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Abstract

The authors describe a tropical cyclone risk model for the Philippines, using methods that are open-source and can be straightfor-

wardly generalized to other countries. Wind fields derived from historical observations, as well as those from an environmentally

forced tropical cyclone hazard model (using environmental forcing from the recent historical period) are combined with data

representing exposed value and vulnerability to determine asset losses. Exposed value is represented by the LitPop dataset,

which assumes total asset value is distributed across a country following population density and nightlights data. Vulnerability

is assumed to follow a functional form previously proposed by Emanuel, with free parameters chosen by a sensitivity analysis

in which simulated and historical reported damages are compared for different parameter values. Use of different vulnerability

parameters for the region around Manila yields much better agreement between simulated and actually reported losses than

does a single set of parameters for the entire country. Even then, however, the model predicts no losses for a substantial number

of historical storms which did in fact produce them, a difference the authors hypothesize is at least in part due to the use of

wind speed as the sole metric of TC hazard, omitting explicit representation of flooding due to storm surge and/or rainfall.
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ABSTRACT

The authors describe a tropical cyclone risk model for the Philippines, using methods that are

open-source and can be straightforwardly generalized to other countries. Wind fields derived

from historical observations, as well as those from an environmentally forced tropical cyclone

hazard model (using environmental forcing from the recent historical period) are combined with

data representing exposed value and vulnerability to determine asset losses. Exposed value is

represented by the LitPop dataset, which assumes total asset value is distributed across a country

following population density and nightlights data. Vulnerability is assumed to follow a functional

form previously proposed by Emanuel, with free parameters chosen by a sensitivity analysis in

which simulated and historical reported damages are compared for different parameter values. Use

of different vulnerability parameters for the region around Manila yields much better agreement

between simulated and actually reported losses than does a single set of parameters for the entire

country. Even then, however, the model predicts no losses for a substantial number of historical

storms which did in fact produce them, a difference the authors hypothesize is at least in part due to

the use of wind speed as the sole metric of TC hazard, omitting explicit representation of flooding

due to storm surge and/or rainfall.
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Significance statement. Landfalling tropical cyclones are devastating disasters in terms of their28

loss of property and life. The Philippines is particularly at risk for these disasters. Here we develop29

a model for tropical cyclone risk, e.g. property losses, over the Philippines, and demonstrate its30

effectiveness by comparing to historical observations. We find that capturing the difference in31

vulnerability between the largest city in the Philippines (Manila) and more rural areas is important32

to accurately model tropical cyclone risks. Using this model, we can more accurately simulate the33

risk of very extreme tropical cyclone events in the Philippines. Themodel can also easily be applied34

to other countries and for climate change scenarios using information that is openly available. Our35

model does not accurately capture damages from storms dominated by flooding instead of wind,36

and future work should improve this aspect of the model. Nonetheless, the existing model is useful37

for emergency planning and adaptation, especially in lower income countries where data is limited.38

1. Introduction39

Accurate assessments of tropical cyclone (TC) risk are valuable for disaster risk reduction and40

climate adaptation. Such assessments can inform decisions about both where to build resilience41

and emergency preparedness prior to TC-induced disasters and where to allocate aid following such42

disasters, and can also inform the development of insurance and reinsurance products. Assessing43

risk requires consideration of three different factors (Field et al. 2012). The first factor is the44

hazard. The hazard characterizes the probabilities that given levels of geophysical variables —45

e.g., wind speed, rainfall, storm surge — will be exceeded. The second factor is the exposure,46

which characterizes the human, structural, or agricultural assets in a place which might be affected47

by the disaster. The third factor is vulnerability, which is the degree to which those assets will48

be lost if one or more of the geophysical variables exceeds a given value. TC risks are typically49

quantified in the form of asset losses, or the replacement cost of assets destroyed by a TC event.50
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Over the past decade or so, significant strides have been made in quantifying different aspects51

of TC risk. Given that TCs — particularly the few most intense ones that cause the largest share52

of damage — are rare events, the observed historical record is too limited for accurate TC risk53

assessment. Statistical-dynamical models have been developed that allow the simulation of many54

physically plausible TCs given background environmental conditions (Emanuel 2011; Lee et al.55

2018; Jing and Lin 2020; Bloemendaal et al. 2020b). Synthetic TCs generated by such models56

are used for assessment of extreme wind hazards (Sobel et al. 2019; Bloemendaal et al. 2020a),57

coupled with hydrodynamical models to estimate storm surge hazards (Lin et al. 2010; Lin and58

Chavas 2012), and coupled with physics-based models of precipitation to estimate extreme rainfall59

hazards (Xi et al. 2020; Gori et al. 2022).60

Alongside these advances in modeling TC hazards, progress has been made in modeling TC61

vulnerability and exposure. This work can be broadly categorized into structural, economic, and62

social approaches (Wilson and Baldwin 2021). For the USA, FEMA’s Hazus model provides a63

relatively comprehensive framework for modeling wind and flood risks, including computation64

of exposure and vulnerability from building maps and structural engineering principles (Vickery65

et al. 2006b,a). Some information in Hazus, especially around vulnerability of building types,66

has been adapted for use in other countries by the UNISDR’s Global Assessment Reports (Yamin67

et al. 2014). However, the lack of detailed building maps and complexity of Hazus does limit its68

applicability to other countries. In contrast, recent studies using more top-down, economic-based69

approaches have created global exposure fields and country-scale impact functions for TC risk70

modeling (Eberenz et al. 2020b,a). While these methods are more simplified than Hazus, they have71

the advantage of being consistently applicable across the globe. Vulnerability can also be estimated72

based on population characteristics (what we term “social approaches") (Cutter et al. 2003; Tellman73

et al. 2020; Dominguez et al. 2021). While these techniques are suitable for assessing relative74
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vulnerabilities of different regions (e.g. counties), existing social approaches are somewhat less75

straightforward to merge with TC hazard and exposure for quantitative risk assessment.76

A key challenge for TC risk assessment is incorporating changing hazards following climate77

change. As carbon concentrations in the atmosphere increase and the global climate warms,78

TCs and their related hazards may be altered in a variety of ways. There is high confidence79

that rising sea levels will lead to greater storm surge, medium to high confidence that TC-related80

precipitation will increase, and medium to high confidence that TC intensity will increase (Knutson81

et al. 2020). Other aspects of TC change are more uncertain. For example, there is ongoing82

debate about how the overall frequency of TCs will change with global warming (Vecchi et al.83

2019), though somewhat more confidence that the frequency of the most intense (i.e. Category84

4 or 5 storms) will increase. Traditionally, hurricane risk assessment has been based primarily85

on historical tracks (Watson and Johnson 2004), but this approach is not appropriate in a non-86

stationary climate. In contrast, the previously discussed statistical-dynamical approaches can be87

applied with environmental conditions drawn from climate change scenarios to estimate changing88

hazards fromTCs (Emanuel 2011; Lee et al. 2020); this method presents an important way forwards89

in estimating present and future TC risk. However, to fully capture TC risks in a changing climate90

also requires consideration of the compound hazards associated with these storms (Leonard et al.91

2014; Zscheischler et al. 2018). Wind, precipitation, surge, rising temperatures and sea levels all92

play roles in changing TC risks and studies are beginning to consider these changing hazards in93

concert (Lin et al. 2012; Matthews et al. 2019; Gori et al. 2022).94

Another challenge for TC risk assessment, and disaster risk assessment in general, is quantita-95

tively capturing impacts on human welfare. Disasters have been shown to disproportionately effect96

poorer countries (Noy 2009). In the Philippines in particular, typhoons disproportionately effect97

poorer individuals and children, in terms of educational, economic, and health impacts (Deuchert98
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and Felfe 2015; Sakai et al. 2017; Yonson et al. 2018). Traditional quantification of asset losses99

cannot account for these differential impacts across the income distribution. Indeed, asset losses100

may more readily reflect the impact on wealthy individuals who own the most assets, as opposed to101

poorer individuals whose welfare can be more gravely affected by a given disaster (Hallegatte et al.102

2016). Fortunately, recent studies have provided novel frameworks to rigorously quantify welfare103

impacts of disasters. For example, Walsh and Hallegatte (2019) employed agent-based modeling104

of consumption changes at the household level to quantify impacts of historical disasters in the105

