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Abstract

High spatiotemporal resolution rainfall is needed in predicting flash floods, local climate impact studies and agriculture man-

agement. Rainfall estimation techniques like satellites and the commercial microwave links (MWL) rainfall estimation have

independently made significant advancements in high spatiotemporal resolution rainfall estimation. However, their combina-

tion for rainfall estimation has received little attention, while it could benefit many applications in ungauged areas. This study

investigated the usability of the random forest (RF) algorithm trained with MWL rainfall and Meteosat Second Generation

(MSG) based cloud top properties for estimating high spatiotemporal resolution rainfall in the sparsely gauged Kenyan Rift

Valley. Our approach retrieved cloud top properties for use as predictor variables from rain areas estimated from the MSG

data and estimated path average rainfall intensities from the MWL to serve as the target variable. We trained and validated

the RF algorithm using parameters derived through optimal parameter tuning. The RF rainfall intensity estimates were com-

pared with gauge, MWL, Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG)

and European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Multisensor Precipitation Estimate

(MPE) to evaluate its rainfall intensities from point and spatial perspectives. The results can be described as good, considering

they were achieved in near real-time, pointing towards a promising rainfall estimation alternative based on the RF algorithm

applied to MWL and MSG data. The applicative benefits of this technique could be huge, considering that many ungauged

areas have a growing MWL network and MSG and, in the future, Meteosat Third Generation coverage.

Hosted file

essoar.10511022.1.docx available at https://authorea.com/users/539833/articles/600029-

near-real-time-estimation-of-high-spatiotemporal-resolution-rainfall-from-cloud-top-

properties-of-the-msg-satellite-and-commercial-microwave-link-rainfall-intensities

1

https://authorea.com/users/539833/articles/600029-near-real-time-estimation-of-high-spatiotemporal-resolution-rainfall-from-cloud-top-properties-of-the-msg-satellite-and-commercial-microwave-link-rainfall-intensities
https://authorea.com/users/539833/articles/600029-near-real-time-estimation-of-high-spatiotemporal-resolution-rainfall-from-cloud-top-properties-of-the-msg-satellite-and-commercial-microwave-link-rainfall-intensities
https://authorea.com/users/539833/articles/600029-near-real-time-estimation-of-high-spatiotemporal-resolution-rainfall-from-cloud-top-properties-of-the-msg-satellite-and-commercial-microwave-link-rainfall-intensities
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Key Points:

• The random forest (RF) algorithm is trained with MWL rainfall intensities
to estimate high-resolution rainfall from MSG satellite data.

• The accuracy of the RF rainfall estimates is promising and comparable to
gauge and satellite estimates.

• The RF rainfall retrieval, using MWL and MSG data, may benefit research
and operational applications, particularly in ungauged areas.

Abstract

High spatiotemporal resolution rainfall is needed in predicting flash floods, local
climate impact studies and agriculture management. Rainfall estimation tech-
niques like satellites and the commercial microwave links (MWL) rainfall estima-
tion have independently made significant advancements in high spatiotemporal
resolution rainfall estimation. However, their combination for rainfall estima-
tion has received little attention, while it could benefit many applications in
ungauged areas. This study investigated the usability of the random forest
(RF) algorithm trained with MWL rainfall and Meteosat Second Generation
(MSG) based cloud top properties for estimating high spatiotemporal resolu-
tion rainfall in the sparsely gauged Kenyan Rift Valley. Our approach retrieved
cloud top properties for use as predictor variables from rain areas estimated from
the MSG data and estimated path average rainfall intensities from the MWL
to serve as the target variable. We trained and validated the RF algorithm
using parameters derived through optimal parameter tuning. The RF rainfall
intensity estimates were compared with gauge, MWL, Global Precipitation Mea-
surement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) and
European Organisation for the Exploitation of Meteorological Satellites (EU-
METSAT) Multisensor Precipitation Estimate (MPE) to evaluate its rainfall
intensities from point and spatial perspectives. The results can be described
as good, considering they were achieved in near real-time, pointing towards a
promising rainfall estimation alternative based on the RF algorithm applied to
MWL and MSG data. The applicative benefits of this technique could be huge,
considering that many ungauged areas have a growing MWL network and MSG
and, in the future, Meteosat Third Generation coverage.

Plain Language Summary

1

mailto:b.h.p.maathuis@utwente.nl)


Many applications such as agriculture management, local climate impact stud-
ies and flash flood prediction rely on rainfall data, but the information is often
lacking or inaccurate depending on how it is measured. At the same time, mi-
crowave signals used by telecom companies for data transmission on our phones
are significantly affected by raindrops and can estimate accurate rainfall along
the signal path. Meteorological satellite observes clouds and can tell whether a
cloud is about to rain, ”yes or no”. These two sources of rainfall information al-
ready exist in many areas, including areas lacking accurate rainfall information.
Together, the two rainfall information sources combined in a unified framework
may be a promising rainfall estimation alternative that would benefit large scale
applications. Therefore, this study investigated the usability of the RF machine-
learning algorithm trained with rainfall derived from telecom signals to estimate
rainfall from meteorological satellite data. We present convincing results using
this technique, which points towards an effective, low-cost rainfall estimation
alternative that could have huge implications for many applications that require
high spatiotemporal data.

1 Introduction

Understanding the hydrologic and energy cycles to enhance our meteorologi-
cal and hydrological monitoring capabilities, predict flash floods, manage water
resources and make agricultural decisions at a farm-scale level require high spa-
tiotemporal resolution rainfall information, including its distribution and quan-
tity. However, rainfall’s intricate characteristics, such as high spatiotemporal
variability, hinder accurate spatial rainfall retrieval from prevailing techniques
(Hu et al., 2019).

