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Abstract

Vegetation is an important component of terrestrial ecosystem as it supports other biological activities through the photosyn-

thetic production. The biophysical and biochemical parameters of vegetation retrieved from satellite observations have been

used extensively in studying the physiological states and growing conditions of vegetation that enabling global vegetation mon-

itoring. Most of vegetation remote sensing applications using data from MODIS, Landsat, and Sentinel, though it would be

beneficial, from the user perspective, to have an even more diverse data sources that not only secure data sustainability in case

satellite retirement or sensor failure, but also enables research opportunities such as multi-sensor data fusion/integration and

multi-angle remote sensing that can take advantage of observations acquired from different spaceborne sensors. In this regard,

it would be worth to explore the potential of the large number of Chinese Earth Observation Satellites (CEOS) that have been

put into orbit over past decade. Here we summarized the recent advances in applying CEOS remote sensing of vegetation and

its associated applications. We focused on the uncertainty and limitations for retrieving several commonly-used vegetation

parameters by critically examining the case studies conducted over different vegetation types. Suggestions for research oppor-

tunities that can benefit from the additional data from CEOS are also provided. The hope is to provide the community an

overview of what could be useful to their specific ecological, environmental and global change studies by leveraging the growing

data volume from the orbiting CEOS sensors.
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Abstract 9 

Vegetation is an important component of the Earth system as it supports other terrestrial biological 10 

activities through the photosynthetic production. The biophysical and biochemical parameters of 11 

vegetation retrieved from satellite observations have been used extensively in global vegetation 12 

monitoring and Earth system modeling. So far, most of vegetation remote sensing applications used 13 

data from sensors onboard satellites from American or European space agencies. From the user 14 

perspective, it would be beneficial to have an even more diverse data sources that can secure data 15 

sustainability in case of satellite retirement or sensor failure and enables research opportunities such 16 

as multi-sensor data fusion/integration and multi-angle remote sensing. In this regard, it would be 17 

worth exploring the potential of the Chinese Earth Observation Satellites (CEOS) for monitoring 18 

vegetation dynamics and for understanding Earth system functioning in general from space. Here 19 



 

 

we summarized the recent advances in applying CEOS data to retrieve several key vegetation 20 

parameters widely used in geoscience field. We focused on the uncertainty and limitations by 21 

critically examining the case studies conducted over different vegetation types. Suggestions for 22 

research opportunities that can benefit from the combined use of data from the CEOSs as well as 23 

other international spaceborne sensors are also provided. The hope is to provide the community an 24 

overview of what could be useful to their specific geoscientific, environmental and global change 25 

studies by leveraging the growing data volume from the orbiting and the planned CEOS sensors.  26 

Keywords: remote sensing of vegetation, Earth system dynamics, global change, multi-sensor 27 

fusion, data continuity 28 

1 Introduction 29 

Vegetation remote sensing refers to the retrieval of biochemical and biophysical parameters of 30 

vegetation using satellite observations (Aplin 2005). Commonly used vegetation parameters include 31 

vegetation indices (VIs), leaf area index (LAI), fractional vegetation cover (FVC), aboveground 32 

biomass (AGB) and sun-induced chlorophyll fluorescence (SIF) (Cohen and Goward 2004; Kerr 33 

and Ostrovsky 2003; Wulder et al. 2004). These parameters have been widely used as a diagnostic 34 

proxy as well as inputs to prediction models in the fields of geoscience, agriculture, ecology, 35 

environmental science, and global change (Gianelle et al. 2009; Nara and Sawada 2021; Pettorelli et 36 

al. 2005).  37 

Over past few decades, the field of remote sensing of vegetation witnessed rapid advances and 38 

enormous successes. A large credit should be given to the significant amount of investment, usually 39 



 

 

from state governments, to the satellite sensors that eventually enabled global monitoring of 40 

vegetation dynamics and associated geoscientific applications. Spaceborne sensors such as AVHRR 41 

(Advanced Very-High-Resolution Radiometer), MODIS (Moderate-resolution Imaging 42 

Spectroradiometer) and ETM+ (Enhanced Thematic Mapper plus), have acquired a huge amount of 43 

science-quality data that led to a surge of applications in vegetation remote sensing (Davis et al. 44 

2017; Liu et al. 2018; Mancino et al. 2020; Zhang et al. 2017; Zhou et al. 2018; Zoungrana et al. 45 

2018). 46 

Recently, China has started launching more and more Earth Observation satellites that carry 47 

instruments including multispectral, hyperspectral sensors and Synthetic Aperture Rader (SAR), in 48 

together termed as the Chinese Earth Observation Satellites (CEOSs) (Figure 1). There have been 49 

many studies using data from CEOSs for retrieving vegetation parameters. A systemic review on 50 

the potential and limitations of the sensors onboard CEOSs for remote sensing of vegetation, 51 

however, is not available yet. To what extent do the CEOS sensors specifications and performance 52 

resemble the industry-standard sensors such as MODIS or ETM+/OLI? What are the accuracies for 53 

retrieving several commonly-used vegetation parameters from the CEOS sensors in different 54 

ecosystem types? What multi-sensor research opportunities are enabled by adding CEOSs? 55 

Answering these questions would be useful for the end-users to better use the data from CEOSs in 56 

their specific studies. This review aims to provide the community a summary of the recent advances 57 

in using CEOS sensors for vegetation remote sensing and its associated applications. To make this 58 

review reach a broader international community, most of the literature cited in this review are 59 

published in English journals, with the remaining published in Chinese journals at least contain 60 

Deleted:  61 



 

 

abstracts written in English. In addition, the weblinks to the data portals of CEOSs with English 62 

language support are also provided.  63 

 64 

Figure 1 Timelines of several major CEOSs (FY: FengYun Meteorological Satellites; GF: GaoFen Satellites; ZY: 65 

ZiYuan Satellites; HJ: HuanJing satellites; SJ: ShiJian satellites; SDGSAT: Sustainable Development Goals 66 

Satellite; TanSat: Global CO2 observation and monitoring satellite) 67 

2 Overview on specifications of the CEOS sensors  68 

At present, there are five major CEOS constellations that have the potential to be used for 69 

vegetation remote sensing, including GaoFen, HuanJing/ShiJian, ZiYuan, FengYun and TanSat. 70 

Sensors onboard these satellites include panchromatic, visible, multispectral, hyperspectral to 71 

Synthetic Aperture Radar (SAR), with data recorded at different spatial resolutions (submeter to 72 

kilometer). Table 1 summarizes the specifications of above five CEOS constellations and Figure 2 73 

compares the spectral band configurations between the optical sensors onboard CEOSs and other 74 

international satellites.  75 
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 79 

Figure 2 Comparisons in spectral band configurations between optical sensors onboard the CEOSs and other international satellites. Each bar represents a single band and 80 

the width of the bar indicates bandwidth. The number on the bar indicates the band number. Spatial resolution of each band is indicated with grey-colour text. The 81 

background shows the atmospheric transmittance of the 1976 U.S. standard atmosphere. 82 



 

 

2.1 GaoFen Satellites 83 

GaoFen (GF in acronym, or “High-resolution”) is a series of Chinese high-resolution Earth imaging 84 

satellites, which is part of the state-sponsored Chinese High-resolution Earth Observation System 85 

(CHEOS) program. GF-1 is the first satellite of GF series, and was launched on April 26, 2013, 86 

with an expected lifetime of 5-8 years. It carries 4 Wide-Field View multispectral sensors (WFV) 87 

with 16 m resolution, and a Panchromatic / Multispectral sensor (PMS) with 2 m spatial resolution 88 

in panchromatic mode and 8 m spatial resolution in multispectral mode. To date, there have been 89 

four nearly identical GF-1 launched into orbits, all can provide high spatial and temporal resolution 90 

multispectral measurements. GaoFen-6 (GF-6) is another multispectral satellite launched on June 2, 91 

2018, with an expected lifetime of 8 years. Equipped with the WFV and PMS sensors similar to 92 

GF-1, GF-6 also adds a "red edge" band to capture the unique spectral characteristics of crops. GF-93 

1/6 WFV and PMS sensors are similar to Sentinel-2/MSI and SPOT-6(7)/NAOMI, respectively 94 

(Appendix Table A1 and A2). 95 

GaoFen-2 (GF-2) was launched on August 19, 2014, with an expected lifetime of 5-8 years. It 96 

carries a PMS with the spatial resolution of 0.8 m in panchromatic mode and 3.2 m in multispectral 97 

mode, and is the first Chinese sub-meter spatial resolution satellite (Huang et al. 2018; Pan 2015). 98 

GF-2/PMS is similar to QuickBird and WorldView satellites (Appendix Table A3). 99 

GaoFen-3 (GF-3) is a SAR constellation consisting of three satellites, i.e. GF-3 01, GF-3 02 and 100 

GF-3 03, that were launched on August 9, 2016, November 22, 2021, and April 7, 2022, 101 
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respectively. Each of the GF-3 carries the C-band multi-polarization SAR that has the world’s 105 

largest number of imaging modes with multiple spatial resolutions ranging from 1 m to 500 m and 106 

daily temporal resolution. GF-3 is similar to ESA’s Sentinel-1 (Appendix Table A4). 107 

