [2]
€ 105 - 3] c,.5]
510 3 S, 510
Q 3 010 ° 3 Q
£ 10* 2 SO £
8 3 5] 8
S10° 1 §107° 3 S 10°
8 3 S k4
10°3 Byt
T T T o010 T T T L AL) L R
10° 10° 10° 10° 10° 10° 10° 107 10 10

log10(Chunk size (B)) log10(Chunk size (B)) log10(Memory per data point (MiB))

=== Slope: 0.47,p:3.88e-177 ~ ss=ss Slope: -0.03, p: 0.32 === Slope: -1.05, p: 1.71e-04

=== Slope: 0.55, p: 1.77e-15 ~ ss=ss Slope: -0.01, p: 0.61 === Slope: -1.55, p: 5.65e-08

=== Slope: 0.68, p: 1.59e-43 === Slope: -0.51, p: 8.03e-15 === Slope: -0.69, p: 2.47e-36

@ Time series Longitude chunk size x Latitude chunk size (B)
A Map 100 @500 @1000 @ 2500 @5000 @ 10000 @ 830592

Figure 3. The relationship between performance metrics. Data presented in the
heatmaps in Figure S1 was gathered into seven groups based on the products of longitude and
latitude chunk sizes. Circles represent time series operations and triangles represent map oper-
ations. Solid lines represent p < 0.05; dashed lines represent p > 0.05). A) Scatter plot of the
log of the number of data points processed per second (processing speed) as a function of the log
of chunk size (bytes) and the best fit line on all data. B) Scatter plot and best fit line of the log
of peak memory usage per data point (memory demand in mebibytes) as a function of the log of
chunk size. C) Scatter plot and best fit line of the log of the processing speed as a function of the

log of the peak memory demand per data point.

ure 4B, 1152x721 column). The time-optimized chunking strategy (48x100x100) resulted
in an intermediate archive size of 9.137 GB.

4 Discussion

In line with similar studies for HDF formats (Rew, 2013; Jelenak, 2014), our re-
sults showed that optimal chunking strategies vary with access pattern, evidenced by trade-
offs in performance between time series and spatial access. When accessing data along
a particular dimension, larger chunks or a contiguous block in that dimension allow higher
performance gains, consistent with analytical models (Kang et al., 2020). Our results
indicated that the best strategy for extracting a time series contained larger time chunks
and smaller spatial chunks, while the best strategy for extracting a map contained smaller
time chunks and larger spatial chunks. With smaller chunks, more bits of data need to
be accessed in each I/O operation, and more time and instructions are needed to look
up all chunks (Worringen et al., 2003). Larger chunks or a contiguous block reduce the
number of chunks to find and load, decreasing processing time.

However, there might be diminishing returns for large chunks when considering mem-
ory usage. While wall time is important for responsiveness and usability, memory con-
straints determine whether an operation can be carried out at all without crashing (and
often killing the parent process). Chunks are all-or-nothing—the entire chunk must be
read into memory and uncompressed to operate on any of its data points. In our exper-
iments, the optimal strategy based on wall time for time series or spatial access had large
chunks along the respective dimension(s), but was not the least memory-intensive. Choice
of chunking strategy therefore needs to consider memory limitations of user systems; chunks

Rechunking time (hr) Archive size (GB)
A) 5136 - 0617 0290 0350 0401 0299 0414 0333 0119 0411 B) 5136-
4.0
2160 - 0814 0469 0410 0423 0333 0324 0333 0124 0116 9 9.489 9156
9.6
1440 - 0967 0555 0557 0448 0350 0343 0309 0127 0.117 3.5 ﬁ@.. 9144

. 0144 9.4

& 1718 1556 1515 0830 0587 0432 0254 0186 0259 25 .ﬁﬁﬁﬁﬂ 9136 8573
-9.2

I o o e] -
6 0852 0836 0577 0272 15 24 - E 9119 (8234 9227 9131 8572 = Q)

6 1351 1564 0985 0244 12- M 9180 (9049 9029 9116 8572
-1.0 -8.8
6.516 3.14: 2326 1864 1753 0303 6- n 9100 9075 8961 8571 :

