Impact of Different Land Use Management on Soil Enzyme Activities in Missouri River Floodplains

Jamshid Ansari¹, Frieda Eivazi², Stephen Anderson³, and Sougata Bardhan⁴

¹School of Natural Resources, University of Missouri, Columbia, MO ²Department of Agriculture and Environmental Sciences ³School of Natural Resources ⁴College of Agriculture

November 24, 2022

Abstract

Land management activities that provide higher soil organic carbon stimulate microbial activity and enzymatic reactions. Riparian forest, agroforestry, and row-crop agriculture treatments are among common land-use systems in the lower Missouri River Floodplain (MRF) region in New Franklin, MO. The study of soil enzyme activities under different land use in this region is of importance for monitoring soil quality and evaluation of climatic changes on soil health. This investigation aimed to characterize soil properties such as soil C and N, porosity, moisture content under three-land use (agroforestry, riparian forest, and agriculture) and correlate their influence on soil microbial communities and enzyme activities. Soil samples were collected from the three land management systems, and enzyme activity was measured in three seasons of Fall 2019, Summer 2020, and Spring 2021. Results revealed significantly higher levels of β -glucosidase, β -glucosaminidase, and dehydrogenase activity in agroforestry (AF) and riparian forest (RF) treatments relative to agriculture (AG) management in all three studied seasons. Dehydrogenase activity was higher (p<0.0001) in RF relative to AF and AG sites. Efforts to incorporate perennial management systems in river-floodplain landscapes will help increase organic matter content, which stimulates microbial diversity and soil enzyme activity as well as improving the performance of conservation buffers. The study concluded that tree-based AF systems enhance soil physicochemical and biological properties.

Hosted file

essoar.10510992.1.docx available at https://authorea.com/users/550680/articles/604077-impactof-different-land-use-management-on-soil-enzyme-activities-in-missouri-river-floodplains

Impact of Different Land Use Management on Soil Enzyme Activities in Missouri River Floodplains

- 3 Core ideas
- Tree-based agroforestry systems enhance soil physicochemical and microbial properties.
 Agroforestry and forest systems show greater soil enzyme activity relative to row crop agriculture.
- There is a positive correlation between soil enzyme activity, soil porosity, and organic
 matter content.

9 ABSTRACT

10 Land management activities that provide higher soil organic carbon stimulate microbial activity and enzymatic reactions. Riparian forest, agroforestry, and row-crop agriculture treatments are 11 12 among common land-use systems in the lower Missouri River Floodplain (MRF) region in New 13 Franklin, MO. The study of soil enzyme activities under different land use in this region is of 14 importance for monitoring soil quality and evaluation of climatic changes on soil health. This investigation aimed to characterize soil properties such as soil C and N, porosity, moisture 15 16 content under three-land use (agroforestry, riparian forest, and agriculture) and correlate their influence on soil microbial communities and enzyme activities. Soil samples were collected from 17 the three land management systems, and enzyme activity was measured in three seasons of Fall 18 19 2019, Summer 2020, and Spring 2021. Results revealed significantly higher levels of βglucosidase, β-glucosaminidase, and dehydrogenase activity in agroforestry (AF) and riparian 20 forest (RF) treatments relative to agriculture (AG) management in all three studied seasons. 21 Dehydrogenase activity was higher (p<0.0001) in RF relative to AF and AG sites. Efforts to 22

incorporate perennial management systems in river-floodplain landscapes will help increase
organic matter content, which stimulates microbial diversity and soil enzyme activity as well as
improving the performance of conservation buffers. The study concluded that tree-based AF
systems enhance soil physicochemical and biological properties.

Key words: Soil organic matter, Soil water-filled pore space, β-glucosidase, β-glucosaminidase,
Dihydrogenase, Soil microbial activity

Abbreviations: AC, active carbon; AF, agroforestry; AG, row-crop agriculture; C, carbon; CEC,
cation exchange capacity; Db, bulk density; f, porosity; HARC, Horticulture and Agroforestry
Research Center; MRF, Missouri River Floodplain; N, nitrogen; NA, neutralizable acidity; RF,
riparian forest; SOC, soil organic carbon; SOM, soil organic matter; WFPS, water-filled pore
space.

34 1. INTRODUCTION

Enzymes as the main actors of the soil ecosystem are mediating nutrient transformation within 35 the soil. Metabolizing of broad classes of plant tissues (e.g., carbohydrates, phenol structures, 36 and proteins) is carried out by the soil microbial community through enzymatic reactions. Due to 37 their central role in nutrient recycling and transformation, as well as sensitivity to changes in 38 management systems, soil enzymes are suggested to be used as an indicator of soil quality 39 (Dixon & Tilston, 2010; Kremer & Li, 2003). Soil enzymes activities are sensitive to the changes 40 in soil physical properties, soil nutrient availability, and fertility (Eivazi et al., 2003; Verchot & 41 Borelli, 2005; Yuan et al., 2006). 42

Beta-glucosidase as a predominant soil enzyme mediates biochemical reactions involving
 soil organic carbon decomposition. The activity of β-glucosidase plays a major role in soil C

45 cycling (Sotomayor-Ramirez et al., 2009). This enzyme catalizes the degradation of cellulose as
46 the main component of plant tissues (Veum et al., 2014), and the hydrolysis products, which
47 include simple sugars, are consumed by soil microorganisms as energy sources (Acosta-Martinez
48 et al., 2000; Eivazi & Tabatabai, 1988; Yuan et al., 2006). It has been known that the activity of
49 β-glucosidase reflects land management (Vallejo et al., 2010).

Both C and N cycling in the soil is controlled by β -glucosaminidase, which involves the 50 decomposition of chitobiose, proteins, lignin, and lignified organic matter releasing N and C 51 (Parham & Deng, 2000). Chitin degradation by β -glucosaminidase provides N mineralizable 52 sources in soil and enhance soil N availability (Sotomayor-Ramirez et al., 2009). Moreover, 53 amino sugars as the hydrolysis products of chitin degradation are the major sources of readily 54 mineralizable C (Acost-Martinez et al., 2007). Beta-glucosaminidase is an important component 55 of fungal cell walls and the activity of this enzyme can be correlated to soil fungi biomass 56 (Parham & Deng, 2000; Yuan et al., 2006). 57

58 Dehydrogenase is an intracellular enzyme considered as an indicator of microbial oxidative activity as well as soil fertility. Microbial oxidative activity can be determined by 59 measuring dehydrogenase activity (Jarvan et al. 2014; Kumar et al., 2013; Liang et al. 2014; 60 61 Veum et al., 2014). Since dehydrogenase is an intracellular enzyme and cannot function outside the living microbial cells (Ekenler, 2002), the activity of this enzyme is viewed as the soil 62 microbial density and respiratory function. However, measuring only dehydrogenase activity is 63 64 not always a reliable predictor of the total microbial activity in a complex environment such as 65 soil (Salazar et al., 2011).