GaoFen-4 (GF-4) was launched on December 29, 2015, with an expected lifetime of 8 years. GF-4 108 

is the world’s highest spatial resolution geostationary satellite equipped with a 5-channel PMS 109 

camera which has a spatial resolution of 50 m (in staring mode). The spectral range of PMS is 110 

located between visible and near-infrared. In addition, GF-4 also has a one-channel mid-infrared 111 

camera with a spatial resolution of 400 m. GF-4/PMS is similar to GOES-R/ABI and Himawari-112 

8/AHI. 113 

GaoFen-5 (GF-5) are mainly used as a full-spectrum hyperspectral satellites launched on May 9, 114 

2018 (GF-5 01), and July 9, 2021 (GF-5 02), with an expected lifetime of 8 years. Each of GF-5 115 

satellite carries the Advanced Hyperspectral Imager (AHSI) that has 330 bands from 400 – 2500 nm 116 

with a spatial resolution of 30 m. GF-5/AHSI is similar to EO-1/Hyperion and DLR/DESIS 117 

(Appendix Table A5). 118 

GaoFen-7 (GF-7), launched on November 3, 2019, is mainly used as a high spatial resolution stereo 119 

mapping satellite. GF-7 breakthrough the sub-meter stereo mapping technology, and can acquire 120 

satellite stereo maps with a scale of 1:10,000. 121 

Table 1 Specifications of the sensors onboard the GF satellites 122 

Satellite Payload 
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Band 
No. 

Spectral 
Range 
(!") 

Spatial 
Resolution 

(m) 

Swath 
Width (km) 

Revisit Cycle 
(days) 

Similar 
Sensors 

 

GF-1 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 2 

60                
(2 

Cameras) 
4 

SPOT-6(7)/ 
NAOMI 

 

1 0.45~0.52 

8 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

Wide-Field 
View 

Multispectral 
Camera 
(WFV) 

5 0.45~0.52 

16 
800             
(4 

Cameras) 
2 

Sentinel-2/   
MSI 

 

6 0.52~0.59  

7 0.63~0.69  

8 0.77~0.89  

GF-2 PMS 

pan 0.45~0.90 1 
45               
(2 

Cameras) 
5 

WorldView-
3/WV110 

 

1 0.45~0.52 

4 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

GF-3 
Synthetic 
Aperture 

Radar (SAR) 
- C-band:      

4-8 GHz 
1-500 5-650 

Single   
Vision: <3d;     

Double 
Vision: <1.5d 

Sentinel-1  

GF-4 

PMS 

pan 0.45~0.90 

50 500 

20 Seconds 

 GOES-
R/ABI & 

Himawari-
8/AHI 

 

1 0.45~0.52  

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.90  

Infrared 
Multispectral 
Camera (IRS) 

5 3.50~4.10 400 400 
 

 

GF-5 

Advanced 
Hyperspectral 

Imager 
(AHSI) 

1-
300 

0.40~2.50 - 

60 5 

DLR & 
PRISMA 

 

Visible and 
Infrared 

Multispectral 

1 0.45~0.52 

20 
Sentinel-2/ 

MSI 

 

2 0.52~0.60  

3 0.62~0.68  

4 0.76~0.86  
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Imager 
(VIMI) 

5 1.55~1.75  

6 2.08~2.35  

7 3.50~3.90 

40 

 

8 4.85~5.05  

9 8.01~8.39  

10 8.42~8.83  

11 10.3~11.3  

12 11.4~12.5  

GF-6 

PMS Same as GF-1/PMS 
90               
(2 

Cameras) 
4 

Same as GF-
1 

 
 
 
 

 

WFV 

1 0.45~0.52 

16 
800             
(4 

Cameras) 
2 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

5 0.69~0.73  

6 0.73~0.77  

7 0.40~0.45  

8 0.59~0.63  

GF-7 

Bi-linear 
Array 
Stereo 

Mapping 
Camera 

pan 0.45~0.90 0.8 

20 5 
SPOT-6(7)/ 

NAOMI 

 

1 0.45~0.52 

3.2 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

Laser 
Altimeter 

- 
 

 

2.2 ZiYuan satellites 131 

ZiYuan (ZY in acronym, or “Resources”) represents a series of Chinese Earth resource satellites 132 

that so far has ZY-1, ZY-2 and ZY-3 in orbits. There are two types of ZY-1 satellites. The first one, 133 

ZY-1 01, 02, 02B and 04 satellites, which were made jointly by China and Brazil, is also called 134 

China-Brazil Earth Resource Satellite (CBERS). At present, there is only ZY-04 (CBERS-04) 135 
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operating which was launched on December 7, 2014, with an expected lifetime of 3 years. The 138 

other type of ZY-1 includes ZY-1 02C and 02D and 02E satellites were made in China, and were 139 

launched on December 22, 2011, September 12, 2019, and December 26, 2021, respectively, all in 140 

orbits now. Detail parameters of ZY-1 satellites can be seen in Table 2. 141 

ZiYuan-3 (ZY-3) is the first civilian high-resolution optical stereo mapping satellite of China (Li 142 

2012; Tang and Hu 2018; Wang et al. 2014a). ZY-3 01 and 02 satellites were launched on January 143 

9, 2012, and May 30, 2016, respectively, forming a constellation with an expected lifetime of 5 144 

years. Each of the ZY-3 satellite carries a nadir-viewing panchromatic TDI (Time Delayed and 145 

Integration) CCD camera with a resolution of 2.1 m, two forward-looking and backward-looking 146 

panchromatic TDI CCD cameras with a resolution of 3.5 m (ZY-3 01) or 2.5 m (ZY-3 02), and a 147 

nadir-viewing multispectral camera with a resolution of 5.8 m. ZY-3 can capture images with 148 

seamless coverage between 84°N and 84°S by side-swinging and can obtain images with global 149 

coverage every 59 days, forming global long-term 2.1 m resolution stereo images and 6 m 150 

multispectral images. ZY-3 also carries a multispectral camera (MUX) which is similar to GF-151 

1/PMS. 152 

Table 2 Specifications of the sensors onboard ZY satellites 153 

Satellite Payload 
Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

(m) 

Swath 
Width 
(km) 

Revisit 
Cycle (days) 

Similar 
Sensors 

 

CBERS-
04 

Panchromatic & 
Multispectral 

Camera (PMS) 

pan 0.51~0.85 5 
60 3 - 

 

1 0.52~0.59 
10 

 

2 0.63~0.69  
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3 0.77~0.89  

Multispectral 
Camera (MUX) 

1 0.45~0.52 

20 120 26 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

Infrared Scanner 
(IRS) 

1 0.50~0.90 
40 

120 26 

 

2 1.55~1.75  

3 2.08~2.35  

4 10.4~12.5 80  

Wide-Field 
Imager (WFI) 

1 0.45~0.52 

73 866 3 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

ZY-1 
02C 

Panchromatic & 
Multispectral 

Camera (PMS) 

pan 0.51~0.85 5 

60 

3 - 

 

1 0.52~0.59 
10 

 

2 0.63~0.69  

3 0.77~0.89  

High Resolution 
Camera (HR) 

pan 0.50~0.80 2.36 54 

 

 
 

ZY-1 02 
D/E 

Visible and Near-
Infrared Camera 

(VNIC) 

pan 0.452~0.902 2.5 

115 

3 - 

 

1 0.452~0.521 

10 

 

2 0.522~0.607  

3 0.635~0.694  

4 0.776~0.895  

5 0.416~0.452  

6 0.591~0.633  

7 0.708~0.752  

8 0.871~1.047  

Advanced 
Hyperspectral 
Imager (AHSI) 

1-
166 

0.40~2.50 30 60 

 

 
 

ZY-3 
CCD 

Forward 

1 0.50~0.80 
3.5 52 

5 SPOT-6(7)/ 
NAOMI 

 

Backward  

Nadir 2.1 51  

1 0.45~0.52 6 51 3-5  



 

 

Multispectral 
Camera (MUX) 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

ZY-3 02 

CCD 

Forward-
looking 
Camera 

1 0.50~0.80 

2.5 

51 3~5   

 

Backward-
looking 
Camera 

 

Nadir 
Camera 

2.1  

Multispectral 
Camera (MUX) 

1 0.45~0.52 

5.8 51 3 IKONOS/MS  

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

2.3 HuanJing/ShiJian satellites 158 

HuanJing/ShiJian satellites include HuanJing-1 satellites (HJ-1 in acronym, or “Environment”) and 159 

ShiJian-9 (SJ-9 in acronym, or “Experiment”), are the Earth observation constellations for 160 

environment and nature disasters. 161 

HJ-1 satellites, including two optical satellites HJ-1A and HJ-1B, and one radar satellite, HJ-1C, are 162 

operated by the Chinese Centre for Resources Satellite Data and Application (CRESDA). HJ-1A 163 

and 1B were launched on September 6, 2008, simultaneously. HJ-1A carries a 30 m resolution CCD 164 

camera and a 100 m resolution hyperspectral Imager (HSI), while the HJ-1B satellite carries a 30 m 165 

resolution CCD camera and a 150 m resolution Infrared Scanner (IRS). All of the three HJ-1 166 



 

 

satellites have an expected lifetime of 3 years, and are still functioning in orbits. HJ-1/HSI and IRS 167 

are similar to EO-1/Hyperion and Landsat-8/TIRS, respectively. 168 

SJ-9A/B satellites were launched on December 14, 2012, with an expected lifetime of 3 years. 169 

Equipped with PMS and IRS cameras, SJ-9 can acquire VNIR multispectral images and infrared 170 

images with 2.5 m and 10 m spatial resolution, respectively. 171 

Table 3 Specifications of the sensors onboard HJ and SJ satellites 172 

Satellite Payload 
Band 
No. 