Philippines; this study finds that Filipinos in the bottom income quintile experience 9% of the106

asset losses from these events but 31% of the wellbeing losses. Further work is needed to estimate107

wellbeing impacts of disasters in a changing climate.108

In this study, we focus on TC risk assessment for the Philippines largely because this country109

experiences particularly high risks from these events. About 70% of Western North Pacific110

typhoons form in or enter the region directly surrounding the Philippines (Corporal-Lodangco111

and Leslie 2017). The more active period for TCs is June through December, during which time112

the median number of Philippines landfalls is six (Corporal-Lodangco and Leslie 2017). Around113

the Philippines, ENSO plays a dominant role in year-to-year variability of TC genesis frequency,114

tracks, and associated precipitation (Lyon and Camargo 2009; Corporal-Lodangco et al. 2016),115

and has been implicated in the formation of exceedingly strong storms (Lin et al. 2014).116

Landfalling typhoons in the Philippines are disasters both in terms of economic impacts and117

fatalities (Ribera et al. 2008; Walsh and Hallegatte 2019). Recent storms have highlighted these118

dangers. In 2013, Typhoon Haiyan made landfall in the Philippines as a Category 5 storm, but119

with maximum sustained winds exceeding the threshold for Category 5 by over 18 m/s (Lin et al.120

2014). The extremely strong winds were accompanied by very high velocity surges and resultant121

flooding (Soria et al. 2016). The storm made a direct hit to Eastern Visayas, a region on the eastern122
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side of the Philippines. Haiyan is estimated to have cost the Philippines 13 billion USD (Ehrhart123

et al. 2014), and resulted in 6,300 known fatalities, the vast majority occurring in Eastern Visayas,124

with an additional 1,062 individuals missing and 28,688 injured (del Rosario). These impacts125

were exacerbated by large populations living along the coast in structurally vulnerable (wood or126

bamboo) housing (Mas et al. 2015; Eadie et al. 2020). For perspective, Hurricane Katrina resulted127

in 1,833 known fatalities and several hundred persons missing in the USA (Beven et al. 2008).128

Very recently, in December 2021, Typhoon Rai (Odette) made multiple landfalls in the Southern129

Philippines with an initial intensity of Category 5, causing widespread flooding. This disaster130

is the third costliest typhoon in Philippines history, affecting an estimated 12 million people and131

causing greater then 400 fatalities (OCHA 2022).132

There is a strong need for accurate TC risk assessment in the Philippines to support disaster133

risk reduction and management efforts. However, assessment of TC risk in the Philippines is134

complicated by opposing spatial gradients of hazard and socioeconomic vulnerability (Figure 1).135

The northern Philippines experiences more frequent TCs than does the southern Philippines, but is136

also wealthier and more socioeconomically resilient, meaning better able to cope with and recover137

from disaster asset losses. The city of Manila and its surroundings (also called the National Capital138

Region or NCR), constitute by far the most populated and developed region in the Philippines.139

In contrast, the southern Philippines is generally poorer and less socioeconomically resilient.140

Socioeconomic resilience is defined here as the ratio of expected asset losses to wellbeing losses as141

in Walsh and Hallegatte (2020). These opposing patterns of hazard and resilience pose a dilemma142

for the Philippines itself and international agencies (such as the World Bank) aiming to distribute143

aid for disaster risk reduction. Should this aid focus on the northern Philippines, where exposure144

and hazards, and in turn asset losses, are greatest, or on the southern Philippines, which is more145

vulnerable andwhere the humanwellbeing lossesmay be greatest? To answer this question requires146
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rigorous TC risk assessment that accurately models differences in losses across the Philippines,147

and, ultimately, consideration of losses across the income distribution.148

The primary goal of the present work is to produce and validate an open-source TC risk model for149

the Philippines. To do so requires the development of layers for hazard, exposure, and vulnerability150

using methods based on publicly available data. Here we detail the development of this model. We151

focus on sensitivity of the results to vulnerability, as vulnerability is the component of the model152

that is least constrained by observational data. In particular, we demonstrate that using vulnerability153

that varies by region substantially improves the accuracy of TC risk estimates compared to prior154

country-scale analyses. We develop layers for vulnerability and exposure to combine with TC155

tracks from the Columbia tropical cyclone Hazard model (CHAZ), as well as with those from156

historical observations. CHAZ is a statistical-dynamical tropical cyclone model that can generate157

many physically plausible synthetic TCs based on background environmental conditions, allowing158

evaluation of TC risks out to longer return periods than are available from the historical record159

alone (Lee et al. 2018). The performance of CHAZ is comparable to that of other stochastic TC160

hazard models, including in the West Pacific (Meiler et al. 2022). For exposure, we employ an161

existing global dataset of asset value called LitPop that depends on population and nightlights162

data (Eberenz et al. 2020b). Finally, for vulnerability we fit parameters for an existing vulnerability163

function (Emanuel 2011) at the regional level by combining information on damages and wind164

swaths for historical TCswith data on household constructionmaterials. In the Philippines “region"165

is the name for a particular administrative division; the country is divided into 17 regions (shown166

in center panel of Figure 1), which are further subdivided into 81 provinces. For some results,167

we focus on two regions as contrasting examples: 1) the National Capital Region (NCR), which168

contains Manila and is highly urbanized, and 2) Eastern Visayas, a relatively less affluent region169

that was directly impacted by Haiyan.170

8



While we focus on the Philippines, the second goal of the paper is to develop a methodology171

that can be employed more broadly. CHAZ is global, as is LitPop, and the approach we take to172

vulnerability can also be applied elsewhere. While the model we develop here can be used as a173

stand-alone model for the Philippines, we also view it as a pilot study for the development of a174

global, open-source tropical cyclone risk model based on CHAZ.175

The rest of this paper is structured as follows. Section 2 describes the methods and datasets176

used in this work. Section 3 shows the sensitivity of risk estimates to different assumptions about177

vulnerability. Section 4 applies this risk model to create TC risk estimates for the Philippines based178

on CHAZ. Finally, Section 5 ends this paper with a summary and conclusions.179

2. Methods180

Our workflow combines hazard, vulnerability, and exposure to calculate asset losses from TCs181

in the Philippines (Figure 2), and validates those asset losses against observations from historical182

storms. We describe the basic methods we use to determine each risk component separately here,183

and discuss vulnerability further in the next section.184

a. Hazard185

We make the simplifying assumption that total TC losses can be modeled as a function of186

wind speed. In reality, TCs cause losses through a number of different additional sub-perils187

associated with these events including intense rainfall, storm surge, and their associated flooding188

and landslides (Cinco et al. 2016). Rainfall and storm surge are only indirectly and loosely related189

to wind speed; for example, some relatively weak but slow moving storms can result in large190

amounts of rainfall (Sato and Nakasu 2011). However, due to additional complexities involved191

9



in modeling rainfall and storm surge, wind speed is often used as a first order estimate of TC192

hazard (Eberenz et al. 2020a; Emanuel 2011).193

We use two different types of TC track data. The first comprises historical TC tracks from194

the International Best Track Archive for Climate Stewardship (IBTrACS, v04r00). This version195

includes data from a number of different meteorological agencies across the world (Knapp et al.196

2010). Given that multiple agencies may provide track and intensity data for a particular storm,197

we choose to examine Western North Pacific track data from only the Joint Typhoon Warning198

Center (JTWC). Philippines-landfalling storms recorded in this dataset span the year 1945 to199

the present. The second data source consists of synthetic tracks from CHAZ, specifically those200

produced using environmental fields from the ERA-Interim reanalysis (Dee et al. 2011; Lee et al.201

2018). Both the historical and CHAZ tracks are available at 6-hourly temporal resolution. We202

extract the salient information from these tracks (latitude, longitude, maximum sustained wind203

speed) and linearly interpolate them to a 15-min temporal resolution. We use tracks that make a204

landfall in the Philippines, determined by the intersection of these 15-min resolution track points205

with a 5 arc-minute resolution land mask of this country. In IBTrACS, there are 480 historical206

Philippines-landfalling tropical cyclones. Downscaled from ERA-Interim, CHAZ generated in207

total 94,500 synthetic storms making landfall in the Philippines. This number includes 3178 storm208

tracks and each track has roughly 30 stochastically generated intensification trajectories (Lee et al.209

