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Abstract

We developed a new Object-based Disturbance Agent Classification Approach (ODACA) to characterize land disturbance

agents based on Landsat time series. Seven major disturbance agents were characterized, including harvest, mechanical, stress,

debris, hydrology, and fire. We first created the land disturbance map by using a modified COntinuous monitoring of Land

Disturbance (COLD) algorithm (Zhu et al., 2020), and then established a semi-automated disturbance agent training dataset

extraction framework based on existing open-source datasets, with very limited human intervention. The modified COLD

algorithm was implemented based on Landsat time series from a single Landsat path to reduce the bidirectional reflectance

distribution function effect and issues caused by data density disparity, and the model updating frequency was reduced from

every new observation to every three percent of the number of observations used in the previous model updating to improve

computational efficiency. Finally, disturbance agents were classified based on ODACA using a Random Forest model with a

total of 175 predictor variables that contain rich information in the spectral, temporal, and spatial domains. Accurate land

disturbance agent maps were created for five sites in the United States, with an overall accuracy of approximately 99%, and

producer’s and user’s accuracies range from 57 to 100%, depending on specific disturbance agents.
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Abstract 7 

We developed a new Object-based Disturbance Agent Classification Approach (ODACA) to 8 

characterize land disturbance agents based on Landsat time series. Seven major disturbance 9 

agents were characterized, including harvest, mechanical, stress, debris, hydrology, and fire. We 10 

first created the land disturbance map by using a modified COntinuous monitoring of Land 11 

Disturbance (COLD) algorithm (Zhu et al., 2020), and then established a semi-automated 12 

disturbance agent training dataset extraction framework based on existing open-source datasets, 13 

with very limited human intervention. The modified COLD algorithm was implemented based 14 

on Landsat time series from a single Landsat path to reduce the bidirectional reflectance 15 

distribution function effect and issues caused by data density disparity, and the model updating 16 

frequency was reduced from every new observation to every three percent of the number of 17 

observations used in the previous model updating to improve computational efficiency. Finally, 18 

disturbance agents were classified based on ODACA using a Random Forest model with a total 19 

of 175 predictor variables that contain rich information in the spectral, temporal, and spatial 20 

domains. Accurate land disturbance agent maps were created for five sites in the United States, 21 

with an overall accuracy of approximately 99%, and producer’s and user’s accuracies range from 22 

57 to 100%, depending on specific disturbance agents. 23 
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 26 

1. Introduction 27 

Land surface change plays a vital role in global environmental change (Turner II et al., 2007). In 28 

the past few decades, the Earth’s surface has gone through dramatic changes triggered by various 29 

kinds of land disturbances, such as forest harvest, mechanical, debris, hydrology, insect, and fire 30 

(Edwards et al., 2014), and the spatial extent and intensity of land disturbances are getting more 31 

intensive and extensive (van Mantgem et al., 2009), making detection and characterization of 32 

land disturbances of great importance for advancing studies of land surface change and other 33 

pressing environmental issues. 34 

 35 

Landsat data, with a medium spatial resolution (i.e., 30 m), a high temporal revisit (i.e., 8 days 36 

for two satellites), a long history (i.e., 50 years), and the open and free policy (Woodcock et al., 37 

2008; Wulder et al., 2012; Zhu et al., 2019), has become one of the most valuable satellite 38 

datasets for monitoring global land surface change (Hansen et al., 2013; Pekel et al., 2016). 39 

Based on the Landsat data, many algorithms have been proposed to detect land surface change, 40 

such as Disturbance Index (DI) transformation (Healey et al., 2005), Landsat-based detection of 41 

Trends in Disturbance and Recovery (LandTrendr) (Kennedy et al., 2010), Vegetation Change 42 

Tracker (VCT) (Huang et al., 2010), Composite2Change (C2C) (Hermosilla et al., 2015a), 43 

Breaks For Additive Seasonal and Trend (BFAST) Monitor (Verbesselt et al., 2012), Continuous 44 

Monitoring of Forest Disturbance (CMFDA) (Zhu et al., 2012), Continuous Change Detection 45 

and Classification (CCDC) (Zhu and Woodcock, 2014), Continuous monitoring of Land 46 
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Disturbance (COLD) (Zhu et al., 2020), supervise-classification-based approach (Hansen et al., 47 

2014), and multiple change detection ensemble method (Bullock et al., 2019; Healey et al., 48 

2018). Some of them have been successfully implemented to generate national or global change 49 

products (Brown et al., 2020; Hansen et al., 2013). However, most of them were designed for 50 

detecting land cover and land use change, and only very few algorithms were proposed to detect 51 

land disturbance. Moreover, most of the disturbance detection algorithms were only focused on 52 

disturbance within a single cover type, such as forest disturbance (Healey et al., 2018, 2005; 53 

Huang et al., 2010; Kennedy et al., 2007; Zhu et al., 2012). Meanwhile, the COLD algorithm, 54 

built upon the success of the CCDC algorithm, can continuously detect land disturbance 55 

occurring on all kinds of land surfaces based on dense Landsat time series (Zhu et al., 2020).  56 

