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Abstract

Evaluating historical simulations from global climate models (GCMs) remains an important exercise for better understanding

future projections of climate change and variability in rapidly warming regions, such as the Arctic. As an alternative approach

for comparing climate models and observations, we set up a machine learning classification task using a shallow artificial neural

network (ANN). Specifically, we train an ANN on maps of annual mean near-surface temperature in the Arctic from a multi-

model large ensemble archive in order to classify which GCM produced each temperature map. After training our ANN on

data from the large ensembles, we input annual mean maps of Arctic temperature from observational reanalysis and sort the

prediction output according to increasing values of the ANN’s confidence for each GCM class. To attempt to understand how

the ANN is classifying each temperature map with a GCM, we leverage a feature attribution method from explainable artificial

intelligence. By comparing composites from the attribution method for every GCM classification, we find that the ANN is

learning regional temperature patterns in the Arctic that are unique to each GCM relative to the multi-model mean ensemble.

In agreement with recent studies, we show that ANNs can be useful tools for extracting regional climate signals in GCMs and

observations.
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Key Points:5

• Artificial neural network is trained to identify which climate model produced an6

annual mean map of near-surface temperature in the Arctic7

• The classification network is evaluated using input from atmospheric reanalysis8

as a method of comparing climate models and observations9

• An explainability method reveals regional temperature patterns the network is us-10

ing to classify observations with different climate models11
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Abstract12

Evaluating historical simulations from global climate models (GCMs) remains an impor-13

tant exercise for better understanding future projections of climate change and variabil-14

ity in rapidly warming regions, such as the Arctic. As an alternative approach for com-15

paring climate models and observations, we set up a machine learning classification task16

using a shallow artificial neural network (ANN). Specifically, we train an ANN on maps17

of annual mean near-surface temperature in the Arctic from a multi-model large ensem-18

ble archive in order to classify which GCM produced each temperature map. After train-19

ing our ANN on data from the large ensembles, we input annual mean maps of Arctic20

temperature from observational reanalysis and sort the prediction output according to21

increasing values of the ANN’s confidence for each GCM class. To attempt to understand22

how the ANN is classifying each temperature map with a GCM, we leverage a feature23

attribution method from explainable artificial intelligence. By comparing composites from24

the attribution method for every GCM classification, we find that the ANN is learning25

regional temperature patterns in the Arctic that are unique to each GCM relative to the26

multi-model mean ensemble. In agreement with recent studies, we show that ANNs can27

be useful tools for extracting regional climate signals in GCMs and observations.28

Plain Language Summary29

Due to many complex processes in the climate system, the Arctic is warming more30

rapidly relative to other parts of the globe. To understand the impacts of these changes31

in the Arctic, it is important to evaluate climate model projections. While there are other32

existing statistical methods for assessing simulations between different climate models,33

we introduce a machine learning approach for comparing climate models and observa-34

tions using a tool called artificial neural networks. We set up our problem by inputting35

yearly maps of temperature in the Arctic and then task the artificial neural network to36

classify which climate model produced each map. To understand how the artificial neu-37

ral network learns where the temperature map is coming from, we utilize a visualization38

method to peer into the machine learning black box. After training our artificial neu-39

ral network on data from different climate models, we then input maps of Arctic tem-40

perature from observations to evaluate which climate model is classified for every year41

in the historical record. Using this setup, we find that the artificial neural network is lever-42
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aging regional patterns of temperatures, and not just overall warm and cold biases, in43

order to make its climate model and observation predictions.44

1 Introduction45

The Arctic is warming at a rate of more than three times as fast as the globally46

averaged mean surface temperature trend (Druckenmiller et al., 2021). This dramatic47

warming, otherwise known as Arctic amplification, is accompanied by long-term losses48

of Arctic sea-ice extent and thickness (Schweiger et al., 2019; Parkinson & DiGirolamo,49

2021; Kacimi & Kwok, 2022), reductions in the ice mass of glaciers and the Greenland50

Ice Sheet (Mouginot et al., 2019; Tepes et al., 2021), thawing permafrost and boreal wild-51

fires (McCarty et al., 2021; Miner et al., 2022), changes to deep ocean heat content and52

biogeochemistry (Timmermans et al., 2018; Solomon et al., 2021), shifts in high latitude53

phenology (Myers-Smith et al., 2020), and other possible connections to local and remote54

extreme weather (Graham et al., 2017; Cohen et al., 2020). As summarized in Previdi55

et al. (2021) and P. C. Taylor et al. (2022), local CO2 forcing and other positive feed-56

backs in the Earth system contribute to Arctic amplification, such as from increases in57

atmosphere-ocean poleward energy transport, changes in clouds and water vapor, the58

ice-albedo feedback, Planck and lapse rate feedbacks, and other radiative energy imbal-59

ances. To further understand the contributions to Arctic amplification and its far-reaching60

impacts, it is necessary to evaluate climate models of varying orders of complexities (Dutta61

et al., 2021; Henry et al., 2021; Holland & Landrum, 2021; Hahn et al., 2022). Moreover,62

fully-coupled atmosphere-ocean global climate models (GCMs) are needed for compar-63

ing future assessments of Arctic climate change. However, there are large mean state bi-64

ases across the Arctic between different GCMs (Davy & Outten, 2020), such as in Cou-65

pled Model Intercomparison Project 5 and 6 (CMIP5/6). For example, most CMIP6 mod-66

els are still too cold over sea ice during the boreal winter (Davy & Outten, 2020). Large67

internal variability also needs to be accounted for in the high latitudes, especially when68

considering dynamical changes to the atmospheric circulation (Swart et al., 2015; M. Eng-69

land et al., 2019; Peings et al., 2021). To address some of these issues, one opportunity70

is to use large ensembles from different GCMs, which includes both internal variability71

and structural model uncertainties when comparing historical and future Arctic climate72

change simulations (Deser et al., 2020; Landrum & Holland, 2020).73
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Improving credibility, understanding, and trust in climate models requires constant74

evaluation of historical and future projections, especially for considering them in adap-75

tation and mitigation planning in the Arctic. In fact, previous assessment reports from76

the Intergovernmental Panel on Climate Change have devoted entire chapters to climate77

model evaluation for summarizing GCM performance and other associated diagnostics78