Spatial interpolation techniques such as deterministic, geostatistical and mul-
tiple regression have been widely used to retrieve the spatial state of rainfall
from gauge rainfall data (Hu et al., 2019; Ly et al., 2013). However, rain gauges
are often sparsely distributed, and the accuracy of these methods is dependent
on the density and spacing of rain gauges. Even if one could install a spatially
dense gauge network with extensive coverage that can accurately capture the
spatial characteristics of rainfall, such a task will be expensive to install and
maintain. Besides, the gauge provides point rainfall information that may not
spatially represent the entire rainfall field (Gyasi-Agyei, 2020; Yan et al., 2021).

Commercial microwave links (MWL) used by commercial telecom service
providers for data transmission are capable of rainfall estimation (David et
al., 2021; Leijnse et al., 2007; Messer et al., 2006). Following a successful
demonstration of such a unique rainfall retrieval technique, some studies have
utilized the MWL for spatial rainfall retrieval and demonstrated the potential
of using the globally spread MWL system for rainfall mapping (Messer et
al., 2008; Overeem et al., 2016; Silver et al., 2021). Nonetheless, various
factors may limit accurate spatial rainfall estimation from the MWL. The
accuracy of the MWL’s rainfall estimates is affected by variation of raindrop
sizes distribution along the MWL path, and the fact that the MWL antenna
wetting during and after rainfall introduces additional uncertainties to the
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MWL signal. Furthermore, the MWL’s network is arbitrary, and the density
is often biased towards more developed countries and urban areas, affecting
retrieval accuracies in underdeveloped countries and rural areas (Kumah et al.,
2021a; Zinevich et al., 2008).

Additionally, remote sensing systems such as weather radars and satellites pro-
vide spatially continuous rainfall information and have been a valuable source
of spatial rainfall information for operational and research applications. The
weather radars estimate spatial rainfall from backscattered radar power from
precipitation particles, typically using low frequency (S or C band) high power
radar systems (Michaelides et al., 2009). Nonetheless, radars cannot be installed
everywhere, e.g. over oceans and topographically complex regions. Also, var-
ious error sources, including uncertainties in the backscattering-rainfall (Z-R)
relationship, beam overshoot and range effects, and vertical profile reflectivity,
limit the radar estimates’ accuracy (Uijlenhoet & Berne, 2008; Yan et al., 2021).

Satellites are spaceborne in low earth or geostationary (GEO) orbit, and their
rainfall estimates have extensive coverage that fills the spatial rainfall infor-
mation gap. In particular, the GEO satellite-based spatial rainfall information
retrieval has been the focus of many studies due to its high spatial and temporal
resolution that permits the study of sudden and intense rainfall with thunder-
storms from convective systems. Notably, retrieval from the MSG satellite has
received significant attention because of its high temporal resolution and wide
spectral range consisting of different kinds of channels that infer cloud top prop-
erties and rainfall. Most MSG-based retrievals use multispectral data to infer
optical and microphysical cloud top properties such as cloud top optical thick-
ness and effective radius for rainfall detection and estimation (Bendix et al.,
2010; Roebeling & Holleman, 2009; Thies et al., 2008). Other retrieval tech-
niques relate the MSG’s spectral features to cloud top properties and rainfall
(Feidas & Giannakos, 2010; Kumah et al., 2021b).

A parametric approach that relates the cloud top properties to rainfall is at
the core of these retrieval techniques. Typically their application requires a
definition of parametric tests and underlying conceptual models. The advantage
is that their application is straightforward, requiring few input variables, and
they directly map the conceptual knowledge of the rain generation process onto
the retrieval using the satellite data as proxies (Kumah et al., 2021b). However,
the nonlinear and complex relation between cloud top property and rainfall may
be beyond the skill of parametric tests and conceptual models (Kühnlein et al.,
2014).

In this regard, machine learning algorithms that rely on data-driven analysis
to explore the relationship between variables and have strong capabilities in
dealing with nonlinear relations may be suitable for retrieving rainfall from the
multivariate satellite data to overcome the limitations of the parametric tech-
niques (Hu et al., 2019; Kühnlein et al., 2014). Several studies have successfully
used machine learning algorithms such as the RF, artificial neural networks and
deep-learning models for spatial rainfall estimation (Kühnlein et al., 2014; Lazri
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et al., 2014; Meyer et al., 2016; Moraux et al., 2019). In particular, the RF
machine learning algorithm (Breiman, 2001) has gained significant attention.
It is an ensemble classification and regression algorithm that assumes that a
whole set of trees can make more accurate predictions than a single tree or net-
work. The RF algorithm has many features that suit its application for rainfall
retrievals. For instance, it efficiently handles large datasets and can capture non-
linear relations between predictor and target variables (Kühnlein et al., 2014).
However, most of its applications to MSG data, such as (Kühnlein et al., 2014;
Meyer et al., 2016), used gauge adjusted radar data as the training target, which
may be sparsely distributed or non-existent depending on the study area. To
the best of our knowledge, no study has applied the RF algorithm to MSG data
and used MWL-based rainfall as the training target, while the application could
be beneficial to areas with insufficient ground data but with a growing MWL
network and MSG coverage.

Therefore, this study’s objective is to evaluate the usefulness of the RF algorithm
trained with MWL-based rainfall intensities for estimating high spatiotemporal
resolution rainfall from cloud top properties of the MSG satellite. Compared to
existing studies such as those of (Kühnlein et al., 2014; Meyer et al., 2016), this
study’s uniqueness is due to the following reasons:

1. We applied the RF algorithm for rainfall estimation in a topographically
complex area in the Kenya Rift Valley, where gauge data is scarce

2. For the first time, we trained the RF algorithm using MWL rainfall as the
target variable.

2 Study Area and Dataset

Figure 1 shows the study area using ALOS World 3D 30 m (AW3D30) DEM
(Caglar et al., 2018) to visualize the area’s location within the Kenyan Rift
Valley. The area’s temperature ranges between 8 and 30 °C. It experiences
a bimodal rainfall pattern influenced by the passage of the ITCZ over Kenya.
There is a long rainy season from March to June and a shorter rainy season
from October to December. Additionally, rainfall varies noticeably with relief
features, with the total annual rainfall of the low and high altitudes varying
between 610 to 1525 mm (Odongo et al., 2015), respectively.
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Figure 1 Study area, locations of rain gauges and topology of MWL shown using
ALOS DEM as a base map

This study’s evaluation period was during the long rain period of 2014, 2018 and
2019. For the 2018 and 2019 periods, gauge rainfall data from The Trans-African
Hydro-Meteorological Observatory (TAHMO) (van de Giesen et al., 2014) were
available as 5 min rainfall accumulations. These computed the 15-minutes rain-
fall intensities that served as the ground truth in this study. The TAHMO
gauges are shown as white triangles (labelled by the station codes provided by
TAHMO) in Figure 1 and illustrate a sparse distribution of ground data in the
study area.