Although enough oxygen accelerates the microbial decomposition process, oxygen
shortage in anaerobic soils lowers the speed of the process by affecting microbial and enzyme

68	activity (Neira et al., 2015). In saturated soils, anaerobes become dominant and respire through
69	some enzymatic reduction processes (Oertel et al., 2016; Ussiri et al., 2009). The hydrology of
70	floodplains and poorly drained soils often results in anaerobic conditions, which influence the
71	prevalence of differing soil microbial consortiums (Frenzel et al., 1992). Soil water content is
72	considered an important factor that controls soil microbial and enzyme activity (Dutaur et al.,
73	2007; Gao et al., 2014; Nag et al., 2017) through changes in oxygen diffusion and nutrient
74	transformation within the soil profile (Gonzalez Mace et al., 2016; Hulicova et al., 2018;
75	Vanhala, 2002). Soil nutrient availability and soil pH are factors that affect soil microbial
76	respiration and enzyme activity (Chapuis-Lardy et al., 2007; Ludwig et al., 2001).
77	Sustainable agriculture practices to enhance soil productivity are a considerable challenge
78	for modern agriculture (McLaughlin & Kinzelbach, 2015). Conservation activities reduce soil
79	degradation and enhance soil quality by improving soil organic matter (SOM) content (Fabrizzi
80	et al., 2005; Weerasekara et al., 2016). Land management practices affect soil physicochemical
81	and biological properties through changes in soil organic carbon (SOC) (Bordoloi et al., 2016;
82	Merino et al., 2004; Wang et al., 2019). Intensive tillage practices in conventional cropping
83	systems reduce SOC, which is positively correlated to the soil active C (Culman et al., 2012;
84	Sauer et al., 2007; Weil et al., 2003). In contrast, land management activities such as tree-based
85	agroforestry systems (e.g., grass buffer, alley-cropping, shelterbelt) sequester large amounts of
86	C, while also improving soil aggregate stability, water holding capacity, and nutrient retention
87	that stimulates microbial activity and enzymatic reactions (Amadi et al., 2016; Moore et al.,
88	2018; Palma et al., 2007; Veum et al., 2011).
89	Soil fertilization, cropping strategies, and tillage practices are among land treatments that
90	affect the activity of enzymes (Dick 1984; Tate & Terry, 1980; Weitao et al., 2018). Stott et al.

(2009) applied β -glucosidase activity as a reflector of soil management practices in the Soil 91 Management Assessment Framework (SMAF) equation. Ekenler and Tabatabai (2002) stated 92 93 that activity of β -glucosaminidase is higher in the fields under crop rotation (corn-oats-meadow) than continuous soybean cultivation. Their findings revealed that N fertilization is in favor of β-94 glucosaminidase activity. Soil organic and inorganic input as well as perennial vegetation 95 management contribute to dehydrogenase activity (Alagele et al., 2019; Kremer & Li, 2003). 96 This study was conducted on three selected land management systems: agroforestry, 97 riparian forest, and row-crop agriculture located in the Missouri River Floodplains (MRF). The 98 aim of this study was to characterize soil baseline properties to determine the effects of three 99 selected land management systems on soil key indicators that are known to influence soil 100 enzyme activities. The effect of land management on soil organic matter, moisture content, 101

102 porosity, and soil microbial activity was investigated.

103 2. MATERIALS AND METHODS

104 **2.1. Study site**

The experiment was conducted in the Horticulture and Agroforestry Research Center (HARC), a 105 106 primary research site for agroforestry at the University of Missouri, Columbia. This research station sits on the Missouri River Hills (Northern edge) and Missouri River Flood Plains 107 (Southern portion) bordering Sulfur Creek on the South and West sides (Moore et al., 2018). The 108 center is located in New Franklin, MO (39° 0′ 50″ N, 92° 44′ 55″ W). Three selected land 109 management systems under investigation in this study were row crop agriculture {corn [Zea 110 mays L.]/soybean [Glycine max (L.) Merr.]} (AG), agroforestry [pecan (Carya illinoinensis) 111 orchard/hay (AF), and a riparian forest area (RF) along Sulphur Creek. Soils consist of Ap and C 112 horizons formed in alluvium, which are Nodaway silt loam and categorized as Fine-silty, mixed, 113

superactive, nonacid, mesic Mollic Udifluvents. Mean annual precipitation and temperature are
1070 mm and 12.6 °C, respectively (Moore et al., 2018).

116 The AF treatment includes a combination of four groups of thirty-two pecan trees (28) 117 years of age and 14 m distance), grasses of tall fescue (*Festuca arundinacea*), and Johnson grass (Sorghum halepense). The AF treatment received nitrogen-based fertilizer in 2020 (~110 kg ha 118 ¹), and March 2021 (~70 kg ha⁻¹) in the form of urea. In 2019, due to severe flooding events, no 119 120 fertilizer was added to the site. No hay has been removed from the agroforestry site for at least the past 6 years. From 2016 to 2022, the grass has been cut 2-3 times per season and left on the 121 soil surface. The RF is an area along Sulphur Creek covered by silver maple (Acer saccharinum), 122 American elm (Ulmus americana), sycamore (Platanus occidentalis), and cottonwood (Populus 123 deltoides). It does not receive any direct fertilizer; however, due to regular flash floods, it 124 receives some sediment, and run-off from whatever washes down the stream next to it (Sulphur 125 Creek). The AG field is a corn-soybean rotation system in which corn was planted in 2018, and 126 soybean was cultivated in May 2019 and 2020. No N fertilizer was applied in the soybean and 127 corn year (2021) of the rotation. 128

129 **2.2. Soil sampling**

In the AF treatment, soil samples were collected and composited (0-15 cm) about 2 m from pecan trees to investigate the effect of tree-grass root systems on the soil physicochemical properties and enzyme activity. In the RF, soil samples were taken 2 m from trees to evaluate the effect of trees as well as underbrush root systems on soil properties. In the AG treatment, soils were taken from 6 m intervals within the soybean rows and between rows. Six replicates at each site were collected at each sampling event in 2019 and 2020. In 2021, three composited subsamples of six replicates at each site were collected. Soil samples in sealed plastic bags were placed in a cooler and transported to the laboratory. The samples were stored at 4 °C until
analysis was conducted.

139 **2.3. Soil physical and chemical properties**

140 Soil bulk density (Db) was measured using the core method described by Topp and Ferre (2002). In total, 18 soil samples were collected (six from each treatment) from three selected treatments 141 using the soil core (Uhland) sampler (7.6 cm diam. by 7.6 cm long). Soil cores were covered by 142 plastic caps at the top and bottom, then placed in sealed plastic bags and carried in a cooler to the 143 laboratory. Having the core volume, soil bulk density was obtained from the differences between 144 moist and oven-dried (105 °C) soil cores. Soil moisture content was measured using the 145 gravimetric water content method explained by Topp and Ferre (2002) (Fig. 1). This method is 146 based on the weight differences between moist and oven-dried soil (105 °C). Soil porosity (f) 147 was calculated using the bulk density and soil particle density (ρ s) of 2.65 g cm⁻³ (f = 1 - 1148 $Db/\rho s$). Due to severe weather conditions and frequent flooding events, soil moisture was not 149 measured in 2019. However, to simulate the effect of each treatment on the soil moisture, weekly 150 measurements were carried out in Spring, Summer, and Fall 2020 and 2021 (May-October). 151 Using standard soil testing procedures, soil samples were analyzed by the University of 152 Missouri Soil and Plant Testing Laboratory for particle size distribution, soil pH, SOM, 153 neutralizable acidity (NA), cation exchange capacity (CEC), Bray 1-P, calcium, magnesium, and 154 potassium content (Nathan et al., 2012). Soil mineralizable N and active carbon were evaluated 155 by the University of Missouri Soil Health Assessment Center (Anderson et al., 2010; NRCS, 156 2004). Composite soil samples from AF, RF, and AG treatments were collected as explained 157 158 before and sent to the assessment center for the tests.

159 2.4. Soil microbial community characterization

A phospholipid fatty acid (PLFA) test was carried out by the University of Missouri Soil Health
Assessment Center (SHAC) using the protocol developed by Buyer and Sasser (2019).

162 Mycorrhizal fungi, gram-negative, gram-positive bacteria, and actinobacteria biomass were

evaluated for the three land management systems (AF, RF, and AG) in Spring 2021 (May). The

row-crop agriculture field was in the corn phase of the rotation this year.

165 **2.5. Soil enzyme activity assays**

166 Soil samples were collected (0-15 cm) from AF, RF, and AG management systems using a soil

167 auger probe in Fall 2019 (mid-October and early November), Summer 2020 (late July and early

168 September), and Spring 2021 (late May). Soils were air-dried, grounded, and sieved for less than

169 2 mm. The activity of β -glucosidase and β -glucosaminidase was investigated for Fall 2019,

Summer 2020, and Spring 2021. The activity of dehydrogenase was measured for Summer 2020,and Spring 2021.