(e.g., Randall et al., 2007; Flato et al., 2013). A number of scientific institutions have79

also developed automated statistical toolboxes, such as the Program for Climate Model80

Diagnosis and Intercomparison Metrics Package (Gleckler et al., 2016; Lee et al., 2021)81

and the National Center for Atmospheric Research Climate Variability Diagnostics Pack-82

age (Phillips et al., 2014, 2020), to assist in methodologically comparing GCMs. These83

types of software packages usually compare sets of relative skills metrics or rankings for84

CMIP5/6 models across different mean climate fields, modes of internal variability, trends,85

extreme events, and teleconnections.86

At a basic level, climate model evaluation considers sets of skill metrics, such as87

measures of bias, variance, pattern correlation, and root-mean-square error (RMSE), for88

comparing differences between GCMs and observations. The scalar metrics are often then89

presented in summary displays, such as through Taylor diagrams (K. E. Taylor, 2001)90

or portrait diagrams of relative error (Gleckler et al., 2008). In recent years, more ad-91

vanced statistical methods have also been applied to mean climate benchmarks, such as92

through bias correction, emergent constraints, and model independence and performance-93

based weighting schemes (Knutti et al., 2017; Eyring et al., 2019; Brunner et al., 2020;94

Lauer et al., 2020; Merrifield et al., 2020). This includes leveraging output from newly95

designed GCM large ensembles (Maher et al., 2021). However, these common relative96

error and emergent constraint measures are not without issues (Chai & Draxler, 2014;97

Sanderson et al., 2021); in some cases, they may even underestimate the skill of climate98

models (Willmott et al., 2017). Most of these benchmarks also only consider point-by-99

point statistics, rather than considering potential (non)linear patterns across space or100

time. As a result, it is worth exploring new approaches for climate model evaluation, es-101

pecially considering the growing interest in applying deep learning methods in the geo-102

sciences (Reichstein et al., 2019; Nowack et al., 2020; Nichol, Peterson, Fricke, & Peter-103

son, 2021).104

Although the use of machine learning methods is still fairly new in climate science105

applications (Rasu et al., 2019; Boukabara et al., 2021), several studies have already demon-106
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strated their utility over traditional multiple linear regression for identifying mechanis-107

tic processes and extracting patterns of climate change and variability (e.g., Pasini et108

al., 2017; Barnes et al., 2020; Nichol, Peterson, Peterson, et al., 2021). In this study, we109

use a form of deep learning called artificial neural networks (ANNs) for classifying Arc-110

tic maps of temperature data according to different GCMs. We also leverage an explain-111

able machine learning method to identify regional climate patterns that the ANN is us-112

ing to make its classification.113

Overall, the ANN is quickly able to learn which climate model produces each an-114

nual mean map of near-surface temperature by using regional patterns that are unique115

to each large ensemble simulation, especially relative to the multi-model mean large en-116

semble. The machine learning explainability method then reveals these relevant regional117

pattern fingerprints of temperature for each climate model. One motivation for this work118

is that we are interested in applying inputs from observationally-derived maps to com-119

pare with GCMs using the ANN classification scheme and evaluate whether our method120

produces similar results relative to other climate model evaluation techniques. Here the121

methodological difference is that by using ANNs we can also consider potential regional122

nonlinear relationships across the entire Arctic map, rather than only computing point-123

by-point statistics. Notably, we find that although the ANN is using these regional pat-124

terns, the classification results for comparing with observations resemble other simple125

evaluation methods.126

2 Data127

2.1 Multi-model large ensemble archive128

To train our ANN on climate model data, we use a collection of single model initial-129

condition large ensemble simulations from the multi-model large ensemble archive (MM-130

LEA) (NCAR, 2020; Deser et al., 2020). The MMLEA consists of seven CMIP5-class131

GCMs, which range in ensemble size from 16 to 100 members. Specifically, we use the132

Canadian Earth System Model Large Ensemble (CanESM2; Kirchmeier-Young et al.,133

2017), Max Planck Institute Grand Ensemble (MPI; Maher et al., 2019), Commonwealth134

Scientific and Industrial Research Organisation Large Ensemble (CSIRO-MK3.6; Jeffrey135

et al., 2013), EC-Earth Consortium Large Ensemble (EC-Earth; Hazeleger et al., 2010),136

Geophysical Fluid Dynamics Laboratory Large Ensemble (GFDL-CM3; Sun et al., 2018),137
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Geophysical Fluid Dynamics Laboratory Earth System Model Large Ensemble (GFDL-138

ESM2M; Rodgers et al., 2015), and the Community Earth System Model Large Ensem-139

ble Community Project (LENS; Kay et al., 2015).140

We include only the first 16 ensemble members from each simulation, since this is141

the minimum number of ensemble members available to equally weight all seven GCMs142

(i.e., EC-Earth includes 16 ensemble members) when training and testing our ANN. The143

GCMs also differ by their initialization protocol (Stainforth et al., 2007; Hawkins et al.,144

2016) and utilize micro perturbations (i.e., small roundoff error in the atmospheric ini-145

tial conditions: EC-Earth, GFDL-CM3, LENS), macro perturbations (i.e., different cou-146

pled atmosphere-ocean states: MPI, CSIRO-MK3.6, GFDL-ESM2M), or a combination147

of these two methods (CanESM2). All of the simulations in the MMLEA use historical148

forcing until 2005 and Representative Concentration Pathway 8.5 (RCP8.5) forcing there-149

after (Riahi et al., 2011; K. E. Taylor et al., 2012). Although RCP8.5 is described as an150

unrealistically high emissions scenario (e.g., Peters & Hausfather, 2020; Hausfather &151