 57 

It is useful to know where and when land disturbance happened, but it is also beneficial to know 58 

why they occurred, or the identification of the disturbance agent. For a long time, change agent 59 

mapping has been focused on single a single agent, such as fire (Roy et al., 2019), water 60 

dynamics (Pekel et al., 2016), and insect infestation (Ye et al., 2021). Recently, built on the well-61 

development of time series based change detection algorithms, the combined use of change 62 

magnitude, spectral information in pre- and post-change, topography, patch metrics (e.g., size 63 

and shape), and landscape context information has made identification of multiple forest 64 

disturbance agents possible (e.g., harvest, fire, insect, and wind) (Coops et al., 2020; Hermosilla 65 

et al., 2015b; Schroeder et al., 2017; Sebald et al., 2021; Zhang et al., 2022). Those studies 66 

usually need a huge amount of labor work to interpret training data based on high-resolution 67 

images and are not able to extend to non-forested lands.  68 

 69 

 70 
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Table 1 71 
Definition of the classification system of land disturbance agents. 72 

Categories Definitions 

Harvest  
Forested land, where trees are harvested by human activities, such as clear cut, selective 

logging, salvage logging, etc.  

Mechanical 
Non-forested land, where human activities are the major cause of the disturbance, such 

as agriculture practice, urban expansion, modification, and intensification. 

Stress 
Vegetated land, where the condition of trees or other woody vegetation is changed to a 

less favorable status by natural factors, such as insect infestation, disease, and drought. 

Debris 

Land scattered with debris of natural or artificial materials that caused by hurricanes, 

tornados, landslides, volcanoes, etc. Note that the movement of materials in riverine 

systems is labeled as hydrology. 

Hydrology 
Long-term or short-term transitions from land to water or from water to land caused by 

flooding, sea-level rising, damming, etc.   

Fire Fire burnt areas on all land surfaces, such as forests, shrublands, or grasslands.  

Other 
Land altered due to other causes, mostly due to vegetation regrowth and year-to-year 

climate variability. 

 73 

There are various kinds of the definition of land disturbance agents, and in this study, we used a 74 

more general definition of land disturbance, including harvest, mechanical, stress, debris, 75 

hydrology, fire, and other. Table 1 describes the definition of each of them, which mainly 76 

follows the USGS Land Change Monitoring, Assessment, and Projection (LCMAP) program 77 

(Brown et al., 2020; Pengra et al., 2020; Xian et al., 2022). 78 

 79 

Therefore, the main purpose of this study is to design automated algorithms to characterize land 80 

disturbance agents based on Landsat time series across the conterminous United States 81 

(CONUS), such as harvest, mechanical, stress, debris, hydrology, and fire (Table 1).  82 

 83 
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 84 
Figure 1. Distribution of five study sites in the United States. Each site is covered by 3-by-3 Landsat Analysis 85 
Ready Data tiles (red squares). The background is the 2016 National Land Cover Dataset (Jin et al., 2019). 86 

 87 

2. Study area and data 88 

2.1. Study area 89 

We selected five study sites to test our algorithms, in which each site contains 3-by-3 Landsat 90 

Analysis Ready Data (ARD) tiles (Dwyer et al., 2018) (Figure 1). The study sites are in different 91 

parts of the CONUS (New England, Southeast, Great Plains, Rocky Mountains, and Far West 92 

sites), with diverse topography and environmental conditions. The major land disturbances in the 93 

New England site include forest harvest in the north, mechanical activities in urban areas (e.g., 94 

Metro Boston), insect outbreaks (e.g., gypsy moth), hydrology, and debris caused by tornado. 95 

The Southeast site was selected due to frequent hurricanes that caused debris, as well as the 96 

intense forest harvest activities. In the Great Plains area, agricultural activities are the dominant 97 

disturbance type, and large areas of grasslands and wetlands are frequently disturbed by year-to-98 

year climate variability (Zhou et al., 2019). The Rocky Mountains site is characterized by high 99 

mountains, where the major land cover is forest, but often affected by insects (e.g., bark beetle) 100 

and fire events. The land disturbance in the Far West site mainly involves mechanical activities 101 
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in urban and agricultural areas, large fires in mountains, large areas of grasslands/shrublands 102 

frequently disturbed by climate variability, and debris caused by several major earthquakes. 103 

 104 

2.2. Landsat Data 105 

USGS Landsat Collection 1 Analysis Ready Data (ARD) were used as the major input datasets. 106 

The Landsat ARD analyzed here include Landsats 4–5 Thematic Mapper, Landsat 7 Enhanced 107 

Thematic Mapper Plus, and Landsat 8 Operational Land Imager /Thermal Infrared Sensor data. 108 

They were provided with tiles of 5000 × 5000 30-m pixels under the Albers Equal Area Conic 109 

projection. For each ARD tile, surface reflectance of blue, green, red, NIR, and two SWIR bands, 110 

Brightness Temperature (BT) of Thermal Infrared (TIR) band, and Quality Assessment (QA) 111 

band were used in the analysis, in which the surface reflectance data were produced using the 112 

Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm (Masek et 113 

al., 2006) and the Landsat Surface Reflectance Code (LaSRC) (Vermote et al., 2016), and the 114 

QA band that provides the per-pixel information on cloud, cloud shadow, and snow/ice was 115 

based on the Function of mask (Fmask) algorithm (Zhu et al., 2012; Zhu et al., 2015a). All 116 

Landsat images with cloud and shadow cover less than 100% between 1982 and June 2020 were 117 

downloaded based on the machine-to-machine Application Programming Interface (API) of 118 

USGS Earth Explorer.  119 

 120 

2.3. Auxiliary data 121 

The auxiliary data for disturbance agent classification consisted of Digital Elevation Model 122 

(DEM), slope, and aspect. The global 30-m DEM data were derived from Shuttle Radar 123 
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Topography Mission (SRTM), due to their relatively high accuracy (Rodriguez et al., 2006). The 124 

slope and aspect were derived from the DEM data. 125 

 126 

2.4. Land disturbance agent related open-source datasets 127 

We collected the disturbance agent training data based on multiple existing open-source datasets 128 

related to land disturbance, which include USGS LANDFIRE public events geodatabase 129 

(Rollins, 2009), Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al., 2007), USGS 130 

Land Cover Trends (LCT) (Loveland et al., 2002), National Land Cover Database (NLCD) 131 

Science Research Products with information on Forest Transition Classes (FTC) (Jin et al., 132 

2019), European Joint Research Centre’s Global Surface Water (JRC GSW) (Pekel et al., 2016), 133 

survey data such as Insect and Disease Survey (IDS) (Johnson and Wittwer, 2008), and disaster 134 

event reports such as NOAA Severe Weather Database (SWD) and NASA Global Landslide 135 

Catalog (GLC) (Kirschbaum et al., 2010). Each of them was used as a base layer to help with 136 

automated generating training data of land disturbance agents. 137 

 138 

2.5. Calibration and validation samples 139 

We generated two sets of reference samples to calibrate the agent classification algorithm (e.g., 140 

selecting classification strategy and optimal thresholds) and to conduct accuracy assessments for 141 

the land disturbance agent maps, respectively. The two reference sample sets were collected 142 

independent of each other, but based on the same response design to interpret the land 143 

disturbance agent. In particular, the disturbance agent for each sample was determined by using 144 

the Area Estimation & Accuracy Assessment (AREA2) tool at Google Earth Engine, which can 145 

display the time series of Landsat images (Arévalo et al., 2020; Bullock et al., 2020, 2019). 146 
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Available historic high-resolution images from Google Earth and previously mentioned open-147 

source datasets (e.g., MTBS and IDS) (Section 2.4) were also used to help the human 148 

interpretation.  149 

 150 

The calibration samples included a total of 450 pixels, that were randomly selected within the 151 

COLD disturbance locations over the 45 Landsat ARD tiles (10 samples for each tile). Since the 152 

classification algorithm does not be focused on disturbance detection, we excluded commission 153 

errors of disturbance detection caused by the COLD algorithm in calibrating the ODACA 154 

algorithm.  155 

 156 

On the other hand, the validation samples were created by following the “good practice” 157 

recommendations described by Olofsson et al., (2014). In this study, we randomly selected a 158 

total of 1,525 samples based on the stratified random sampling constructed from the annual land 159 

disturbance agent maps between 1985 and 2020. In this stratification, the individual reference 160 

sample represents not only a location on the ground but also a place in time. Considering that 161 

agent strata were rare classes compared to the non-disturbance areas, a minimum of 100 162 

reference samples were allocated into these seven rare disturbance agents. The remaining 525 163 

reference samples were allocated to no disturbance stratum. The samples with low interpretation 164 

confidence were excluded (see Table 4 for the statistic of validation samples). 165 

 166 

3. Methods 167 

Figure 2 shows the flowchart of algorithms for characterizing land disturbance. We first 168 

implemented the modified COLD algorithm to detect any kinds of land disturbances at pixel 169 
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level based on Landsat time series extracted from single Landsat path, and then created 170 

disturbance objects for each calendar year (Section 3.1). Next, the Object-based Disturbance 171 

Agent Classification Approach (ODACA) was used to attribute the land disturbance agent, in 172 

which the disturbance agent training data were generated from existing open-sources datasets 173 

(Section 3.2) and used to train the iterative random forest classifiers with 175 predictor variables 174 

(Section 3.3). The output results consist of annual disturbance agent maps with location, time, 175 

and agent, and accuracy assessment following the good practices (Olofsson et al., 2016) (Section 176 

3.4). 177 

 178 

 179 
Figure 2. Flowchart of detecting and characterizing land disturbance in this study. The main components of 180 
ODACA are described in the large blue rectangle. COLD: COntinuous monitoring of Land Disturbance. ODACA: 181 
Object-based Disturbance Agent Classification Approach. 182 

 183 

 184 

 185 
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3.1. Detection of land disturbance 186 