 β -glucosidase activity was determined according to the procedure developed by Eivazi and Tabatabai (1988). The method is based on the colorimetric determination of *p*-nitrophenol (PNP) released by the substrate (*p*-nitrophenyl-β-D-glucoside) with 1-g sieved air-dried soil samples incubated with buffered (pH 6.0) *p*-nitrophenol-β-D-glucoside. The soil was incubated with the p-nitrophenyl-β-D-glucoside substrate for one our at pH 6.0 at 37 °C.

 β -glucosaminidase activity was measured according to the protocol developed by Parham and Deng (2000). 1-g sieved air-dried soil samples incubated for one hour with *p*-Nitrophenyl-Nacetyl-β-D-glucosaminide buffered (pH 5.5). Redeveloped calibration equations were used to calculate the concentration of *p*-nitrophenol calorimetrically (410 nm), and the activity of both enzymes was expressed in 1 g *p*-nitrophenol g⁻¹ dry soil. 182 Dehydrogenase activity (DHA) was determined based on the reduction of 2, 3, 5-

183 Triphenyltetrazolium chloride (TTC) to the Triphenyl formazan (TPF) as described by Tabatabai

184 (1994). Triphenyltetrazolium chloride was added to 20 g of air-dried soil (<2mm) and incubated

185 (37 °C) for 24 hours. The concentration of red-colored TPF was measured with a

spectrophotometer unit (Genesys 10 µv Spectrophotometer) set at 485 nm. The activity of

187 dehydrogenase was expressed in l g TPF g^{-1} dry soil.

188 **2.6. Statistical analysis**

189 Significant differences were obtained applying the general linear model (GLM) procedure (One-

190 Way ANOVA) according to the least significant difference (LSD) at p<0.05 for the enzyme

activity in three land management systems for each season and year separately. The Statistical

192 Analysis System, SAS studio (OnDemand for Academics edition) was applied. Pearson

193 correlation analysis was performed to evaluate the relationship between physical and biological

soil properties. Soil properties data from Fall 2019 was used to investigate the association

195 between variables.

196 **3. RESULTS AND DISCUSSION**

3.1. Soil physicochemical properties

Soil organic matter content was significantly greater in AF (2.7%) and RF (2.5%) as compared to
AG (Table 1). Tree roots extension, nitrogen fixation, fungi biomass, crown expansion, and
litterfall in tree-based systems contribute to the nutrient cycling and OM build-up (A Bear et al.,
2014; Mishra et al., 2003). Also, active C and mineralizable N were the lowest in AG
management as compared to RF and AF (Table 1). Biomass removal from agricultural fields
(grain harvesting and straw removal practices) reduce the potential of soil C sequestration in

204	these systems (Baah-Acheamfour et al., 2014; Paustian et al., 2000). Forest and tree-based
205	agroforestry systems are considered large sinks of soil C due to annual litterfall, fine root
206	exudation, and decomposition compared to many row-crop agricultural systems (Baah-
207	Acheamfour et al., 2014; Montagnini & Nair, 2004). Fertilizer application and plant litter N
208	content could increase soil mineralizable N concentration in the AF management relative to RF
209	and AG (Franzluebbers et al., 2017; Palm et al., 2002). The larger active C and mineralizable N
210	content in the AF and RF could be attributed to the greater soil microbial biomass of these
211	systems relative to AG (Fig. 3). Moreover, decayed soil microbial biomass releases C and N into
212	the soil increasing SOC and mineralizable N (Veum et al., 2018).
213	Soil bulk density in the AG management was higher (1.29g/cm ³) compared to AF (1.19
214	g/cm ³) and RF (1.14 g/cm ³) treatments (Table 1). More organic matter quantity and quality in the
215	AF and RF systems contribute to better soil porosity and lower bulk density in both systems.
216	Tillage and soil disturbance in row crop systems affect the bulk density negatively due to the soil
217	compaction (Jiang et al., 2007; Moore et al., 2018; Udawatta and Anderson, 2008), while grass
218	establishment and lower soil disturbance promote the lower soil bulk density (Alagele et al.,
219	2019; Seobi et al., 2009).

Soil porosity (f) was significantly higher (p< 0.0001) in AF and RF rather than in the AG management system (Table 1). Land-use systems including tree roots such as agroforestry and riparian forest systems promote soil porosity (Rachman et al., 2005). Significantly larger organic matter content and abundance of roots and biopores in AF and RF systems lower the D_b and increase soil porosity (Mishra et al., 2003; Udawatta & Anderson, 2008).

Soil pH in RF (6.1) system was significantly greater relative to AF (5.3) and AG (5.7)
with no significant difference between AF and AG (soybean phase) (Table 1). Lower mean soil

pH in AF is attributed to the fertilizer application and nutrient acquisition by microorganisms and

root systems (including extensive grass root system) in surface layers (Divito et al., 2011; Fujii,

229 2014; Mishra et al., 2003).

TABLE 1 Selected soil properties (0-15cm) of three land management systems in the Missouri

River Floodplain (MRF) at Horticulture and Agroforestry Research Center (HARC), New

Franklin, MO. Data followed by the same uppercase letter within each column did not differ

233	significantly	at P<0.05.
-----	---------------	------------

Site	Bulk density	Porosity	Organic matter	NA ¹	CEC ²	pH_w	Active C	Min. N ³	Bray 1 P	Ca	Mg	K
	g cm ⁻³	%)	cmolc	kg- <u>1</u>	_	—— mg k	g- <u>1</u>		— kg h	a ⁻¹	
Agroforestry (AF)	1.19 (0.02) ^a	54 (1.2) ^a	2.7 (0.13) ^a	4.0 (0.7) ^a	15.2 (0.8) ^a	5.4 (0.15) ^a	400	100	51 (4.0) ^a	3225 (238) ^a	446 (30) ^{ab}	289 (17) ^a
Riparian forest (RF)	1.14 (0.02) ^b	58 (0.9) ^b	2.5 (0.09) ^a	1.0 (0.24) ^b	11.4 (0.5) ^b	6.1 (0.09) ^b	597	92	69 (4.0) ^a	3209 (254) ^a	399 (25) ^a	216 (11) ^b
Row-crop agriculture (AG)	1.29 (0.04) ^c	49 (1.1) ^c	1.7 (0.04) ^b	1.9 (0.17) ^b	13.4 (0.8) ^{ab}	5.7 (0.06) ^a	353	46	70 (13) ^a	4322 (217) ^b	533 (22) ^b	324 (19) ^a

234

²³⁵ ¹ neutralizable acidity

 2 cation exchange capacity

³ mineralizable N

238

Soil water-filled pore space was higher in the AF system in all three seasons for two

years (Fig. 1). Due to flooding events, in summer 2020 and spring/summer 2021 AF showed

significantly higher (p<0.0001) soil WFPS% as compared to RF and AG. The average soil

242 WFPS% in Summer 2020 was 80, 64, and 54 for AF, RF, and AG land management systems,

respectively. In Spring 2021, mean WFPS% was 67, 58, and 53 for AF, RF, and AG

respectively. Baah-Acheamfour et al. (2014) observed higher water holding capacity in forest

and agroforestry systems than in row-crop agriculture. Improved soil properties (e.g., porosity, 245 SOM) in agroforestry and forest systems enhance soil water holding capacity and soil WFPS in 246 these management systems relative to row-crop agriculture (Baily et al., 2009; Udawatta et al., 247 2006). Baah-Acheamfour et al. (2016) observed lower soil water content in forestland covers 248 than their herbland counterparts across agroforestry systems. Baily et al. (2009) observed a range 249 of WFPS between 60-80% in agroforestry (grass-tree) systems in Spring. Although soil porosity 250 is greater in the RF, lower WFPS in this system relative to AF could be associated with the 251 "safety-net hypothesis" through which extensive tree roots take up water and reduce soil WFPS 252 (Evers et al., 2010). Water-filled pore space is a limiting factor to microbial movement within the 253 soil profile. In addition, soil moisture content influences soil fungi biomass and enzyme activity 254 (Borowik et al., 2016). 255

FIGURE 1 Water-filled pore space measured seasonally in two years 2021, A); and 2020, B) for
three selected land management systems: agroforestry (AF), riparian forest (RF), and agriculture
(AG) in the Missouri River Floodplains (MRF).