Peters, 2020), we focus on data from the observational record (1950-2019) and discuss152

the broader conclusions of using explainable neural networks to compare maps of climate153

data between different GCMs. Given that the individual RCP scenarios do not substan-154

tially diverge until later in the 21st century (Vuuren et al., 2011), the use of this future155

emissions scenario does not affect the interpretation of our results.156

Large ensembles are useful for disentangling the effects of internal variability rel-157

ative to external climate forcing, especially in regions such as the Arctic. Recently, the158

MMLEA has been used in studies for evaluating Arctic amplification, (e.g., Landrum &159

Holland, 2020; M. R. England, 2021; Holland & Landrum, 2021), detection and attri-160

bution of extreme events in Siberia and Alaska (e.g., Ciavarella et al., 2021; Weidman161

et al., 2021), comparing projections of Arctic sea ice (e.g., Topál et al., 2020; Bonan et162

al., 2021), and identifying extratropical teleconnections (e.g., McKenna & Maycock, 2021;163

McCrystall & Screen, 2021). The high number of realizations per GCM is also partic-164

ularly valuable for addressing deep learning and climate science applications, where large165

sample sizes are required for creating training datasets and improving overall ANN per-166

formance. As a recent example, Maher et al. (2022) leveraged the MMLEA and com-167

pared different supervised machine learning methods for classifying El Niño-Southern168

Oscillation events according to their spatial pattern.169
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In this work, we use monthly near-surface temperature (T2M) data and calculate170

annual means in each large ensemble simulation. To compare the results of our ANN with171

observations, we evaluate the 1950 to 2019 temporal period, which overlaps across all172

of the large ensembles and observations. Since the ANN requires the input maps to be173

the same size, all climate model data are regridded onto a common spatial grid of 1.9◦174

latitude by 2.5◦ longitude using a bilinear interpolation scheme. A brief summary of the175

large ensemble simulations can be found in Table S1.176

2.2 Atmospheric reanalysis177

We primarily use ERA5 reanalysis to evaluate how the ANN would classify maps178

of T2M from observations after training the network on only the climate model large en-179

sembles. ERA5 is the fifth generation of atmospheric reanalysis from the European Cen-180

tre for Medium-Range Weather Forecasts (ECMWF) and provides hourly output on a181

31 km horizontal grid with 137 vertical levels (up to 0.01 hPa) (Hersbach et al., 2020).182

ERA5 is based on the ECWMF’s Integrated Forecast System (IFS) release 41r2 and uses183

four-dimensional variational analysis (4D-Var) as a data assimilation scheme. Output184

from ERA5 is available from 1979 to near real-time and is constrained by numerous satel-185

lite and in situ observations, such as from meteorological stations, ships, buoys, radiosonde186

profiles, and aircraft. To further extend the available observations back in time, we use187

the preliminary ERA5 back extension (BE), which is described in Bell et al. (2021).188

In addition to being used as one of the primary datasets for monitoring Earth’s global189

mean surface temperature (Dunn et al., 2021), ERA5 has been widely adopted for stud-190

ies on Arctic climate change and variability (e.g., Davy & Outten, 2020; Cai et al., 2021;191

Nyg̊ard et al., 2021; R. Zhang et al., 2021). Detailed assessments of ERA5’s represen-192

tation of Arctic surface temperature can be found in Graham, Hudson, and Maturilli (2019);193

Wang et al. (2019); Yu et al. (2021), but in general, ERA5 suffers from a small warm bias194

over sea ice when compared to buoy observations and other in situ measurements. This195

bias may result from underestimating surface inversions and the simulation of turbulent196

and radiative heat flux exchanges, especially during the boreal winter (Graham, Cohen,197

et al., 2019).198

Although ERA5 is a modeled product, its mean long-term trends and interannual199

variability of T2M compare well with other station-based datasets in the Arctic (Fig-200
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ure S1). However, in the Supporting Information, we also evaluate the ANN results us-201

ing a separate observational dataset from the National Oceanic and Atmospheric Ad-202

ministration/Cooperative Institute for Research in Environmental Sciences/Department203

of Energy Twentieth Century Reanalysis (20CR) version 3 (20CRv3; Slivinski et al., 2019,204

2021). The difference between the annual mean Arctic T2M for ERA5-BE and 20CRv3205

is within 1◦C in most years, and both datasets fall in the warmer envelope of the range206

in MMLEA mean climate states (Figure S4). However, there are notable regional dif-207

ferences in T2M across the Arctic between ERA5-BE and 20CRv3 (Figure S2-S3), es-208

pecially in the vicinity of sea ice and Greenland. The implications of these differences209

for the ANN output will be further discussed in Sections 4-6. Overall, we focus on these210

atmospheric reanalysis products as they provide both temporarily and spatially-complete211

gridded data (i.e., no missing data) during our period of interest.212

For comparison with the climate model results, we first bilinearly interpolate all213

reanalysis data onto the slightly coarser 1.9◦ latitude by 2.5◦ longitude grid. We then214

calculate annual mean maps of T2M from monthly output over the period of 1950 to 2019.215

A summary of the reanalysis data can be found in Table S2.216

3 Methods217

3.1 Artificial neural network architecture218

In this work, we are interested in whether an ANN can correctly identify which cli-219

mate model simulated an input map of Arctic T2M. As previously discussed, ANNs are220

useful in the geosciences for approximating nonlinear relationships in data-intensive prob-221

lems (Boukabara et al., 2021; Irrgang et al., 2021). In climate science, this type of data222

problem often involves maps of climate variables that are available from large datasets,223

such as satellite data, gridded observational products, or climate models. If provided enough224

training data for the ANN to learn, and without it overfitting, the ANN can then make225

correct predictions on data it has not been seen before. Accompanying ANNs with ex-226

plainability methods can also provide insights into the prediction by considering the trust-227

worthiness of the ANN through scientific intuition for the specific application. An in-228

troduction to ANNs and other deep learning methods can be found in Lecun et al. (2015);229