-0.5

1- 0334 1- . 9210 9.065 8573
-8.6
i] 0
[=
re}

0637 0567 0522 0401 0351 0330 0128 0122 3.0

& 2375

0580 0459 0374 0294
-2.0

Time chunk size

o o o o o 9 9 o o o © o o 9 9 o O
- N T O « u o o - 0 T O T« 1u O nu O o
x x x — x x - x - N~ x x x — x x - x - N~
o o 9 X o 9 x o x X o o 9 X o 9 x o x x
- - S o v 9 o o o - - S o v 9 o o o
- - 0« ‘9 [Ye} - - 0« ‘9 [Ye}

= =

Longitude chunk size x Latitude chunk size Longitude chunk size x Latitude chunk size

Figure 4. The rechunking time and output archive size of different chunking
strategies. Gray squares represent omitted strategies. A) The time (hours) required to pro-

cess the rechunking strategies. B) Impact of respective chunking strategy on file size (gigabytes).

should be large enough to minimize processing time, but small enough to fit into mem-
ory.

While organizing multi-dimensional data into a contiguous block yields optimal per-
formance for dimension-targeted access, many applications require datasets to support
multiple different access patterns (especially for larger datasets, where creating copies
of multiple datasets with different strategies is expensive or impractical). To that end,
we identified the optimal strategy by wall time for extracting both time series and maps:
splitting data in all dimensions into intermediate-sized bits (48x100x100). This strat-
egy was much slower than the optimal strategy for each access pattern (e.g., 1.192 sec
vs. 0.020 sec for time-series access). However, performance improvements in user inter-
faces have diminishing returns, and this delay may be acceptable. For example, the 1.192
sec response here is well within the 2 second limit found in a study of user tolerance for
responsivity in a web application (Nah, 2004). This is especially the case given the dra-
matic improvement in support performance across multiple access patterns.

We also considered optimal chunk sizes in terms of their memory footprint. We ini-
tially consulted with groups in the geospatial developer community, such as Pangeo and
CarbonPlan, and compared our results to their recommendations. These recommenda-
tions range from 1 MB uncompressed (Miles et al., 2021), to 10 MB - 1 GB (Rocklin,
2015), to 50 MB - 100 MB (Signell, 2020) for common data operations. Though this guid-
ance provides suggestions for the overall chunk size, it does not provide recommenda-
tions for how chunks should be distributed across dimensions. Our findings show that
the optimal chunk sizes (~3.32 MB) for this case align most closely with the ~1 MB (un-
compressed) recommendation, but also most importantly provides more detailed infor-
mation on the performance implications of different chunking strategies across various
dimensions.

Previously, other projects such as Pangeo and Open Data Cube have shown that
the most effective way to read data is to use chunks 10 to 100 MB in size and to use mul-
tiple machines to access object storage simultaneously (e.g., via a Kubernetes cluster),
thereby avoiding the limitation of I/O bandwidth of a single machine. In our study, our
aim was to understand the effect of chunking in simple use cases of geospatial data ac-

cess, common for Earth Science scientists who may be new to the commercial cloud. Thus,
we simplify our tests to only the I/O components of data access without additional setup
and overhead from parallel execution. Although common for more advanced users — and
greatly facilitated through the native integration of parallel computing libraries like Dask
into data processing libraries like Xarray — parallel computing is often challenging for
less technical users, and can be impossible in strictly managed, cost-controlled cloud com-
puting deployments for data exploration (e.g., mybinder.org; NASA’s Multi-Mission Al-
gorithm Analysis Platform, MAAP) or “serverless” compute capabilities like Amazon
Web Services Lambda. Deploying a Kubernetes cluster in particular requires a great deal
of specific technical expertise that very few scientists typically have. That said, we rec-
ognize the interest and benefits of using parallel computing for cloud-native data access
and analysis, and we recommend a broader, more holistic study that factors in paral-
lelization for future work.

