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Abstract

Hydroclimate variability of the southwest United States (SWUS) is influenced by the tropical Pacific Ocean, particularly the

phase of the El Niño/Southern Oscillation (ENSO), via teleconnections, which are expected to be altered by climate change.

However, natural variability in this teleconnection has not been robustly quantified, complicating the detection of anthropogenic

climate change. Here, we use a linear inverse model (LIM) to quantify natural variability in the ENSO-SWUS teleconnection. The

LIM yields realistic teleconnection patterns with century-scale variability in teleconnection strength comparable to simulations

from the Last Millennium Ensemble project and the Coupled Model Intercomparison Project Phases 5 and 6. The variability

quantified by the LIM illuminates two aspects of our understanding of ENSO and its impacts: the inherent statistics of the

observable system can produce century-long periods of nonsignificant correlation, and detecting changes in ENSO-related

hydroclimate variability is challenging in a changing climate.
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Key Points:

• A LIM is used to quantify the natural variability in the ENSO-SWUS
teleconnection, and it suggests considerable intrinsic variability.

• This natural variability demonstrates that detecting anthropogenic
changes in the ENSO-SWUS hydroclimate teleconnection will be difficult.

• CMIP6 shows an improvement in modeling the ENSO-SWUS teleconnec-
tion, but uncertainty remains in the projected future climate.

Abstract

Hydroclimate variability of the southwest United States (SWUS) is influenced
by the tropical Pacific Ocean, particularly the phase of the El Niño/Southern
Oscillation (ENSO), via teleconnections, which are expected to be altered by
climate change. However, natural variability in this teleconnection has not
been robustly quantified, complicating the detection of anthropogenic climate
change. Here, we use a linear inverse model (LIM) to quantify natural variability
in the ENSO-SWUS teleconnection. The LIM yields realistic teleconnection
patterns with century-scale variability in teleconnection strength comparable to
simulations from the Last Millennium Ensemble project and the Coupled Model
Intercomparison Project Phases 5 and 6. The variability quantified by the LIM
illuminates two aspects of our understanding of ENSO and its impacts: the
inherent statistics of the observable system can produce century-long periods of
nonsignificant correlation, and detecting changes in ENSO-related hydroclimate
variability is challenging in a changing climate.

Plain Language Summary
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The ENSO affects weather and climate across the globe through teleconnections.
For example, when tropical Pacific Ocean sea surface temperatures (SSTs) are
warmer than normal (e.g., during an El Niño), higher than normal amounts of
rain are expected in the SWUS. However, we do not know how much natural
variability there is in this teleconnection. That is, we do not know how often El
Niños actually bring more rain to the SWUS. Because we have a relatively short
history of observations, assessing this natural variability is difficult. Here, we use
a statistical model to emulate the inherent statistics of ENSO teleconnections
from observations. Doing so demonstrates that there is considerable intrinsic
variability in the ENSO teleconnection to the SWUS. This suggests that even
though ENSO and its effect on weather and climate are expected to change due
to climate change, detecting such changes will be difficult.

1 Introduction

The El Niño/Southern Oscillation (ENSO) is the dominant source of interannual
variability in the tropical Pacific Ocean with observable teleconnections to many
parts of the globe. Despite the abundance of research into this phenomenon and
its teleconnections, there are important aspects of ENSO that remain unknown.
For instance, Yeh et al. (2018) examined general circulation models (GCMs)
from both the Coupled Model Intercomparison Project Phases 3 and 5 (CMIP3
and CMIP5) and found that they do not yield a consistent picture of how ENSO
and its teleconnections will change during the 21st century. While some studies
have found consistent changes for a subset of these GCMs and the most extreme
of ENSO events (Cai et al., 2018), others have identified a close relationship
between mean state biases in these GCMs and their responses to anthropogenic
climate change (Stevenson et al., 2021). Further analysis of GCMs showed how
their cold bias in the Pacific cold tongue resulted in the inability to predict the
recent cooling of the east Pacific (Seager et al., 2019).