Goodfellow et al. (2016); Neapolitan and Jiang (2018).230
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We use one shallow ANN architecture for the applications in this study, which is231

described in Figure 1. Our ANN receives flattened maps of Arctic T2M from climate model232

large ensembles in the MMLEA, where each unit of the input layer corresponds to a grid233

box on the map. Therefore, the input layer receives a total of 2016 units (i.e., 14 lati-234

tudes by 144 longitudes). This input vector is fed into two hidden layers with 10 nodes235

each. The output layer contains seven nodes, i.e., one for each GCM class. Our ANN236

is a fully-connected neural network, and the weights and biases are updated iteratively237

until the loss function is minimized. We use a categorical cross-entropy loss function, which238

acts to penalize larger model errors due to a logarithmic transformation. The rectified239

linear unit (ReLU; equation 1; Agarap, 2018) is used in the hidden layers for nonlinear240

transformation, and a softmax operator is included in the output layer (equation 2). We241

refer to the output of the ANN after the softmax operator as the ANN’s ‘confidence.’242

The softmax function remaps the output values of the ANN so that they sum to one for243

the class likelihoods of a given prediction. In other words, the GCM class that is ulti-244

mately selected receives the highest confidence in the ANN output. Overall, this archi-245

tecture is very similar to recent studies using ANNs for evaluating patterns in climate246

models and observations (e.g., Barnes et al., 2019, 2020; Madakumbura et al., 2021), and247

this simple complexity is well suited for assessing the results of the explainability meth-248

ods (Toms et al., 2020).249

f(zj) = max(0, zj) (1)

ỹi =
exp (xi)∑
j=1 exp (xj)

(2)

Before the training process begins, we standardize each map of T2M by subtract-250

ing the training data mean across all 7 climate model large ensembles and dividing by251

the standard deviation of the training data over all 7 climate model large ensembles. This252

is computed at every grid point across all years (70 years; 1950 to 2019) and ensembles253

(12 members). We train the ANN using 12 ensemble members (75% of the data), val-254

idate on 1 ensemble member, and test on 3 ensemble members. This division of ensem-255

ble members is evenly applied across all 7 GCMs. To evaluate the performance of our256

network, we compute the accuracy classification score on testing data (equation 3).257
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Accuracy =
True Positive + True Negative

Total Number of Predictions
(3)

In addition to the method of processing data using absolute T2M, we also conduct258

a set of experiments by first removing the mean temperature of each Arctic map before259

standardizing and allowing the training process to begin. In this set of results, the ANN260

cannot simply rely on differences in the overall mean state of each climate model large261

ensemble for making correct predictions. This method has also been successfully utilized262

in other previous studies for using ANNs to reveal regional indicator patterns of climate263

change (Barnes et al., 2020; Labe & Barnes, 2021).264

As will be discussed later, this overall classification problem is simple for the ANN265

to learn (100% accuracy), and small changes to the proportions of splitting ensemble mem-266

bers do not affect our results. For training, we use a stochastic gradient descent opti-267

mizer (Ruder, 2016) with Nesterov momentum turned on (= 0.9) (Nesterov, 1983), a learn-268

ing rate of 0.001, a batch size of 32, and we apply early stopping to set the number of269

epochs. Early stopping is a technique to help prevent overfitting. Here, the ANN is fin-270

ished training if the validation loss does not decrease for 5 epochs in row. The ANN is271

then restored to the iteration with the best model weights, which is generally less than272

200 epochs for our application. In addition to early stopping, we also apply ridge reg-273

ularization (L2; Friedman, 2012) to the first hidden layer in order to reduce overfitting.274

By limiting the sensitivity of the ANN to outlier weights, L2 helps to reduce spatial au-275

tocorrelation that may exist in fields of climate data, such as T2M, and it is associated276

with smoother fields for interpreting our explainability maps. Our L2 is set to 0.1, al-277

though we explore the results of testing observational data using different ridge param-278

eters in Figures S14-S15.279

3.2 Layer-wise relevance propagation280

To evaluate how the ANN is classifying each temperature map with the correct GCM,281

we use a method of explainable machine learning called layer-wise relevance propaga-282

tion (LRP; Bach et al., 2015; Montavon et al., 2017, 2018). First introduced by Toms283

et al. (2020) for applications in the geosciences, LRP has now been used in a wide range284

of studies across atmospheric and climate sciences for attempting to understand the decision-285

making process of neural networks (e.g., Hilburn et al., 2020; Gordon et al., 2021; Mayer286
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Figure 1. Schematic of the artificial neural network (ANN) used in this study for classifying

which climate model large ensemble (output layer) produced a single map of Arctic near-surface

temperature averaged over a given year (input layer). The ANN consists of two hidden layers

that both contain 10 hidden nodes. The output layer includes a softmax activation function.
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& Barnes, 2021; Sonnewald & Lguensat, 2021; Retsch et al., 2022). Importantly for its287

use in this work, LRP has also been shown to be an effective technique for extracting288

regional patterns of forced climate change that are collectively found between climate289

models and observations (e.g., Barnes et al., 2020; Labe & Barnes, 2021; Madakumbura290

et al., 2021; Rader et al., 2021). Despite a growing number of other machine learning291

explainability methods (e.g., Hedström et al., 2022), we find that LRP is well suited for292

the complexity of our simple neural network problem and geospatial input data.293