We also assessed how chunking strategy affects rechunking time and archive size,
which may be important in some data management contexts. From the default dataset
contiguous in the spatial dimensions, rechunking took the longest when all chunk sizes
were small, as many chunks need to be written and compressed. Rechunking time widely
ranges from as little as ~6.66 min for strategies with larger chunks in all dimensions to
as long as ~46 hours with smaller chunks. For near-real-time and operational data pipelines,
such as NASA’s Land Atmosphere Near real-time Capability for Earth Observing Sys-
tem (LANCE) data products that are available within 3 hours from satellite observa-
tions (NASA EOSDIS, 2019), and especially NOAA’s GOES satellites that produces crit-
ical weather data every 5 - 15 minutes (NOAA, n.d.), time invested in rechunking data
to facilitate analysis needs to be carefully weighted against latency requirements. Our
results show strategies with the smallest rechunking times may not be optimized for mul-
tiple access patterns, but the optimal strategy’s rechunking time of 22.44 minutes may
be tolerable for some applications. Also, time invested in rechunking may be offset by
accelerated product generation workflows, where such workflows are limited by I/O per-
formance. Archive size is also important for large Earth science datasets and limited stor-
age quotas. Consistent with literature (Tang et al., 2021), our results showed that larger
chunks have a greater compression effect, as they contain more repeated data patterns
compression libraries can target (Lelewer & Hirschberg, 1987; Fitriya et al., 2017). Al-
though compression efficiency decreased with smaller chunks, we gained higher speed and
access versatility.

Although the exact storage strategy specifics will vary by dataset, trends observed
in this work can be generalized for other applications. Further studies are needed on ef-
ficient chunking for other types of data encountered by Earth scientists, including sparse
gridded datasets, such as active fire detections from Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Justice et al., 2002). Trade-offs in chunking strategies might
become more significant for higher dimensional datasets, such as vertically-resolved grid-
ded time series produced by the GEOS Composition Forecasting (CF) model (Keller et
al., 2021). Another future direction is tracking performance for spatio-temporal anal-
yses simultaneously spanning multiple dimensions; namely, where data across every di-
mension may be needed (such as in Empirical Orthogonal Function, EOF, analysis), per-
formance may depend primarily on chunk size but not chunk distribution. We present
initial results as benchmarks for future studies on multi-dimensional Earth science or gen-
eral datasets that use cloud-optimized formats as part of a larger community effort to
establish scalable computing infrastructure supporting better scientific discovery and data
utilization.

5 Availability Statement

The GEOS-FP data used in the study was sourced from NASA’s GMAO Near-Real
Time Data Products available at: https://gmao.gsfc.nasa.gov/GMAO_products/NRT

—10-

_products.php. All Python code is available at the GitHub repository under MIT Li-
cense: https://github.com/dieumynguyen/ZarrOptimalStorage. DOI: 10.5281/zen-
0d0.7422933 (Nguyen, 2022).

6 Author Contributions

ANS conceived and supervised this project. DMTN and MMD wrote the initial com-
putational framework and performed initial experiments and analyses. DMTN performed
the remainder of the project’s computational framework design, validation, analysis, and
visualization. DMTN, JCC, MMD, and ANS wrote, reviewed, and edited the manuscript.

Acknowledgments

This work was supported by Earth Information System (EIS) funding from NASA head-
quarters. We thank Aimee Barciauskas, the EIS Fire team, the NASA Goddard Earth
Sciences Data and Information Services Center (ESDIS), and the Goddard Earth Sci-
ences Data and Information Services Center (GESDISC) teams for insightful discussions.
We also thank Christine E. Smit and Hailiang Zhang for reading the manuscript and pro-
viding feedback. The authors declare that they have no conflict of interest.

References

Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-Luca, C. C., Crone,
T. J., Gentemann, C. L., ... others (2021). Cloud-native repositories for big
scientific data. Computing in Science & Engineering, 23(2), 26-35.
Abernathey, R. P., Hamman, J., & Miles, A. (2018). Beyond netcdf: Cloud native
climate data with zarr and xarray. In Agu fall meeting abstracts (Vol. 2018, pp.