Uncertainty in future projections of ENSO and its teleconnections present a
critical outstanding problem, and yet there is still much left to be understood
about ENSO in our current climate. This is also true for the simulation of
ENSO by GCMs and the characteristics and physics of ENSO in the real world.
The simulated strength and spatial pattern of ENSO teleconnections in our cur-
rent climate varies considerably across GCMs (Langenbrunner & Neelin, 2013;
Weare, 2013; Yeh et al., 2018). Likewise, it has been well established that the
GCMs have biases in ENSO, which include too much SST variability, a weak an-
nual cycle, and El Niños that propagate too far eastward from what is observed
(Chen et al., 2017). Even when SST anomalies are nudged toward observations,
composite ENSO events in an ensemble of GCMs showed considerable variability
in teleconnection statistics (Deser et al., 2018).

Because of short observational records, we do not have a sufficient real-world
baseline for natural variability in ENSO and its teleconnections. High resolution
datasets of tropical Pacific sea surface temperatures (SSTs) are only available
since 1948, which, using the operational definition of ENSO from the National
Center for Environmental Prediction (NCEP), gives us only 11 observed El
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Niño events and 6 or 7 observed La Niña events from which to draw conclusions
(NCEP, 2019). While ENSO is the primary driver of interannual hydroclimate
variability in the southwest US (SWUS, 32°N-40°N, 120°W-105°W, Fig. 1B),
wherein El Niño (La Niña) brings anomalously high (low) amounts of rain to
the region (Redmond and Koch, 1991, Cook et al., 2018), we lack a clear picture
of the stability of this teleconnection. This is critical to understand because not
only are the observed responses of ENSO on SWUS hydroclimate inconsistent
between individual events, but different intensities of ENSO can also even change
the sign of precipitation anomalies over the SWUS (Hoerling and Kumar, 2002).
More recently, the 2015/16 El Niño, despite being one of the strongest in the
observational record (Zhai et al., 2016), did not result in wetter conditions across
the SWUS, and thus many areas of the region, especially Southern California,
remained in severe drought conditions. The Pacific

Figure 1 – A “typical” ENSO teleconnection to the SWUS, with (A) winter
(DJF) SST anomalies against the 1951-1980 climatology using ERSSTv3b in
the color contours, and the Niño3.4 region within the Pacific Ocean, covering
5°S-5°N and 170°W-120°W in the box, and (B) the southwestern United States
with a box over the specific study area covering 32°N-40°N and 120°W-105°W,
with precipitation anomalies against the 1951-1980 climatology using GPCC
gridded data (Schneider et al., 2011) in the color contours.

Decadal Oscillation (PDO) can act as a modulating force on ENSO teleconnec-
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tions, where a positive ENSO phase combined with a warm PDO is expected
to increase the amount of rain brought to the SWUS (Wang et al., 2014). How-
ever, for the 2015/16 ENSO event, the PDO was in a warm phase, and yet the
SWUS did not receive anomalous precipitation. The fact that the SWUS still
did not experience wetter conditions then suggests that other internal atmo-
spheric variability, or other modes of coupled atmosphere-ocean variability, can
dominate hydroclimate variability in the SWUS. In support of an important role
for internal atmospheric variability, Chen and Kumar (2018) analyzed ensemble
forecasts for the 2015/16 winter season and found large differences in forecasted
winter precipitation for the SWUS between ensemble members of the NCEP
operational Climate Forecast System, version 2 (CFSv2).

Previous research into natural variability in ENSO teleconnections have largely
used GCMs or relied on the limited observational record. For instance, Coats
et al. (2013) found a high amount of time variability in ENSO teleconnec-
tion strength between winter (December-January-February--DJF) tropical Pa-
cific SSTs and DJF 200-mb geopotential heights over North America in the
control runs of CMIP5. In forced transient simulations from the same GCMs,
a similar level of time variability in ENSO teleconnections was found (Lewis
& LeGrande, 2015). However, results also showed that the spatial features of
the teleconnections vary considerably across GCMs (Langenbrunner & Neelin,
2013; Coats et al., 2013), with implications for the real-world relevance of these
results. Likewise, within observational record, it has been suggested that ENSO
teleconnections vary in both space and time, although these results are limited
to shorter timescales of variability (e.g., Hu & Feng, 2001; Rajagopalan et al.,
2000; Cole & Cook, 1998; Gershunov & Barnett, 1998). Deser et al. (2018)
showed that ENSO teleconnection strength can range more than twofold in
certain locations.