LRP is a form of a posthoc feature attribution, where its output describes the con-294

tribution of each input pixel to the overall prediction of the neural network. In other words,295

LRP returns a heatmap that describes the relevance (unitless) of each input feature with296

the same dimensions. Specifically, in this study, LRP returns a vectorized heatmap of297

the relevance value at every latitude and longitude grid point across the Arctic (2016 units298

per map) for inputs of T2M. Thus, we can make individual composites of LRP heatmaps299

for every classification output in order to learn the patterns the ANN used to recognize300

each GCM.301

Although overviews of LRP are described in numerous other studies (e.g., Mon-302

tavon et al., 2019; Toms et al., 2020), we also summarize its implementation here to help303

improve clarity. After an ANN has been trained, the weights and biases are frozen, and304

a single input is passed through the network in forward mode to make a prediction. Next,305

prior to the softmax activation function, the winning output node (i.e., highest likelihood306

class) is backpropagated through the ANN using a set of decomposition rules. After prop-307

agating backward through the ANN to the input layer, we can then obtain relevance val-308

ues for each input pixel. This entire process is repeated for each prediction, and there-309

fore, we have a relevance heatmap for every annual mean temperature input.310

We use the LRPz method, but there are several other forms of LRP following dif-311

ferent backpropagation rules (Bach et al., 2015; Samek et al., 2019) and available using312

the iNNvestigate package (Alber et al., 2019). In a recent comparison of LRP methods313

for geoscience applications, Mamalakis et al. (2021) demonstrated that LRPz performed314

well compared to the ground truth using a benchmark dataset with similar character-315

istics to our climate model large ensemble data. We also compare our results using LRPz316

with two other explainability methods, LRPε (Bach et al., 2015) and Integrated Gra-317

dients (Sundararajan et al., 2017), and find similar relevance spatial patterns (Figure S6).318
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Finally, while explainability techniques like LRP are useful for assessing whether319

a neural network is making predictions based on coherent and physically-based processes,320

we note that it is still subject to user interpretation. The LRP patterns here can only321

be used to identify the local temperature patterns unique to each GCM which are im-322

portant for the ANN’s decision-making process. However, we cannot directly assess how323

the ANN may be (non)linearly leveraging and weighting combinations of these regional324

temperature patterns together.325

To improve visual clarity of our LRP output, we normalize each heatmap sample326

to have a maximum of one and then scale each figure composite by its maximum rele-327

vance. We elected to concentrate on positive relevance output for this analysis, which328

highlights areas that contribute positively to the final ANN classification. This also helps329

to simplify the interpretation of the explainability results for each of the climate model330

large ensemble considered here. In summary, locations of higher relevance indicate re-331

gions of temperature that are more important for the ANN to make its GCM classifi-332

cation.333

4 Classifying climate model large ensembles334

To begin exploring the differences between each GCM in the MMLEA, we first an-335

alyze their raw composites of annual mean T2M over the historical period in Figure S5.336

Unsurprisingly, all of the GCMs capture a similar spatial pattern of temperatures be-337

tween sea-ice covered regions, open water in the North Atlantic and North Pacific, the338

Greenland Ice Sheet, and across other land areas. However, there are some notable dif-339

ferences in the mean T2M, especially for CSIRO-MK3.6, which is at least 3◦C colder across340

most of the Arctic Ocean (Figure S5c). This is likely in association with an unrealistic341

sea ice mean state (i.e., higher sea-ice concentration) and slower rate of sea-ice decline342

over the last one to two decades (Uotila et al., 2013; Topál et al., 2020). It could also343

be due to biases in albedo, cloud processes, and other atmospheric dynamics, as decom-344

posed for CESM1 by Park et al. (2014). Figure 2 shows that all of the GCMs capture345

higher interannual variability of T2M across the marginal ice zone in the North Atlantic,346

such in the Barents Sea region, with respect to ERA5-BE observations (Figure 2a). How-347

ever, there is greater variability along and north of Siberia for CanESM2 (Figure 2b) and348

GFDL-CM3 (Figure 2f), which is likely again in response to differences in sea-ice vari-349

ability. In summary, despite some differences in average T2M and spatial patterns of vari-350
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Figure 2. (a) Standard deviation of annual mean T2M (contour interval of 0.1◦C) for ERA5-

BE calculated over the 1950 to 2019 period. (b-h) Standard deviation of annual mean T2M for

the mean of the ensemble members calculated over the 1950 to 2019 period for CanESM2, MPI,

CSIRO-MK3.6, EC-EARTH, GFDL-CM3, GFDL-ESM2M, and LENS, respectively.

ability, all of the GCMs capture the general annual mean climatological characteristics351

of the Arctic.352

We now turn to our ANN to see if it can correctly identify which GCM simulates353

every input map of annual mean T2M from 1950 to 2019. Recall that we train our ANN354

on 12 ensemble members from each GCM and then test the skill of the ANN using 3 en-355

semble members. The ANN is quickly able to learn how to identify each T2M map with356

the correct GCM and achieves a categorical accuracy of 100% on testing data. We hy-357

pothesize that this perfect accuracy is due to the easy task for the ANN, since the only358

differences between training, testing, and validation are due to the selected ensemble mem-359

bers. Thus, the systematic differences among the GCMs may be larger and spatially more360

persistent in both training and testing data than from that due to internal variability361

alone (i.e., only considering the differences between ensemble members for each GCM362

class). To further elucidate this point, Figure 3h-n shows the T2M differences for each363

GCM relative to the overall multi-model mean ensemble. This more clearly reveals the364

colder mean state in CSIRO-MK3.6 (Figure 3j), along with other regional differences among365

the other GCMs, especially across the North Atlantic, Greenland, and Canadian Arc-366

tic Archipelago.367

We identify the regions that the ANN is leveraging to make its accurate predictions368

using the LRP explainability method in Figure 3a-g. The LRP heatmaps are composted369

separately for each GCM class across all testing ensemble members and years (1950-2019).370