Safaricom provided the received signal levels (RSL) data for the set of MWL
with arbitrary geometry (extending from areas close to the Aberdare mountains
to Lake Naivasha in the centre of Figure 1), frequency and length in the study
area shown in Figure 1. For the 2014 and 2019 periods, data from multiple
MWL were available. In contrast, for the 2018 period, a single 15 GHz MWL
data was available. These MWL are Aviat Eclipse MWL, vertically polarised,
and has a constant transmitted signal level (TSL). Their RSL was characterized
by minimum, maximum, and mean values at 15-minute intervals and a 0.1 dBm
resolution.

The infrared (IR) (IR10.8 µm and IR12.0 µm) and water vapour (WV) (WV6.2
µm and WV7.3 µm) channels used in this study were from the Spinning En-
hanced Visible and Infrared Imager (SEVIRI) radiometer onboard the Meteosat
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at 0o (2014 period) and 41.5o E (2018 2019 period). This corresponded to Me-
teosat 10 and 8 satellites, respectively (EUMETSAT, 2016), when the data was
acquired from (EUMETSAT, 2020) at 3×3 km and 15 min spatial and temporal
resolution. These channels are sensitive to cloud top properties such as cloud
top temperature and height. The data from the Meteosat at 0o were parallax
corrected because of the satellite viewing angle, which causes displacement in
the actual position of cloud tops depending on their location and height (Kumah
et al., 2020; Roebeling & Holleman, 2009).

The IMERG final run version 6 (V06B) and EUMETSAT MPE rainfall products
verified this study’s retrieved rainfall spatially. The MPE is a near real-time
rainfall product derived from the MSG satellites’ repeat cycle, currently Me-
teosat 8, from the thermal IR channel. The MPE algorithm relies on a weather-
dependent monotonic function that relates the IR brightness temperatures to
the passive microwave (PMW) SSM/I rain rates. For this reason, MPE contin-
uously adjusts the retrieval function geographically and temporarily, using the
PMW rain rates as calibration values. The retrieval function is based on the his-
togram matching technique derived from collocated IR images and PMW data
accumulated over up to 12 hours and in 5o x 5o geographical boxes to account
for the poor spatial coverage of the PMW measurement. The MPE rainfall
product is most suitable for convective rainfall because the monotonic function
assumes that colder clouds produce more rain than warm clouds (Heinemann
& Kerényi, 2003). This study retrieved MPE data from EUMETSAT (2020) at
15 minutes and 3×3 km resolution for the evaluation period.

The IMERG version 6 (V06B) product is a level 3 globally gridded satellite pre-
cipitation estimate derived by intercalibrating, merging and interpolating pre-
cipitation estimates from several GPM constellation satellites and microwave
calibrated IR estimates. The IMERG algorithm is run twice in near-real-time
(Early (~4 h after observation time) and Late (~14 h after observation time)),
and once (Final (~3.5 months after the observation time)), based on user re-
quirements for latency and accuracy (Huffman et al., 2019; Tan et al., 2019).
The Final run product is calibrated using precipitation analysis from Global Pre-
cipitation Climatology Centre (GPCC) and the European Centre for Medium-
Range Weather Forecasts (ECMWF) ancillary data, making it more reliable
and suited for research (Moazami & Najafi, 2021).

IMERG data has 4 precipitation fields: UnCalibrated precipitation (precip-
itationUnCal), Calibrated precipitation (precipitationCal), Infrared (IR) pre-
cipitation (IRprecipitation) and High-Quality precipitation (HQprecipitation).
The precipitationUnCal and precipitationCal represent records before and af-
ter gauge calibration post-processing step, respectively. The IRprecipitation
is IR geostationary satellite-based precipitation, whereas the HQprecipitation
is obtained by merging High-Quality Passive Microwave (PMW) precipitation
estimates. This study utilized the Final run precipitationCal product because
it is a research-grade product that is climatologically adjusted using GPCC
ground data. Moreover, previous studies in the study area (Kumah et al.,
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2021b) had found good agreement when they compared the data with MSG-
based rain areas and ground data. IMERG data can be retrieved from https:
//gpm.nasa.gov/data/imerg (accessed on 21 March 2022) at approximately 0.1o

× 0.1o and 30 minutes spatiotemporal resolution.

3 Method

3.1 General methodology of the rainfall retrieval

This study retrieved high spatiotemporal resolution rainfall intensities from
MSG satellite data using the RF algorithm trained with MWL rainfall intensity
estimates. The retrieval procedure comprises three steps:

1. initial detection of raining areas

2. estimating MWL rainfall intensities and

3. estimating the rainfall intensity of the detected raining areas identified in
step 1.

In this study, steps 1 and 2 were based on techniques described in previous
studies (Kumah et al., 2020, 2021a; Kumah et al., 2021b), and step 3 was by
using the RF algorithm.