Paleoclimate records can extend the observational record, and thus hold promise
for characterizing natural variability in the ENSO teleconnection to the SWUS
hydroclimate. For instance, using paleoclimate records, Ashcroft et al. (2016)
found that real-world ENSO teleconnection to Australian precipitation varies
through time. However, the quality of hydroclimate reconstructions in the
SWUS are directly dependent on the number of tree-ring sites and the age
of the trees (Cook et al., 2016), which decrease further back in time (Cook et
al., 2016). Specifically, as the network of sites becomes sparser, reconstructions
rely on sophisticated statistical techniques to fill in the missing data resulting
in a loss of fidelity (Cook et al., 2016). Creating paleo records of tropical Pacific
SSTs, specifically for the Niño3.4 region (5°S-5°N, and 170°W-120°W, Fig. 1A),
is even more difficult. There are few coral reefs in the region, and so creating
in situ reconstructions for the region is largely not possible (Cobb et al., 2003,
Emile-Geay et al., 2017). Any SST reconstructions for the Niño3.4 region are
instead derived from sites covering a large spatial range and then extrapolated
for the region, resulting in significant uncertainties (Emile-Geay et al., 2017).

To address the limitations of the short observational record, the uncertainty

4



in paleoclimate records, and the biases inherent to GCMs, we used a Linear
Inverse Model (LIM) to characterize variations in the ENSO teleconnection to
the SWUS hydroclimate (ENSO-SWUS teleconnection) that are inherent to the
observational record. That is to say, what range of ENSO-SWUS teleconnection
characteristics is expected given the statistics of observations? We also use the
LIM to benchmark observations and global climate model (GCM) ensembles
from the Last Millennium Ensemble (LME), CMIP5, and CMIP6.

A LIM offers an empirical approach to emulating the statistics of an observable
system. Importantly, we can do so with observation datasets of high quality,
i.e., high temporal and spatial resolution, thus minimizing sources of uncer-
tainty. LIMs have been applied to examine and determine the significance of
low frequency variability in the tropical Pacific on decadal timescales (Ault et
al., 2013), the significance of “Modoki” El Niño events (Newman et al., 2011),
determine the predictability of the Pacific Decadal Oscillation (Newman et al.,
2016), and to test the significance of tropical Pacific SST gradient trends rela-
tive to internal variability (Coats and Karnauskas, 2017). Other studies have
utilized a LIM to make seasonal ENSO predictions (Penland and Sardeshmukh,
1995), and to evaluate the ability of GCMs to make decadal forecasts (Newman,
2013). Additionally, the LIM has been shown to successfully reproduce ENSO
and PDO statistics and can outperform certain forecast models (Perkins and
Hakim, 2019) and it has been used to predict Pacific SST anomalies (Alexander,
et al., 2008). The LIM, thus, is a perfect tool with which to create benchmark
for the ENSO-SWUS hydroclimate variability.

2 Data and Methodology

2.1 Constructing the LIM

Herein we build upon the LIM used by Penland and Matrsosova (1994) and
Penland and Sardeshmukh (1995), and more recently that of Ault et al. (2018)
and Coats et al. (2020), with some specific changes to its construction. First,
SST anomalies were calculated using the National Ocean and Atmospheric Ad-
ministration (NOAA) Extended Reconstructed Sea Surface Temperature V3b
(ERSSTV3b; Smith et al., 2008), which is a monthly dataset of SSTs spanning
1854 to present on a 2° latitudinal by longitudinal grid. For the SWUS, recon-
structions of the Palmer Drought Severity Index (PDSI) are an often-used proxy
for drought conditions. The observational PDSI input data used was created
by Sheffield et al. (2006) and is a 1° resolution monthly dataset spanning 1948-
2008. Second, to isolate the ENSO and SWUS hydroclimate teleconnection, we
restricted the domain of the SST anomalies to that of just the Niño3.4 region
and restricted the PDSI to the SWUS.