The COLD algorithm is able to provide accurate per-pixel land disturbance information based on 187 

dense Landsat time series. For each pixel, the inputs are consisted of the times series of seven 188 

spectral bands, such as surface reflectance of blue, green, red, NIR, SWIR1 and SWIR2 bands, 189 

as well as BT of TIR band. 190 

 191 

�̂�𝑖,𝑥 = 𝑎0,𝑖 +∑ {𝑎𝑘,𝑖 𝑐𝑜𝑠(
2𝜋𝑘

𝑇
𝑡) + 𝑏𝑘,𝑖 𝑠𝑖𝑛(

2𝜋𝑘

𝑇
𝑡)}3

𝑘=1 + 𝑐1,𝑖                                                    (1) 192 

Where, 193 

t: Julian date 194 

i: The ith Landsat spectral band  195 

k: Temporal frequency of different harmonic component (k = 1, 2, and 3). 196 

T: The average number of days per year (T = 365.25) 197 

𝑎0,𝑖: Coefficient for capturing the overall value for the ith Landsat spectral band  198 

𝑎𝑘,𝑖, 𝑏𝑘,𝑖: Coefficients for capturing the intra-annual change for the ith Landsat spectral band 199 

𝑐1,𝑖: Coefficient for capturing the inter-annual change for the ith Landsat spectral band 200 

�̂�𝑖,𝑥: Surface reflectance for the ith Landsat spectral band at x Julian date based on model 201 

prediction. 202 

 203 

The core of the COLD algorithm is to predict the surface reflectance of each spectral band (�̂�) 204 

based on a Harmonic time series model (Eq. 1), using the Least Absolute Shrinkage and 205 

Selection Operator (LASSO) with a lambda of 20 (Tibshirani, 2011). A change is identified 206 

when consecutive six reflectance differences (∆𝜌), between actual observations (𝜌)  and model 207 

predictions (�̂�), are larger than a threshold of change probability of 0.99 (Zhu et al., 2020). Once 208 
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a change is identified, a new Harmonic model will be estimated. If no change is confirmed, new 209 

Landsat observations will be appended to update the model. In the COLD algorithm, only five 210 

Landsat spectral bands, such as the green, red, NIR, SWIR1, and SWIR2 bands, are used to 211 

detect change, but all spectral bands will be used for estimating their specific time series models. 212 

  213 
Figure 3. Land disturbance maps based on Landsat observations from a single path (Figure 3b) versus they are 214 
based on all Landsat ARD (Figure 3c) for Great Plains in 3-by-3 Landsat ARD tiles. This area includes large areas 215 
of land disturbance caused by agriculture practices and climate variability, which are particularly sensitive to the 216 
difference of data density of Landsat time series (Figure 3a).  217 

 218 

One of the issues with the original COLD algorithm is the large inconsistency of disturbance 219 

maps between the adjacent Landsat path overlap and non-overlap regions (Figure 3c), due to 220 

large differences in temporal density (Figure 3a) and the Bidirectional Reflectance Distribution 221 

Function (BRDF) effects (mostly caused by different view zenith angles) (Zhu and Qiu, 2022, 222 

preprint paper). We modified the COLD algorithm from using all Landsat ARD (including 223 

overlap regions) to only using Landsat observation from a single path, in which Landsat ARD 224 

with the smallest view zenith angles will be selected as the inputs for COLD. This will ensure a 225 

homogeneous change map at a large-scale (Figure 3b). Note the density adjustment approach 226 

(Zhu et al., 2020) is not needed anymore when using Landsat time series from a single path. 227 

Another modification of the COLD algorithm is to reduce the model updating frequency from 228 

every new observation to every 3% of the number of observations used in previous model 229 
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updating. This modification can greatly (>60%) reduce the computation time and almost achieve 230 

the same accuracy as the original COLD algorithm based on the same reference sample provided 231 

in Zhu et al., (2020). 232 

 233 

3.2. Characterization of land disturbance agent  234 

An Object-based Disturbance Agent Classification Approach (ODACA) was developed to 235 

attribute land disturbance agents detected by the modified COLD algorithm. The annual per-236 

pixel land disturbance maps derived from the modified COLD algorithm were first aggregated 237 

into separate disturbance objects based on 8-connected directions under the assumption that land 238 

disturbance events are spatially connected within a relatively short time (e.g., one year). We 239 

removed disturbance objects that are less than four Landsat pixels (~0.4 ha), as this is usually the 240 

smallest unit that can be reliably mapped by Landsat data (Dobson, 1995). 241 

 242 
Figure 4. Illustration of disturbance sample generation from the existing open-source dataset. Debris samples are 243 
relatively few and were carefully interpreted based on NASA Global Landslide Catalog and NOAA Severe Weather 244 
Database. 245 
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3.2.1. Extracting disturbance agent training data based on open-source datasets 246 

We assembled existing open-source datasets to build a comprehensive training dataset with 247 

multiple disturbance agents (Figure 4). Based on existing disturbance reference datasets (i.e., 248 

LANDFIRE and MTBS), survey data (i.e., IDS), and LCLU maps (i.e., LCT, NLCD, and GSW), 249 

as well as with prior knowledge (e.g., small change magnitude for stress and greener direction in 250 

other like vegetation regrowth), we can produce a record of potential disturbance agent locations 251 