1. Detecting rain areas

The rain area identification technique was based on the approach described in
(Kumah et al., 2021b). It relies on a parametric threshold model based on the
conceptual idea that clouds with high cloud top optical thickness and height have
high rain probabilities and intensities and vice versa. The basis of this concep-
tual model is rooted in the characteristics of raining clouds provided by Lensky
and Rosenfeld (2003). The rain detection model uses differences in brightness
temperature of the thermal IR and water vapor channels such as IR10.8–IR12.0
K and IR10.8–WV6.2 K BTD from IR10.8 µm, IR12.0 µm WV6.2 µm SEVIRI
channels to infer the cloud top optical thickness and height properties. It applies
a threshold to a 2-D space defined by these BTDs, assuming that a cloud is more
likely to rain if the parameter (i.e. the BTD) is below the threshold value. The
threshold values were determined by calibrating and validating the detection
model using gauge rainfall and satellite data. Subsequently, a gradient-based
adaptive correction technique reduces the number and sizes of the detected rain
areas by using rain area-specific parameters.

1. Estimating rainfall intensities from the MWL data

This MWL rainfall estimation method is described in detail in (Kumah et al.,
2020, 2021a); this section summarises the method. In the approach, rainfall
intensity estimates are retrieved from the mean RSL data by first classifying
the data into wet and dry periods using a rolling window statistical technique.
Next, a baseline level is estimated as the median of the mean RSL of the previous
24 hours labeled as dry periods by the wet and dry classification step. Finally,
the mean RSL data is corrected for the effect of the wet antenna (Schleiss et al.,
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2013) before retrieving attenuation and subsequently rainfall from equations 1
and 2, respectively.

𝐴 = 𝐵−𝑃
𝐿 (1)

𝑅 = ( 𝐴
𝑎 )

1
𝑏 (2)

where:

𝐴 (dB/km)—is the rain-induced specific attenuation averaged over
the entire MWL

𝐿—is the MWL length, and 𝐵, 𝑃 are the baseline and the mean
RSL, corrected for the effect of antenna wetting by using a dynamic
model by Schleiss et al. (2013).

𝑅—is the MWL rainfall intensity, 𝑎 and 𝑏 values were from (ITU,
2005)

1. Estimating spatial rainfall intensities using RF

3.1.3.1 The predictor variables

Based on conceptual ideas used by optical rainfall retrieval models in the last
decades, optical cloud properties most relevant to rain areas and rain rates are
cloud top temperature, height, and cloud water path (represented by the cloud
optical thickness and particle effective radius). Retrieval techniques such as
those that use only the cloud top temperature often consider the cloud top tem-
perature to indicate the cloud top height and assume that cold clouds produce
(more) rainfall (Arkin & Meisner, 1987). Though this worked for convective
clouds, the technique considered cold non-raining cirrus clouds as raining or
missed rainfall from the relatively lower warm clouds. The cloud water path
retrievals, e.g. (Bendix et al., 2010; Thies et al., 2008), assume that raining
clouds have high cloud top optical thickness and effective radius with extended
tops.

Table 1 summarises this study’s predictor variables. These are consistent with
SEVIRI channels and differences used by previous studies (Kühnlein et al., 2014;
Kumah et al., 2021b) to infer cloud top properties such as cloud top temper-
ature, height, optical thickness, and particle effective radius for rain area and
rain rate retrievals. Additionally, the pixel gradients in the cloud top proper-
ties were used as predictor variables. This was computed based on the method
described in (Kumah et al., 2021b). Previous studies used gradient features in
satellite rainfall retrievals (Hong et al., 2004; Li et al., 2021). The reason for
including gradient features as a predictor for retrieving rainfall is that different
raining cloud types, such as convective and stratiform clouds, have distinguish-
able characteristics such as temperature gradient and local pixel temperature
variations with corresponding rain rates. For instance, fully grown convective
clouds have overshooting tops with high temperature gradients indicating the
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convective core, characterized by high rainfall intensities. By contrast, strati-
form clouds exhibit gradual temperature gradients and low pixel temperature
variations with relatively low rainfall intensities. The gradient feature measures
the cloud patch average pixel gradient to determine these distinct characteristics
to improve the retrieved rainfall estimate.

Table 1 The predictor variables used for rainfall retrieval

Channels and channels differences Pixel gradient features
IR10.8 K �IR10.8 K
IR10.8–WV6.2 K �IR10.8–WV6.2 K
IR10.8–IR12.0 K �IR10.8–IR12.0 K
WV6.2–WV7.3 K �WV6.2–WV7.3 K
IR12.0–WV7.3 K �IR12.0–WV7.3 K

3.1.3.2 Compiling training and validation datasets

This study utilized common machine learning techniques consisting of training
and validation to develop and test the rainfall retrieval method. The training set
was used to train the model by optimizing its learning parameters, whereas the
validation set assessed the model’s ability to generalize well to unseen data. The
training dataset consisted of target and predictor variables sampled from mixed
space-time observations from the study area during the 2014 and 2019 periods.
More precisely, they were retrieved from multiple MWL and the corresponding
MSG pixels covering the MWL that are shown in Figure 2 for the raining (R
> 1 mmh-1) and non-raining (R < 1 mmh-1) periods. For the MWL with
transmission paths covered by multiple MSG pixels, the mean of the satellite
data estimated from these pixels was retrieved for estimating the average rainfall
of a pixel to allow a fair comparison with other satellite rainfall estimates used by
this study. Besides, unlike, e.g., the minimum or median values, the mean value
of the satellite data considers neighboring pixel information. The validation
dataset was from the 2018 and 2019 periods and consisted of all MSG pixels
in the study area. For the 2019 period, this excludes data from those pixels
covering individual MWL since they were used to train the RF model. The
data from the 2018 and 2019 periods validated the RF model because they
coincided with the periods when gauge, independent MWL, MPE, and IMERG
data were available in the study area, thereby allowing for a thorough validation
of the RF model against different rainfall estimation techniques.
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Figure 2 The MSG pixels covering multiple MWL that trained the
RF model