Auto-regressive models can be used to examine the significance of single-variable
scalar time series. The LIM (Eq. 1) is analogous to an AR(1) process, but
adapted for the multivariate setting (Penland & Sardeshmukh, 1995). The lin-
ear deterministic feedback matrix (L) in Equation 1, calculated using Equation 2,
provides information on how random perturbations propagate forward through
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time in a state variable, such as X, which in this case is PDSI and SST anoma-
lies. � is the white-noise forcing term used to perturb the system (Penland and
Sardeshmukh, 1995).
dX
dt = 𝐿𝑋 + 𝜁 (1)

𝐿 = 𝑛−1 ln ln ( 𝐶𝑛
𝐶𝑜

) (2)

The linear deterministic feedback matrix is calculated from empirical data,
where Cn is the lag covariance matrix at time lag n, Co is the instantaneous
covariance matrix, and n is the time lag parameter. For our purposes, the time
lag is set to 3 months to account for the seasonality, though changes in this
parameter do not consequently change the value of L (Ault et al., 2018).

The important assumption of the LIM is that the system being modeled is linear,
which is not the case for the real climate system. However, through smoothing
and averaging, the nonlinear system yields a system of state vectors that are
approximately Gaussian (Yuval and Hsieh, 2002). Penland and Sardeshmukh
(1995) and Newman (2013) have both shown the validity of this approach using
monthly SST anomalies.

As in Ault et al. (2018), we aimed for our LIM to meet the following criteria: (a)
it captured the observed correlation pattern between SWUS PDSI and Niño3.4
region SST anomalies; (b) it reproduced realistic variance in SWUS PDSI and
Niño3.4 region SST anomalies; and (c) it generated the 2–7-year peak in vari-
ability of ENSO events in the Niño3.4 region. We ran the LIM for 100,000
years to provide a population of 1,000 100-year periods. From there we com-
puted the century-scale correlation values between SWUS PDSI and Niño3.4
SST anomalies for each 100-year period, to produce a range of 1000 correlation
values.

2.2 PDSI from Models

As in Ault et al. (2018) we used PDSI to characterize the hydroclimate of
the SWUS, which we calculated offline using available variables from CMIP5,
CMIP6, and LME. Following the work by Herrera & Ault (2017) we used the
self-calibrating version of the PDSI (Eq. 3), with the FAO Penman-Monteith
method (Penman, 1948; Monteith, 1965) for calculating potential evapotran-
spiration (Eq. 4; e.g., Smerdon et al., 2015). This FAO method is based on
the original Penman-Monteith equation but instead uses fewer variables and
assumes an ideal grass surface with specific parameters (i.e., a constant water
supply, Allen et al., 1998)

𝑋𝑖 = pX𝑖−1 + qZ𝑖 (3)

𝑃𝐸𝑇 = 0.408�(𝑅𝑛−𝐺)+ 𝛾 900
𝑇+273.16 𝑈2(𝑒𝑠−𝑒𝑎)

�+ 𝛾(1+0.34𝑈2) (4)

For equation 3, Xi is the PDSI value for a specific month, Xi-1, is the PDSI
from the previous month at that location, p and q are autocorrelation duration
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factors, and Zi is the current moisture anomaly. Table 1 details the variables
and units for the PET equation.