Comparing the areas of higher relevance (i.e., locations that are more important for the371

ANN to make a prediction) in Figure 3a-g with the differences in T2M for each GCM372
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Figure 3. (a-g) Composite heatmap of layer-wise relevance propagation (LRP) for correct

testing data predictions averaged over the 1950 to 2019 period for CanESM2, MPI, CSIRO-

MK3.6, EC-EARTH, GFDL-CM3, GFDL-ESM2M, and LENS, respectively. (h) Composite of

differences in T2M between CanESM2 minus the multi-model mean ensemble averaged over 1950

to 2019. (i-n) As in (h), but for MPI, CSIRO-MK3.6, EC-EARTH, GFDL-CM3, GFDL-ESM2M,

and LENS, respectively.

minus the multi-model ensemble mean (Figure 3h-n) reveal clear similarities in the spa-373

tial patterns. This suggests that the ANN is learning characteristics of each GCM to make374

its classification. Importantly though, the relevance patterns indicate that the ANN is375

not simply using the entire map of T2M differences relative to the multi-model mean.376

For example, GFDL-CM3 is several degrees warmer than the multi-model ensemble mean377

in the Barents Sea region (Figure 3l). Yet, the LRP composite in Figure 3e suggests in-378

stead that T2M patterns in Alaska and the North Pacific are more relevant for the ANN379

to make a final prediction. In contrast, sometimes it is the case that the larger T2M dif-380

ferences correspond to areas of higher relevance, such as for LENS when comparing Fig-381

ure 3g with the colder anomalies in Figure 3n over the Canadian Arctic Archipelago.382

Overall, we interpret that the locations of higher relevance show that the ANN is383

spatially leveraging patterns of T2M that result in a unique set of characteristics or dif-384

ferences between each GCM class. To check that our interpretations of the LRP results385

are not sensitive to the choice of backpropagation rule, we compare relevance compos-386

ites using the epsilon-rule (LRPε) and Integrated Gradients method in Figure S6. The387

relevance composites are nearly indistinguishable across the three explainability meth-388

ods for all GCM classes. Given that the ANN is learning distinctive patterns of T2M to389

characterize each respective GCM, we now turn to observations to consider classifying390

each year with a GCM as a method of climate model evaluation.391
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5 Evaluating observations with climate model large ensembles392

We first calculate the mean T2M bias for each GCM relative to ERA5-BE (Fig-393

ure S7). All of the GCMs reveal a cold bias over the sea-ice covered portions of the Arc-394

tic Ocean, which has been a persistent issue for several generations of fully-coupled cli-395

mate models (Chapman & Walsh, 2007; Davy & Outten, 2020). There are also other re-396

gional differences in T2M biases between GCMs, especially over Greenland and the Cana-397

dian Arctic Archipelago. To test the ANN on inputs from observations (Figure S8a), we398

first rescale each map by subtracting the training mean (Figure S8b,e) and dividing by399

the training standard deviation. In other words, the data is processed in the same method400

as the climate model large ensembles (Section 3.1). Figures S8c shows the difference from401

ERA5-BE minus the training mean, which again shows the Arctic Ocean cold bias in the402

climate model data. Although there are some small differences in magnitude, especially403

over Greenland, we find similar results for rescaling observations using 20CRv3 (Figure404

S8d-f). Composites of the rescaled T2M observations over three time periods display a405

persistent spatial pattern of T2M anomalies, except for the long-term background warm-406

ing associated with Arctic amplification (Figure S9).407

Finally, after rescaling the observational maps of annual mean T2M, we input them408

into the ANN to see which GCM is classified from 1950 to 2019. As discussed in Sec-409

tion 3.1, the ANN outputs the confidence (or likelihood) of a single T2M map belong-410

ing to each of the GCMs classes (Figure 4a). After applying the softmax operator, we411

sort these confidence values from lowest to highest and display these rankings in Figure412

5 separately for every map year. Accordingly, the class with the highest confidence value413

is the GCM ultimately selected for each year and hence given a rank of ‘1.’ If the con-414

fidence value is below that of random chance (1/7), the GCM is given a ranking of ‘7.’415

For ERA5-BE, we find that GFDL-CM3, EC-EARTH, and MPI are mostly frequently416

classified with the highest confidence in a single year. Interestingly, we also see a tem-417

poral evolution of these three models, with EC-EARTH more frequently classified in ear-418

lier years prior to 1979, MPI generally classified between 1979 to 2012, and GFDL-CM3419

selected in the last few years. We hypothesize that this temporal evolution may be re-420

lated to the long-term warming of the Arctic, which closely mirrors the Arctic mean T2M421

in Figure S1. GFDL-CM3 also observes the largest recent warming trends in the Arc-422

tic (not shown).423
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Figure 4. (a) Confidence values (after a softmax operator) from a single seed ANN for each

GCM class after inputting an annual mean map of T2M from ERA5-BE over the period of 1950

to 2019. The line color and marker shading is darker for the GCM class with the highest confi-

dence in each year. (b) Frequency of MPI (dark green line) and GFDL-CM3 (pink dashed line)

classes for receiving the highest confidence prediction output for each annual mean T2M map

from ERA5-BE. The frequency is considered by training 100 ANNs with different combinations of

training, testing, and validation data and random initialization seeds. (c-d) As in (a-b) but after

removing (RM) the annual mean of each T2M map from every grid point before inputting the

observations into the ANN.
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Figure 5. Ranking the order of the ANN confidence values (after a softmax operator) for

each GCM class after inputting an annual mean map of T2M from ERA5-BE over the period of

1950 to 2019. A value of 1 indicates that the GCM received the highest confidence (i.e., winning

predicted category) for each yearly T2M map. If the confidence value of the ANN output is lower

than random chance (≈1/7), the ranking is then set to 7.