(hereafter referred to “potential agent map”) for each agent type for each year. Later, the agent of 252 

each disturbance object was determined based on the overlap between the disturbance object 253 

identified by the modified COLD algorithm and the potential agent maps derived from the open-254 

source dataset, and only when more than half of the pixels within each disturbance object were 255 

filled by the potential agent maps, the agent can be assigned successfully. When multiple agents 256 

were in the same object, a majority rule was applied. This approach was used to generate the 257 

training samples for most of the land disturbance agents, but we carefully interpreted the debris 258 

samples based on disaster event reports (e.g., hurricane, tornado, and landslide) from NOAA 259 

SWD and NASA GLC (Kirschbaum et al., 2010) to guarantee the training data quality, as not all 260 

area will show up as debris within the trajectory of hurricane, tornado, and landslide. Table 2 261 

shows the disturbance agent training data for each study site, which were used to train the 262 

classification model. 263 

 264 
Table 2. Statistics of disturbance agent training data (# of pixels) for each study site. 265 

Site Harvest Mechanical Stress Debris Hydrology Fire Other 

New England 46,556 42,050 14,424 16,148 21,044 0 19,216 

Southeast 183,815 113,418 107 477,959 333,021 0 1,611,880 

Great Plains 166 366,273 0 0 169,014 196,202 5,974,637 

Rocky Mountains 468,218 151,045 3,405 67 59,799 10,221,023 587,655 

Far West 45,181 4,424,306 14,497 929 502,381 12,283,243 72,129,026 

Total 743,936 5,097,092 32,433 495,103 1,085,259 22,700,468 80,322,414 

 266 
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3.3.2. Predictor variables 267 

A total of 175 predictor variables for agent classification were calculated based on the outputs of 268 

the modified COLD algorithm, topographic data, and object-based metrics of disturbance objects 269 

(Table 3).  270 

Table 3 271 
Predictor variables for classifying land disturbance agents. There is a total of 175 variables. 272 

Class Input Variables Number 

During-change 

Change time 1 

Change magnitude (7 bands) 7 (1 variable * 7 bands) 

Change magnitude trend and variation (Slope, RMSE) 14 (2 variables * 7 bands) 

Change interval 1 

Change frequency (times per year) 1 

Pre-change 
Time series models of pre-change 

(i.e., a0, a1, b1, a2, b2, a3, b3, and RMSE) 

49 (7 variables * 7 bands) 

Post-change 
Time series model of post-change 

(i.e., a0, a1, b1, a2, b2, a3, b3, and RMSE) 

49 (7 variables * 7 bands) 

Topographic 

Elevation 1 

Aspect 1 

Slope 1 

Patch 

 

Standard deviation of change time 1 

Standard deviation of change magnitude 7 (1 variable * 7 bands) 

Standard deviation of change interval 1 

Area 1 

Core area index 1 

Related circumscribing circle 1 

Contiguity index 1 

Core area 1 

Euclidean nearest-neighbor distance 1 

Fractal dimension index 1 

Radius of gyratio 1 

Number of core areas 1 

Perimeter-area ratio 1 

Perimeter 1 

Shape index 1 

Elevation range 1 

 273 

There were 122 predictor variables directly calculated from the modified COLD algorithm, 274 

which include information extracted during-change, pre-change, and after-change for every 275 

change event at the pixel level. Figure 5 illustrates the modified COLD results for a pixel in New 276 
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England Area that has undergone a change in 2016 caused by stress (gypsy moth). For a change 277 

event, the modified COLD algorithm created a time series model before change (pre-change 278 

model), a time series model after change (post-change model), and during-change information 279 

for each spectral band. The pre-change and post-change models indicate the land surface before 280 

and after a disturbance has happened, respectively. The during-change information includes 281 

change magnitude, as well as change magnitude trend and variation. Most of the COLD output 282 

variables have been already well-documented in Zhu et al. (2020), except for change magnitude 283 

trend and variation. The change magnitude trend represents trend of the reflectance differences 284 

(∆𝜌) between the model predictions and the actual observations for the six consecutive 285 

observations during the change process. A linear model based on ordinary least square regression 286 

is used to estimate the trend, and the change magnitude variation is calculated based on the 287 

corresponding Root Mean Square Error (RMSE), which is to measure the regression uncertainty. 288 

Based on the same pixel as shown in Figure 5, Figure 6 illustrates how the change magnitude 289 

trend and variation is determined based on the reflectance difference (between model prediction 290 

and observation) of six consecutive Landsat observations. In this specific case, the trend and 291 

variation values can provide rich information on the immediate change procedure of the natural 292 

vegetation restoration after an insect attack, which could be valuable inputs for disturbance agent 293 

attribution. At the same time, we also used change time to indicate when (day of year) a 294 

disturbance happened, change interval to describe how long the disturbance lasted, and change 295 

frequency to measure how often the disturbance occurred, as we think all these change 296 

information could be extremely helpful for disturbance agent attribution. Moreover, we also 297 

included three topographic predictor variables, including elevation, slope, and aspect, all of 298 
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which have already shown promise in classifying disturbance agents (Kennedy et al., 2015; 299 