Spectral Range 
(!") 

Spatial 
Resolution 

(m) 
Swath Width (km) 

Revisit 
Cycle 
(days) 

Similar 
Sensors 

 

HJ-1A  

CCD Scanner 

1 0.43~0.52 

30 360(Single)700(Parallel) 4 

Landsat 
Series 

 

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.9  

Hyperspectral 
Imager (HSI) 

- 
0.45~0.95(110-

128 bands) 
100 50 4  

HJ-1B  

CCD Scanner 

1 0.43~0.52 

30 
360 (Single) 700 

(Parallel) 
4 

 

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.90  

Infrared 
Scanner 
(IRS) 

5 0.75~1.10 
150 

720 4 

 

6 1.55~1.75  

7 3.50~3.90  

8 10.5~12.5 300  

SJ-9A 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.89 2.5 

30 4 
- 

 

1 0.45~0.52 

10 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  
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SJ-9B 
Infrared 
Scanner 
(IRS) 

1 0.80~1.20 73 18 8 
 

2.4 FengYun Satellites 175 

The FengYun (FY in acronym, or “Wind and Cloud”) satellites are operated by the Chinese 176 

National Satellite Meteorological Center (NSMC). The naming convention for FY satellites is that 177 

the odd number represents the polar-orbiting while the even number represents the geostationary. 178 

FY-3 is the second generation of the Chinese polar-orbiting meteorological satellites. FY-3A and 179 

FY-3B, launched on May 27, 2008 and November 5, 2011, respectively, are the first two that carry 180 

a Visible and Infra-Red Radiometer (VIRR) and a Medium Resolution Spectral Imager (MERSI), 181 

among other sensors for atmospheric remote sensing (Dong et al. 2009; Zhang et al. 2015). FY-3C, 182 

launched on September 23, 2013, is the first operational satellite of FY-3 constellation and carries a 183 

MERSI same as FY-3A/FY-3B. FY-3D was launched on November 15, 2017 with an upgraded 184 

second generation MERSI instrument (MERSI-II) onboard (Wang et al. 2019). The MERSI-II has a 185 

better infrared sensing ability than the MERSI by dividing the original wide infrared spectral 186 

channel into six narrow mid- and thermal infrared channels. In addition, MERSI-II also adds the 187 

shortwave infrared channel (1.38 !") and the onboard calibration instrument for the cirrus 188 

detection and calibration. FY-3/VIRR is similar to NOAA/AVHRR while MERSI is similar to 189 

EOS/MODIS and NPP/VIIRS. 190 

Table 4 Specifications of the sensors onboard FY-3 satellites 191 

Satellite Payload Similar Sensors 
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Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

(") 

Swath 
Width 
(#") 

Revisit 
Cycle 

($%&')  

FY-3C 

Visible and 
Infra-Red 

Radiometer 
(VIRR) 

1 0.58-0.68 

1000 2800 5.5 NOAA/AVHRR  

 

2 0.84-0.89  

3 3.55-3.93  

4 10.3-11.3  

5 11.5-12.5  

6 1.55-1.64  

7 0.43-0.48  

8 0.48-0.53  

9 0.53-0.58  

10 1.325-1.395  

Medium 
Resolution 

Spectral 
Imager 

(MERSI) 

1 0.42~0.52 

250 

2800 5.5 
MODIS & 

VIIRS 

 

2 0.5~0.6  

3 0.6~0.7  

4 0.815~0.915  

5 8.75~13.75  

6 0.392~0.432 

1000 

 

7 0.423~0.463  

8 0.47~0.51  

9 0.5~0.54  

10 0.545~0.585  

11 0.63~0.67  

12 0.665~0.705  

13 0.745~0.785  

14 0.845~0.885  

15 0.885~0.925  

16 0.92~0.96  

17 0.96~1  

18 1.01~1.05  

19 1.59~1.69  

20 2.08~2.18  

FY-3D 

Medium 
Resolution 

Spectral 
Imager-Ⅱ 

(MERSI-Ⅱ) 

1 0.402~0.422 
1000 

2800 5.5 
MODIS & 

VIIRS 

 

2 0.433~0.453  

3 0.445~0.495 250  

4 0.48~0.5 1000  

5 0.525~0.575 250  
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6 0.545~0.565 1000  

7 0.625~0.675 250  

8 0.66~0.68 

1000 

 

9 0.699~0.719  

10 0.736~0.756  

11 0.855~0.875  

12 0.84~0.89 250  

13 0.895~0.915 

1000 

 

14 0.926~0.946  

15 0.915~0.965  

16 1.23~1.31  

17 1.365~1.395  

18 1.615~1.665  

19 2.105~2.155  

20 2.99~3.17  

21 3.9725~4.1275  

22 6.95~7.45  

23 8.4~8.7  

24 10.3~11.3 
250 

 

25 11.5~12.5  

2.5 TanSat 197 

The Chinese Carbon Dioxide Observation Satellite named as TanSat (or “Carbon Satellite”), 198 

launched on December 22, 2016, is the third satellite for global CO2 monitoring with an expected 199 

lifetime of 3 years. TanSat operates in the Sun-synchronous orbit with an orbit period of 98.89 200 

minutes. Equipped with the Atmospheric Carbon-dioxide Grating Spectroradiometer (ACGS), 201 

TanSat can capture weak filling effect of the dark Fraunhofer line at Fe (758 nm) and KI (771 nm) 202 

from solar-induced chlorophyll fluorescence (SIF) emitted by photosynthetically active land 203 

vegetation. Hence, TanSat can not only dynamically monitor the global CO2 in the atmosphere, but 204 

also retrieve SIF precisely. SIF, combined with simultaneous atmospheric CO2 concentration data, 205 

Deleted: a designing life206 

Deleted: has the ability to207 



 

 

can accurately estimate global vegetation photosynthetic productivity, which contributes greatly to 208 

the global carbon cycle monitoring. Apart from ACGS, TanSat also carries the Cloud Aerosol 209 

Polarization Imager (CAPI), which can measure information such as clouds and atmospheric 210 

particulate, leading to more accurate CO2 concentration retrieval (Liu et al. 2018; Zhang et al. 2018; 211 

Ran et al. 2019; Ji et al. 2019). TanSat is similar to GOSAT/TANSO-FTS, OCO-2, Sentinel-212 

5P/TROPOMI and FLEX/FLORIS that will be launched in 2025 (Appendix Table A6). 213 

Data derived from GF, ZY, HJ satellites are available at China Centre For Resources Satellite Data 214 

and Application (http://www.cresda.com/EN/), and FY and TanSat data are available at National 215 

Satellite Meteorological Center (NMSC) (http://www.nsmc.org.cn/nsmc/en/home/index.html). All 216 

data accessing platforms are featured with English language support.  217 

3 Retrieval of vegetation parameters using CEOS sensors 218 

3.1 Vegetation Index 219 

Vegetation indices (VIs) such as normalized difference vegetation index (NDVI) are simple and 220 

effective parameters used to characterize vegetation cover and growth using remote sensing 221 

technique (Bannari et al. 1995; Kalaitzidis et al. 2010; Pettorelli 2013). With a spatial resolution as 222 

high as 16 m, VIs derived from GF-1/WFV provided enough spatial details for mapping vegetation 223 

in heterogeneous landscapes such as mountain areas (Zhao et al. 2019, 2020). Zhao et al. (Zhao et 224 

al. 2013) and Yuan et al. (Yuan et al. 2015) analyzed the relationships of several commonly used 225 

vegetation indices (i.e. NDVI, SAVI, and EVI) derived from HJ-1/CCD and Landsat-5/TM or 226 
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Landsat-7/ETM+, and found that there was a significant positive correlation for all indices among 231 

different sensors (R² > 0.90). Specifically, HJ-1/CCD NDVI is higher than Landsat NDVI in areas 232 

with sparse vegetation cover, while the opposite is true in areas with high vegetation cover. This can 233 

be attributed to the fact that the upper limit of the spectral range in the red band and the lower limit 234 

of the spectral range in the NIR band of HJ-1/CCD are in the range of 0.70~0.75 !", which 235 

generally has smaller reflectance than the Spectral Response Function (SRF) of red and NIR band 236 

not cross the range used by, leading to smaller HJ-1/CCD NDVI for densely vegetated areas. Due to 237 

the spectral similarity of the bands, Chen et al. (2015) established conversion equations between 238 