260 **3.2. Soil microbial activity**

The greatest mycorrhizal fungi and total fungal biomass were observed in the RF management followed by AF and AG, respectively (Fig. 3). Accumulation of organic matter from tree roots and vegetation stimulated fungi activity, decomposition of complex organic matter components of lignin, pectins, and cellulose enhancing total PLFA while tillage and row-crop production reduce SOM content and fungal community (Barber et al., 2017; Kremer & Veum, 2015, 2020).
Gram-negative, gram-positive, and actinobacteria are highest in RF followed by AF and AG
systems. This could be attributed to the greater decomposition rate of organic matter by fungi
(greater in both RF and AF) into simpler components that support the bacterial community
(Kremer & Veum, 2015).

FIGURE 2 PLFA soil microbial community (nmol/g soil) for three land management systems:
agroforestry (AF), riparian forest (RF), and agriculture (AG) in the Missouri River Floodplain
(MRF) at Horticulture and Agroforestry Research Center (HARC), New Franklin, MO.

273 **3.3. Soil enzyme activity**

274 Results from Fall 2019 revealed that the activity of β -glucosidase was significantly greater in AF

- (p < .0001) and RF (p < .006) management relative to AG (Fig. 4). The highest mean β -
- glucosidase activity ($116 \mu g p NP g^{-1} soil h^{-1}$) was observed in the AF treatment, while the
- lowest activity (77 μ g *p*NP g⁻¹ soil h⁻¹) was attributed to the AG. In Summer 2020, the activity

of β -glucosidase was substantially greater in RF (p<0.0001) and AF (p=0.007) treatments (100 µg *p*NP g ⁻¹ soil h ⁻¹ and 77 µg *p*NP g ⁻¹ soil h ⁻¹ respectively) as compared to AG (46 µg *p*NP g ⁻¹ soil h ⁻¹). B-glucosidase activity reached the highest (p<0.0001) in Spring 2021 in RF (205 µg *p*NP g ⁻¹ soil h ⁻¹) compared with AF and AG. The mean activity of β -glucosidase in AF (153 µg *p*NP g ⁻¹ soil h ⁻¹) was significantly higher than the AG system (99 µg *p*NP g ⁻¹ soil h ⁻¹).

The average activity of β -glucosaminidase in the AF and RF systems (41 and 40 μ g pNP 283 g⁻¹ soil h⁻¹ respectively) was significantly higher (p<0.0001) in comparison with the AG 284 management system (24 μ g *p*NP g⁻¹ soil h⁻¹) in Fall 2019. The results from Summer 2020 285 revealed that the greatest β -glucosaminidase activity occurred in the RF system (Fig. 4). The 286 activity of β -glucosaminidase in AG (21 µg pNP g⁻¹ soil h⁻¹) was lower compared to AF (41 µg 287 $pNP g^{-1}$ soil h⁻¹; p<0.0004) and RF (36 µg $pNP g^{-1}$ soil h⁻¹; p<0.006) management systems. In 288 Spring 2021, the greatest activity of β -glucosaminidase (p<0.0001) was observed in RF and AF 289 systems (76 and 67 μ g *p*NP g⁻¹ soil h⁻¹ respectively) as compared to AG (19 μ g *p*NP g⁻¹ soil h⁻¹ 290 ¹). 291

Dehydrogenase activity was significantly higher in the RF system both in Summer 2020 292 $(0.4 \mu g \text{ TPF g}^{-1} \text{ soil h}^{-1})$ and Spring 2021 $(0.5 \mu g \text{ TPF g}^{-1} \text{ soil h}^{-1})$ followed by AF $(0.2 \mu g$ 293 TPF g⁻¹ soil h⁻¹). The lowest dehydrogenase activity was observed in the AG land management. 294 The mean value of dehydrogenase activity was 0.09 µg TPF g⁻¹ soil h⁻¹ in Summer 2020. The 295 lowest dehydrogenase activity was observed in Spring 2021 (0.07 μ g TPF g⁻¹ soil h⁻¹) (Fig. 4). 296 Several studies have shown greater enzyme activity in tree-based and perennial vegetation 297 298 systems relative to row crop agriculture (Acosta-Martinez et al., 2007; Kremer & Li 2003; Kumar et al., 2013; Pascual et al., 2000; Paudel et al., 2012; Udawatta et al., 2008, 2009; 299 Weerasekara et al., 2016). In an agroforestry (tree/grass) system, Alagele et al. (2019) found 300

301	mean activities of 160 and 90 μ g p NP g ⁻¹ soil h ⁻¹ for the β -glucosidase and β -glucosaminidase
302	respectively. The authors found lower activity in a row crop (corn/soybean) system (β -
303	glucosidase: 118 μ g <i>p</i> NP g ⁻¹ soil h ⁻¹ ; β -glucosaminidase: 70 μ g <i>p</i> NP g ⁻¹ soil h ⁻¹) relative to
304	agroforestry (Fig. 4) (Alagele et al., 2019). Bonanomi et al. (2011) found a lower dehydrogenase
305	activity (0.89 μ g TPF g ⁻¹ soil h ⁻¹) in farms under intensive cultivation management relative to
306	the tree orchard system (5.41 μ g TPF g ⁻¹ soil h ⁻¹). Our results for dehydrogenase activity (Fig. 4)
307	in the corn/soybean system are similar to those reported by Xavier et al. (2019) (0.05 and 0.06 μ g
308	TPF g^{-1} soil h^{-1} for corn and soybean monoculture respectively).

309

Variability of enzyme activity within the treatments were almost always greater in RF and AF land management systems relative to row-crop AG (Fig. 4). These variations could be attributed to the greater soil heterogeneity in the AF and RF systems due to the several vegetation covers and root systems compared to the AG field. Wallenius et al. (2011) found a
higher soil enzyme variability in forest topsoil as compared to soils of meadow and organic
farming fields. Increased enzyme activity in the RF and AF systems relative to AG in all
sampling times could be attributed to the improved soil properties (SOM%, porosity, microbial
biomass, and WFPS%).

322 Results from the correlation analysis in 2019 showed that β -glucosidase and β glucosaminidase were significantly correlated with the SOM% (Table 2). It has been noted in the 323 324 literature that there is a positive relationship between soil enzyme activity and soil organic matter 325 and SOC (Acosta-Martinez et al., 2007; Kremer & Hezel, 2013; Moreno et al., 2021). Larger 326 microbial communities in agroforestry and forest systems due to high input and diversity of 327 organic material increase enzyme activity relative to conventional monoculture systems (Asuming-Brempong et al. 2008; Vallejo et al., 2010). Kremer and Hezel (2013) stated that no-328 tillage practices and vegetative residues enhance dehydrogenase and β -glucosidase activity by 329 60-73% in the fields with native plants relative to croplands under conventional tillage practices. 330 331 Moreover, improved soil porosity in the AF and RF contributed to higher enzyme activity in these treatments as compared to AG. This study found a strong correlation between β-332 glucosidase and β -glucosaminidase activity and soil porosity (Table 2). Findings from several 333 studies showed that greater bulk density (due to heavy traffic) and lower porosity in monoculture 334 systems relative to agroforestry and forest land management negatively affect microbial biomass 335 and enzyme activity (Ekenler & Tabatabai, 2003; Klose & Tabatabai, 1999; Udawatta et al., 336 2009; Vallejo et al., 2010). 337

TABLE 2 Relationship between some soil physicochemical and biological properties. To
evaluate the correlation, data from three land management systems of agroforestry, row crop

agriculture, and the riparian forest was used. Values are Pearson correlation coefficients and pvalues (in parentheses).