2016, 2018). For each of these landfalling storms, we use data extending from one day before the210

first landfall to one day after the last landfall in the Philippines for our risk analysis. Samples of211

landfalling TC tracks from IBTrACS and CHAZ are shown in Figure 3. Across the two sets of TCs,212

locations of landfall and distribution of intensities at first landfall are similar. However, CHAZ213

synthetic TCs do not last as long after passing through the Philippines as IBTrACS observed TCs,214

and are directed more southward.215
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A TC track consists of a set of points defining a one-dimensional curve in time and space, with216

the wind represented by a single number, the maximum sustained wind speed. It is necessary to217

generate two-dimensional wind swaths at each point along the track, in order to use those winds,218

together with spatially varying exposure and vulnerability data, to model damage. Swaths should219

account for the variation of wind speed from the center of the storm, and some asymmetries typical220

in TCs. To do this, we employ an approach based on previously published parametric wind models,221

described below and summarized in Figure 4. An important input to this modeling approach is222

the radius of maximum wind (RMW). In IBTrACS, observed estimates of RMW are available223

for some but not all storms. As a result, we estimate RMW using the empirically-derived Knaff224

et al. (2015) formula, in which the predicted RMW depends on latitude and maximum sustained225

wind speed. This formula was developed using data from the North Atlantic basin, where storms226

typically do not reach intensities as high as those in the Western North Pacific basin. A side effect227

of this difference is that the formula produces physically unreasonable RMW values (extremely228

small or negative) for the strongest storms observed around the Philippines. To compensate for229

this issue, any RMW values predicted by the formula to be less than 20 km are overridden to be 20230

km, which is on the lower end of the observed RMW distribution, similar to what is seen for high231

intensity storms (Hsu and Yan 1998).232

Once we have calculated an RMW for each storm at each 15-minute time step, we can determine233

an associated radial profile of the azimuthal wind (Figure 4). Various parametric TC wind profile234

models exist (Chavas et al. 2015; Willoughby et al. 2006; Holland 1980); in all of them, azimuthal235

wind speed increases with radius from the eye of the storm until the RMW, at which value it begins236

to decrease with radius. We elect to use Willoughby et al. (2006), as it performs comparably well237

or slightly better than other wind profile models when compared to satellite-based observations of238
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hurricane wind fields (Yang et al. 2022). Inputs to this model are RMW, maximum sustained wind239

speed, and latitude, and the shape is determined by an empirically-fit double exponential profile.240

The next step is to convert the one-dimensional radial profiles to two-dimensional wind swaths241

on a latitude-longitude grid. As we do this, we add a representation of asymmetry due to the242

translation of the storm along its track, which accelerates winds on the side of the storm where243

the rotating flow around the storm is in the same direction of the track, and decelerates them on244

the opposite side (Klotz and Jiang 2017; Uhlhorn et al. 2014). We first construct a 0.1◦×0.1◦245

rectilinear grid spanning the Philippines. We then determine the track translation speed (𝑉) and246

track direction (Θ) from a forward difference of the time step of interest and the subsequent time247

step. The azimuthal velocity at each grid point imposed by the translation of the storm can then be248

calculated as follows:249

𝜃𝑖, 𝑗 = arctan2((𝑦𝑖, 𝑗 −𝑌 ), (𝑥𝑖, 𝑗 − 𝑋)) −Θ250

𝑣𝑡 (𝑖, 𝑗) = −𝑉 ∗ cos(𝜋/2− 𝜃𝑖, 𝑗 ),251

where 𝑋 and𝑌 are the longitude and latitude locations of the storm center, 𝑥 and 𝑦 are the longitude252

and latitude values for each point (𝑖, 𝑗) on the grid, 𝜃 is the angle relative to the track direction at253

each location (𝑖, 𝑗) on the grid, and 𝑣𝑡 is the imposed tangential velocity from the storm translation254

at each point (𝑖, 𝑗) on the grid.255

Applying a large asymmetry correction far from the storm center can result in winds increasing256

with radius in some directions, a feature we view as unrealistic. Thus, we modulate 𝑣𝑡 based on257

distance from the storm center before applying it to the wind field:258

𝛼𝑖, 𝑗 [𝑟𝑖, 𝑗 ≥ 1] = 𝑒−0.314−0.042𝑟𝑖, 𝑗259

𝛼𝑖, 𝑗 [𝑟𝑖, 𝑗 < 1] = 0.3𝑟𝑖, 𝑗 +0.4260

𝑣𝑎 (𝑖, 𝑗) = 𝛼𝑖, 𝑗 ∗ 𝑣𝑡 (𝑖, 𝑗) ,261
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where 𝑟 is the radius from the center of the storm in kilometers normalized by the RMW (so262

𝑟 = 1 at the RMW), and 𝛼 is the factor modulating the asymmetry correction, and 𝑣𝑎 is the263

asymmetry correction. 𝛼 is designed assuming that the impact of the storm motion on the264

symmetric background wind is reduced with radius. The above equation gives us maximum265

asymmetries imposed by translation speed at the RMWwith 𝛼 = 0.7 that gradually decrease to 0.3266

outward. The values of 𝛼 are within a rough range of the estimated values of storm translation to267

surface background wind reduction factor shown in Lin and Chavas (2012).268

The final wind field is determined by re-gridding the Willoughby et al. (2006) radial wind profile269

to the latitude-longitude grid and adding the asymmetry correction (𝑣𝑎 (𝑖, 𝑗)). To this end, to ensure270

themaximumwind speed remains unchanged, we input to thewind profile calculation themaximum271

sustained wind speed minus the maximum asymmetry correction (max(𝑣𝑎) = 0.7∗max(𝑣𝑡)). Once272

a wind field is determined for each 15-minute time step of a given storm, the final wind swath273

to be used in loss calculations is obtained by taking the maximum of all the wind fields across274

time at each latitude-longitude grid point. Examples of resulting wind swaths for nine of the most275

destructive historical storms in the Philippines are shown in Figure 4.276

Here we presented a relatively simple construction of two-dimensional wind swaths that captures277

stormwind at first-order, and allows efficient generation ofwindmaps for large numbers of synthetic278

storms. However, there are a variety of ways in which this construction could be improved. For279

example, one can use amore sophisticatedmethod in estimatingRMW(Chavas andKnaff 2022) and280

in adding in asymmetries (Lin and Chavas 2012; Chang et al. 2020; Yang et al. 2022). Additionally,281

following landfall, another significant source of asymmetry in the wind field is the roughness of282

the land surface (e.g. from buildings, plants, and topography), which generally decelerates wind283

speeds. For our initial model described here, we neglect this roughness effect. This will lead to284

overestimates of the wind over land, but we view this as an acceptable compromise for the level285
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of analysis we conduct here, particularly because the vulnerability curves are calibrated to these286

winds. Roughness will be incorporated in future versions of the model.287

b. Exposure288

We represent exposure via a global dataset of assets in USD across space developed by Eberenz289

et al. (2020b). This dataset, called LitPop, is constructed by disaggregating 2014 national total290

asset value across space proportionally to population density and nightlights data. The national291

total asset value data used is theWorld Bank’s produced capital stock, which represents the value of292

manufactured or built assets in each country, not including the value of agricultural products (World293

Bank 2021). The nightlights data used is NASA’s Black Marble nighttime lights (Román et al.294

2018), and the population data used is the Gridded Population of theWorld (Doxsey-Whitfield et al.295

2015). Validating by disaggregating national GDP and comparing to regional GDP estimates in296

14 countries, Eberenz et al. (2020b) finds that disaggregating proportionally to 𝐿𝑖𝑡1𝑃𝑜𝑝1 (where297

𝐿𝑖𝑡 is the nightlights data and 𝑃𝑜𝑝 is the population data) likely provides the best estimate of298

asset distribution. It is worth noting that the validation exercise was performed in a set of 14299

countries that did not include the Philippines. An improved Philippines-specific dataset might be300

constructed by fitting this dataset for the Philippines, and perhaps considering the distribution of301

agricultural products across space. But we expect that the existing dataset provides a reasonable302

enough estimate of asset distribution for this initial risk model. In the Philippines, LitPop shows by303

far the highest asset density in and aroundManila, with more minor hot spots of asset concentration304

in other major cities (Figure 5).305

LitPop is available at a relatively high 30 arcsec resolution, which is equivalent to the resolution306

of the underlying population data. To allow the wind hazard to interact with exposure, we bilinearly307
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interpolate the 0.1◦ ×0.1◦ wind swaths to the higher resolution of the LitPop data. This is done to308

leverage the spatial detail in the exposure dataset.309

c. Vulnerability310

Vulnerability is the propensity of exposed value to be destroyed in the face of a geophysical311

hazard. In the context of our model, vulnerability converts a given wind speed to percentage of312

assets destroyed. Intuitively, at low to moderate wind speeds — i.e., those that are commonly313

experienced in the absence of a tropical cyclone — no damages should occur, and at high wind314

speeds damages should increase until they saturate at 100% of exposed value. There are a few315

different functional forms for TC wind-related vulnerability (called impact functions, vulnerability316

curves, or damage functions) that have been proposed. Here we use the functional form presented317

in Emanuel (2011), which is structured as follows:318

𝑓 =
𝑣3𝑛

1+ 𝑣3𝑛
(1)319

𝑣𝑛 =
max[(𝑉 −𝑉𝑡ℎ𝑟𝑒𝑠ℎ),0]