2.3 Model Analyses

We used 9 runs of the forced transient LME experiments, each spanning 850-
1950, and calculated century-length correlations for the ENSO-SWUS telecon-
nection for a total of 99 correlation values. For CMIP5 and CMIP6 we calculated
the teleconnection strength (Pearson correlation) in the historical experiments
to determine if there have been improvements in the simulation of ENSO-SWUS
teleconnections in the new generation of GCMs, and to provide a baseline for
the analysis of future projections. For CMIP6, we also calculated the future
teleconnection strength (2015-2100) using the Shared Socioeconomic Pathway
5-8.5 (SSP585, O’Neill, et al., 2016) emissions scenario, to quantify changes
to ENSO -SWUS teleconnections due to climate change. A total of 15 GCMs
from CMIP5 (Table 2) and 11 GCMs from CMIP6 (Table 3) had the requisite
variables needed to calculate PET.

Table 1. The variables, description, and units of the PET equation (S4).

Variable Description Units
Rn net radiation MJ m-2day-1
G soil heat flux density MJ m-2day-1
T 2-meter temperature °C
𝛾 psychrometric constant kPa °C-1

U2 2-meter wind speed ms-1
es-ea vapor pressure deficit kPa
� slope of the vapor pressure curve kPa °C-1

Table 2: CMIP5 ensemble model information

Modeling Center Institute ID Model Name
Canadian Centre for Climate Modelling Analysis CCMA CanEMS2
National Center for Atmospheric Research NCAR CCSM4
Center National de Recherches Météorologiques/Centre de Recherche et Formation Avancée Calcul Scientifique CNRM-CERFACS CNRM-CM5
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence CSIRO-QCCE CSIRO-Mk3.6.0
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3, GFDL-ESM2G, GFDL-ESM-2M
NASA Goddard Institute for Space Studies NASA GISS GISS-E2-R
Institute for Numerical Mathematics INM INM-CM4
Institute Pierre-Simon Laplace IPSL IPSL-CM5A-LR
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies MIROC MIROC-5, MIROC-ESM, MIROC-ESM-CHEM
Meteorological Research Institute MRI MRI-CGCM3
Norwegian Climate Centre NCC NorESM1-M
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Table 3: CMIP6 ensemble model information

Modeling Center Institute ID Model Name
Commonwealth Scientific and Industrial Research Organization CSIRO-ARCCSS ACESS-CM2, ACCESS-ESM1-5
Beijing Climate Center BCC BCC-CSM2-MR
National Center for Atmospheric Research NCAR CESM2
Canadian Centre for Climate Modelling and Analysis CCCma CanESM5
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM4
Institute Pierre-Simon Laplace IPSL IPSL-CM6A-LR
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies MIROC MIROC6
Deutsches Klimarechenzentrum DKRZ MPI-ESM1-2-HR, MPI-ESM1-2-LR
Meteorological Research Institute MRI MRI-ESM2-0

3 Results

3.1 Validation of LIM framework
Previous LIM studies used principal component (PC) analysis to reduce the
dimensionality of each variable, and a 3-month running average was used to
smooth each time series prior to computing the PCs (Ault, et al., 2018). As
such, a limitation of the LIM is that it cannot reproduce 100% of the variance
in the system. For SSTs, the first 27 PCs accounted for 94.9 percent of the
total variance. For PDSI, 20 PCs were retained for 95.1 percent of the variance.
Additionally, the LIM output met all of the validation criteria: it captured
the observed correlation pattern between SWUS PDSI and Niño3.4 region SST
anomalies (Fig. 2), it reproduced realistic variance in SWUS PDSI and Niño3.4
region SST anomalies, and it generated the 2–7-year variability of ENSO events
in the Niño3.4 region (Fig. 3). The modeled ENSO-SWUS teleconnection is very
similar to that of the observational dataset (Fig. 2). While the construction of
the LIM prevents 100% of the variance being retained, the LIM does reproduce
the realistic variance found in the observations. Lastly, the LIM can capture
both the low-frequency and high-frequency variability in tropical Pacific SST
anomalies (Fig. 3).
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Figure 2 – The observed correlation pattern between Niño3.4 SSTs and SWUS
PDSI (top) and the modeled correlation pattern from the LIM (bottom).