Enzyme activity	Organic matter	Porosity	
β-glucosidase	0.69 (0.001)	0.47 (0.04)	
β-glucosaminidase	0.82 (<0.0001)	0.43 (0.07)	

342

 β -glucosaminidase activity in the AF management might have been affected by N fertilizer application at the beginning of the growing season because fertilizer application induces the activity of this enzyme (Alster et al., 2013; Ekenler & Tabatabai, 2002).

Althouhg, there was no significant correlation between the soil WFPS and enzyme activity,

soil WFPS% was higher in the AF and RF systems compared to the AG in Summer 2020 and

348 Spring 2021. It could be another reason for increased enzyme activities in the AF and RF (Figure

1). Enzymes' mobility and velocity increase by enhanced dissolution and translocation of the

substrates when the soil moisture content increases (Zhang et al., 2011). Several studies reported

that the soil dehydrogenase and β -glucosidase activities were positively correlated with the soil

moisture content (Chendrayan et al., 1980; Tate & Terry, 1980; Dilly & Munch, 1996; Zhang et

al., 2011; Wolinska & Stepniewska, 2012; Kumar et al., 2013; Furtak et al., 2020).

354 4. CONCLUSIONS

This study aimed to understand the functional capacity of soils under various management activities. Soil microbial community depiction and investigation of enzyme activity give a robust understanding of the effect of land management on soil quality and productivity. The extensive root system, litterfall, and higher soil porosity in non-disturbed soils of agroforestry and riparian forest systems relative to conventional row-crop agriculture improve soil microbial and enzyme activity as well as soil C and N cycling. This study revealed that RF and AF systems with higher

- organic matter quality and quantity contribute to the microbial biomass and selected enzyme
- activities. Missouri River Floodplain provides fertile soil for several agroecosystems. Efforts to
- incorporate optimum land management practices, which will improve soil health and sustainable
- use of these lands, should be considered by policymakers and farmers.

365 ACKNOWLEDGEMENTS

- 366 This study was funded by the USDA/NIFA (United States Department of Agriculture, National
- Institute of Food and Agriculture) (Award No. 2018-38821-27745).

368 **REFERENCES**

- A Bear, A. D., Jones, T. H., Kandeler, E., & Boddy, L. (2014). Interactive effects of temperature
 and soil moisture on fungal-mediated wood decomposition and extracellular enzyme
 activity. *Soil Biology and Biochemistry*, 70, 151-158.
 https://doi.org/10.1016/j.soilbio.2013.12.017
- Acosta-Martinez, V., & Tabatabai, M. A. (2000). Enzyme activities in a limed agricultural
 soil. *Biology and Fertility of Soils*, *31*(1), 85-91. https://doi.org/10.1007/s003740050628
- Acosta-Martinez, V., Cruz, L., Sotomayor-Ramirez, D., & Perez-Alegria, L. (2007). Enzyme
 activities as affected by soil properties and land use in a tropical watershed. *Applied Soil Ecology*, 35(1), 35-45. https://doi.org/10.1016/j.apsoil.2006.05.012
- Alagele, S.M., Anderson, S.H., Udawatta, R.P., Veum, K.S., & Rankoth, L.M. (2019). Effects of
 conservation practices on soil quality compared with a corn–soybean rotation on a
 claypan soil. *Journal of Environmental Quality*, 48(6), 1694-1702.
 https://doi.org/10.2134/jeq2019.03.0121
- Alster, C. J., German, D. P., Lu, Y., & Allison, S. D. (2013). Microbial enzymatic responses to
 drought and to nitrogen addition in a southern California grassland. *Soil Biology and Biochemistry*, 64, 68-79. https://doi.org/10.1016/j.soilbio.2013.03.034
- Amadi, C. C., Van Rees, K. C., & Farrell, R. E. (2016). Soil–atmosphere exchange of carbon
 dioxide, methane, and nitrous oxide in shelterbelts compared with adjacent cropped
 fields. *Agriculture, Ecosystems & Environment*, 223, 123-134.
- 388 https://doi.org/10.1016/j.agee.2016.02.026

389 390 391 392	Anderson, N.P., Hart, J.M., Christensen, N.W., Mellbye, M.E. & Flowers, M.D., 2010. Using the nitrogen mineralization soil test to predict spring fertilizer N rate for soft white winter wheat grown in western Oregon. Oregon State University Extension Service. https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/em9020.pdf
393	Asuming-Brempong, S., Gantner, S., Adiku, S. G. K., Archer, G., Edusei, V., & Tiedje, J. M.
394	(2008). Changes in the biodiversity of microbial populations in tropical soils under
395	different fallow treatments. Soil Biology and Biochemistry, 40(11), 2811-2818.
396	https://doi.org/10.1016/j.soilbio.2008.08.010
397	Baah-Acheamfour, M., Carlyle, C. N., Bork, E. W., & Chang, S. X. (2014). Trees increase soil
398	carbon and its stability in three agroforestry systems in central Alberta, Canada. Forest
399	Ecology and Management, 328, 131-139. http://doi.org/10.1016/j.foreco.2014.05.031
400	Baah-Acheamfour, M., Carlyle, C. N., Lim, S. S., Bork, E. W., & Chang, S. X. (2016). Forest
401	and grassland cover types reduce net greenhouse gas emissions from agricultural
402	soils. Science of the Total Environment, 5/1, 1115-112/.
403	https://doi.org/10.1016/j.scitotenv.2016.07.106
404	Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton Jr, H. (2011). Reconciling apparent variability
405	in effects of biochar amendment on soil enzyme activities by assay optimization. Soil
406	<i>Biology and Biochemistry</i> , 43(2), 296-301. https://doi.org/10.1016/j.soilbio.2010.10.014
407	Barber, N. A., Chantos-Davidson, K. M., Amel Peralta, R., Sherwood, J. P., & Swingley, W. D.
408	(2017). Soil microbial community composition in tallgrass prairie restorations converge
409	with remnants across a 27-year chronosequence. <i>Environmental Microbiology</i> , 19(8),
410	3118-3131. http://doi.org/10.1111/1462-2920.13785
411	Bonanomi, G., D'Ascoli, R., Antignani, V., Capodilupo, M., Cozzolino, L., Marzaioli, R.,
412	Puopolo, G., Rutigliano, F.A., Scelza, R., Scotti, R., Rao, M.A., Zoina, A., & Zoina, A.
413	(2011). Assessing soil quality under intensive cultivation and tree orchards in Southern
414	Italy. Applied Soil Ecology, 47(3), 184-194. http://doi.org/10.1016/j.apsoil.2010.12.007
415	Bordoloi, N., Baruah, K. K., & Maji, T. K. (2016). Nitrous oxide emission from a transplanted
416	rice field in alluvial soil as influenced by management of nitrogen fertilizer. Soil Use and
417	Management, 32(4), 573-582. http://doi.org/10.1111/sum.12294
418	Borowik, A., & Wyszkowska, J. (2016). Soil moisture as a factor affecting the microbiological
419	and biochemical activity of soil. <i>Plant, Soil and Environment</i> , 62(6), 250-255.
420	http://doi.org/10.17221/158/2016-PSE
421	Buyer, J. S., & Sasser, M. (2012). High throughput phospholipid fatty acid analysis of
422	soils. Applied Soil Ecology, 61, 127-130. http://doi.org/10.1016/j.apsoil.2012.06.005