To test the robustness of these results, we train 100 separate ANNs using unique424

random initialization seeds and different combinations of training, testing, and valida-425

tion data (ensemble members). After training each of these 100 ANNs, we then input426

the same T2M maps from ERA5-BE and show the frequency of classifying MPI and GFDL-427

CM3 in Figure 4. Similar to the single seed ANN predictions in Figure 4a, MPI is fre-428

quently predicted for the observational maps across the distribution of the 100 ANNs429

(Figure 4b). However, there are also small differences in the observational predictions,430

which suggests that there is some uncertainty due to the choice of training ensemble mem-431

bers and ANN initialization states.432

As briefly mentioned in Section 3.1, to assess whether the network is simply just433

using a smaller mean state bias in a GCM for deciding to to make predictions for ob-434

servations, we try training a new ANN experiment by first processing the climate model435

large ensembles to remove the annual mean T2M of the entire Arctic map from every436

grid point and for every year. In this case, by design, the ANN needs to learn regional437

patterns in order to make its classification. Here, the ANN once again quickly learns unique438
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spatial characteristics of each GCM and achieves a perfect accuracy for the testing data.439

We similarly evaluate the ERA5-BE maps by removing the annual mean T2M from each440

grid point and year (Figure S10). After sorting the confidence values of this new ANN441

(Figure 4c), we rank the GCMs in Figure S11 for every year of observations. In this case,442

we find that MPI receives the highest confidence in nearly every year. Again, testing the443

sensitivity of the observational predictions of this new ANN to the ensemble members444

selected for training, we compute 100 ANNs and show the frequency of MPI and GFDL-445

CM receiving the highest confidence in Figure 4d. Notably, processing the data with the446

annual map mean first removed results in MPI much more frequently labeled than the447

methodology used in Figure 4b. This suggests that the ANN is instead leveraging regional448

temperature patterns to more consistently make observational predictions of MPI.449

Naturally, a next question is how closely do the ANN results compare with tradi-450

tional relative error metrics for comparing climate models and observations. As a base-451

line comparison, we calculate the pattern correlation and RMSE between ERA5-BE and452

each GCM in Figure 6. The correlations and RMSEs are first computed between the ob-453

servations and each ensemble member and then averaged together to get an ensemble454

mean. Most GCMs achieve a high pattern correlation (>0.9), which is unsurprising given455

the results in Figure S5. The lowest pattern correlation (and highest RMSE) is found456

for CSIRO-MK3.6, which is related to its cold bias and extensive sea ice mean state. Turn-457

ing to RMSE, we find that MPI has the lowest error in most years of ERA5-BE. Notably,458

this is largely consistent with the ANN results in Figure 5. Finally, Figure S12 shows tem-459

poral correlations calculated at each grid point between ERA5-BE and the GCMs. Us-460

ing this metric, GFDL-CM3 has the highest correlation over the Arctic Ocean, but most461

of the other GCMs have a similar spatial pattern too (>0.5) from the long-term warm-462

ing trend.463

We consider observations from 20CRv3 to assess how sensitive the GCM predic-464

tion results are to the choice of observational dataset. Following the same steps, Figure465

S13 shows the sorted ANN predictions of 20CRv3 maps according to increasing confi-466

dence values for each GCM class. MPI is frequently classified for each year of 20CRv3.467

However, in this exercise, we do not find any years with confidence above random chance468

for EC-EARTH. Although this differs from the results of ERA5-BE in Figure 5, this is469

not overly surprising given the mean state differences between the two observational datasets470

found in Figure S2-S4.471
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Figure 6. (a) Pattern correlation coefficient of T2M computed for each year between ERA5-

BE and the climate model large ensembles from 1950 to 2019. Correlations (area weighted) are

first calculated per each ensemble separately and then averaged across ensemble members. (b)

Root-mean-square error (RMSE) of T2M for each year between ERA5-BE and the climate model

large ensembles from 1950 to 2019. RMSEs (area weighted) are first calculated per each ensemble

separately and then averaged across ensemble members.

Subsequently, it is evident that the spatial patterns of T2M are important for the472

ANN’s prediction. This could be related to our choice of L2 regularization, since a larger473

L2 can effectively reduce spatial variability and irregularities in the input data. We test474

the effect of different L2 parameters in Figure S14 on the observational predictions for475

ERA5-BE. Here, we find that a larger L2 does in fact result in different GCM labels for476

the T2M maps, which could result from smoothing out the regional patterns that were477

originally important for the ANN using our L2 choice of 0.1. Interestingly, we find that478

repeating this L2 parameter exercise for ANNs with the annual map mean first removed479

results in more consistent predictions for observations (Figure S15). In summary, these480

findings further illustrate that the ANN is learning both information about the mean cli-481

mate state and regional patterns that are associated with an individual GCM and ob-482

servations. Moreover, the ANN is particularly sensitive to regional differences in T2M483

when classifying observations with a GCM.484

6 Identifying regional climate patterns485

So far, we’ve shown that an ANN can detect differences in regional T2M patterns486

that are unique to a particular GCM. We’ve also shown that observations can be eval-487
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uated in the ANN for identifying a GCM with each year in the historical record. This488

tends to result in observational predictions that are still fairly consistent with traditional489

climate model evaluation metrics like RMSE.490

Now we can leverage our LRP explainability method by applying it to the obser-491

vational data in order to more clearly see where the ANN is looking to make its predic-492

tions. Figure 7a-g shows the LRP results composited separately for each GCM that is493

ultimately classified from 1950 to 2019 (i.e., rankings of 1 in Figure 5). We compare these494

relevance heatmaps to T2M composites of the rescaled ERA5-BE input data in Figure495