3.1.3.3 The RF regression model and parameter tuning

The RF is an ensemble approach used for classification and regression purposes.
It is based on the idea that the outcome of a group of weak learners (i.e., decision
trees) when combined with a voting scheme, can yield an improved estimate with
better performance (Breiman, 2001). RF uses bootstrap sampling and random
feature selection to ensure the heterogeneity of these weak learners. Assuming
an input dataset with N × M dimensions (where N and M are the numbers
of samples and input features, respectively), RF grows each tree in the forest
using bootstrap samples (randomly selected, with replacement, samples from
N). When growing trees, only a number of m features (where m < M) are used
in deciding the best split at each node of a tree, and features with the lowest
residual sum of squares are chosen for the split. The process is repeated through
parallel processing until several trees are grown. For RF regression, the final
estimate is the average of all outcomes of all trees in the forest (Wolfensberger
et al., 2021). This study implemented the RF regression model in Python
3.7.3 using the scikit-learn package (Pedregosa et al., 2011). There are over a
dozen parameters to adjust in this package to achieve a robust RF performance.
However, this study focused on the number of decision trees (n_estimators)
and the number of input features to consider when looking for the best split
(max_features), following previous study’s account (Turini et al., 2021).

Since RF may perform poorly for the highly imbalanced dataset (Liu et al.,
2006), the imbalance between the raining (representing 8% of the dataset – the
minority class) and the non-raining (representing 92% of the dataset – the ma-
jority class) dataset was considered before assessing the optimal values of the
RF parameters. Oversampling the minority class and downsampling the ma-
jority class are some approaches to balance the class distribution of a dataset.

10



The latter was a better strategy for our dataset because of the comparatively
low percentage of the raining class. Besides, Liu et al. (2006) showed that
downsampling the majority class is a better class balancing strategy. There-
fore, this study addressed the imbalance in the dataset by keeping all the data
from the minority class and randomly sampling (without replacement) several
observations (less than the original) from the majority class.

This study searched for optimal parameter values by performing a stratified 5-
fold-cross-validation on several tuning values. Stratified 5-fold-cross-validation
randomly splits the training samples into 5 equal-sized folds regarding the dis-
tribution of the target variable. In effect, each (1/5) fold has a similar target
variable distribution as the training sample. Then, models were fitted while
repeatedly leaving one fold out to evaluate the model’s performance using the
mean squared error (MSE) metric in equation 3. The model performance for
the respective tuning values is the average of the MSEs from the hold one-out
iterations.

𝑀𝑆𝐸 = 1
𝑁 ∑𝑁−1

𝑖=1 (𝑅rfi − 𝑅ti)
2 (3)

where:

𝑅rfi —represents all possible RF rainfall intensity estimates

𝑅ti —represents all possible target variable observations, and N is
the number of samples.

The number of decision trees, n_estimators, to grow in the forest is an important
parameter to consider. According to Breiman (2001), the generalization error
converges as the number of trees increases. Increasing the number of trees in the
forest does not result in over adjustment, except this increases the computational
time. In essence, n_estimators should be optimized to obtain a computationally
feasible value. To determine the optimal value of the n_estimators parameter,
many RF models were created using the training data for all possible values of
n_estimators and max_features. The maximum n_estimators were 2000 trees,
whereas the max_features values ranged from 3 to 9 representing 30% to 90%
of the total number of input features.
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Figure 3 The RF parameter tuning. Effect of (a) number of decision trees with
3, 5, and 9 input features on rainfall retrieval errors and computational time
and (b) the number of input features on rainfall intensity retrieval errors. In (b),
boxes show the first quartile, median (orange lines), and third quartile; whiskers
(lines outside the box) extend from the minimum to the first quartile and from
the third quartile to the maximum, and the average MSE is shown as green
triangles.

Figure 3a exemplarily shows the effect of the number of trees with 3, 5, and
9 max_feature values on rainfall intensity retrieval errors and computational
time. Based on the dataset, the figure shows that increasing the number of de-
cision trees and input features increases the computational time. Nonetheless,
regardless of the number of input features, the rainfall intensity retrieval errors
decrease rapidly with an increase in the number of decision trees until approxi-
mately 100 trees, where the error rate stabilizes. This suggests that more than
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100 trees in the forest can be considered sufficient for a robust RF model per-
formance. Thus this study set the n_estimators to 100, which has a reasonable
computational time of about 2 seconds.

Breiman (2001) shows that the RF error rate largely depends on the correla-
tion between any two trees and the strength of individual trees in the forest.
Increasing the correlation increases the RF error rate, whereas increasing the
strength of individual trees decreases the RF error rate. The max_features
parameter affects these two aspects such that reducing it reduces both the cor-
relation and strength, whereas increasing it increases both. In practice, the
max_features value is often treated as a tuning parameter (Kühnlein et al.,
2014). To determine the optimal max_features value, many models were cre-
ated using the training data for different possible max_features values ranging
from 3 to 9, representing 30% to 90% of the number of input features while
setting the n_estimators parameter to 100 in each scenario. Figure 3b presents
the descriptive statistics of the MSE of rainfall intensities based on the differ-
ent max_features vales. Based on these results, max_features = 3 was used
because this leads to low rainfall intensity errors.

3.1.3.4 RF model prediction and validation

The tuned model parameter values were used to train the RF regression model,
and the trained model predicted rainfall intensities of the validating MSG pixels.
The mean absolute error (MAE) (Wilks, 2006) described in equation 4 evaluated
the RF model performance.

𝑀𝐴𝐸 = 1
𝑁 ∑𝑁

𝑖=1 |𝑅rfi − 𝑅oi| (4)

where:

𝑅rfi —represents all possible RF rainfall intensity estimates

𝑅oi —represents all possible gauge and MWL rainfall intensity esti-
mates, and N is the number of samples.