𝑉ℎ𝑎𝑙 𝑓 −𝑉𝑡ℎ𝑟𝑒𝑠ℎ,
(2)320

where 𝑓 is the fraction of the asset value lost, 𝑉 is the wind speed, 𝑉𝑡ℎ𝑟𝑒𝑠ℎ is the wind speed at and321

below which no damage occurs, and 𝑉ℎ𝑎𝑙 𝑓 is the wind speed at which half the asset value is lost322

(Figure 6). The third power of wind speed in Equation 1 is based on physical arguments (Emanuel323

2005) and empirical analysis, i.e. regression against historical losses in the USA (Strobl 2011).324

In the function shown in Equation 2, the parameters 𝑉𝑡ℎ𝑟𝑒𝑠ℎ and 𝑉ℎ𝑎𝑙 𝑓 determine vulnerability—325

lower values of these parameters correspond to higher vulnerability. 𝑉𝑡ℎ𝑟𝑒𝑠ℎ is necessarily always326

lower than 𝑉ℎ𝑎𝑙 𝑓 .327

The vulnerability function above was developed to represent damage from extreme wind, but328

has been used to predict total TC-related damages in various applications. Most relevant to this329
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study, Eberenz et al. (2020a) (hereafter, “ELB21") fit country-wide impact functions to simulate330

total historical TC damages in different countries, including the Philippines. In this study, the331

values of 𝑉ℎ𝑎𝑙 𝑓 are varied to optimally simulate total damages, while 𝑉𝑡ℎ𝑟𝑒𝑠ℎ is kept constant at332

25.7𝑚𝑠−1 (50𝑘𝑡𝑠), an approach that has been used and to some degree supported in other studies.333

For example, in Emanuel (2011) this 25.7𝑚𝑠−1 𝑉𝑡ℎ𝑟𝑒𝑠ℎ value was proposed for the USA, while334

the value of 𝑉ℎ𝑎𝑙 𝑓 varied in order to represent different vulnerability levels, and this same 𝑉𝑡ℎ𝑟𝑒𝑠ℎ335

value is somewhat consistent with structural vulnerability curves for wind used in the Hazus risk336

modeling framework (Vickery et al. 2006b). This approach of varying 𝑉ℎ𝑎𝑙 𝑓 but not 𝑉𝑡ℎ𝑟𝑒𝑠ℎ has337

also been shown to reasonably simulate losses in China (Elliott et al. 2015). Since there is rather338

limited justification of this 𝑉𝑡ℎ𝑟𝑒𝑠ℎ value when using wind as a proxy for all damages, and it is339

plausible that lower 𝑉𝑡ℎ𝑟𝑒𝑠ℎ values may be justified to the extent that non-wind hazards (such as340

flooding) are being implicitly represented, we examine sensitivity of our risk results to both 𝑉ℎ𝑎𝑙 𝑓341

and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ.342

Our process for fitting this vulnerability function for the Philippines is discussed in more detail343

in Section 3. A dataset we use in this fitting process is the Family Income and Expenditure Survey344

(FIES) for the Philippines. FIES is conducted by the Filipino government’s National Statistics345

Office, and is a key tool for poverty quantification (Ericta and Fabian 2009). It surveys tens346

of thousands of households in the Philippines on diverse and detailed aspects of their incomes,347

spending, and saving. Particularly relevant here, it also includes information on their dwellings.348

This survey is completed every three years. We employ 2015 data on dwelling construction349

materials (Bersales 2017). The FIES categorizes roof and wall construction materials into seven350

different categories, which can roughly be ordered from weakest to strongest. As discussed below,351

we employ this data as a proxy for TC structural vulnerability.352
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d. Reported Damage Data353

To develop and validate our risk model, we compare our results to estimates of historical losses354

from real TCs that have affected the Philippines. For this purpose, we use the EM-DAT database,355

which aggregates data on a wide range of disasters (Guha-Sapir et al.). EM-DAT includes disasters356

from 1900 to the present that meet one of the following criteria: 10 or more people dead, 100357

or more people affected, the declaration of a state of emergency, and/or a call for international358

assistance. Sources of data included in EM-DAT vary, but priority is given to information fromUN359

agencies, governments, and the International Federation of Red Cross and Red Crescent Societies.360

From EM-DAT, we select only data entries for storms affecting the Philippines, and make use of361

the start date, end date, and total damages (in USD) for each storm. We retain storms that have362

damage estimates, start and end dates, and are not labelled as convective or extra-tropical events363

(260 events total). While tropical cyclones are convective in nature, all events with the convective364

label in Philippines EM-DAT are either tornados or related to frontal systems, hence their exclusion365

from our analysis. 245 of the 260 included events are labeled as TCs. The event names of the366

remaining 15 indicate that these are tropical depressions or tropical storms—we also include these367

in our analysis, as they were TCs but just did not have typhoon-intensity at the time of landfall in368

the Philippines. The timing of these events spans 1952 to the present (Figure 7). Their associated369

losses span many orders of magnitude, with the smallest loss for an individual TC event being 5000370

USD, and the greatest loss being 10 billion USD, caused by Typhoon Haiyan.371

The number of events included in the dataset also increases over time— this may result from372

changes in observing practices or actual increases in TC risk caused by population growth and373

development and/or changes in TC characteristics (in particular TC intensity) due to anthropogenic374

climate change (Knutson et al. 2020). Here, we evaluate the model by comparing simulated375
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damages to those in EM-DAT event-by-event, without explicitly considering when each event376

occurred, so any changes in observing practices are effectively random errors for our purpose. The377

possible effects of such changes would have to be considered more explicitly if one wished to study378

temporal trends in damage.379

e. Comparison between Reported and Simulated Damages380

To reasonably compare EM-DAT with our simulated damages we need to account for change381

in assets over time and inflation. However, the LitPop dataset uses asset data from 2014, while382

the damage values in EM-DAT should be compared to asset values at the time the event occurred.383

Therefore, in order to reasonably compare simulated and observed damages, we first normalize384

the observed damages to 2014 values via the Penn World Tables’ (version 10.0) quantification of385

Philippines capital stock, which is closely related to total asset value (Feenstra et al. 2015) and386

provided in units of constant 2017 national prices in USD. Specifically, we follow a procedure387

similar to that in ELB21:388

NRD𝐸 = RD𝐸

CS2014
CSy

,389

390

where E represents a particular event, y is the year the event occurs, RD is the raw reported391

damages, NRD is normalized reported damages, and CS is capital stock. For the rest of this paper,392

“reported damages" refers to damages normalized this way.393

EM-DAT presents damages in entire country totals. For some events, additional information394

is provided specifying the region affected, but the lack of consistency in this information makes395

it difficult to employ in our analysis. As such, in validating simulated damages against reported396

damages, we always first sum all simulated damages across the Philippines.397
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To match reported damages with corresponding simulated damages, we employ the dates of the398

events from EM-DAT and IBTrACS. Since multiple storms can share some dates of occurrence,399

we match a reported damage entry and simulated damages when the number of days of overlap is400

maximized compared to any other possible matches. Using this method results in 134 unambiguous401

matches. There were some ambiguous matches that required special considerations. First, two402

sets of events share very similar dates—1995’s typhoons Angela (Pepang) and Zack (Rosing), and403

2016’s typhoons Sarika (Karen) and Haima (Laiwin), where the first name is given by the Japan404

Meteorological Agency (JMA) and the second in parentheses is given locally by the Philippine405

Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA), only when406

storms enter into their area of responsibility. For these pairs of TCs, matching was reconciled407

via looking up additional information about storm path and precise landfall date. There is also408

ambiguity for Typhoon Faye (Norming) in 1982— two entries exist in EM-DAT for this event (one409

under Typhoon Faye, the name given by JMA, and one under Typhoon Norming, the local name410

given by PAGASA). These two entries have different damage estimates which appear to correspond411

to different landfalls of this one storm. We add these two damage estimates together to create one412

reported estimate for the typhoon that is comparable to the entire simulated event. Many storms413

are excluded because there is an IBTrACS track but no overlapping EM-DAT damage event, or414

vice versa. Altogether, this process results in matches for 139 events.415

We use a few different metrics to compare reported and simulated damages. Three are standard416

metrics of correlation: Pearson’s 𝑟, Kendall’s 𝜏, and Spearman’s 𝑟. Pearson’s 𝑟 measures the417

linear correlation between two datasets, whereas Kendall’s 𝜏 and Spearman’s 𝑟 are both non-418

parametric, rank-based correlation coefficients— they assess the extent to which one dataset is419

a monotonic function of the other. For all three of these metrics, model performance is better420

when the correlation is closer to 1. The two additional metrics are drawn from ELB21, and reflect421
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distinct needs in developing a TC risk model. The first metric is the total damage ratio (TDR), and422

is quantified as:423

TDR =

𝑁∑
𝐸=1
SD𝐸

𝑁∑
𝐸=1
NRD𝐸

,424

425

where 𝐸 from 1 to 𝑁 spans all the relevant historical TC events, NRD is the normalized reported426

damages, and SD is our model’s simulated damages. A TDR of 1 is optimal. TDR reflects the427

ability of our risk model to simulate total damages across all events, and is dominated by the events428

that cause the greatest asset losses (e.g., Haiyan). However, as discussed further in Section 3, lack429

of skill in simulating more moderate events can be masked by TDR. To better assess skill across a430

range of events, ELB21 also introduces a metric called root-mean-squared fraction (RMSF), which431

is quantified as:432

RMSF = exp©­«
√√√
1
𝑁

𝑁∑︁
𝐸=1

[ln(EDR𝐸 )]2ª®¬ ,433

434

where EDR stands for “event damage ratio" and is defined as SD𝐸/NRD𝐸 for any given event.435

RMSFweighs errors proportionally to event magnitude, so that a 50% error (for example) is equally436

important whether it is 50% of a small loss or a large one. Values of RMSF closer to one represent437

lower model errors. TDR and RMSF reflect different considerations relevant to development of438

a TC risk model. Ideally a model would perform well for both metrics, but in general (and in439

our results below) there are trade-offs such that prioritizing one versus the other implies different440

modeling choices.441
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3. Development of the Vulnerability Layer442

In this section, we estimate vulnerability across space in the Philippines, which we call a443

“vulnerability layer" to be combined with hazard and exposure to estimate Philippines TC risk. In444

developing a vulnerability layer, our general approach is to determinewhich vulnerability parameter445

values result in the best match between reported damages and simulated damages for historical446

TCs. As mentioned above, we only consider TCs that make landfall in the Philippines (excluding447

near misses), and are included in EM-DAT. Fitting vulnerability to damages as described here448

is primarily an empirical approach, though we note that the Emanuel (2011) vulnerability curve449

functional form we employ is also informed by the physics of wind-driven damage. Below we450

describe a couple of specific methods for fitting vulnerability in the Philippines with varying levels451

of spatial complexity.452

a. National Fit453

We initially apply the same vulnerability curve for all locations in the Philippines. This is454

similar to the approach employed in ELB21, who notably found very different values for 𝑉ℎ𝑎𝑙 𝑓 in455

the Philippines depending on whether TDR or RMSF was optimized, which were 85.7𝑚𝑠−1 and456

188.4𝑚𝑠−1 respectively. Using these 𝑉ℎ𝑎𝑙 𝑓 values and the 𝑉𝑡ℎ𝑟𝑒𝑠ℎ value used in ELB21 (25.7𝑚𝑠−1)457

as a starting point, we test the sensitivity of simulated damages to𝑉ℎ𝑎𝑙 𝑓 and𝑉𝑡ℎ𝑟𝑒𝑠ℎ. Specifically, we458

evaluate simulated damages for𝑉ℎ𝑎𝑙 𝑓 every 10𝑚𝑠−1 between 50 and 200𝑚𝑠−1, and for𝑉𝑡ℎ𝑟𝑒𝑠ℎ every459

5𝑚𝑠−1 between 15 and 35 𝑚𝑠−1. For each combination of these parameter values, we calculate the460

various correlation metrics described in Section 2 comparing simulated versus reported damages461

(Figure 8). In this analysis, the parameter values for vulnerability are deemed more optimal when462

Pearson’s 𝑟, Kendall’s 𝜏, and Spearman’s 𝑟 are closer to 1, TDR is closer to 1 (equivalent to463

ln(TDR) closer to 0), and RMSF is minimized.464
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This sensitivity analysis highlights the difficulty of confidently fitting a single vulnerability curve465

for the Philippines. Depending on the correlation metric examined, very different parameter values466

are found to be optimal. Not only that, but the structure of the dependence of the correlation467

metrics on the vulnerability parameters varies substantially. Pearson 𝑟 is optimized for the highest468

values of𝑉ℎ𝑎𝑙 𝑓 and𝑉𝑡ℎ𝑟𝑒𝑠ℎ. Kendall 𝜏 and Spearman 𝑟, which are both rank-based, non-parametric469

correlation metrics, exhibit the strongest dependence on𝑉𝑡ℎ𝑟𝑒𝑠ℎ, and are optimized for𝑉𝑡ℎ𝑟𝑒𝑠ℎ equal470

to 30𝑚𝑠−1. TDR is optimized along a diagonal from high values of 𝑉𝑡ℎ𝑟𝑒𝑠ℎ and low values of471

𝑉ℎ𝑎𝑙 𝑓 to low values of 𝑉𝑡ℎ𝑟𝑒𝑠ℎ and high values of 𝑉ℎ𝑎𝑙 𝑓 . Finally, RMSF is generally optimized for472

somewhat lower values of both parameters, and favors 𝑉𝑡ℎ𝑟𝑒𝑠ℎ] equal to 20𝑚𝑠−1.473

For TDR andRMSF, the results of our analysis are qualitatively similar to those of ELB21, though474

quantitatively different. If we hold 𝑉𝑡ℎ𝑟𝑒𝑠ℎ constant at 25𝑚𝑠−1, as ELB21 does, we find TDR is475

optimized at𝑉ℎ𝑎𝑙 𝑓 equal to 150𝑚𝑠−1 andRMSF is optimized at𝑉ℎ𝑎𝑙 𝑓 equal to 80𝑚𝑠−1. These values476

are both lower than the analogous fits in ELB21 (188.4𝑚𝑠−1 and 84.7𝑚𝑠−1, respectively). This477

difference could perhaps be a consequence of ELB21 excluding storms where reported damages478

are positive but simulated damages are zero from their analysis, whereas we include such storms.479

However, additional differences may lie in the time span of the TC and damage data used, the wind480

field modeling, and the method of matching simulated damages and reported damages.481

For the rest of the paper, we simplify our vulnerability fitting procedure in a few ways for482

parsimony and consistency with prior work. First, we focus on optimizing TDR and RMSF, which483

we believe are more intuitive to interpret than the other correlation metrics for emergency planning484

and preparedness. Second, rather than continuing to fit 𝑉𝑡ℎ𝑟𝑒𝑠ℎ and 𝑉ℎ𝑎𝑙 𝑓 , we hold 𝑉𝑡ℎ𝑟𝑒𝑠ℎ constant485

at 25𝑚𝑠−1 (same value as ELB21) and vary only 𝑉ℎ𝑎𝑙 𝑓 . As measured by TDR and RMSF, the486

degree of agreement with observed damages can be fit to some extent either by 𝑉𝑡ℎ𝑟𝑒𝑠ℎ or 𝑉ℎ𝑎𝑙 𝑓487

(Figure 8d,e); focusing on𝑉ℎ𝑎𝑙 𝑓 seems a reasonable simplifying assumption, especially as we have488
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a somewhat stronger a priori constraint on𝑉𝑡ℎ𝑟𝑒𝑠ℎ (that is, that it should be somewhere near the low489

end of the maximum sustained wind speeds found in tropical storms). However, we emphasize that490

the sensitivity analysis shown in Figure 8 cannot clearly exclude values of 𝑉𝑡ℎ𝑟𝑒𝑠ℎ greater or lower491

than 25𝑚𝑠−1. Unlike prior work which has stated that 𝑉𝑡ℎ𝑟𝑒𝑠ℎ is relatively well-constrained to be492

around 25𝑚𝑠−1 (Emanuel 2011; Elliott et al. 2015), our analysis suggests further examination of493

appropriate 𝑉𝑡ℎ𝑟𝑒𝑠ℎ values is warranted, particularly in contexts where, as here, wind is being used494

as a proxy for all damages, rather than modeling only damages directly caused by wind.495