IN33A-06).
Augspurger, T., & Abernathey, R. (2020). Rechunker — rechunker
0.4.3.dev5+g0a0dieb documentation. Retrieved from https://rechunker

.readthedocs.io/

Bucur, V., Dehelean, C., & Miclea, L. (2018). Object storage in the cloud and multi-
cloud: State of the art and the research challenges. 1In 2018 ieee international
conference on automation, quality and testing, robotics (agtr) (pp. 1-6).

Cui, D., Wu, Y., & Zhang, Q. (2010). Massive spatial data processing model based
on cloud computing model. In 2010 third international joint conference on
computational science and optimization (Vol. 2, pp. 347-350).

Factor, M., Meth, K., Naor, D., Rodeh, O., & Satran, J. ~ (2005). Object storage:
The future building block for storage systems. In 2005 ieee international sym-
posium on mass storage systems and technology (pp. 119-123).

Fitriya, L., Purboyo, T., & Prasasti, A. (2017, Jan). A review of data compression
techniques. International Journal of Applied Engineering Research, 12, 8956-
8963.

Gowan, T., Horel, J., Jacques, A., & Kovac, A. (2022, Jan). Using cloud computing
to analyze model output archived in zarr format. Journal of Atmospheric and
Oceanic Technology. Retrieved from https://journals.ametsoc.org/view/
journals/atot/aop/JTECH-D-21-0106.1/JTECH-D-21-0106.1.xml doi: 10
.1175/JTECH-D-21-0106.1

Gupta, A., Mehta, A., Daver, L., & Banga, P. (2020). Implementation of storage in
virtual private cloud using simple storage service on aws. In 2020 2nd interna-
tional conference on innovative mechanisms for industry applications (icimia)
(pp. 213-217).

Hey, A. J., Tansley, S., Tolle, K. M., et al. (2009). The fourth paradigm: data-
intensive scientific discovery (Vol. 1). Microsoft research Redmond, WA.

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays and datasets

—11—

in Python. Journal of Open Research Software, 5(1). Retrieved from
http://doi.org/10.5334/jors.148 doi: 10.5334/jors.148

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3), 90-95. doi: 10.1109/MCSE.2007.55

Jelenak, A. (2014, Dec). Organizing data to support diverse access patterns.
Agu. Retrieved from https://agu.confex.com/agu/fml4/webprogram/
Paper26418.html

Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., ... Kauf-
man, Y. (2002). The modis fire products. Remote Sensing of Environment,
83(1), 244-262. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0034425702000767 doi: 10.1016,/S0034-4257(02)00076-7

Kang, D., Riibel, O., Byna, S., & Blanas, S. (2020). Predicting and comparing the
performance of array management libraries. In 2020 ieee international parallel
and distributed processing symposium (ipdps) (pp. 906-915).

Keller, C. A., Knowland, K. E., Duncan, B. N., Liu, J., Anderson, D. C., Das, S., ...
Pawson, S. (2021, Apr). Description of the NASA GEOS composition forecast
modeling system GEOS-CF v1.0. Journal of Advances in Modeling Farth Sys-
tems, 13(4). Retrieved from https://doi.org/10.1029/2020ms002413 doi:
10.1029/2020ms002413

Lelewer, D. A., & Hirschberg, D. S. (1987, Sep). Data compression. ACM Com-
puting Surveys, 19(3), 261-296. Retrieved from https://doi.org/10.1145/
45072.45074 doi: 10.1145/45072.45074

Lucchesi, R. (2018, July). File specification for geos fp (forward processing) (Tech.
Rep.). NASA Goddard Space Flight Center Global Modeling and Assimi-
lation Office. Retrieved from https://gmao.gsfc.nasa.gov/pubs/docs/
Lucchesil203.pdf

Lynnes, C., & Ramachandran, R. (2018). Generalizing a data analysis pipeline in
the cloud to handle diverse use cases in nasa’s eosdis. In Igarss 2018-2018 ieee
international geoscience and remote sensing symposium (pp. 422-425).

Miles, A., Jakirkham, Bussonnier, M., Moore, J., Fulton, A., Bourbeau, J., ...
Hunt-Isaak, I. (2021). zarr-developers/zarr-python:. Zenodo. Retrieved from
https://zenodo.org/record/5712786 doi: 10.5281/ZENODO.5712786

Nah, F. F.-H. (2004). A study on tolerable waiting time: how long are web users
willing to wait? Behaviour & Information Technology, 23(3), 153-163.