The validation approach was by:

1. comparing the rainfall intensity estimates by the RF to gauge, IMERG,
and MPE pixel to validate the RF model and evaluate its capability to
estimate rainfall comparable to already existing rainfall estimation tech-
niques;

2. comparing averaged RF rainfall estimates from pixels covering the MWL
to the MWL’s estimate to assess the capability of the RF to estimate path
average rainfall intensities;

3. spatially comparing the RF model estimates to those of the MPE and
IMERG rainfall products to evaluate the RF model against existing satel-
lite rainfall products.
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Since this study focused on evaluating the RF model’s usability for high spa-
tiotemporal resolution rainfall retrieval, the validation was done at 30 minutes
and 3×3 km resolution. Also, to ensure a comparison of collocated rainfall inten-
sity estimates, the spatial and temporal mismatch in the dataset was considered.
For this, the IMERG estimates were spatially resampled using the nearest neigh-
borhood technique that preserves the pixel values to the spatial resolution of
the RF and MPE. On the other hand, the gauge, RF, and MPE estimates were
temporally aggregated to IMERG’s 30 minutes temporal resolution by summing
their respective rainfall intensity estimates.

1. Results and Discussion

(a) Results

4.1.1 Comparing rainfall intensity estimates at a pixel by the RF, MPE, IMERG,
and gauge

This section evaluates the RF rainfall intensity estimates at a pixel using MWL,
gauge, MPE, and IMERG estimates. Firstly, a point evaluation is presented
through visual and statistical analysis of the RF estimates compared to gauge,
MPE, and IMERG for rainfall events observed from two different locations
in the study area. Secondly, a performance evaluation of the RF estimates
against gauge estimates compared to MPE, and IMERG estimates are presented.
Thirdly, the probability density of all rainfall intensities observed by the gauge,
RF, IMERG, and MPE from the gauge pixel is presented.

Figure 4 Comparing rainfall intensity estimates by the RF, MPE, IMERG, and
rain gauge. Colored figures are the mean intensity estimates (excluding R = 0
mmh-1) of RF, IMERG, MPE, and gauge rainfall events, respectively

Figure 4 presents rainfall intensities of two rainfall events captured by the RF,
MPE, IMERG, and rain gauges. The gauge estimates are from gauges TA00378
(Figure 4a) and TA00586 (Figure 4b) situated at different locations within the
study area. The RF, MPE, and IMERG are estimates retrieved from the pixels
containing the two gauges. Figure 4a shows rainfall events that occurred on
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8 May 2018. It is clear from the figure that, although all the rainfall retrieval
techniques captured the rainfall events that occurred between the hours of 16:00
to 21:00 UTC, the characteristics of their rainfall events differ. For instance,
the RF, MPE, and IMERG captured more rainfall than the gauge, which is
also evident from the mean rainfall computed for the event. Moreover, the
peak rainfall intensity captured by IMERG was above 30 mm per 30-minutes
intervals, whereas the RF and MPE were comparable and below 30 mm per
30-minutes, compared to the gauge’s peak rainfall intensity below 10 mm per
30-minutes interval.

The rainfall events in Figure 4b occurred between 13:00 to 18:00 UTC (based on
the gauge observation) on 4 April 2019. The figure shows that the gauge, RF,
MPE, and IMERG captured the rainfall event with fairly differing characteris-
tics. On average, the RF observed the most rainfall, followed by MPE, IMERG,
and gauge, as shown by the mean rainfall intensity of the rainfall event. Also,
the RF and MPE captured two comparable peaks below 25 mm per 30-minutes.
However, IMERG’s event extends beyond 18:00 UTC and its peak rain intensity,
like the gauge, was below 15 mm per 30-minutes.
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Figure 5 Performance evaluation of the RF compared with MPE and IMERG.
Box and whisker plot showing descriptive statistics of the absolute error of (a)
RF versus gauge, (b) IMERG versus gauge, and (c) MPE versus gauge. Boxes
show the first quartile, median (orange lines), and third quartile; whiskers (lines
outside the box) extend from the minimum to the first quartile and from the
third quartile to the maximum; stars indicate outliers; the MAE is shown as
green triangles. Each plot shows the total number of 30 mins data points at the
top of the plot (excluding 0 mm) that computed the descriptive statistics. The
x-axis shows the station codes provided by TAHMO

Figure 5 shows the absolute error of RF versus gauge rainfall intensity estimates
compared to MPE and IMERG. The data used in computing the absolute error
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in this figure were collocated observations by the gauge, RF, MPE and IMERG,
excluding the 0 mm estimates, during the validation period. On average, the
absolute errors in RF versus gauge (Figure 5a) estimates were about 5 mm per
30-minutes, comparable to those of the IMERG and MPE vs gauge estimates.
Based on the average errors, the RF’s rainfall estimation performance can be
considered as good as IMERG (Figure 5b) and MPE (Figure 5c). Nonetheless,
its outliers mostly below 30 mm per 30-minutes (Figure 5a) compared to those
of the IMERG and MPE, which mainly were below 50 mm per 30-minutes, may
point to differences in their high rainfall intensity estimates.

Figure 6 Probability density of rainfall intensity estimates by the gauge, RF,
IMERG, and MPE for (a) less than 20 mm and (b) above 20 mm

Figure 6 shows the density distribution of collocated rainfall intensity estimates
from the gauge, RF, IMERG and MPE. The distribution of rainfall intensities
in Figure 6a suggests that compared to IMERG and MPE, the RF mostly over-
estimates the gauge rainfall intensities below 15 mm per 30-minutes. When this
distribution is compared with that in Figure 6b, it is evident that the RF under-
estimates the high rainfall intensities, judging by its estimates largely below 30
mm per 30-minutes. Nonetheless, these estimates were from sparse gauge pixels
in the study area, which may not be a fair representation of the full range of
the area’s rainfall estimates.