423	Chapuis-Lardy, L. Y. D. I. E., Wrage, N., Metay, A., Chotte, J. L., & Bernoux, M. (2007). Soils,
424	a sink for N ₂ O? a review. <i>Global Change Biology</i> , 13(1), 1-17.
425	http://doi.org/10.1111/j.1365-2486.2006.01280.x
426 427 428	Chendrayan, K., Adhya, T. K., & Sethunathan, N. (1980). Dehydrogenase and invertase activities of flooded soils. <i>Soil Biology and Biochemistry</i> , <i>12</i> (3), 271-273. https://doi.org/10.1016/0038-0717(80)90073-5
429	 Culman, S. W., Snapp, S. S., Freeman, M. A., Schipanski, M. E., Beniston, J., Lal, R.,
430	Drinkwater, L.E., Laurie E. Franzluebbers, A.J., Glover, J.D., Grandy, A.S., Lee, J., Six,
431	J., Maul, J.E., Mirksy, S.B., Spargo, J.T., & Wander, M.M. (2012). Permanganate
432	oxidizable carbon reflects a processed soil fraction that is sensitive to management. <i>Soil</i>
433	<i>Science Society of America Journal</i> , <i>76</i> (2), 494-504. http://doi.org/10.1016/0038-
434	0717(80)90073-5
435	Dick, W. A. (1984). Influence of long-term tillage and crop rotation combinations on soil
436	enzyme activities. Soil Science Society of America Journal, 48(3), 569-574.
437	http://doi.org/10.2136/sssaj1984.03615995004800030020x
438	Dilly, O., & Munch, J. C. (1996). Microbial biomass content, basal respiration, and enzyme
439	activities during the course of decomposition of leaf litter in a black alder (Alnus
440	glutinosa (L.) Gaertn.) forest. <i>Soil Biology and Biochemistry</i> , 28(8), 1073-1081.
441	http://doi.org/10.1016/0038-0717(96)00075-2
442	Divito, G. A., Rozas, H. R. S., Echeverría, H. E., Studdert, G. A., & Wyngaard, N. (2011). Long
443	term nitrogen fertilization: Soil property changes in an Argentinean Pampas soil under no
444	tillage. Soil and Tillage Research, 114(2), 117-126.
445	http://doi.org/10.1016/j.still.2011.04.005
446	Dixon, G. R., & Tilston, E. L. (Eds.). (2010). Soil microbiology and sustainable crop production.
447	Springer Science & Business Media. http://doi.org/10.1007/978-90-481-9479-7
448 449	Dutaur, L., & Verchot, L.V. (2007). A global inventory of the soil CH ₄ sink. <i>Global Biogeochemical Cycles</i> , 21(4). https://doi.org/10.1029/2006GB002734
450 451	Eivazi, F. & Tabatabai, M.A., (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
452	Eivazi, F., Bayan, M. R., & Schmidt, K. (2003). Select soil enzyme activities in the historic
453	Sanborn Field as affected by long-term cropping systems. <i>Communications in Soil</i>
454	<i>Science and Plant Analysis</i> , 34(15-16), 2259-2275. https://doi.org/10.1081/CSS-
455	120024062

456 457	Ekenler, M. (2002). <i>Enzyme activities in soils as affected by management practices</i> . Iowa State University. https://doi.org/10.31274/rtd-180813-14312
458	Ekenler, M., & Tabatabai, M. (2002). β-Glucosaminidase activity of soils: Effect of cropping
459	systems and its relationship to nitrogen mineralization. <i>Biology and Fertility of</i>
460	<i>Soils</i> , 36(5), 367-376. https://doi.org/10.1007/s00374-002-0541-x
461	Ekenler, M., & Tabatabai, M. A. (2003). Effects of liming and tillage systems on microbial
462	biomass and glycosidases in soils. <i>Biology and Fertility of Soils</i> , 39(1), 51-61.
463	https://doi.org/10.1007/s00374-003-0664-8
464	Evers, A. K., Bambrick, A., Lacombe, S., Dougherty, M. C., Peichl, M., Gordon, A. M.,
465	Thevathasan, N.V., Whalen, J., & Bradley, R. L. (2010). Potential greenhouse gas
466	mitigation through temperate tree-based intercropping systems. <i>The Open Agriculture</i>
467	<i>Journal</i> , 4(1). http://doi.org/10.2174/1874331501004010049
468	Fabrizzi, K. P., Garcia, F. O., Costa, J. L., & Picone, L. I. (2005). Soil water dynamics, physical
469	properties, and corn and wheat responses to minimum and no-tillage systems in the
470	southern Pampas of Argentina. <i>Soil and Tillage Research</i> , 81(1), 57-69.
471	http://doi.org/10.1016/j.still.2004.05.001
472	Franzluebbers, A. J., Chappell, J. C., Shi, W., & Cubbage, F. W. (2017). Greenhouse gas
473	emissions in an agroforestry system of the southeastern USA. <i>Nutrient Cycling in</i>
474	<i>Agroecosystems</i> , 108(1), 85-100. https://doi.org/10.1007/s10705-016-9809-7
475	Frenzel, P., Rothfuss, F., & Conrad, R. (1992). Oxygen profiles and methane turnover in a
476	flooded rice microcosm. <i>Biology and Fertility of Soils</i> , 14(2), 84-89.
477	https://doi.org/10.1007/BF00336255
478	Fujii, K. (2014). Soil acidification and adaptations of plants and microorganisms in Bornean
479	tropical forests. <i>Ecological Research</i> , 29(3), 371-381. https://doi.org/10.1007/s11284-
480	014-1144-3
481	Furtak, K., Galazka, A., & Niedzwiecki, J. (2020). Changes in soil enzymatic activity caused by
482	hydric stress. <i>Polish Journal of Environmental Studies</i> , 29(4).
483	https://doi.org/10.15244/pjoes/112896
484 485 486 487	 Gao, B., Ju, X., Su, F., Meng, Q., Oenema, O., Christie, P., Chen, X., & Zhang, F. (2014). Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. <i>Science of the Total Environment</i>, 472, 112-124. https://doi.org/10.1016/j.scitotenv.2013.11.003

488	Gonzalez Mace, O., Steinauer, K., Jousset, A., Eisenhauer, N., & Scheu, S. (2016). Flood-
489	induced changes in soil microbial functions as modified by plant diversity. <i>PLoS</i>
490	<i>One</i> , 11(11), e0166349. https://doi.org/10.1371/journal.pone.0166349
491 492 493	Hulicova, P., Fazekasova, D. & Fazekas, J. (2018). Impact of flooding on soil enzyme activity in environmentally sensitive areas. <i>Carpathian Journal of Earth and Environmental Sciences</i> , 13, 567-574. http://doi.org/10.26471/cjees/2018/013/048
494	Jarvan, M., Edesi, L., Adamson, A., & Vosa, T. (2014). Soil microbial communities and
495	dehydrogenase activity depending on farming systems. <i>Plant, Soil and</i>
496	<i>Environment, 60</i> (10), 459-463. http://doi.org/10.17221/410/2014-PSE
497	Jiang, P., Anderson, S.H., Kitchen, N.R., Sadler, E.J., & Sudduth, K.A. (2007). Landscape and
498	conservation management effects on hydraulic properties on a claypan-soil toposequence.
499	<i>Soil Science Society of America Journal</i> , 71, 803-811
500	http://doi.org/10.2136/sssaj2006.0236
501	Klose, S., & Tabatabai, M. A. (1999). Arylsulfatase activity of microbial biomass in soils. Soil
502	Science Society of America Journal, 63(3), 569-574.
503	http://doi.org/10.2136/sssaj1999.03615995006300030020x
504	Kremer, R. J., & Li, J. (2003). Developing weed-suppressive soils through improved soil quality
505	management. <i>Soil and Tillage Research</i> , 72(2), 193-202. http://doi.org/10.1016/S0167-
506	1987(03)00088-6
507	Kremer, R. J., & Hezel, L. F. (2013). Soil quality improvement under an ecologically based
508	farming system in northwest Missouri. <i>Renewable Agriculture and Food Systems</i> , 28(3),
509	245-254. http://doi.org/10.1017/S174217051200018X
510 511	Kremer, R. J., & Veum, K. S. (2015). Soil microbiota of the prairie. <i>Missouri Prairie Journal, 36</i> (3-4), pp.18-21
512 513	Kremer, R. J., & Veum, K. S. (2020). Soil biology is enhanced under soil conservation management. <i>Soil and Water Conservation: A Celebration of</i> , 75.
514	Kumar, S., Chaudhuri, S. & Maiti, S.K. (2013). Soil dehydrogenase enzyme activity in natural
515	and mine soil-a review. <i>Middle-East Journal of Scientific Research</i> , 13(7), 898-906.
516	http://doi.org/10.5829/idosi.mejsr.2013.13.7.2801
517	Liang, Q., Chen, H., Gong, Y., Yang, H., Fan, M., & Kuzyakov, Y. (2014). Effects of 15 years of
518	manure and mineral fertilizers on enzyme activities in particle-size fractions in a North
519	China Plain soil. <i>European Journal of Soil Biology</i> , 60, 112-119.
520	http://doi.org/10.1016/j.ejsobi.2013.11.009