Figure 3 – The power spectrum of Niño3.4 observational time series (colored
lines) and for the ensemble of LIM realization (grey shading). The LIM ensemble
largely captures the low and high-frequency variability of the tropical Pacific
SSTs.
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3.2 Internal Variability in the LIM

We first assessed the inherent variability in the ENSO-SWUS teleconnection
strength by quantifying the range of possible correlations between Niño3.4 SSTs
and SWUS PDSI that are consistent with the inherent statistics of the obser-
vational dataset as sampled by the LIM. The LIM simulated a broad empirical
distribution (Fig. 4), suggesting that considerable natural variability can emerge
intrinsically, even from the relatively stable and short climatic interval sampled
by the observational datasets. More than 70% of the correlations calculated
fell between 0.3 and 0.6, while over 90% fell between 0.2 and 0.6 (Fig. 4) The
ensemble mean correlation from the LIM was 0.35, compared to a correlation
of 0.37 calculated from the observational dataset.

3.3 Internal Variability in the GCMs

The LME correlation values show a smaller range in teleconnection strength
than the LIM, with correlations ranging from 0.45 to 0.75 (Fig. 5). This nar-
rower range is found despite the LME simulating the entire last millennium,
and thus also simulating external forcings and long timescale internal variabil-
ity not sampled by the LIM. Importantly, the ensemble mean correlation from
the LME of 0.65 is much greater than that from the LIM, consistent with previ-
ous research suggesting that CESM1 (the GCM used in the LME) has an overly
strong ENSO-SWUS teleconnection (e.g., DiNezio et al, 2017). The range of
correlations from the LME is narrower than that from the CMIP5 or CMIP6 sim-
ulations (Fig. 6 and below), suggesting that inter-GCM structural differences in
ENSO-SWUS teleconnection strength are larger than the natural variability in
this metric as simulated by a single GCM. The ensemble mean correlation from
the LME is also higher than that of the CMIP5 or CMIP6 ensembles, and thus
overly strong ENSO-SWUS teleconnections are not a general feature of GCMs.
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Figure 4 – The 1000 century-long correlation values calculated from the LIM
generated Niño3.4 SSTs and SWUS PDSI. On the right, an empirical distri-
bution for all 1000 century-long correlation values. The red dotted line is the
ensemble mean for all 1000 century-long correlation values.
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Figure 5 – Correlation values between Niño3.4 SSTs and SWUS PDSI calculated
from 99 distinct century-long periods from the LME (Methods), with an empiri-
cal distribution in the panel to the right. The purple dotted line is the ensemble
mean correlation value from the LME and red dotted line is the ensemble mean
from the LIM.

In the CMIP5 simulations, ENSO-SWUS teleconnections vary in strength, and
even in sign, across the GCMs. For instance, CNRM-CM5 exhibits a negative
correlation between Niño3.4 SSTs and SWUS PDSI, whereas GFDL-ESM2M
exhibits a correlation of over 0.8 (Fig. 6). Although the ensemble mean corre-
lation of the CMIP5 simulations was close to that from the LIM, the range is
much wider (Fig. 6) and the distribution more uniform (Fig. 8). Of relevance to
the ability of CMIP5 GCMs to simulate ENSO-SWUS teleconnection strength,
there are 4 GCMs with correlations below 0.2 (the bottom of the LIM range),
indicating too weak of a relationship between Niño3.4 SSTs and SWUS PDSI.
Likewise, there are five GCMs with correlations higher than 0.6 (the top of the
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LIM range), indicating an overemphasis of this relationship.

Figure 6 – Calculated correlation values between Niño3.4 SSTs and SWUS PDSI
from the CMIP5 historical simulations. Blue dotted line is the ensemble mean
correlation value from the CMIP5 simulations and the red dotted line is the
ensemble mean from the LIM.