Oeser et al., 2017). 300 

 301 

 302 
Figure 5. An illustration of the modified COLD algorithm for a forest pixel (Long: -71.6430, Lat: 41.9749). Upper 303 
panel shows the Landsat time series from 2000 to 2020, and a change caused by the gypsy moth is identified in 2016 304 
by the COLD algorithm. Lower-right panel enlarges the during-change process and shows the corresponding 305 
Landsat time series. Lower-left panel shows three summer Landsat images collected pre-change in 2015, during-306 
change in 2016, and post-change in 2017, respectively. Note the Landsat images in the lower-left panel can be 307 
compared directly since they are displayed using a same stretch, and the area affected by the gypsy moth is most 308 
noticeable in the 2016 image. 309 
 310 

 311 
Figure 6. The slope and RMSE of change magnitude of six consecutive observations during change for the same 312 
pixel shown in Figure 5. The insect (gypsy moth) infestation initially resulted in a spectral difference, but after this 313 
event the differences began decrease continuously due to vegetation recovery. 314 

 315 

Based on the assumptions that different disturbance agents have different spatial patterns, we 316 

also computed the spatial patch metrics for each disturbance object. For instance, according to 317 

change time, change magnitude, and change interval of each pixel in the same disturbance 318 
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object, we computed their standard deviation values to describe their texture for each disturbance 319 

object. On the other hand, we calculated twelve spatial predictor variables to describe the spatial 320 

pattern of disturbance object, such as size, form, and shape, using FRAGSTATS -- a spatial 321 

pattern analysis program for quantifying landscape structure (Hesselbarth et al., 2019; States, 322 

1995), which has been widely used to map land cover land use (Fan and Myint, 2014) as well as 323 

forest disturbance agent attribution (Sebald et al., 2021). In addition, since the range of elevation 324 

could also influence the type of disturbance agent, for example, debris caused by landslide would 325 

be more likely to occur in regions with large elevation difference, and therefore, we computed 326 

the elevation range for each disturbance object. 327 

 328 

3.3.3. Classification strategy 329 

In ODACA, a supervised Random Forest Classifier (RFC) (Breiman, 2001) is applied for 330 

attributing disturbance agents, and a total of 100 decision trees were used for balancing 331 

computation efficiency and classification accuracy (Rodriguez-Galiano et al., 2012). The training 332 

data are pixel-based (Table 2), instead of at the object-level, since the former can provide many 333 

more training samples with large variations of spectral information. For training pixels within the 334 

same object, they will share the same values in the patch-based variables.  335 

 336 

Optimized local and global training data selection. In each study site (3-by-3 Landsat ARD tile, 337 

we trained the RFC based on a hybrid training data selection strategy, in which 60% of them 338 

were locally selected from the nine ARD tiles in this same study site (hereafter referred to as 339 

“local sample”), and the remaining 40% of them were extracted from the tiles in other four sites 340 

(hereafter referred to as “global sample”). The combined use of the local and the global training 341 
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samples can avoid the issue of lacking enough training data for rare disturbance agents in certain 342 

places and at the same time maintain enough “localness” in the selected training data. The two 343 

proportions were determined based on the algorithm performances against the calibration 344 

samples, in which 40% from “global” and 60% from “local” achieved the highest overall 345 

accuracy (Figure 7). In addition, as our target was to determine the agent of each disturbance 346 

object, we used the well-trained RFC to classify all pixels within each disturbance object and 347 

applied a majority vote to determine the final agent for the disturbance object.  348 

 349 

 350 
Figure 7. Analyses of the impacts of percent of local training data (x-axis) and global training data (100 – x-axis) 351 
used in disturbance agent classification.  352 

 353 

Optimized class proportion training data selection. Usually, the number of training data selected 354 

for each class should be based on the corresponding class area proportion with some limits on 355 

some dominant classes (e.g., class proportion > 40%) and some benefits for some rare classes 356 

(e.g., class proportion < 3%) (Zhu et al., 2016). However, there is no way to know the class 357 

proportion before we have a map of it. To solve this chicken-and-egg dilemma, we created a 358 

novel iterative RFC procedure, in which we first used the equal distributional training data (all 359 

classes have the same number of training data) to create the first preliminary disturbance agent 360 
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classification map, and then, we will use the proportion information from this preliminary map 361 

(with a minimum proportion of 3% and a maximum proportion of 40%) to extract training data 362 

based on mapped class proportion to train a new RFC to classify the final land disturbance agent 363 

map.  364 

 365 

Optimized total number of training data. We also tested the impact of the total number of 366 

training data on land disturbance agent classification based on the above two optimized 367 

strategies, and we found that the classification overall accuracy continues to increase when the 368 

number of training samples increases, and plateaus between 5,000 and 10,000 pixels. Therefore, 369 

a total of 10,000 training samples were selected in ODACA. 370 

 371 

 372 
Figure 8. Impacts of the total number of training samples on the overall accuracy of land disturbance agent 373 
classification against the calibration samples.  374 
  375 
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3.4. Accuracy assessment 376 