521 522	Ludwig, J., Meixner, F.X., Vogel, B., & Forstner, J., (2001). Soil-air exchange of nitric oxide: An overview of processes, environmental factors, and modeling
523	studies. Biogeochemistry, 52(3), 225-257. http://doi.org/10.1023/A:1006424330555
524	McLaughlin, D., & Kinzelbach, W. (2015). Food security and sustainable resource management.
525	Water Resources Research, 51(7), 4966-4985. http://doi.org/10.1002/2015WR017053
526	Merino, A., Perez-Batallon, P., & Macias, F. (2004). Responses of soil organic matter and
527	greenhouse gas fluxes to soil management and land use changes in a humid temperate
528	region of southern Europe. Soil Biology and Biochemistry, 36(6), 917-925.
529	http://doi.org/10.1016/j.soilbio.2004.02.006
530	Mishra, A., Sharma, S. D., & Khan, G. H. (2003). Improvement in physical and chemical
531	properties of sodic soil by 3, 6, and 9 years old plantation of Eucalyptus tereticornis:
532	Biorejuvenation of sodic soil. Forest Ecology and Management, 184(1-3), 115-124.
533	http://doi.org/10.1016/S0378-1127(03)00213-5
534	Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: an underexploited environmental
535	benefit of agroforestry systems. In New vistas in agroforestry, 281-295
536	http://doi.org/10.1023/B:AGFO.0000029005.92691.79
537	Moore, B. D., Kaur, G., Motavalli, P. P., Zurweller, B. A., & Svoma, B. M. (2018). Soil
538	greenhouse gas emissions from agroforestry and other land uses under different moisture
539	regimes in lower Missouri River Floodplain soils: A laboratory approach. Agroforestry
540	systems, 92(2), 335-348. https://doi.org/10.1007/s10457-017-0083-8
541	Moreno, M. V., Biganzoli, F., Casas, C., Manso, L., Moreira, E., & Silvestro, L. B. (2021).
542	Changes in soil biological properties in different management and tillage systems in
543	petrocalcic argiudoll. Journal of the Saudi Society of Agricultural Sciences, 20(2), 75-80.
544	http://doi.org/10.1016/j.jssas.2020.12.001
545	Nag, S.K., Liu, R. & Lal, R. (2017). Emission of greenhouse gases and soil carbon sequestration
546	in a riparian marsh wetland in central Ohio. Environmental Monitoring and
547	Assessment, 189(11), 1-12. https://link.springer.com/article/10.1007%2Fs10661-017-
548	6276-9
549	Nathan, M. V., Stecker, J. A., & Sun, U. (2012). Soil testing in Missouri: A guide for conducting
550	soil tests in Missouri (2012). https://mospace.umsystem.edu/xmlui/handle/10355/50590
551	Natural Resources Conservation Service, United States Department of Agriculture (NRCS).
552	(2004). Soil Survey Laboratory Methods Manual.
553	https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd1026807.pdf.

554	Neira, J., Ortiz, M., Morales, L. and Acevedo, E. (2015). Oxygen diffusion in soils:
555	Understanding the factors and processes needed for modeling. <i>Chilean Journal of</i>
556	<i>Agricultural Research</i> , 75, 35-44. http://doi.org/10.4067/S0718-58392015000300005
557	Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas
558	emissions from soils—A review. <i>Geochemistry</i> , 76(3), 327-352.
559	http://doi.org/10.1016/j.chemer.2016.04.002
560	Palm, C. A., Alegre, J. C., Arevalo, L., Mutuo, P. K., Mosier, A. R., & Coe, R. (2002). Nitrous
561	oxide and methane fluxes in six different land use systems in the Peruvian
562	Amazon. <i>Global Biogeochemical Cycles</i> , 16(4), 21-1.
563	http://doi.org/10.1029/2001GB001855
564 565 566 567 568	 Palma, J. H., Graves, A. R., Bunce, R. G. H., Burgess, P. J., De Filippi, R., Keesman, K. J., Van Keulen, H., Liagre, F., Mayus, M., Moreno, G., Reisner, Y., & Herzog, F. (2007). Modeling environmental benefits of silvoarable agroforestry in Europe. <i>Agriculture, Ecosystems & Environment</i>, 119(3-4), 320-334. https://doi.org/10.1016/j.agee.2006.07.021
569	Parham, J.A., and Deng, S.P. (2000). Detection, quantification, and characterization of β-
570	glucosaminidase activity in soil. <i>Soil Biology and Biochemistry</i> , <i>32</i> (8-9), 1183-1190.
571	https://doi.org/10.1016/S0038-0717(00)00034-1
572 573 574	Pascual, J. A., Garcia, C., Hernandez, T., Moreno, J. L., & Ros, M. (2000). Soil microbial activity as a biomarker of degradation and remediation processes. <i>Soil Biology and Biochemistry</i> , <i>32</i> (13), 1877-1883. http://doi.org/10.1016/S0038-0717(00)00161-9
575	Paudel, B. R., Udawatta, R. P., Kremer, R. J., & Anderson, S. H. (2012). Soil quality indicator
576	responses to row crop, grazed pasture, and agroforestry buffer management. <i>Agroforestry</i>
577	<i>Systems</i> , 84(2), 311-323. http://doi.org/10.1007/s10457-011-9454-8
578	Paustian, K., Six, J., Elliott, E. T., & Hunt, H. W. (2000). Management options for reducing CO ₂
579	emissions from agricultural soils. <i>Biogeochemistry</i> , 48(1), 147-163.
580	http://doi.org/10.1023/A:1006271331703
581	Rachman, A., Anderson, S. H., & Gantzer, C. J. (2005). Computed-tomographic measurement of
582	soil macroporosity parameters as affected by stiff-stemmed grass hedges. <i>Soil Science</i>
583	<i>Society of America Journal</i> , 69(5), 1609-1616. http://doi.org/10.2136/sssaj2004.0312
584	Salazar, S., Sanchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., Peix, A., & Santa-
585	Regina, I. (2011). Correlation among soil enzyme activities under different forest system
586	management practices. <i>Ecological Engineering</i> , 37(8), 1123-1131.
587	http://doi.org/10.1016/j.ecoleng.2011.02.007