Figure 9 plots reported against simulated damages for historical TCs, with the vulnerability496

parameter set to the optimal RMSF fit when holding 𝑉𝑡ℎ𝑟𝑒𝑠ℎ constant at 25𝑚𝑠−1 (𝑉ℎ𝑎𝑙 𝑓 = 80𝑚𝑠−1).497

When RMSF is minimized, TDR is 9.28— meaning total simulated damages are about 9× greater498

than those reported. This suggests a significant trade-off between capturing the damages for499

individual storms and across all storms when applying one vulnerability curve for the entire500

Philippines. To better understand the cause of this overestimation of total damages, we assessed501

possible commonalities among outliers. We found that storms passing through the large urban502

capital region, including Manila, by and large exhibited overestimated simulated damages. This503

is shown in Figure 9a by the blue circled values climbing the y-axis (simulated damages) for very504

low reported damages values, in Figure 9b by all the blue circled values lying above the black505

one-to-one line, and in Figure 9c by storms that pass through Manila disproportionately exhibiting506

high event damage ratios. Figure 9c is very similar to and inspired by Figure 7 in ELB21, though507

we find more storms with event damage ratios less than 0.1 as we include storms where simulated508

damages are 0.509

These results seem to reflect the limitations of country-scale vulnerability in capturing significant510

urban-rural differences. Manila is much more built-up and wealthier than other regions in the511

Philippines, with likelier lower vulnerability (though greater exposure). As a result, when a512
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vulnerability curve fit for the entire Philippines is employed to calculate damages for a storm513

passing through Manila, damages are overestimated. Our hypothesis is that developing a more514

spatially detailed map of vulnerability in the Philippines would better capture these urban-rural515

differences, and allow more accurate simulation of damages for individual storms (i.e. lower516

RMSF) and across all storms (i.e. TDR closer to 1).517

b. Regional Fit518

Motivated by the results above, we develop a vulnerability layer with spatial variability in the519

vulnerability parameters. To capture a very high level of spatial detail, one might match buildings520

across the Philippines with building-type specific vulnerability curves similar to the methodology521

used for the US in FEMA’sHazus (Vickery et al. 2006b). However, this approach requires a detailed522

map of building types across the Philippines, which we lack. Instead, we take an intermediate523

approach between a single empirically-derived vulnerability curve for all the Philippines (the524

approach used in the previous section) and a building-level map of structural vulnerability to525

develop a region-scale TC vulnerability layer for the Philippines.526

Our first step is to fit 𝑉ℎ𝑎𝑙 𝑓 for each region in the Philippines that has historically been damaged527

by TCs. A challenge here is that EM-DAT only provides nationally aggregated damage estimates.528

In lieu of region-level damage data, we fit 𝑉ℎ𝑎𝑙 𝑓 for each region based on the subset of historical529

storms that result in positive simulated asset losses for that region. Given the limitations of EM-530

DAT we also compare the national sum of reported damages to simulated damages, but just for531

the subset of storms affecting a given region. The assumption here is that even though the damage532

estimate for any given storm may be affected by neighboring regions impacted by the same TC, in533

aggregate across all historical storms this subset should reflect the TC risk for the region of interest.534

We then determine the 𝑉ℎ𝑎𝑙 𝑓 values that minimize RMSF for storms affecting each region. For535
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most regions, 𝑉ℎ𝑎𝑙 𝑓 ranges from 60−120𝑚𝑠−1. Manila, as predicted, exhibits lower vulnerability536

than any other region, with an optimal 𝑉ℎ𝑎𝑙 𝑓 equal to 180𝑚𝑠−1.537

Because some regions of the Philippines have been affected by very few storms in the historical538

record, however, it is highly uncertain or impossible to fit 𝑉ℎ𝑎𝑙 𝑓 using the method described above539

for every region. For example, the Autonomous Region in Muslim Mindanao (ARMM) has540

experienced zero recorded landfalling storms according to our analysis of IBTrACS. To create a541

vulnerability map that is consistent across the Philippines, and also lend further confidence to our542

vulnerability quantification, we employ on-the-ground data about structural vulnerability included543

in the FIES. The FIES surveys a sample of households and groups them by region, making it544

possible to derive region-scale information. While the FIES includes information on both roof and545

wall construction materials, we focus on the roof materials, as most TC structural damage occurs546

through damage to the roof allowing rain to enter a building (Rowe 2021). The roof materials listed547

in the FIES dataset fall into seven categories (Figure 10). Most roofs are categorized as “strong548

material (galvanized, iron, al[uminum], tile, concrete, brick, stone, asbestos)" or “light material549

(cogon, nipa, anahaw)". Cogon, nipa, and anahaw are plant materials used to make straw thatch550

roofs. We use the ratio of strong to light roof materials as a proxy for structural vulnerability551

(Figure 11). As might be expected, the region of Manila has the highest proportion of strong to552

light roofs, whereas a more rural and impoverished region such as Eastern Visayas has a much553

lower proportion of strong to light roofs.554

We hypothesize that the proportion of strong to light roofs influences TC vulnerability and555

should positively correlate with the 𝑉ℎ𝑎𝑙 𝑓 value fit in different regions. Indeed, we find a positive556

association between these two quantities (Figure 12a; NCR is the top-right point in the plot).557

This association likely reflects the direct impact of roof strength on TC damages, as well as other558

socioeconomic factors such as income and extent of the social safety net, which partially correlate559
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with construction quality and influence disaster outcomes. We linearly regress the proportion560

of strong to light roofs against 𝑉ℎ𝑎𝑙 𝑓 , and use the resulting regression coefficients and regional561

values of the roof proportion to calculate a final 𝑉ℎ𝑎𝑙 𝑓 value for each region (Figure 12a). The562

resulting map of vulnerability (represented by 𝑉ℎ𝑎𝑙 𝑓 values; Figure 12b) is similar to the map of563

socioeconomic resilience shown in Figure 1: vulnerability is higher in the south, and lower in the564

north, especially close to Manila.565

We employ this map of regional vulnerability to recalculate simulated damages for historical566

storms making landfall in the Philippines and compare to reported damages from EM-DAT. The567

results of this analysis are shown in Figures 13 and 14. Compared to the nationally fit vulnerability568

curves minimizing RMSF (Figure 9), the regionally-varying vulnerability curves result in smaller569

RMSF (81 versus 92). Perhaps more striking, TDR is reduced from 9.28 to 2.02, even though TDR570

was not explicitly optimized for. For individual regions in the Philippines, TDR calculated for the571

subset of storms affecting each region ismuch improved aswell. With a single national vulnerability572

curve, northern regions reach TDR values above 20 (Figure 14). In contrast, considering regionally573

varying vulnerability curves, leads to TDR values below 10 across the Philippines, and in most574

cases quite close to 1.575

While key aspects of the simulated damages compare better to reported estimates with spatially576

varying vulnerability, as described above, others do not. In particular, with both versions of the577

vulnerability layer (national and regional) there are many storms with substantial reported damages578

that have zero simulated damages (Figure 13b). This error likely represents a structural limitation579

of our risk model. Here we use wind as a proxy for all TC-related damages. However, other hazards580

associated with TCs (storm surge, flooding due to rainfall, landslides) may occur at relatively low581

wind speeds (e.g. lower than the 𝑉𝑡ℎ𝑟𝑒𝑠ℎ value of 25𝑚𝑠−1 used in the vulnerability curve), and582

result in damages which our model does not capture.583
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As an illustrative example, simulated damages from typhoons Haiyan (Yolanda) and Ketsana584

(Ondoy) are shown in Figure 15. Ourmodel simulates no damages resulting fromKetsana, though it585

actually produced damages of 240 million USD according to EM-DAT. This appears to be because586

Ketsana was a relatively weak storm (tropical storm intensity) in terms of wind speed when it587

affected the Philippines, with damages dominated by extreme rainfall and flash flooding (Sato and588