HJ-1/CCD and EOS/MODIS NDVI, offering the potential for multi-sensor data fusion. 239 

Wu et al. (2011) analyzed the relationship between FY-3A/MERSI and Terra/MODIS VIs and 240 

further verified them using ground VI measurements. The results showed that Terra/MODIS VIs 241 

had a higher correlation with field data than FY-3A/MERSI VIs, which was attributed to the 242 

broader FY-3A/MERSI bandwidth that was more sensitive to atmospheric influences. Ge et al. 243 

(2007) found a strong correlation between FY-3A/MERSI and Terra/MODIS VIs (R = 0.99), and 244 

further confirmed the sensitivity of MERSI reflectance to atmospheric water vapor content based on  245 

the MODTRAN atmospheric radiative transfer model simulation, especially when water vapor 246 

content was greater than 5)/+"!.  247 

There are also several studies that utilized time series VIs derived from CEOS sensors to study 248 

vegetation phenology (Li et al. 2017; Yang et al. 2017; Wang et al. 2014). For instance, Song et al. 249 

(2018) extracted phenological information from double-cropping rice using 30 m HJ-1/CCD data 250 
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and well revealed the growth of sub-field rice. Li et al. (2019) used HJ-1/CCD data to study forest 259 

phenology, and analyzed the response of tree phenology to meteorological forcing.    260 

3.2 Fractional Vegetation Cover 261 

Fractional Vegetation Cover (FVC) is expressed as a percentage of the vertical projected area of 262 

vegetation (including stems, leaves, and branches) to the ground area (Gitelson et al. 2002), which 263 

is widely used in land degradation research and also an input to surface energy balance and 264 

hydrological models (Pettorelli et al. 2005b; Wang et al. 2020; Younes et al. 2019). Liu et al. (2019) 265 

performed FVC retrieval using GF-1/WFV and PMS based on the dimidiate pixel model, and found 266 

that the uncertainty of PMS was lower than WFV due to higher spatial resolution. It demonstrates 267 

that more details about spatial soil/vegetation heterogeneity are beneficial for land degradation 268 

assessment. Sun et al. (2015) found that GF-1/WFV provided FVC with better accuracy than 269 

Landsat-8/OLI in sparse grassland ecosystems, and further reported that the correction of view 270 

angle effect resulting from large swath of GF-1/WFV could reduce uncertainty in the retrieval of 271 

the FVC by 7.5% - 7.8% with combination of HJ-1/CCD NDVI (Sun et al. 2020).  272 

Zhang et al. (Zhang et al. 2013) retrieved FVC using VIs calculated from HJ-1/HSI data through an 273 

optimal band combination approach with good accuracy (R²= 0.86, RMSE = 0.11). Taking 274 

advantage of the high spatial and spectral resolutions of HJ-1/HSI, Liao & Zhang (2020) optimized 275 

the selection of endmember spectrum for theoretically pure vegetation, shaded, and soil based on 276 

Pixel Purity Index (PPI) and Endmember Average Root mean square error (EAR), and retrieved 277 

Deleted: ， 278 



 

 

FVC using the MESMA (Multiple Endmember Spectral Mixture Analysis) method. The results 279 

showed that, with the high spatial and spectral resolution data, the accuracy of the retrieved FVC 280 

was improved (RMSE = 0.19). Bian et al. (2017) proposed an adaptive Endmember Selection 281 

Linear Spectral Mixture Model (ASLSMM) based on HJ-1/CCD data to enhance the accuracy of 282 

FVC estimation. Compared with the traditional Linear Spectral Mixture Model (LSMM) and 283 

Multiple Endmember Spectral Mixture Analysis (MESMA) methods, the ASLSMM method is 284 

more consistent with the ground measurements. Liu et al. (2021) applied FY-3B/MERSI data to 285 

estimate FVC using PROSAIL vegetation radiative transfer model and random forest method, and 286 

the results showed good agreement with the EOLAB (Earth Observation Laboratory) reference 287 

FVC data (RMSE = 0.13). 288 

3.3 Leaf Area Index 289 

Leaf Area Index (LAI) refers to the total area of plant leaves per unit of land area (Chen and Black 290 

1992), and is a key determinant of net primary productivity of ecosystems and energy exchange 291 

between the atmosphere and land surface (Wang et al. 2019a; Yan et al. 2019). Li et al. (2016) used 292 

a statistical regression approach to estimate LAI of winter wheat from HJ-1/CCD images with good 293 

accuracy (relative RSME, or rRMSE = 29.15%). Wei et al. (2017c) and Lei et al. (2018) applied the 294 

physical PROSAIL model to retrieve LAIs of maize crop and Acacia Ricchii plantation respectively 295 

using GF-1/WFV data, and reported similar accuracies (RMSE = 0.5 m2 m-2 for maize crop, and 296 

RMSE = 0.13 m2 m-2 for Acacia Ricchii plantation).  297 
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In addition to empirical and physical model-based approaches, machine learning (ML) has also 301 

been used to retrieve LAI from CEOS data. Lei et al. (2018) found ML-based approach offered 302 

higher accuracy (RMSE = 0.50 m2 m-2) in estimating LAI than the empirical VI-based regression 303 

approach (RMSE = 0.67 m2 m-2). Wei et al. (2017a) estimated LAIs of cropland from GF-5/AHSI 304 

hyperspectral data using the RF-KNN model with an RMSE of 0.70 m2 m-2. 305 

3.4 Aboveground Biomass 306 

Aboveground Biomass (AGB) refers to the total amount of plant-derived living and dead organic 307 

matter per unit of surface area, which is an important component of terrestrial carbon cycle. 308 

Obtaining the spatial and temporal variations of AGB with high accuracy is critical to many 309 

applications such as the estimation of crop yields, pasture forage and forest timber production 310 

(Brown et al. 1996; Lu 2006). Wang et al. (2014b) estimated the AGB of the Yellow River Estuary 311 

wetlands from GF-1/WFV data using statistical regression approach against ground samplint data 312 

with an MRE (Mean Relative Error) of 23.9%. Gou et al. (2019) combined VIs and texture 313 

information extracted from GF-2/PMS images to estimate the AGB of Pinus tabuliformis 314 

plantations with an RMSE of 0.43 t/hm². Gao et al. (2019) retrieved AGB using high-resolution 315 

unmanned aerial vehicle (UAV) measurement, then scaled up to regional scale by establishing a 316 

regression model using GF-1/WFV NDVI. It reported that the uncertainty was reduced (RMSE = 317 

68.04 g/m²) in comparison to only using GF-1/WFV (RMSE = 128.75 g/m²). 318 

ZY-3/MUX data were also used for estimating AGB, such as in Gao et al. (2014), in which the 319 
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regression model between VIs acquired from ZY-3/MUX and ground measured shrub AGB in 326 

mountainous areas was established. Due to the capability of acquiring multi-angle observations with 327 

the three TDI cameras, the stereo image can be obtained, from which detailed topographic 328 

information can be used to perform accurate topographic correction to the original data, leading to 1 329 

21% reduction in the uncertainty in the estimated AGB. Taking the advantage of the multitemporal, 330 

high-resolution multispectral, and stereo images provided by ZY-3/TDI, Li et al. (2019a) proposed 331 

an improved workflow for estimating forest AGB based on the retrieval of relative canopy height, 332 

which produced AGB retrieval with higher accuracy (RMSE = 24.49 Mg/ha, rRMSE =21.37%) 333 

compared to the derived AGB using spectral data only (RMSE = 33.89 Mg/ha, rRMSE = 29.57%). 334 

3.5 Sun-induced chlorophyll fluorescence (SIF) 335 

Under the illumination of natural light, green plants can release the light at the wavelength of 650 - 336 

800 nm during photosynthetic activity, which is named as Solar-Induced chlorophyll Fluorescence 337 

(SIF) (Joiner et al. 2013). SIF is the by-products of photosynthesis, which originated from Absorbed 338 

Photosynthetically Active Productivity (APAR) and has a common origin with plants’ carbon 339 

sequestration and heat dissipation. Hence, SIF is highly related to vegetation stress conditions 340 

(Porcar-Castell et al. 2014), and has the potential to be a good remote sensing proxy for Gross Primary 341 

Productivity (GPP) (Guanter et al. 2014, Mohammed et al. 2019).  342 

Previously, data sources used for retrieving SIF mainly include GOSAT, OCO-2, GOME-2, 343 

SCIAMACHY, and Sentinel-5P/TROPOMI (Joiner et al. 2011; Frankenberg et al. 2014; Köhler et 344 
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al. 2015, 2018; Sun et al. 2018). Recently, the potential of estimating SIF and related GPP products 357 

(Du et al. 2021) from Chinese TanSat has also been explored. Du et al. (2018) used the TanSat data 358 

for retrieving global SIF, and the result agreed well with the pattern obtained from the OCO-2 SIF 359 

product (,²=0.86), providing a new opportunity for global sampling of SIF at fine spatial resolution 360 