A confusion matrix, based on the stratified reference samples described in Section 2.5, will be 377 

created for the accuracy assessment of land disturbance agent maps. Then, we followed the 378 

approaches documented in (Olofsson et al., 2013) to compute a post-stratified estimator to 379 

translate the confusion matrix into terms of unbiased accuracies, such as producer’s accuracy, 380 

user’s accuracy, and overall accuracy. The uncertainty of the accuracy evaluation can be 381 

quantified by a confidence interval of 95%. We assumed that the bias in the area of mapped 382 

agents is uniformly distributed in time and space (Olofsson et al., 2016). This assumption implies 383 

that although our stratification was conducted based on the accumulated area of all 36 annual 384 

land disturbance maps (1985-2020), the unbiased estimator can be used for uncertainty 385 

estimation of the annual maps.  386 

 387 

4. Results 388 

 389 

The land disturbance agent maps over the five test sites (45 Landsat ARD tiles) were evaluated 390 

qualitatively and quantitatively.  391 

 392 

4.1. Visual assessment of disturbance agent maps 393 

In order to demonstrate the algorithm performance in characterizing land disturbances at a 394 

continuous spatial mode, we accumulated all annual land disturbance agent maps between 1985 395 

and 2020 to show the land disturbances that occurred most recently, that is, a single pixel could 396 

be disturbed several times during the period of analysis, yet the map only displayed the latest 397 

disturbance event (Figure 9). For instance, Figure 9a showed the land disturbance agent map in 398 
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New England, where most of the area experienced harvest, especially in the Northeast area (e.g., 399 

Marine), and few mechanical disturbances particularly in or around the urban area (e.g., Metro 400 

Boston). According to the enlarged maps, ODACA successfully identified harvest (L1), 401 

mechanical (L2), debris caused by a tornado (L3), stress caused by the gypsy moth breakout in 402 

2016 (L4). Figure 9b showed the land disturbance agent map at Southeast, where most of the 403 

disturbances were harvest (L1) (also see the green color area in Figure 9b), but this site was often 404 

attacked by hurricanes and tornados, both of which resulted in a large area of debris (L2 & L3). 405 

At the same time, mechanical, such as agricultural practice, usually occurred, with hydrology 406 

around the river (L4). Those different land disturbance agents were successfully distinguished by 407 

ODACA. Figure 9c represented the Great Plains, in which there was an extremely large area of 408 

cropland, and subsequently, the mechanical disturbances (e.g., agriculture practices) were found 409 

by ODACA (L1) (see red color in Figure 9c). In this site, ODACA can also identify the fire over 410 

grassland (L2), the mechanical in urban areas (e.g., urban modification) (L3), and the hydrology 411 

near the lake (L4). Figure 9d showed the land disturbance agent maps at Rocky Mountains, 412 

where the major land disturbances were fire (L1), harvest (L2), and mechanical (e.g., agricultural 413 

practice) (L3), with small amount of stress (e.g., beetle) (L4), and they were also successfully 414 

attributed by ODACA. Figure 9e showed the land disturbance agent map at Far West, where 415 

mechanical (L1) and fire (L2) often occurred with extremely high frequency. In this site, 416 

ODACA successfully identified hydrology in the Owens Lake (L3), which was a dry lake and 417 

often influenced by the upstream river, and the other over the grassland, which was caused by 418 

the year-to-year climate variability. 419 

 420 

 421 
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(a) New England 422 

 423 

(b) Southeast 424 

 425 
 426 
(c) Great Plains 427 

 428 

 429 

 430 

 431 
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(d) Rocky Mountains 432 

 433 

(e) Far West 434 

 435 
Figure 9. Accumulated land disturbance agent maps between 1985 and 2020 at (a) New England area (a), Southeast 436 
(b), Great Plains (c), Rocky Mountains (d), and Far West (e). At each site, there are 3-by-3 Landsat ARD tiles 437 
covered (red rectangles in the left large map), and enlarged examples are given at four different locations (L1, L2, 438 
L3, and L4). Color denotes the land disturbance agent, and brightness denotes the land disturbance time. The high-439 
resolution reference images were derived from ArcMap software. 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
 449 
 450 
 451 
 452 



 

24 
 

4.2. Quantitative assessment 453 

Table 4 showed the accuracy assessment of the disturbance agent maps. The overall accuracy of 454 

the land disturbance agent classification was 99.68%. No disturbance achieved high user’s and 455 

producer’s accuracies (99.81% and 99.98%), which mostly benefited from the success of the 456 

COLD algorithm. Besides, most of the land disturbance agents, including harvest, hydrology, 457 

and other, also achieved high accuracies in both user’s and producer’s accuracy (> 90%), but 458 

harvest still had some commission errors from debris and stress because they share similar 459 

characteristics in spectral responses (e.g., decrease in NIR surface reflectance). At the same time, 460 

there were also confusions among hydrology, other, mechanical, and debris. The user’s accuracy 461 

and producer’s accuracy of mechanical were 93.94% and 76.20% (dominated by the commission 462 

errors with no disturbance), respectively. The user’s accuracy of fire was higher than 95.70%, 463 

but its producer’s accuracy was 80.46% because of commission errors contributed from stress, 464 

debris, and harvest. The user’s accuracy and the producer’s accuracy of stress were 68.42% and 465 