NASA EOSDIS. (2019). Land, Atmosphere Near real-time Capability for
EOS (LANCE). NASA’s Earth Observing System Data and Informa-
tion System (EOSDIS). Retrieved from https://earthdata.nasa.gov/

earth-observation-data/near-real-time/

Nguyen, D. M. T. (2022). Data and code repository for the study on optimal strate-
gies for storing earth science datasets in the commercial cloud. Retrieved from
https://github.com/dieumynguyen/ZarrOptimalStorage

NOAA. (n.d.). Goes overview. Retrieved from https://www.noaasis.noaa.gov/
GOES/goes_overview.html

Pedregosa, F., & Gervais, P. (2021, Dec). memory-profiler: A module for monitor-
ing memory usage of a python program. Retrieved from https://pypi.org/
project/memory-profiler/

Ramachandran, R., Baynes, K., Murphy, K., Jazayeri, A., Schuler, 1., & Pilone, D.

(2017). Cumulus: Nasa’s cloud based distributed active archive center pro-
totype. In 2017 ieee international geoscience and remote sensing symposium
(igarss) (pp. 369-372).

Rew, R. (2013, Jan). Chunking data: Why it matters. Retrieved from

https://www.unidata.ucar.edu/blogs/developer/en/entry/chunking
_data_why_it_matters

Rew, R., & Davis, G. (1990). Netcdf: an interface for scientific data access. IEEE
computer graphics and applications, 10(4), 76-82.

—12—

Rienecker, M. M., Suarez, M., Todling, R., Bacmeister, J., Takacs, L., Liu, H.,

. others (2008). The geos-5 data assimilation system: Documentation
of versions 5.0.1, 5.1.0, and 5.2.0 (Tech. Rep.). Retrieved from https://
gmao.gsfc.nasa.gov/pubs/docs/GE0S-5.0.1 Documentation r3.pdf

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., ...
others (2011). Merra: Nasa’s modern-era retrospective analysis for research
and applications. Journal of climate, 24 (14), 3624-3648.

Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task
scheduling. In Proceedings of the 14th python in science conference.

S$3. (2002). Amazon Web Services, Inc. Retrieved from https://aws.amazon.com/
s3/

Signell, R. (2020, Feb). Cloud-performant reading of netcdff/hdf5 data using the
zarr library. Retrieved from https://medium.com/pangeo/cloud-performant
-reading-of-netcdf4-hdf5-data-using-the-zarr-library-1a95c5c92314

Tang, H., Byna, S., Petersson, N. A., & McCallen, D. (2021). Tuning parallel
data compression and i/o for large-scale earthquake simulation. In 2021
ieee international conference on big data (big data) (p. 2992-2997). doi:
10.1109/BigData52589.2021.9671876

The HDF Group. (2000-2010). Hierarchical data format version 5. Retrieved from
http://www.hdfgroup.org/HDF5

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Scotts Valley,
CA: CreateSpace.

Worringen, J., Traff, J., & Ritzdorf, H. (2003). Fast parallel non-contiguous file ac-
cess. In Sc ’03: Proceedings of the 2003 acm/ieee conference on supercomput-
ing (p. 60-60). doi: 10.1145/1048935.1050211

Yang, C., Goodchild, M., Huang, Q., Nebert, D., Raskin, R., Xu, Y., ... Fay, D.
(2011, July). Spatial cloud computing: how can the geospatial sciences use and
help shape cloud computing? International Journal of Digital Earth, 4(4),
305-329. Retrieved from https://doi.org/10.1080/17538947.2011.587547
doi: 10.1080/17538947.2011.587547

Zhuang, J., Jacob, D. J., Gaya, J. F., Yantosca, R. M., Lundgren, E. W., Sulprizio,
M. P., & Eastham, S. D. (2019). Enabling immediate access to earth science
models through cloud computing: application to the geos-chem model. Bulletin
of the American Meteorological Society, 100(10), 1943-1960.

—13—