Overall, the CMIP6 simulations exhibit ENSO-SWUS teleconnection strengths
that are more consistent with the LIM as compared to the previous genera-
tion of GCMs (Fig. 7). The ensemble mean correlation of 0.3 for the CMIP6
simulations is closer to the ensemble mean of the LIM (0.35) than the CMIP5
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simulations (0.42), and the distribution is narrower and more consistent with
the LIM, with a range of about 0.1 to 0.5 for CMIP6 as compared to about 0 to
0.8 for CMIP5. There are large changes in teleconnection strength from CMIP5
to CMIP6 for individual modelling centers. For instance, the correlation from
GFDL-ESM4 (CMIP6) is a more realistic 0.3 (within the LIM range), as com-
pared to the average correlation of 0.71 from the 3 GFDL GCMs from CMIP5.
Likewise, while the NCAR GCMs CESM1 (LME – Fig. 5) and CCSM4 (CMIP5
– Fig. 6) exhibited correlations largely in excess of the LIM, CESM2 (CMIP6 –
Fig. 7) exhibits a correlation that is below the LIM range (Fig. 7). Importantly,
we also find an improvement in capturing the ENSO-SWUS teleconnection in
CMIP6 from modeling centers with members in both CMIP5 and CMIP6 (not
shown) as well as an overall improvement in an ensemble of CMIP6 models (Fig.
8).

Figure 7 – Calculated correlation values between Niño3.4 SSTs and SWUS PDSI
calculated from the CMIP6 simulations for both the historical (green) experi-
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ments and future experiments (SSP585 - orange). The red dotted line is the
ensemble mean from the LIM.

Finally, to assess if there are consistent changes in the ENSO-SWUS teleconnec-
tion strength in the future, we also analyzed data from the CMIP6 SSP585 sim-
ulations, which are run with a high emissions scenario and thus should exhibit
a large signal (climate change) to noise (natural variability) ratio. Eight of the
11 GCMs exhibit a decrease in the ENSO-SWUS teleconnection strength in the
21st as compared to the 20th centuries (Fig. 7), with a change in the ensemble
mean correlation from 0.3 to 0.2, respectively. Together, the CMIP6 simulations
thus suggest a small but significant decrease in ENSO-SWUS teleconnection
strength in the future. To summarize, Figure 8 illustrates the ENSO-SWUS
teleconnection strength and variability in each of the analyzed ensembles.
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Figure 8 – Density/probability plot comparison of ENSO-SWUS teleconnec-
tion strength for the historical run of CMIP5 (blue), CMIP6-SSP585 (orange),
CMIP6-Historical (green), LIM (red), and the LME (purple).

4 Discussion

We used a LIM to quantify the intrinsic natural variability in ENSO-SWUS
teleconnections that is expected intrinsically – i.e., the range of teleconnec-
tion strength possible given the inherent statistics of an observational dataset.
We found that the LIM accurately captures the ENSO variability, and spa-
tial and temporal ENSO-SWUS correlation patterns found in the observational
dataset. It also exhibits considerable variability in the ENSO-SWUS telecon-
nection strength. Most importantly, our results exhibit entire centuries of non-
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significant correlation (roughly 3-6% of the centuries in the LIM). The LIM does
not possess long-term sources of variability, as the output drawn from the LIM
relies solely on the 3-month time-lag parameter, calculated from the inherent
statistics of the observational dataset. Because of this, the LIM samples only
a narrow range of plausible behaviors of the system, effectively removing any
source of long-term internal or external forcing. Therefore, the LIM demon-
strates that, for purely statistical reasons, Niño3.4 SSTs and SWUS PDSI cor-
relations can be insignificant over a given century. This further indicates that
it was not unreasonable to expect ENSO to have had no statistically signifi-
cant impact on SWUS hydroclimate during the 20th century, like in the results
found by Ault et al. (2018). Finally, it is also reasonable to expect a diminished
correlation in the future, even without climate change.

The ensemble mean correlation from the LIM was slightly lower than the ob-
servational dataset on which it was based (0.35 for the LIM compared to 0.37
from observations). While superficially interesting, this was an expected result
given that the LIM does not retain 100% of the variance in the Niño3.4 SSTs
and the SWUS PDSI (by retaining only the first few principal components of
each). Within the timeframe of the observational dataset (1948-2008), there
have been 7 strong El Niño events. Anomalously high PDSI in the SWUS was
recorded only after 3 of these events (e.g., 1982-1983, 1988-1989, 1997-1998).
Therefore, observations alone indicate that not all ENSO events affect SWUS
hydroclimate. Results from the LIM strengthen this conclusion, demonstrating
that intrinsic variability is a robust feature of the ENSO-SWUS teleconnection.