The discrepancies in rainfall intensity estimates by the measurement techniques
may be due to various factors. Their spatial resolution differences may explain
some of these discrepancies. To be precise, the gauge observes rainfall from
a single point, making it easy to miss or underestimate a high-intensity local
rainfall event, depending on its proximity to a rainstorm. The RF, IMERG,
and MPE all estimate the average rainfall intensity of a pixel, which is spatially
more extensive than the gauge’s point observation and, therefore, may more
likely capture a rainfall event, albeit with intensity differences that depend on
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the measurement technique. Additionally, the RF’s rainfall intensity estimate
represents an average prediction from all trees, which may explain why it overes-
timates the low (and underestimates the high) intensities (Kühnlein et al., 2014;
Wolfensberger et al., 2021).

4.1.2 Comparing the RF and MWL rainfall intensity estimates

We next compared the RF rainfall intensity estimates with estimates from inde-
pendent MWL RSL data to assess the RF’s capability of path average rainfall
estimates. Here, the RF’s mean, median, and maximum rainfall intensity over
the MWL are included in the comparison to provide an idea of the range of
rainfall intensities estimated by the RF over the MWL’s path and how it com-
pares with the MWL’s rainfall estimates. Table 2 presents descriptive statistics
of the absolute errors when comparing the RF’s mean, median, and maximum
rainfall intensities to the MWL’s estimates, computed based on 920 15-minutes
rainfall intensity data.

Table 2 Descriptive statistics of the absolute errors of the RF and MWL rainfall
intensity estimates. 25%, 50% and 75% indicate percentile levels

Descriptive statistics Absolute errors of RF versus MWL rainfall (mmh-1)
Mean Median Maximum

Mean 4.1 4.0 6.8
Minimum 0.0 0.0 0.1
Maximum 18.0 21.4 23.4
25% 1.5 0.0 4.0
50% 3.9 4.0 6.5
75% 6.3 6.5 8.9

On average, absolute errors of the mean and median versus MWL rainfall inten-
sities are around 4 mmh-1 compared to about 7 mmh-1 when comparing the RF’s
maximum to the MWL’s estimates. This suggests a better agreement between
the RF’s mean and median and the MWL rainfall intensity values. Nonetheless,
the maximum error and the 75% percentile value of the mean comparison sug-
gest the RF’s mean rainfall estimates may better agree with the MWL rainfall
than the median.

The better agreement between the RF’s mean and MWL rainfall intensities
is because both represent average intensities over the MWL’s path. However,
comparatively high absolute errors of the RF’s maximum and MWL rainfall
intensities is because the maximum rainfall intensities represent the highest in-
tensities observed over the MWL’s path. Furthermore, discrepancies in RF and
MWL estimates that contribute to errors in Table 2 may be attributed to other
factors, including differences in their rainfall retrievals. The RF’s estimates are
based on nonlinear relationships between MWL rainfall and cloud top properties
aloft, whereas the MWL derives rainfall intensities from average rain-induced
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attenuation over its path.

4.1.3 Comparing spatial rainfall estimates by the RF model, MPE, and IMERG

We finally validated the RF rainfall intensity estimate spatially by comparing
it with the IMERG and MPE rainfall products on a scene-by-scene basis. First,
an exemplary scene is shown from 4 April 2019 at 13:00 to visually analyze the
RF, IMERG, and MPE estimate. Next, the MAE is computed based on all
rainfall intensity estimates by the RF, IMERG, and MPE during the validation,
excluding the 0 mmh-1 estimates.

Figure 7 compares spatial rainfall intensity estimates by the RF to IMERG and
MPE to validate the RF estimates. The white pixels in the center of the figure
are the MSG pixels over the MWL that trained the RF model. There is a good
agreement in the spatial distribution of rain areas by IMERG and RF, whereas
MPE shows fewer rain areas that are more localized than RF and IMERG. There
are also some differences in their rainfall intensity estimates. For instance, MPE
captured high rainfall intensities around latitude 0o, which the RF and IMERG
underestimated. Overall, it can be stated based on visual inspection of Figure
7 that the rain areas in the RF are comparable to IMERG but with intensities
that compare better with the MPE.

Figure 7 Spatial rainfall estimates by the RF compared to IMERG and MPE

These discrepancies in rain areas and intensities in Figure 7 may be attributed
to measurement differences in the retrieval techniques. For instance, the MPE
algorithm’s design captures convective rainfall of local origin and high intensities.
By contrast, the rain area detection system used by the RF is not dependent on
the rain cloud type (Kumah et al., 2021b), and its rainfall intensity estimates
were based on a nonlinear relationship between IR-based cloud properties aloft
and ground-level rainfall. Moreover, the fact that the RF estimates represent
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an average of predictions by all trees (Kühnlein et al., 2014; Wolfensberger et
al., 2021) may contribute to some of the intensity differences between the RF,
IMERG, and MPE. On the other hand, IMERG uses spatiotemporal average
rainfall from multiple microwave estimates, which may explain its low rainfall
intensities in Figure 7 compared to the RF and MPE.

Figure 8 Spatial variabilities of MAE computed from (a) RF and IMERG and
(b) RF and MPE rainfall intensities

Figure 8 shows the spatial variability of MAE from RF versus IMERG (Figure
8a) and RF versus MPE (Figure 8b) pairs during the validation period over the
study area. It is clear from the figure that the RF estimates agree better with
IMERG than MPE estimates. Nonetheless, both IMERG and MPE show high
differences compared to the RF, indicated by their respective high MAE values,
particularly between latitude -0.2 and -0.6, attributed to probably the high
rainfall intensities observed in these areas with complex topographic features
(see also Figure 1). On average, the RF versus IMERG MAE values are below
6 mm per 30-minutes compared to the RF versus MPE estimates below 8 mm
per 30-minutes.