(2	#"	 × 	2	#"). Li et al. (2021) developed an approach for retrieving SIF from ultra-high spectral 361 

satellite data and tested using both TanSat and OCO-2 data. Ma et al. (2020) generated a Global 362 

Spatially Continuous TanSat SIF Product using the machine-learning method with a spatial resolution 363 

of 0.05°, showing a good consistency with the TROPOMI SIF data (,² = 0.73). Yao et al. (2021) 364 

used TanSat data to produce a new global SIF product for 757 nm spanning the period of March, 365 

2017 to February, 2018 based on the Institute of Atmospheric Physics Carbon Dioxide Retrieval 366 

Algorithm for Satellite Remote Sensing (IAPCAS)-DOAS method. In general, TanSat IAPCAS-367 

DOAS/SIF product showed the seasonal variation of derived SIF being consistent with the vegetation 368 

growing state throughout the year, which has also been observed by the GOSAT and OCO-2 SIF 369 

products. Based on the above research, several global SIF products from TanSat have been developed 370 

and released for public access (Table 5). 371 

Table 5 Global SIF products from TanSat 372 

Author Time Spanning 
Temporal 

Resolution 

Spatial 

Resolution 
Links Note 

 

Liu et al. 2017.3-2019.8 1 day 2km 
http://data.casearth.cn/sdo/detail/5d905086088716

491c0cc1f4 
Available 

 

 

Du et al. 2017.7 1 day 2km https://doi.org//10.13140/RG.2.2.14775.98726 Available 
 

 

Ma et al. 2017.1-2019.12 4 days 0.05° https://zenodo.org/record/3884309 Available  
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Yao et al. 2017.3-2018.2 unknown 2° https://www.chinageoss.org/tansat 
To be 

published 

 

 

 377 

4 Research opportunities offered by the addition of CEOS sensors 378 

4.1 Multi-sensor data fusion  379 

Observations from a single satellite sensor often trade off spatial resolution against temporal 380 

resolution, or vice versa, resulting in sub-optimal resolving capability for monitoring vegetation 381 

dynamics. It is an effective way for achieving both high spatial and temporal resolutions by fusing 382 

data from different sensors. Pi et al. (2021) reconstructed an NDVI dataset with 16 m spatial 383 

resolution and 16-day temporal resolution by fusing GF-1/WFV with MOD13Q1 NDVI based on 384 

the STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model) algorithm. Yin et al. 385 

(2016) found that by fusing EOS/MODIS and FY-3/MERSI observations, which share high 386 

similarity in terms of spectral band configuration, the spatio-temporal gaps of LAI retrievals were 387 

significantly reduced, leading to more complete data over the cloud-prone sub-tropical and tropical 388 

forests. Wu et al. (2015) applied the Spatial and Temporal Data Fusion Approach (STDFA) to 389 

create a time series daily NDVI for crop phenology monitoring through the fusion of HJ-1/CCD or 390 

GF-1/WFV with MODIS data, and the output revealed detailed sub-field crop growth at daily time-391 

step. Refined spatio-temporal resolutions by multi-sensor fusion would offer many advantages to 392 

applications such as habitat quality assessment, crop yield prediction, as well as urban phenology 393 
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research.  398 

4.2 Data continuity & data recovery 399 

For global change studies, it is critical to ensure long-term data continuity and consistency. China 400 

has launched and is planning to launch many spaceborne sensors covering a wide range of sensor 401 

types and spatial-temporal resolutions, offering great potential to achieve sustainable monitoring of 402 

global change, or be used as a backup for other commonly used sensors. For instance, the 403 

hyperspectral instrument AHSI onboard the CEOS GF-5 with 30 m spatial resolution and 330 404 

narrow spectral bands, together with ASI/PRISMA and DLR/DESIS, can be good successors for the 405 

EO-1/Hyperion which has ceased operation since 2014. 406 

On other occasions, orbiting sensor is possible to encounter instrument failure. If similar 407 

instruments are available from other satellites, a virtual constellation can be formed to mimic the 408 

functioning (He et al. 2018; Yueh et al. 2016). One example is the recovery of the SMAP mission 409 

after the radar failure by ingesting data from ESA’s Sentinel-1 C-band SAR (Meyer et al. 2021), 410 

and in this case GF-3 C-band SAR can be an alternative. Another example is filling the data gaps 411 

caused by the Scan-Line-Corrector off (SLC-off) failure of Landsat-7/ETM+ using Sentinel-2/MSI 412 

(Wang et al. 2021). HJ-1/CCD has the same spatial resolution and almost identical band 413 

configuration with Landsat-7/ETM, and hence its potential for resolving the SLC-off issue can also 414 

be explored in the future (Figure 3). These are all beneficial to the end-users in global vegetation 415 

and ecological remote sensing community.  416 
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 433 

Figure 3 Spectral band comparisons among Landsat-7/ETM+, Landsat-8/OLI, HJ-1/CCD, HJ-1/IRS, and Sentinel-2/MSI. 434 

4.3 Multi-angle remote sensing 435 

Multi-angle remote sensing is an effective way to infer surface BRDF (Bidirectional Reflectance 436 

Distribution Function) that can be further used to retrieve albedo, normalize surface reflectance 437 

anisotropy and estimate vegetation structure (Yan et al. 2021). BRDF retrieval using single-sensor 438 

data often suffers from limited angular sampling due to cloud or aerosols, e.g. MODIS has only a 439 

75.8% probability that having more than 7 cloud-free observations within a 16 d window (Wen 440 

2015). Multi-sensor data can be combined to accumulate a sufficient number of multi-angle 441 

observations in a short time for improving BRDF retrievals. In addition, multi-angle data can also 442 

be used to improve the retrievals of vegetation parameters. Bicheron et al. (1999) reported that 443 

forest classification uncertainty can be reduced if multi-spectral data is used in conjunction with 444 

multi-angle data which can provide additional information about forest canopy structure (Hyman 445 
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and Barnsley 1997). Wen et al. (2016) developed a multi-sensor combined BRDF inversion (MCBI) 448 

by combining data from MODIS, AVHRR, VIIRS and FY-3/MERSI, and shortened the retrieval 449 

window up to 4 days in comparison to the standard 16-day product by only using MODIS data. 450 

Sensors onboard the CEOSs, in together with other spaceborne sensors, can offer great potential for 451 

obtaining multi-angle data via rigorous cross-sensor calibration.  452 

5 Concluding remarks  453 

China has invested immensely in EO missions over the past decade, creating now a spaceship fleet 454 

resembling those from NASA or ESA. It has been demonstrated by the recent studies that the 455 

sensors onboard the CEOSs performed generally well in remote sensing of vegetation applications. 456 

These sensors can be used either solely for retrieving vegetation parameters or in together with 457 

other international satellites for multi-sensor applications. Although most applications we reviewed 458 

here were mainly performed by the Chinese research community, the international users are 459 

certainly encouraged to access the data as most of the data we reviewed above are publicly available 460 

and have English language support for the data access portal. The experiences and critics gain from 461 

both the domestic and international end-users would be extremely valuable to the CEOS programs 462 

to further improve sensors quality and reliability, eventually leading to a better understanding of 463 

pressing scientific issues such as global environmental change, sustainability development, food 464 

security and biodiversity conservation. While this article is being read, CEOS sensors are 465 

continuously measuring reflectance and echo over the entire planet. It is now the time to capitalize 466 

Deleted: encompassing a full-suite of sensors to some extent 467 

Deleted: the fleet468 

Deleted: , 469 

Deleted: , JAXA and other major space agencies470 

Deleted: Driven by the application requirements, China has 471 
launched and is planning to launch more satellites carrying 472 
sensors equivalent to or even better than those past sensors. 473 
Since more CEOS satellites are launched, more studies that 474 
attempt to use or integrate CEOS data are encouraged to use 475 
CEOS data for vegetation and ecological remote sensing. 476 

Deleted:  data p477 

Deleted:  the estimation of vegetation parameters with high 478 
spatial and temporal resolutions,479 

Deleted: and even help to improve the continuity and validity 480 
of earth observations by combining them with remote sensing 481 
data from other international earth observation missions482 

Deleted: Now 483 

Deleted: as 484 

Deleted: are 485 

Deleted: also 486 

Deleted: (with user registration sometimes required) 487 

Deleted: webpage 488 

Deleted: in English language489 

Deleted: valuable 490 

Deleted: in turn be used to 491 

Deleted: all aspects of CEOS 492 

Deleted: and 493 



 

 

them for the benefit of global vegetation and Earth monitoring. 494 
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Appendix 500 

Table A1 Comparison between GF-1(6)/WFV and Sentinel-2/MSI 501 

Satellite Payload 
Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

GF-1 

Wide-Field 
View 

Multispectral 
Camera 
(WFV) 

1 0.45~0.52 

16 

800 
(4 

Cameras) 
2 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

GF-6 

1 0.45~0.52 

16 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

5 0.69~0.73  

6 0.73~0.77  

7 0.40~0.45  

8 0.59~0.63  

Sentinel
-2 

Multi-
Spectral 

Instrument 
(MSI) 

2 0.458~0.523 

10 
290 5 

 

3 0.543~0.578  

4 0.65~0.68  

8 0.785~0.90  

5 0.698~0.713 20  
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6 0.733~0.748  

7 0.773~0.793  

8A 0.855~0.875  

11 1.565~1.655  

12 2.10~2.28  

1 0.433~0.453 
60 

 

9 0.935~0.955  

10 1.365~1.385  

 506 

Table A2 Comparison between GF-1(6)/PMS, ZY-3/MUX and SPOT-6(7)/NAOMI 507 

Satellite Payload 
Band 
No. 