60.82%, respectively, which are mainly caused by confusion in harvest (e.g., thinning) and low 466 

severity fire. The producer’s accuracy of debris is very high (almost 100%), but its user’s 467 

accuracy is relatively low (57.29%), mostly due to the large commission errors from harvest and 468 

mechanical. 469 

 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
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Table 4 483 
Confusion matrices and accuracy estimates for land disturbance agent map (with no disturbance). The reference 484 
samples and area estimations are displayed in columns and the map strata are displayed in rows. ± indicate the 95% 485 
confidence interval. 486 

  No Disturbance Harvest Mechanical Stress Debris Hydrology Fire Other 

Confusion Matrix of Area Proportions (Unit: %) 

No Disturbance 97.22 0 0.19 0 0 0 0 0 

Harvest 0 0.39 0 0 0 0 0.01 0 

Mechanical 0.02 0 0.73 0 0 0 0 0.03 

Stress 0 0 0 0.01 0 0 0 0 

Debris 0 0.01 0 0 0.01 0 0 0 

Hydrology 0 0 0 0 0 0.06 0 0 

Fire 0 0 0 0 0 0 0.1 0 

Other 0 0 0.04 0 0 0 0.01 1.15 

Confusion Matrix of Sample Counts (Unit: Pixel) 

No Disturbance 524 0 1 0 0 0 0 0 

Harvest 0 94 1 1 0 1 2 1 

Mechanical 2 0 93 0 0 0 0 4 

Stress 3 4 1 39 0 1 8 1 

Debris 3 24 6 1 55 0 4 3 

Hydrology 0 0 1 0 0 95 1 2 

Fire 2 0 1 0 0 0 89 1 

Other 0 0 3 0 0 0 1 96 

Accuracy Estimates (Unit: %)  

Area Proportion 97.43±0.01 0.40±0.01 0.78±0.03 0.01±0.00 0.01±0.00 0.06±0.00 0.12±0.01 1.19±0.03 

User’s Accuracy 99.81±0.19 94.00±2.39 93.94±2.41 68.42±6.21 57.29±5.08 95.96±1.99 95.70±2.12 96.00±1.97 

Producer’s Accuracy 99.98±0.01 98.58±0.24 76.20±14.80 60.82±22.88 100.00±0.00 92.94±6.31 80.46±9.07 96.74±1.31 

Overall Accuracy 99.68±0.19               

 487 
 488 

5. Discussions and conclusion 489 

The new-developed ODACA can classify different kinds of land disturbance agents for five 490 

different sites across the United States by using the training data extracted from available open-491 

source datasets. It is worth noting that though most of the training data are selected fully 492 

automated from the open-source datasets, they are also subject to errors and could be further 493 

improved if more human interpretations are provided to help with refining the training data. For 494 

example, we spent quite some time on refining the debris training data, but its large commission 495 
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error is still a major issue in our final disturbance agent map. In addition, all the predictor 496 

variables were used to produce land disturbance agent maps in this study; however, selection of 497 

the important predictor variables may benefit the computation efficiency for RFC-based 498 

classification tasks and improve classification accuracy when redundant variables are excluded 499 

(Chen et al., 2021; Sebald et al., 2021). Additionally, ODACA still faced misclassifications 500 

among harvest, debris, and other due to their similar spectral responses. The integration of 501 

auxiliary data such as weather reports, geological data, and social-environmental data (e.g., 502 

Twitter), are some of the future directions. 503 

 504 

ODACA relies on the land disturbance detection results from the COLD algorithm, but COLD 505 

also has commission and omission errors in land disturbance detection (Zhu et al., 2020), and 506 

those errors will be inherited in the land disturbance agent maps. Methods that could combine the 507 

spatio-temporal information in change detection could potentially reduce the omission and 508 

commission of the COLD algorithm and provide more accurate land disturbance detection for 509 

ODACA to start with worth more future studies. In this study, we put climate variability into the 510 

other class, mostly because they are relatively ephemeral and have less long-term impact on the 511 

vegetation on the ground. This category, however, is not always interpreted as land change 512 

(Brown et al., 2020; Pengra et al., 2020) and is sometimes treated as commission errors in land 513 

disturbance detection. By putting them into the other category, we are able to reduce the 514 

commission error of the COLD algorithm, which is also the case for spectral changes caused by 515 

vegetation regrowth. On the other hand, omission errors of COLD are usually large for the small 516 

magnitude and ephemeral changes, such as stress caused by insect (Ye et al., 2021), and thus the 517 

use of the agent map of stress needs attention.  518 
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In conclusion, we implemented the modified COLD algorithm to detect land disturbance at a 519 

large-scale using Landsat time series from a single path and developed an Object-based 520 

Disturbance Agent Classification Approach (ODACA) for automated characterizing different 521 

kinds of land disturbance agents, with an overall accuracy of approximately 99% in the land 522 

disturbance agent map. The algorithms could potentially create CONUS-wide land disturbance 523 

agent products at 30-m resolution annually.  524 
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