1. Discussion

The usability of the RF machine learning algorithm trained with MSG-based
cloud top properties and MWL rainfall intensities for estimating high spatial
and temporal resolution rainfall intensities in a topographically complex area
in the Kenyan Rift Valley is investigated and evaluated. The investigation fol-
lowed three major steps: (1) rain area detection based on the method described
by (Kumah et al., 2021b) and retrieval of MSG-based cloud top properties that
served as predictor variables, (2) rainfall estimation from MWL RSL data to
serve as target variables and (3) rainfall intensity estimation using the RF algo-
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rithm. We compared the RF estimates with gauge, MWL, IMERG and MPE
estimate to evaluate the RF’s rainfall intensity estimation performance.

The results based on the study area can be described as good, considering that
they were achieved at a high spatial and temporal resolution of 3×3 km and
30 minutes, pointing towards a convincing skill of the RF algorithm for rain-
fall estimation. An analysis of rainfall events from different locations in the
study area revealed the capability of the RF to estimate rainfall events in the
study area with mean rainfall characteristics comparable to IMERG and MPE.
Comparing rainfall intensity estimates by the RF, IMERG, and MPE retrieved
from all gauge pixels in the study area to the gauge estimates reveals the RF’s
overestimation of low intensities (mostly below 15 mm per 30-minutes), whereas
the high intensities (above 30 mm per 30-minutes) are underestimated. On av-
erage, when compared to gauge estimates, the absolute errors were about 5 mm
per 30-minutes, comparable to the IMERG and MPE versus gauge estimates,
suggesting an RF rainfall estimation performance in the study area that may
be as good as the IMERG and MPE technique. However, the fact that the RF’s
estimation, unlike MPE, is not dependent on the cloud type and its estimates
are at high spatial and temporal resolution than IMERG suggests an effective
skill that needs future investigation.

This study also compared the RF’s rainfall intensity estimates over the MWL
transmission path to estimates derived from independent MWL RSL data to
determine the RF’s ability to estimate average rainfall over the MWL path.
Overall, the RF’s mean, median, and maximum rainfall intensities indicate that
the RF can quantify rainfall over the MWL transmission path. However, the
RF’s mean intensities compare better with the MWL estimates, which was at-
tributed to both representing the average rainfall intensity along the MWL
transmission path. The differences in the RF and MWL rainfall estimates were
rather due to differences in the retrieval techniques.

When comparing the spatial distribution of the RF rainfall intensities to IMERG
and MPE over the study area using an exemplary scene, the MPE showed fewer
rain areas of local origin but with intensities that agree with the RF. However,
the RF and IMERG raining areas were extensive and comparable, though the
IMERG’s intensities were comparatively lower. Overall, MAE values computed
using all scenes during the validation period reveal that the RF’s spatial rainfall
estimates agree better with IMERG than MPE. Nevertheless, some areas showed
noticeably high MAE values that may be due to the high rainfall intensities
observed related to complex topographic features.

The discrepancies found when comparing the RF estimates to the gauge,
IMERG, and MPE are somewhat expected when comparing rainfall estimates
from different techniques and may be due to many factors. The spatial
resolution is a contributing factor; particularly, the gauge observes rainfall
from a single point with low spatial representativeness compared to the RF,
IMERG, and MPE estimates. For this reason, the gauge may easily miss or
underestimate a local rainfall event, depending on its proximity to the storm.
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In contrast, the RF, IMERG, and MPE are more likely to capture a rainfall
event, though their intensity estimates may differ based on the measurement
technique.

Additionally, the RF and MPE estimates represent average estimates of 3 ×
3 km, whereas IMERG’s estimates represent approximately 10 × 10 km area.
Moreover, differences in the measurement techniques used by the RF, gauge,
IMERG, and MPE may also explain the discrepancies in their rainfall estimates.
The RF was trained (using tuned parameters) with MWL rainfall estimates to es-
timate rainfall intensities from cloud top properties of MSG. Its rainfall intensity
estimates represent an average of predictions by all trees, which may explain
its overestimation (underestimation) of low (high) intensities. On the other
hand, the MPE algorithm relates IR brightness temperatures to the SSM/I rain
rates to target convective rainfall that is mostly of high intensities and localized.
IMERG is a multisensor technique; its estimates represent a spatiotemporally
averaged rainfall from multiple microwave estimates.

This study’s results may have implications for rainfall retrievals, benefiting vari-
ous operational and research applications such as agriculture and water resources
management, evaluating satellite rainfall products, particularly in the many un-
gauged areas. The reason is that our rainfall intensity retrievals rely on MWL
and MSG satellite data, already existing in vast areas, including areas lacking
conventional ground rainfall monitoring systems.

5 Conclusions

A new technique to estimate high spatiotemporal resolution rainfall from MSG-
based cloud top properties using the RF algorithm trained with MWL rainfall
intensities is investigated and evaluated for a topographically complex area in
the Kenyan Rift Valley. The technique uses MSG spectral IR data not affected
by solar illumination, making it applicable under daytime and nighttime condi-
tions.

In general, the presented results show a promising technique. When comparing
the technique’s rainfall intensities to gauge data, the average retrieval errors
were about 5 mm per 30-minutes, comparable to errors found when compar-
ing IMERG and MPE to gauge data. Additionally, the spatial distribution
of rainfall intensities retrieved agreed well with the IMERG and MPE satel-
lite products. On top of this, the techniques’ advantage is that the rainfall
intensities are retrieved at high spatiotemporal resolution and is not limited by
the rainfall type. Besides, it employs a machine learning technique that may
potentially allow for rainfall retrievals in an automated manner.

The study’s evaluation was based on a small area and limited MWL network
data. In spite of this limitation, the promising results suggest that with the
inclusion of data from a spatially extensive MWL network, better retrieval ac-
curacies over vast areas are possible. Overall, this study’s results demonstrate
the potential of MWL and MSG data in a machine learning framework for high
spatiotemporal rainfall retrievals. This is particularly beneficial for several ap-
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plications since the MWL, and geostationary satellites with SEVIRI capabilities
like on MSG provide global data.
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