Spectral 
Range (!") 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

GF-1/6 

Panchromatic 
& 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 2 

60 (2 
Cameras) 

4 

 

1 0.45~0.52 

8 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

ZY-3 
Multispectral 

Camera 
(MUX) 

1 0.45~0.52 

6 51 5 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

SPOT-
6/7 

New Astrosat 
Optical 

Modular 
Instrument 
(NAOMI) 

pan 0.45~0.75 1.5 

60 
1 

(2 Cameras) 

 

1 0.45~0.52 

6 

 

2 0.53~0.6  

3 0.62~0.69  

4 0.76~0.89  

 508 

Table A3 Comparison between GF-2/PMS, QuickBird and WorldView-3/WV110 509 

Satellite Payload Band No. 
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Spectral 
Range 
(!") 

Spatial 
Resolutio
n at nadir 

(m) 

Swath Width 
(km) 

Revisit 
Cycle 
(days) 

 

 

GF-2 

Panchromati
c & 

Multispectral 
Camera 
(PMS) 

pan 0.45~0.90 1 45(with 2 
Cameras 
operating 

simultaneousl
y) 

5 

 

1 0.45~0.52 

4 

 

2 0.52~0.59  

3 0.63~0.69  

4 0.77~0.89  

QuickBird 
State-of-the-

Art BGIS 
2000 Sensor 

pan 0.45~0.90 0.65 

16.8/18-Early 
2013 

1-3.5 
days 

 

1 0.45~0.52 

2.62 

 

2 0.52~0.60  

3 0.63~0.69  

4 0.76~0.90  

WorldVie
w 

Satellites(
-3) 

WorldView-
110 camera 
(WV110) 

pan 0.45-0.80 0.31 

13.1 

1(4.5) 
day(s) at 
1(0.59)-
metre 
GSD 

resolutio
n 

 

1 0.40~0.45 

1.24 

 

2 0.45~0.51  

3 0.51~0.58  

4 
0.585~0.62

5 
 

5 0.63~0.69  

6 
0.705~0.74

5 
 

7 0.77~0.895  

8 0.86~1.04  

8 SWIR 
bands 

1.195~2.36
5 3.7 

 

12 CAVIS 
bands 

0.405~2.24
5 30 
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Table A4 Comparison of SAR satellites between GF-3 and Sentinel-1 515 

Satellite Payload 
Operational 

Mode 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Polarization 
Mode 

(Selectable) 
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GF-3 

C-band 
Synthetic 

Aperture Radar 
(SAR) 

SL 1 10 
single-

polarization 
 

UFS 3 30 
single-

polarization 
 

FS1 5 50 dual-polarization  

FS2 10 100 dual-polarization  

SS 25 130 dual-polarization  

NSC 50 300 dual-polarization  

WSC 100 500 dual-polarization  

QPS1 8 30 full polarization  

QPS2 25 40 full polarization  

WAVE 10 5 full polarization  

GLOGAL 500 650 dual-polarization  

EXTENDED1 25 130 dual-polarization  

EXTENDED2 25 80 dual-polarization  

Sentinel-
1 

C-band 
Synthetic 

Aperture Radar 
(SAR) 

SM 5 80 full polarization  

IW 5×20 250 full polarization  

EW 25×100 400 full polarization  

WV 
5×20 20 

single-
polarization 
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Table A5 Comparison of Hyperspectral satellites between GF-5/AHSI, HJ-1A/HSI, DLR/DESIS and PRISM 518 

Satellite Payload 

 
Number 

of 
Bands 

Spectral 
Range 
(!") 

Spectral 
Resolution(nm) 

Spatial 
Resolution 

at nadir 
(m) 

Swath 
Width 
(km) 

Revisit Cycle 
(days) 

 

 

HJ-1A 
Hyperspectral 
Imager (HSI) 

110-
128 

0.45~0.95 3.9~4.5 100 50 4 
 

 
 

GF-5 

Advanced 
Hyperspectral 

Imager 
(AHSI) 

300 0.40~2.50 
5(VNIR) 

10(SWIR) 
30 60 5 

 

 

 

DLR 
DLR Earth 

Sensing 
235 0.40~1.00 2.55 30 30 3-5 
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Imaging 
Spectrometer 

(DESIS)  

PRISMA - 240 0.40~2.50 ＜12 30 30 7 
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Table A6 Comparison of TanSat/ACGS, OCO-2 and Sentinel-5P/TROPOMI 522 

Satellite Payload Band No. 
Spectral 
Range    
(nm) 

Spectral 
Resolution 

(nm) 

Spatial 
Resolution  

(km) 

Swath 
Width 
(km) 

Revisit 
Cycle 
(days) 

 
 

TanSat 

Atmospheric 
Carbon-dioxide 

Grating 
Spectroradiometer 

(ACGS) 
 

758~778 
0.033-
0.047 

2 20 16 

 

 
 

 

 

 

OCO-2 Spectrometers 

 

758~772 0.04  1.29×2.25 10.6 16 

 

 
 

 

 

 

Sentinel-
5P 

TROPOspheric 
Monitoring 
Instrument 

(TROPOMI) 

NIR 675~775 0.5 7×7 2600 1 

 

 
 

 

 

 

References 523 

Aplin, P. (2005). Remote sensing: ecology. Progress in Physical Geography, 104-113 524 

!! − #	

!! − #	

Deleted: Sensor525 

Deleted: ：526 



 

 

Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote 527 

sensing reviews, 13, 95-120 528 

Bian, J.H., Li, A.N., Zhang, Z.J., Zhao, W., Lei, G.B., Yin, G.F., Jin, H.A., Tan, J.B., & Huang, 529 

C.Q. (2017). Monitoring fractional green vegetation cover dynamics over a seasonally inundated 530 

alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember 531 

selection LSMM model. Remote Sensing of Environment, 197, 98-114 532 

Bicheron, P., & Marc, L. (1999). A method of  biophysical parameter retrieval at global scale by 533 

inversion of a vegetation reflectance model. Remote Sensing of Environment, 1999, 251-266 534 

Brown, S., Sathaye, J.A., & Kauppi, P. (1996). Mitigation of carbon emissions to the atmosphere by 535 

forest management. Commonwealth Forestry Review 536 

Chen, J.M., & Black, T.A. (1992). Defining Leaf-Area Index for Non-Flat Leaves. Plant Cell and 537 

Environment, 15, 421-429 538 

Chen, X., & Liu, Z. (2015). Quantitative Analysis of Relationship Between HJ-1NDVI and MODIS 539 

NDVI. Remote Sensing Information 540 

Cohen, W.B., & Goward, S.N. (2004). Landsat’s role in ecological applications of remote sensing. 541 

BioScience, 54, 535-545 542 

Davis, C.L., Hoffman, M.T., & Roberts, W. (2017). Long-term trends in vegetation phenology and 543 

productivity over Namaqualand using the GIMMS AVHRR NDVI3g data from 1982 to 2011. 544 

South African Journal of Botany, 111, 76-85 545 

Dong, C.H., Yang, J., Zhang, W.J., Yang, Z.D., Lu, N.M., Shi, J.M., Zhang, P., Liu, Y.J., & Cai, B. 546 

(2009). An Overview of a New Chinese Weather Satellite FY-3A. Bulletin of the American 547 

Meteorological Society, 90, 1531 548 



 

 

Du, S., Liu, L., Liu, X., & Chen, J. (2021). First Investigation of the Relationship Between Solar-549 

Induced Chlorophyll Fluorescence Observed by TanSat and Gross Primary Productivity. IEEE 550 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 11892-11902 551 

Du, S., Liu, L., Liu, X., Zhang, X., Zhang, X., Bi, Y., & Zhang, L. (2018). Retrieval of global 552 

terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Science Bulletin, 63, 1502-553 

1512 554 

Feng, L., Guo, S., Zhu, L.J., Fang, X.Q., & Zhou, Y.A. (2017). Urban vegetation phenology 555 

analysis and the response to the temperature change. 2017 Ieee International Geoscience and 556 

Remote Sensing Symposium (Igarss), 5743-5746 557 

Frankenberg, C., O'Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., & Taylor, T.E. 558 

(2014). Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon 559 

Observatory-2. Remote Sensing of Environment, 147, 1-12 560 

Gao, M.L., Zhao, W.J., Gong, Z.N., Gong, H.L., Chen, Z., & Tang, X.M. (2014). Topographic 561 