Nakasu 2011), processes our model does not represent in any explicit way. In contrast, our model589

does simulate billions of USD worth of damages from Typhoon Haiyan, though it underestimates590

those damages by a factor of 5. This may reflect the lack of explicit storm surge in our model, as a591

large fraction of the damages caused by Haiyan resulted from storm surge (Lagmay et al. 2015).592

4. Return Periods of TC Risk in the Philippines593

The goal of this work was to create a usable, country and regional-scale TC risk model for594

the Philippines. Before concluding the paper, we briefly highlight the utility of our model for595

estimating TC risk return periods in the Philippines.596

In assessing TC risk for diverse aspects of emergency preparedness, from building construction597

standards to emergency response plans, it is useful to know the expected frequency of events of a598

given severity. This is typically quantified as a return period (1/frequency) in units of years. Using599

our model, we can calculate return periods empirically for both wind speed and asset losses for600

different regions in the Philippines (examples for NCR and Eastern Visayas are shown in Figure601

16). The most accurate hazard input is obtained using historical TC tracks, but this allows accurate602

estimation only at return periods several times shorter than the length of the historical record (76603

years). Using our TC risk model run with CHAZ tracks allows consistent estimation of TC wind604

speed and asset losses out to much longer return periods. For CHAZ, we specify the duration used605

for frequency and return period calculation such that the regional landfall rate per year in CHAZ606
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is consistent with that of the historical record— i.e. for each region:607

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛CHAZ = 𝑙𝑎𝑛𝑑𝑓 𝑎𝑙𝑙𝑠CHAZ/(𝑙𝑎𝑛𝑑𝑓 𝑎𝑙𝑙𝑠IBTrACS/𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛IBTrACS),608

609

which amounts to a regional-scale bias correction on the landfall rate.610

Both the advantages and the challenges of this approach are clearly demonstrated in determining611

the return period for a Haiyan-like event in Eastern Visayas as shown in Figure 16. Based on the612

historical record, in Eastern Visayas Typhoon Haiyan has a return period of about 70-80 years613

(since it occurred within the bounds of a historical record of approximately that length), but is614

clearly an outlier and not well-constrained. In the context of the much larger sample of physically615

plausible TCs from CHAZ, the hazard associated with a Haiyan-like event has a return period616

of several thousand years, and the losses from such an event are outside the range of synthetic617

storms (e.g. return period greater than 10,000 years). While the larger sample of storms may618

more robustly constrain the return period of this event, there are important caveats to consider619

with this estimate. In particular, CHAZ (like any model) may have biases— in Eastern Visayas,620

CHAZ-based asset losses appear to be biased somewhat too low given that the historical records621

lies slightly above the intensity ensemble (thin red lines). While we perform some light bias622

correction on the regional landfall rate (as mentioned in the prior paragraph), more intensive bias623

corrections could be applied, such as sub-selecting more realistic CHAZ tracks. Additionally, the624

CHAZ simulations here used environmental variables taken from the ERA-Interim Reanalysis in625

the recent historical period, with all years treated the same in the return period calculation; thus626

any possible climate change signal would be obscured to the extent that it might render 2013 (when627

Haiyan occurred) different than the earlier part of the period.628
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5. Summary & Conclusions629

We have described the development and application of a TC risk model for the Philippines.630

This model includes three layers—hazard, exposure, and vulnerability— which, when combined,631

allow quantification of asset losses from storms. The present study focuses on the Philippines, but632

the methodology could be straightforwardly applied to other countries. Hazard is represented by633

swaths of maximum sustained wind speeds, derived from a parametric wind field model with a634

simple geometric correction for TC asymmetry. Swaths can be derived from observed TC tracks635

(e.g. IBTrACS) or synthetically generated TC tracks, such as from CHAZ. Exposure is the existing636

LitPop dataset, which distributes national total asset value across each country proportional to637

a combination of nightlights and population data (Eberenz et al. 2020b). For vulnerability, we638

employ the Emanuel (2011) functional form for vulnerability. However, we run a number of tests639

to fit the vulnerability curve parameters (𝑉ℎ𝑎𝑙 𝑓 ) to accurately simulate historical losses. This work640

is novel in two main ways. First, while there are other existing TC risk models, this is the first641

attempt to utilize the CHAZ model to quantify economic risks from TCs, opening the door for a642

variety of future applications. Second, we demonstrate the benefits of fitting regional (as opposed643

to national) vulnerability curves based on open-source economic data for TC risk analysis.644

Initially, we tried fitting one vulnerability curve for the entire Philippines. Similar to results645

in ELB21, we find that this approach results in substantial uncertainty regarding the appropriate646

vulnerability curve. If the vulnerability is fit to best represent total damages (TDR close to 1),647

damages from TCs that pass through Manila are well simulated, while damages from other storms648

are underestimated. In contrast, if all storms are weighted equally in fitting vulnerability (RMSF649

minimized), damages from TCs that pass through Manila are substantially overestimated, and the650

TDR is approximately 9.651
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We hypothesized that this trade-off regarding the appropriate vulnerability curve resulted from652

urban-rural differences not captured by a national-scale vulnerability fit. We tried instead fitting653

𝑉ℎ𝑎𝑙 𝑓 for each region to minimize RMSF based on the subset of historical storms that affected each654

region. The 𝑉ℎ𝑎𝑙 𝑓 values from this analysis suggest that Manila indeed has the lowest vulnerability655

in the Philippines. These parameter values were also found to be positively correlated with a proxy656

of structural vulnerability based on household survey data, namely, the proportion of strong to657

light roofs. Regressing 𝑉ℎ𝑎𝑙 𝑓 against this roof strength proportion, we determined 𝑉ℎ𝑎𝑙 𝑓 values658

for each region of the Philippines, and in so doing a regional map of TC vulnerability. Applying659

this regional TC vulnerability layer to simulate historical Philippines storms, we find lower RMSF,660

TDR across the Philippines of 2, and TDR values for individual provinces much closer to 1. We661

conclude that regional, and especially urban versus rural, differentiation of vulnerability is critical662

for accurate TC risk modeling in the Philippines.663

We hope the initial TC risk model presented here may serve as a basis for further open-source TC664

risk modeling. Many aspects of this model could be improved, and we highlight a few here. On the665

hazard front, modeling of other TC-related hazards beyond wind could allow better simulation of666

impacts frommany storms (Lin et al. 2010, 2012; Aerts et al. 2013; Rodrigo et al. 2018). At present,667

our model simulates zero damages for some historical TCs that did in fact produce damage. We668

believe this is because these are storms dominated by rainfall and flooding— hazards that are only669

indirectly, and very loosely, related to wind speed. Regarding the existing wind model, capturing670

surface roughness could allow more accurate simulation of wind speeds, and in turn damages, over671

land. We expect this limitation to be much less important than the omission of flooding, however,672

in part because our vulnerability curves are fit to the winds we use. The regional vulnerability673

approach can compensate further (compared to the national fit) for the lack of roughness in our674

model, as vulnerability is found to be lowest in urban regions where roughness would likely be675
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decelerating surface winds to the greatest extent. The method of incorporating TC asymmetry here676

is also a relatively simple function of TC translation, which might be superseded in future model677

iterations by more advanced methods (Lin and Chavas 2012; Chang et al. 2020; Yang et al. 2022).678

There are many areas within the vulnerability and exposure modeling that merit further devel-679

opment as well. First, agricultural losses could be more rigorously quantified. At present, the680

exposure layer includes built assets, but does not explicitly include agriculture. This may bias our681

results, as agricultural losses have been significant in many historical Philippines TCs (Eberenz682

et al. 2020a). Second, appropriate values of the vulnerability parameter 𝑉𝑡ℎ𝑟𝑒𝑠ℎ might be more683

robustly determined, particularly in countries with a wide range of different construction standards.684