In the LME, the ENSO-SWUS teleconnection is much stronger than in ob-
servations or the LIM, placing more importance on ENSO for driving SWUS
hydroclimate than is realistic. This undoubtedly undermines our confidence in
the ability of CESM1 to accurately project the response of this teleconnection
to external forcing, and specifically climate change. This study provides further
evidence that tools like the LIM that can be used to assess the ability of GCMs
to simulate coupled atmosphere-ocean dynamics and can provide an important
benchmark as we continue to use GCMs to project climate change.

With such benchmarking in mind, the ensemble mean correlations are similar
between the LIM, CMIP5, and CMIP6. Nevertheless, it is also important to
focus on the distribution of these correlations. Our results with the GCMs are
consistent with previous studies that found large variability in ENSO telecon-
nection strengths between GCMs (e.g. Coats et al., 2013; Cook et al., 2016).
While there is evidence for improvement in the teleconnection strength in the
CMIP6 GCMs, we find that there is still a wide range in their ability to simulate
ENSO-SWUS teleconnections. Further analysis, particularly on a process level,
and of the outliers in correlation in the CMIP5 and CMIP6 ensembles could
lend insight into the physical processes most important to realistically simulat-
ing ENSO-SWUS teleconnection. Nevertheless, to robustly determine which of
these GCMs best represents the statistics of the real world will require ensem-
bles of each, like the LME, such that the true distribution of correlations can

17



be quantified. In the absence of such ensembles, training LIMs on the GCMs
themselves may be a useful, though imperfect, path forward (e.g., Coats et al.,
2020)

Drought remains an obstacle for water resource managers in the SWUS. Un-
certainty in the strength of ENSO-SWUS teleconnections further complicates
water resource management. Despite the advances in computational power and
forecast modeling, the predictability of ENSO beyond the spring predictability
barrier has not improved (Chen et al., 2020). This, when combined with the find-
ings presented here, suggest that SWUS hydroclimate is largely unpredictable
from year-to-year. Lack of predictability is particularly problematic when con-
sidering that it has been established that the lack of water resources has caused
the collapse of several civilizations in the SWUS (Benson et al., 2002; Stahle &
Dean, 2011). Furthermore, projections exhibit large declines in Colorado River
flow in the coming decades (Udall & Overpeck, 2017), which is the main source
of water for roughly 60 million Americans in the SWUS.

The results from our analysis of CMIP6 indicate that the ENSO-SWUS tele-
connection has the potential to decrease in strength, both through intrinsic
variability and in response to climate change. This leads to new questions,
such as, if intrinsic variability and climate change decrease the strength of the
ENSO-SWUS teleconnection, what fills this void? Studies have pointed to-
wards the potential for a stronger land-atmosphere coupling effect. Although
the SWUS is a largely soil-moisture limited environment, like the Great Plains
(the land-atmosphere coupling “hot spot”), land-atmosphere coupling is not as
strong in the SWUS, potentially due to the strength of the ENSO teleconnec-
tion (Koster et al., 2004; Santanello et al., 2018). As suggested in Dirmeyer et
al. (2012), a weakening of the teleconnection could lead to a strengthening of
land-atmosphere coupling, and this presents another interesting area for further
analysis. Building a historical baseline like we have done here can help disen-
tangle these different forcings, like local feedbacks and large-scale circulation
patterns and teleconnections, and shed light on what to expect in a chang-
ing climate. Altogether, decreased teleconnection strength, intrinsic variability,
and changing land-atmosphere interactions could mean fewer opportunities for
the SWUS to replenish its water stores during El Niños, with potentially dire
consequences for stakeholders in the region.
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