Correction of ZY-3 Satellite Images and Its Effects on Estimation of Shrub Leaf Biomass in 562 

Mountainous Areas. Remote Sensing, 6, 2745-2764 563 

Gao, Y., Liang, Z., Wang, B., Wu, Y., & Liu, S. (2019). UAV and satellite remote sensing images 564 

based aboveground biomass inversion in the meadows of Lake Shengjin. Journal of Lake Sciences, 565 

31, 517-528 566 

Ge, M., Zhao, J., Zhong, B., & Yang, A. (2017). Comparison of the Vegetation Indexes between 567 

FY-3/VIRR,FY-3/MERSI and EOS/MODIS Data. Remote Sensing Technology and Application, 568 

32, 12 569 



 

 

Gianelle, D., Vescovo, L., & Mason, F. (2009). Estimation of grassland biophysical parameters 570 

using hyperspectral reflectance for fire risk map prediction. International journal of wildland fire, 571 

18, 815-824 572 

Gitelson, A.A., Kaufman, Y.J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote 573 

estimation of vegetation fraction. Remote Sensing of Environment, 80, 76-87 574 

Gou, R., Chen, J., Duan, G., Yang, R., Bu, Y., Zhao, J., & Zhao, P. (2019). Inversion of 575 

aboveground biomass of Pinus tabuliformis plantations based on GF-2 data. Chinese Journal of 576 

Applied Ecology, 30, 4031-4040 577 

He, L., Hong, Y., Wu, X., Ye, N., Walker, J.P., & Chen, X. (2018). Investigation of SMAP Active–578 

Passive Downscaling Algorithms Using Combined Sentinel-1 SAR and SMAP Radiometer Data. 579 

IEEE Transactions on Geoscience and Remote Sensing, 56, 4906-4918 580 

Huang, W., Sun, S.R., Jiang, H.B., Gao, C., & Zong, X.Y. (2018). GF-2 Satellite 1m/4m Camera 581 

Design and In-Orbit Commissioning. Chinese Journal of Electronics, 27, 1316-1321 582 

Hyman, A.H., & Barnsley, M.J. (1997). On the potential for land cover mapping from multiple-583 

view-angle (MVA) remotely-sensed images. International Journal of Remote Sensing, 18, 2471-584 

2475 585 

Ji, M., Tang, B., & Li, Z. (2019). Review of Solar-induced Chlorophyll Fluorescence Retrieval 586 

Methodsfrom Satellite Data. Remote Sensing Technol. Appl, 3, 455-466 587 

Joiner, J., Yoshida, Y., Vasilkov, A.P., Yoshida, Y., Corp, L.A., & Middleton, E.M. (2011). First 588 

observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences, 589 

8, 637-651 590 



 

 

Kalaitzidis, C., Heinzel, V., & Zianis, D. (2010). A review of multispectral vegetation indices for 591 

biomass estimation. In, Proceedings of the 29th symposium of the European association of remote 592 

sensing laboratories, Chania, Greece. IOS Press Ebook (pp. 201-208) 593 

Kerr, J.T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote 594 

sensing. Trends in Ecology & Evolution, 18, 299-305 595 

Köhler, P., Guanter, L., & Joiner, J. (2015). A linear method for the retrieval of sun-induced 596 

chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmospheric Measurement 597 

Techniques, 8, 2589-2608 598 

Köhler, P., Guanter, L., Kobayashi, H., Walther, S., & Yang, W. (2018). Assessing the potential of 599 

sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation 600 

dynamics in Amazon forests. Remote Sensing of Environment, 204, 769-785 601 

Lei, Y., Zhu, S., Guo, Y., Li, D., Liu, L., & Liu, N. (2018). Inversion of Leaf Area Index Based on 602 

Extreme Learning Machine Regression in Road Vegetation. Bulletin of Surveying and Mapping, 5 603 

Li, D. (2012). China’s First Civilian Three-line-array Stereo Mapping Satellite: ZY-3 Acta 604 

Geodaetica et Cartographica Sinica, 41, 317-322 605 

Li, F., Song, G., Liujun, Z., Xiuqin, F., & Yanan, Z. (2017). Urban vegetation phenology analysis 606 

and the response to the temperature change. In, 2017 IEEE International Geoscience and Remote 607 

Sensing Symposium (IGARSS) (pp. 5743-5746): IEEE 608 

Li, G.Y., Xie, Z.L., Jiang, X.D., Lu, D.S., & Chen, E.X. (2019a). Integration of ZiYuan-3 609 

Multispectral and Stereo Data for Modeling Aboveground Biomass of Larch Plantations in North 610 

China. Remote Sensing, 11 611 



 

 

Li, H., Chen, Z.X., Jiang, Z.W., Wu, W.B., Ren, J.Q., Liu, B., & Hasi, T. (2017). Comparative 612 

analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. 613 

Journal of Integrative Agriculture, 16, 266-285 614 

Li, H., Peng, R., Li, W., Zhu, X., Huang, Y., & Nie, Q. (2019 b). Filtering algorithms of HJ-1 A/B 615 

NDVI time series data and phenology of typical tree species in Xiamen. Chinese Journal of Ecology 616 

Li, S., Gao, M., Li, Z.-L., Duan, S., & Leng, P. (2021a). Uncertainty analysis of SVD-based 617 

spaceborne far–red sun-induced chlorophyll fluorescence retrieval using TanSat satellite data. 618 

International Journal of Applied Earth Observation and Geoinformation, 103 619 

Li, S., Gao, M., & Li, Z.L. (2021b). Retrieving Sun-Induced Chlorophyll Fluorescence from 620 

Hyperspectral Data with TanSat Satellite. Sensors (Basel), 21 621 

Li, X., Zhang, Y., Luo, J., Jin, X., Xu, Y., & Yang, W. (2016). Quantification winter wheat LAI 622 

with HJ-1CCD image features over multiple growing seasons. International Journal of Applied 623 

Earth Observation and Geoinformation, 44, 104-112 624 

Liu, D.Y., Jia, K., Jiang, H.Y., Xia, M., Tao, G.F., Wang, B., Chen, Z.L., Yuan, B., & Li, J. (2021). 625 

Fractional Vegetation Cover Estimation Algorithm for FY-3B Reflectance Data Based on Random 626 

Forest Regression Method. Remote Sensing, 13 627 

Liu, R., Ren, H., Liu, S., Liu, Q., Yan, B., & Gan, F. (2018). Generalized FPAR estimation methods 628 

from various satellite sensors and validation. Agricultural and Forest Meteorology, 260, 55-72 629 

Liu, Y., Wang, J., Yao, L., Chen, X., Cai, Z., Yang, D., Yin, Z., Gu, S., Tian, L., Lu, N., & Lyu, D. 630 

(2018). The TanSat mission: preliminary global observations. Science Bulletin, 63, 1200-1207 631 

Liu, Z., Mo, R., Sun, X., & Lv, X. (2019). Analysis of Influence of GFn-1 Data Resolution on 632 

Extraction of Vegetation Coverage Information. Rural Economy and Science-Technology, 30, 80-633 

82 634 



 

 

Lu, D. (2006). The potential and challenge of remote sensing‐based biomass estimation. 635 

International Journal of Remote Sensing, 27, 1297-1328 636 

Ma, Y., Liu, L., Chen, R., Du, S., & Liu, X. (2020). Generation of a Global Spatially Continuous 637 

TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar 638 

Radiation Intensity. Remote Sensing, 12 639 

Mancino, G., Ferrara, A., Padula, A., & Nolè, A. (2020). Cross-Comparison between Landsat 8 640 

(OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote 641 

Sensing, 12 642 

Meyer R, Zhang W, Kragh S J, et al. Exploring the combined use of SMAP and Sentinel-1 data for 643 

downscaling soil moisture beyond the 1 km scale[J]. Hydrology and Earth System Sciences 644 

Discussions, 2021: 1-25. 645 

Nara, H., & Sawada, Y. (2021). Global Change in Terrestrial Ecosystem Detected by Fusion of 646 

Microwave and Optical Satellite Observations. Remote Sensing, 13 647 

Pan, T. (2015). Technical Characteristics of GF-2 Satellite. Aerospace China, 3-9 648 

Pettorelli, N. (2013). The normalized difference vegetation index. Oxford University Press 649 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., & Stenseth, N.C. (2005). Using 650 

the satellite-derived NDVI to assess ecological responses to environmental change. Trends in 651 

ecology & evolution, 20, 503-510 652 

Pi, X., Zeng, Y., & He, C. (2021). Estimating urban vegetation coverage on the basis of multi-653 

source remote sensing data and temporal mixture analysis. Journal of Remote Sensing, 25, 1216-654 

1226 655 



 

 

Ran, Y., & Li, X. (2019). TanSat: a new star in global carbon monitoring from China. Science 656 

Bulletin, 64, 284-285 657 

Song, D., Wang, Z., Li, Y., & Hu, Y. (2018). Cropland Phenology Detection Based on HJ-1A/B 658 

CCD Data in Jianghan Plain. Geomatics & Spatial Information Technology, 41, 5 659 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. (2018). 660 

Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-661 

2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of 662 

Environment, 209, 808-823 663 

Sun, Z., Liu, S., Jiang, J., Bai, X., Chen, Y., Zhu, C., & Guo, W. (2017). Coordination inversion 664 

methods for vegetation cover of winter wheat by multi-source satellite images. Transactions of the 665 

Chinese Society of Agricultural Engineering, 33, 7 666 

Tang, X., & Hu, F. (2018). Development Status and Trend of Satellite Mapping. Spacecraft 667 

Recovery & Remote Sensing, 39, 26-35 668 

Wang, J., Li, X., & Fan, W. (2014a). Monitoring Vegetation Phenology Using HJ-CCD Image of 669 

High and Moderate Resolution Remote Sensing Data:A Case Study in Upper Stream of Miyun 670 

Reservoir. Journal of Northeast Forestry University, 88-94 671 

Wang, J., Zhang, J., Ma, Y., & Ren, G. (2014b). Study on the Above Ground Vegetation Biomass 672 

Estimation Model Based on GF-1 WFV Satellite Image in the Yellow River Estuary Wetland. Acta 673 

Laser Biology Sinica, 604-608 674 

Wang, Q., Wang, L., Wei, C., Jin, Y., Li, Z., Tong, X., & Atkinson, P.M. (2021). Filling gaps in 675 

Landsat ETM+ SLC-off images with Sentinel-2 MSI images. International Journal of Applied Earth 676 

Observation and Geoinformation, 101 677 



 

 

Wang, S., Zhang, B., Zhai, X., & Sun, H.-l. (2020). Vegetation cover changes and sand-fixing 678 

service responses in the Beijing–Tianjin sandstorm source control project area. Environmental 679 

Development, 34, 100455 680 

Wang, Y.C., Liu, Y.X., Li, M.C., & Tan, L. (2014). The reconstruction of abnormal segments in 681 

HJ-1A/B NDVI time series using MODIS: a statistical method. International Journal of Remote 682 

Sensing, 35, 7991-8007 683 

Wang, Z.Z., Li, J.Y., He, J.Y., Zhang, S.W., Gu, S.Y., Li, Y., Guo, Y., & He, B.Y. (2019). 684 

Performance Analysis of Microwave Humidity and Temperature Sounder Onboard the FY-3D 685 

Satellite From Prelaunch Multiangle Calibration Data in Thermal/Vacuum Test. IEEE Transactions 686 

on Geoscience and Remote Sensing, 57, 1664-1683 687 

Wei, X., Gu, X., Meng, Q., Yu, T., Zhou, X., Wei, Z., Jia, K., & Wang, C. (2017a). Leaf Area Index 688 

Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. Sensors (Basel), 689 

17 690 

Wei, X.Q., Gu, X.F., Meng, Q.Y., Yu, T., Jia, K., Zhan, Y.L., & Wang, C.M. (2017b). Cross-691 

Comparative Analysis of GF-1 Wide Field View and Landsat-7 Enhanced Thematic Mapper Plus 692 

Data. Journal of Applied Spectroscopy, 84, 829-836 693 

Wei, X.Q., Gu, X.F., Meng, Q.Y., Yu, T., Zhou, X., Wei, Z., Jia, K., & Wang, C.M. (2017c). Leaf 694 

Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. 695 

Sensors, 17 696 

Wen, J. (2015). Remote Sensing Modeling and Albedo Inversion of Land Surface Bidirectional 697 

Reflectance Characteristics. Science Press 698 



 

 

Wen J, Dou B, You D, et al. Forward a small-timescale BRDF/Albedo by multisensor combined 699 

brdf inversion model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(2): 683-700 

697. 701 

Wu, M.Q., Zhang, X.Y., Huang, W.J., Niu, Z., Wang, C.Y., Li, W., & Hao, P.Y. (2015). 702 

Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop 703 

Monitoring. Remote Sensing, 7, 16293-16314 704 

Wu, P., Hu, L., Li, G., Feng, Z., & Chen, C. (2011). Relationship between FY-3A/MERSI and 705 

MODIS Vegetation Indexes Based on Cotton Spectrum. Desert and Oasis Meteorology, 5, 4 706 

Wulder, M.A., Hall, R.J., Coops, N.C., & Franklin, S.E. (2004). High spatial resolution remotely 707 

sensed data for ecosystem characterization. BioScience, 54, 511-521 708 

Yao, L., Yang, D., Liu, Y., Wang, J., Liu, L., Du, S., Cai, Z., Lu, N., Lyu, D., Wang, M., Yin, Z., & 709 

Zheng, Y. (2021). A New Global Solar-induced Chlorophyll Fluorescence (SIF) Data Product from 710 

TanSat Measurements. Advances in Atmospheric Sciences, 38, 341-345 711 

Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., Xie, D., & Zhang, W. (2019). Review of 712 

indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. 713 

Agricultural and Forest Meteorology, 265, 390-411 714 

Yan, G., Jiang, H., Yan, K., Cheng, S., Song, W., Tong, Y., Liu, Y., Qi, J., Mu, X., Zhang, W., Xie, 715 

D., & zhou, H. (2021). Review of optical multi-angle quantitative remote sensing. National Remote 716 

Sensing Bulletin, 25, 83-108 717 

Yang, Z., Shao, Y., Li, K., Liu, Q., Liu, L., & Brisco, B. (2017). An improved scheme for rice 718 

phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 719 

data. Remote Sensing of Environment, 195, 184-201 720 



 

 

Yin, G., Li, J., Liu, Q., Zhong, B., & Li, A. (2016). Improving LAI spatio-temporal continuity using 721 

a combination of MODIS and MERSI data. Remote Sensing Letters, 7, 771-780 722 

Younes, N., Joyce, K.E., Northfield, T.D., & Maier, S.W. (2019). The effects of water depth on 723 

estimating Fractional Vegetation Cover in mangrove forests. International Journal of Applied Earth 724 

Observation and Geoinformation, 83 725 

Yuan, Z., Yang, A., & Zhong, B. (2015). Cross comparison of the vegetation indexes between 726 

Landsat TM and HJ CCD. Remote Sensing for Land & Resources, 27, 5 727 

Yueh, S., Entekhabi, D., O’Neill, P., Njoku, E., & Entin, J. (2016). NASA soil moisture active 728 

passive mission status and science performance. 2016 IEEE International Geoscience and Remote 729 

Sensing Symposium (IGARSS) 730 

Zhang, L., Wang, S., & Huang, C. (2018). Top-of-atmosphere hyperspectral remote sensing of 731 

solar-induced chlorophyll fluorescence: A review of methods. Remote Sens, 22, 1-12 732 

Zhang, X., Zhou, M., Wang, W., & Li, X. (2015). Progress of global satellite remote sensing of 733 

atmospheric compositions and its’ applications. Science & Technology Review, 33, 13-22 734 

Zhang, X.F., Liao, C.H., Li, J., & Sun, Q. (2013). Fractional vegetation cover estimation in arid and 735 

semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied 736 

Earth Observation and Geoinformation, 21, 506-512 737 

Zhang, Y., Song, C., Band, L.E., Sun, G., & Li, J. (2017). Reanalysis of global terrestrial vegetation 738 

trends from MODIS products: Browning or greening? Remote Sensing of Environment, 191, 145-739 

155 740 

Zhao, B., Wang, H., & Zhang, A. (2019). Inter-sensor comparison and quantitative relationships 741 

between GF-1 WFV and Landsat 8 OLI NDVI data. Journal of Geomatics, 44, 6 742 



 

 

Zhao, J., Li, J., Liu, Q., Wang, H., Chen, C., Xu, B., & Wu, S. (2018). Comparative Analysis of 743 

Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for 744 

Maize. Remote Sensing, 10 745 

Zhao, K., Xu, J., Zhao, Z., Song, L., & Xiao, K. (2013). Cross Comparison of HJ-1A/B CCD and 746 

Landsat TM/ETM+ Multispectral Measurements for NDVI, SAVI and EVI Vegetation Index. 747 

Remote Sensing Technology and Application, 28, 8 748 

Zhao, L., Zhang, R., Liu, Y., & Zhu, X. (2020). The differences between extracting vegetation 749 

information from GF1-WFV and Landsat8-OLI. Acta Ecologica Sinica, 40, 12 750 

Zhou, X., Yamaguchi, Y., & Arjasakusuma, S. (2018). Distinguishing the vegetation dynamics 751 

induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-752 

border study on the Mongolian Plateau. Sci Total Environ, 616-617, 730-743 753 

Zoungrana, B.J.B., Conrad, C., Thiel, M., Amekudzi, L.K., & Da, E.D. (2018). MODIS NDVI 754 

trends and fractional land cover change for improved assessments of vegetation degradation in 755 

Burkina Faso, West Africa. Journal of Arid Environments, 153, 66-75 756 

Rahman, A. F., Sims, D. A., Cordove, V. D., El-Marsri, B. Z. (2005). Potential of MODIS EVI and 757 

surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research 758 

Letters, 32(19), L19404. 759 