Here we have focused primarily on fitting 𝑉ℎ𝑎𝑙 𝑓 , but our national vulnerability curve fitting results685

suggests that in some circumstances values of 𝑉𝑡ℎ𝑟𝑒𝑠ℎ higher or lower than that used here (25𝑚𝑠−1,686

similar with prior work) could bemore accurate. This issue is perhaps particularly acute when wind687

is used as a proxy for all TC-related hazards, since substantial flooding can occur at relatively small688

wind speeds. Third, more work could be done to examine the causes of the regional variation in689

vulnerability. While we relate regional𝑉𝑡ℎ𝑟𝑒𝑠ℎ values to a measure of the strength of roof construc-690

tion materials, the positive relationship between these two quantities does not necessarily reflect691

stronger roofs directly reducing vulnerability. Proportion of strong roofs may simply correlate692

with other quantities that could reduce vulnerability, such as wealth and urbanization. Indeed, in693

some small island communities in the Philippines, light cogon roofs are actually reported to be694

adaptive to tropical cyclones, as they can be tied down in high winds (Board 2019), highlighting695

a limitations of our focus on strong/heavy roofs to explain vulnerability. Fourth and finally, while696

moving from national to regional scale vulnerability significantly improved model accuracy, even697

higher resolution vulnerability layers (e.g. province or even building scale) may result in further698

improvements.699
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The current model quality encourages caution in interpreting results from such analyses, espe-700

cially for individual storms which could be dominated by hazards other than wind. However, in701

simulating aggregate damages across many storms, the present risk model exhibits significant skill.702

Building on the return period analysis, we hope in future work to estimate projected changes in TC703

risk with global warming via pairing this model with CHAZ tracks generated using environmental704

variables taken from climate change scenarios simulated with earth systemmodels (Emanuel 2011;705

Lee et al. 2020). Such results would be relevant to both adaptation planning and financial risk706

modeling, which regulations increasingly require to consider climate change (Fiedler et al. 2021).707

Despite these various limitations, the model and analysis presented here generates insights708

useful for all stages of disaster risk management policy dialogues. Expected asset losses are used709

in sovereign risk financing dialogues to define needs and insurance premiums. Simulations of710

extreme events are useful for assessing tail risks and compound shocks, relevant to macro-fiscal711

and humanitarian contingency planning. We intend to extend this model to assess TC impacts712

across the income distribution, which is useful for mapping and addressing vulnerabilities, and for713

crafting post-disaster assistance packages. All of these considerations are in flux due to differential714

economic and population growth throughout the Philippines, and climate change. Because of these715

dynamics, perhaps the most salient contribution of this work to domestic policy and international716

development is its open source methods and code, which increase access to resources generally717

reserved for wealthy countries, the reinsurance industry, and private capital.718
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Fig. 1. Contrasting tropical cyclone density and socioeconomic resilience in the northern versus southern

Philippines. (Left) Number of tropical storms and typhoons per year making landfall in different regions of the

Philippines; (middle) map and names of regions in the Philippines (adapted from philippines.kosgep.org); (right)

average socioeconomic resilience in different regions of the Philippines. Socioeconomic resilience is defined

here as the ratio of expected asset losses to wellbeing losses in Walsh and Hallegatte (2020), from which the

right panel of this figure is also adapted. Wellbeing losses are calculated using household survey data about

consumption habits across the Philippines.
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Fig. 2. Schematic of our TC risk modeling workflow. Layers for hazard, vulnerability, and exposed value

are combined to model asset losses from tropical cyclones. Details of each layer are described in Section 2.
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Fig. 3. Example of observed versus synthetic landfalling TCs. Sample of 200 landfalling TC tracks from

(a) IBTrACS and (b) CHAZ. First landfall in the Philippines is demarcated with a star, and tracks are shaded by

intensity at first landfall.
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Fig. 4. Wind swath calculation schematic and resulting swaths for highly destructive historical TCs.

Moving from left to right: 1) information on maximum sustained wind speed, latitude, and radius of maximum

wind along TC tracks is used to determine 2) profiles of wind with radius from the center of the storm, which is

3) placed on a latitude-longitude grid and combined with a correction for asymmetry to determine wind fields at

each point in time, then 4) the wind swath is determined as the maximum across time of the wind fields when the

storm is near land. Swaths corresponding to nine of the most costly historical storms affecting the Philippines

are shown on the right hand side of the figure.
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Fig. 5. Asset value across the Philippines according to LitPop. Shaded is the estimated value of assets in

2014 USD for each 30 arcsec gridcell of LitPop. Major cities with high concentraion of assets are labeled.
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Fig. 6. Example vulnerability curve based on Emanuel (2011). Indicated are the two parameters that

constrain the vulnerability curve: 𝑉𝑡ℎ𝑟𝑒𝑠ℎ (the minimum wind speed to have any damages) and 𝑉ℎ𝑎𝑙 𝑓 (the wind

speed at which 50% of property value is lost).
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Fig. 7. Historical TC-related damages for the Philippines over time from EM-DAT. (a) has a linear y-axis

and (b) has a log-scale y-axis, highlighting the many orders of magnitude damages from these events span.

1100

1101

54



Fig. 8. Sensitivity test of model ability to simulate historical damages considering different vulnerability

parameter values (𝑉ℎ𝑎𝑙 𝑓 and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ) in the Emanuel (2011) vulnerability curve. The metrics evaluated are

(a) Pearson’s 𝑟, (b) Kendall’s 𝜏, (c) Spearman’s 𝑟, (d) TDR (the natural logarithm of this quantity is shown),

and (e) RMSF. For all panels, whiter shading indicates better correlation. Black X’s demarcate the optimal

parameter values for each metric across all 𝑉ℎ𝑎𝑙 𝑓 and 𝑉𝑡ℎ𝑟𝑒𝑠ℎ values, and blue crosses demarcate the optimal

𝑉ℎ𝑎𝑙 𝑓 parameter value when 𝑉𝑡ℎ𝑟𝑒𝑠ℎ is set to 25 m/s. Panels with multiple black X’s indicate optimal parameter

sets with equivalent correlation.
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Fig. 9. Simulated versus observed asset losses with a single national vulnerability curve fit to minimize

RMSF. Observed total damages are plotted against modeled total damages with (a) linear axes and (b) log-scale

axes (b); black lines are one-to-one lines and events that result in losses in Manila are encircled in blue. (c) Bar

chart of number of TC events with damage ratios less than 0.1, between 0.1 and 10, and greater than 10, split into

events that do not affect Manila (orange) versus those that do affect Manila (blue). As a reminder, event damage

ratio is equal to simulated damages for a TC divided by normalized reported damages for the same TC.
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Fig. 10. Prevalence of different roof materials for regions in the Philippines. Bar charts for each region

showing percent of population occupying dwellings made of different roof materials, according to the Philippines

household survey data (FIES). The key in grey shows what roof materials each x-axis number represents.
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Fig. 11. Proportion of strong to weak roofs for regions in the Philippines. Bar chart showing number of

strong divided by number of light roofs for each region in the Philippines.
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Fig. 12. Correspondence of regional 𝑉ℎ𝑎𝑙 𝑓 to roof strength proportion, and resulting vulnerability map

from regression. (a) Proportion of strong to weak roofs plotted against RMSF fitted regional 𝑉ℎ𝑎𝑙 𝑓 values (blue

circles) and linear fit between the two quantities (red line); (b) regional 𝑉ℎ𝑎𝑙 𝑓 determined from proportion of

strong to weak roofs in each province and linear fit in panel a. Note that in panel a, NCR is the top-right point in

the plot with the highest 𝑉ℎ𝑎𝑙 𝑓 and strong roof proportion.
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Fig. 13. Observed versus modeled damages for regionally varying vulnerability. (a) Observed total

damages from EM-DAT plotted against modeled total damages calculated with the regional varying vulnerability

map; black line is the one-to-one line. (b) Same as panel a but with reduced x and y-axis limits to highlight the

prevalence of storms with zero modeled damages.
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Fig. 14. Damage simulation skill for national versus regionally varying vulnerability. TDR across regions

for single national vulnerability curve (left) and regionally varying vulnerability curves (right) and quantified as

raw TDR (top) versus natural log of TDR (bottom).
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Fig. 15. Wind swath and asset losses for two notable Philippines-landfalling typhoons. Wind swath

(contoured in purple— darker contours corresponds to faster wind speeds) and damages (shaded red) for (left)

typhoon Haiyan (Yolanda) and (right) Ketsana (Ondoy). The plot region is constrained to the area of most direct

impact by each storm, and at the top of each plot the actual cost from EM-DAT is listed above the simulated

damages summed across the entire Philippines.
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Fig. 16. Return periods for wind speed and asset losses for two regions in the Philippines. Return periods

of different (top) maximum sustained wind speeds and (bottom) asset losses, for two regions: (left) Manila/NCR

and (right) Eastern Visayas. Simulated damages from IBTrACS tracks are shown in black, while simulated

damages from CHAZ tracks are shown in red; the thin red lines designate return periods derived from each

CHAZ intensity ensemble while the thick dashed red line shows return periods from all the CHAZ tracks and

intensity ensembles together.
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