588	Sauer, T. J., Cambardella, C. A., & Brandle, J. R. (2007). Soil carbon and tree litter dynamics in
589	a red cedar–scotch pine shelterbelt. <i>Agroforestry Systems</i> , 71(3), 163-174.
590	http://doi.org/10.1007/s10457-007-9072-7
591	Seobi, T., Anderson, S. H., Udawatta, R. P., & Gantzer, C. J. (2005). Influence of grass and
592	agroforestry buffer strips on soil hydraulic properties for an Albaqualf. <i>Soil Science</i>
593	<i>Society of America Journal</i> , 69(3), 893-901. http://doi.org/10.2136/sssaj2004.0280
594	Stott, D. E., Andrews, S. S., Liebig, M. A., Wienhold, B. J., & Karlen, D. L. (2009). Evaluation
595	of β-glucosidase activity as a soil quality indicator for the soil management assessment
596	framework. Soil Science Society of America Journal, 74(1), 107-119
597	http://doi.org/10.2136/sssaj2009.0029
598 599	Tabatabai, M. A. (1994). Soil enzymes. <i>Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties</i> , 5, 775-833. framework.
600	Tate, R.L., & Terry, R.E. (1980). Variation in microbial activity in histosols and its relationship
601	to soil moisture. <i>Applied and Environmental Microbiology</i> , 40(2), 313-317.
602	http://doi.org/10.1128/AEM.40.2.313-317.1980
603 604	Topp, G.C., & Ferre, P.A. (2002). Water content. In Methods of Soil Analysis Part 4, Physical Methods, Dane J.H. &Topp G.C. (eds). <i>Soil Science Society of America</i> , 417-545
605	Udawatta, R. P., Anderson, S. H., Gantzer, C. J., & Garrett, H. E. (2006). Agroforestry and grass
606	buffer influence on macropore characteristics: A computed tomography analysis. <i>Soil</i>
607	<i>Science Society of America Journal</i> , <i>70</i> (5), 1763-1773.
608	http://doi.org/10.2136/sssaj2006.0307
609 610 611	Udawatta, R.P., Anderson, S.H., Gantzer, C.J., & Garrett, H.E. (2008). Influence of prairie restoration on CT-measured soil pore characteristics. <i>Journal of Environmental Quality</i> , <i>37</i> (1), 219-228. http://doi.org/10.2134/jeq2007.0227
612	Udawatta, R. P., Kremer, R. J., Garrett, H. E., & Anderson, S. H. (2009). Soil enzyme activities
613	and physical properties in a watershed managed under agroforestry and row-crop
614	systems. <i>Agriculture, Ecosystems and Environment, 131</i> (1-2), 98-104.
615	http://doi.org/10.1016/j.agee.2008.06.001
616	Ussiri, D.A., Lal, R. & Jarecki, M.K. (2009). Nitrous oxide and methane emissions from long-
617	term tillage under a continuous corn cropping system in Ohio. <i>Soil and Tillage</i>
618	<i>Research</i> , <i>104</i> (2), 247-255. http://doi.org/10.1016/j.still.2009.03.001
619	Vallejo, V. E., Roldan, F., & Dick, R. P. (2010). Soil enzymatic activities and microbial biomass
620	in an integrated agroforestry chronosequence compared to monoculture and a native

- forest of Colombia. *Biology and Fertility of Soils*, 46(6), 577-587.
 http://doi.org/10.1007/s00374-010-0466-8
- Vanhala, P. (2002). Seasonal variation in the soil respiration rate in coniferous forest soils. *Soil Biology and Biochemistry*, *34*(9), 1375-1379. http://doi.org/10.1016/S0038 0717(02)00061-5
- Verchot, L. V., & Borelli, T. (2005). Application of para-nitrophenol (pNP) enzyme assays in
 degraded tropical soils. *Soil Biology and Biochemistry*, *37*(4), 625-633.
 http://doi.org/10.1016/j.soilbio.2004.09.005
- Veum, K. S., Goyne, K. W., Holan, S. H., & Motavalli, P. P. (2011). Assessment of soil organic
 carbon and total nitrogen under conservation management practices in the Central
 Claypan Region, Missouri, USA. *Geoderma*, *167*, 188-196.
 http://doi.org/10.1016/j.geoderma.2011.09.003
- Veum, K. S., Goyne, K. W., Kremer, R. J., Miles, R. J., & Sudduth, K. A. (2014). Biological
 indicators of soil quality and soil organic matter characteristics in an agricultural
 management continuum. *Biogeochemistry*, *117*(1), 81-99. http://doi.org/10.1007/s10533013-9868-7
- Veum, K. S., Lorenz, T. L., & Kremer, R. J. (2018). Microbial community structure in Missouri
 prairie soils. *Missouri Prairie Journal*, *39*, 18-20.
- Wallenius, K., Rita, H., Mikkonen, A., Lappi, K., Lindström, K., Hartikainen, H., Raateland, A.,
 & Niemi, R. M. (2011). Effects of land use on the level, variation, and spatial structure of
 soil enzyme activities and bacterial communities. *Soil Biology and Biochemistry*, 43(7),
 1464-1473. http://doi.org/10.1016/j.soilbio.2011.03.018
- Wang, X., Qi, J. Y., Zhang, X. Z., Li, S. S., Virk, A. L., Zhao, X., Xiao, X.P., & Zhang, H. L.
 (2019). Effects of tillage and residue management on soil aggregates and associated
 carbon storage in a double paddy cropping system. *Soil and Tillage Research*, *194*http://doi.org/10.1016/j.still.2019.104339
- Weerasekara, C., Udawatta, R. P., Jose, S., Kremer, R. J., & Weerasekara, C. (2016). Soil quality
 differences in a row-crop watershed with agroforestry and grass buffers. *Agroforestry Systems*, 90(5), 829-838. https://link.springer.com/article/10.1007/s10457-016-9903-5
- Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B., & Samson-Liebig, S. E. (2003). Estimating
 active carbon for soil quality assessment: A simplified method for laboratory and field
 use. *American Journal of Alternative Agriculture*, *18*(1), 3-17.
 http://doi.org/10.1079/AJAA200228

654	Weitao, L.I., Meng, W.U., Ming, L.I.U., Jiang, C., Xiaofen, C.H.E.N., Kuzyakov, Y., Rinklebe,
655	J. & Zhongpei, L.I. (2018). Responses of soil enzyme activities and microbial community
656	composition to moisture regimes in paddy soils under long-term fertilization
657	practices. Pedosphere, 28(2), 323-331. http://doi.org/10.1016/S1002-0160(18)30005-5
658	Wolinska, A., & Stępniewska, Z. (2012). Dehydrogenase activity in the soil
659	environment. Dehydrogenases, 10, 183-210. http://doi.org/10.5772/48294
660	Xavier, C. V., Moitinho, M. R., Teixeira, D. D. B., de Araujo Santos, G. A., de Andrade
661	Barbosa, M., Milori, D. M. B. P., Rigobelo, E., Cora, J.E., & Junior, N. L. S. (2019).
662	Crop rotation and succession in a no-tillage system: implications for CO ₂ emission and
663	soil attributes. Journal of environmental management, 245, 8-15.
664	http://doi.org/10.1016/j.jenvman.2019.05.053
665	Yuan, X., Lin, X., Chu, H., Yin, R., Zhang, H., Hu, J. and Zhu, J. (2006). Effects of elevated
666	atmospheric CO ₂ on soil enzyme activities at different nitrogen application
667	treatments. Acta Ecologica Sinica, 26(1), 48-53. http://doi.org/10.1016/S1872-
668	2032(06)60005-X
669	Zhang, Y., Chen, L., Wu, Z., & Sun, C. (2011). Kinetic parameters of soil β-glucosidase
670	response to environmental temperature and moisture regimes. Revista Brasileira de
671	Ciancia do Solo, 35(4), 1285-1291. http://doi.org/10.1590/S0100-06832011000400022
c = 0	

672