7h-n. Although at first glance the patterns of the rescaled T2M composites look fairly496

similar, it is clear that the ANN is using small regional differences to make its classifi-497

cation, as reflected by the relevance patterns in Figure 7a-g. For example, one year of498

observations is classified as LENS, which is likely due to the large cold anomaly over the499

Canadian Arctic Archipelago (Figure 7n) that is similarly reflected as an area of higher500

relevance in Figure 7g.501

Due to some differences in the GCM predictions for 20CRv3 compared to ERA5-502

BE (Section 5), we show the LRP results for 20CRv3 testing predictions in Figure S16.503

For the composites of 20CRv3, we see higher relevance predominately over Greenland.504

Uncertainties in T2M are particularly large over Greenland for many reanalysis and other505

gridded observational datasets (e.g., Jack et al., 2017; Delhasse et al., 2020; W. Zhang506

et al., 2021), and this is found to be true for both ERA5-BE and 20CRv3 (Figure S2).507

Therefore, this may help to explain the differences found for the observational predic-508

tions in Section 5.509

We can also explore the LRP results of the ANN experiment using T2M data with510

the annual mean of the Arctic first removed before training and testing. These relevance511

composites are shown in Figure S17. While MPI is selected for most observational years512

by this ANN (Figure S17b), we can still see spatial differences in the relevance regions513

compared with GFDL-CM3 (Figure S17e) particularly over northwestern Canada and514

eastern Siberia.515

Finally, returning to the LRP results of the climate model large ensembles, Fig-516

ure 8 shows the relevance heatmaps of each GCM from the ANN trained on data with517

the annual mean of the map first removed (RM). Comparing Figure 8 with the original518

LRP results of Figure 3a-g shows that the ANN is still using many of the same regional519
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Figure 7. (a-g) Composites of LRP heatmaps for each GCM classification after inputting an-

nual mean maps of T2M from ERA5-BE into the ANN. Higher values indicate greater relevance

for the ANN’s prediction. (h-n) Composites of T2M from ERA5-BE that are first scaled by the

training data mean and training data standard deviation. Maps are then composited according to

each predicted GCM class for every year. Maps that are gray indicate that the GCM was never

classified, and the number in the upper left-hand corner indicates the number of times the GCM

was classified from 1950 to 2019.

Figure 8. (a) Composite heatmap of LRP averaged over 1950 to 2019 for correct testing data

predictions after removing the annual mean of each CanESM2 map before it is fed into the ANN.

(b-g) As in (a), but for MPI, CSIRO-MK3.6, EC-EARTH, GFDL-CM3, GFDL-ESM2M, and

LENS, respectively.

T2M signals, such as the cold anomaly signatures over the Barents Sea in CSIRO-MK3.6520

and near Iceland in GFDL-ESM2M. But there are also some differences in the higher521

relevance areas, like those found in the heatmap composites for CanESM2 over Siberia522

and the North Atlantic. These results support our interpretation that the ANN is mak-523

ing predictions by weighting regional patterns of T2M that are unique to each GCM for524

comparing with observational data.525
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7 Discussion and Conclusions526

There are many existing methods for ranking the skill of climate models against527

observations (Gleckler et al., 2008; Eyring et al., 2019). This exercise is particularly im-528

portant for climate sensitive regions, such as the Arctic, which have large spreads and529

uncertainties in future projections and where guidance for weighting climate model pro-530

jections is not always necessarily straightforward (Knutti et al., 2017). Some of the ad-531

vantages for exploring deep learning methods for comparing climate models with obser-532

vations include their ability to leverage spatial patterns and relationships and approx-533

imate any nonlinearities. We attempt to evaluate climate model large ensembles and ob-534

servational datasets in the Arctic using a simple artificial neural network (ANN) clas-535

sification framework. That is, we trained ANNs on maps of near-surface temperature (T2M)536

from the multi-model large ensemble archive and then used the neural network for pre-537

dicting data from atmospheric reanalysis to see which climate model is classified for each538

year from 1950 to 2019. To understand the ANN’s prediction, we leveraged an explain-539

ability method called layer-wise relevance propagation, which revealed that the ANN is540

using regional temperature patterns, rather than only mean state biases, in order to make541

each climate model selection.542

Although the prediction task itself is quite simple for the ANN to correctly learn543

which climate model simulated a map of T2M, it is more challenging to interpret the ANN’s544

utility on observations. Here, MPI is most frequently classified by the ANNs for the T2M545

maps taken from observations, which is likely a result of its mean climate state and pat-546

terns of spatial variability that compare closely with ERA5 over both land and ocean547

areas in the Arctic. Interestingly, we find that this climate model classification for each548

year of observations produces results rather similar to traditional evaluation metrics, such549

as comparing with climate models that receive lower root-mean-square-errors. One ad-550

vantage of our approach is that the ANN can also learn regional relationships across spa-551

tial patterns, rather than only computing point-by-point relative error statistics. Fur-552

ther, the relevance maps can be used as tools for highlighting regional pattern fingerprints553

unique to individual climate models. This is especially true for areas around large tem-554

perature gradients. For example, the explainability maps reveal that differences in T2M555

near Greenland and the marginal ice zone of the North Atlantic are often important for556

the ANN to correctly identify many of the climate model large ensembles. This is con-557

sistent with recent analysis of CMIP6 models (e.g., Cai et al., 2021), which note that cli-558
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mate model differences may be due to their simulation of Atlantic poleward heat trans-559

port.560

In future work, it may be interesting to use convolutional neural networks for com-561

paring spatial differences in different climate variables or to try the classification archi-562

tecture on GCMs prescribed with different future emission scenarios, but that is beyond563

the scope of this preliminary work. Importantly, we note that the output of this approach564

is dependent on the selection of preprocessing steps, but these choices can be aligned with565

the overall scientific question one is interested in addressing. For instance, preliminary566

work has shown some (albeit lower) skill in classifying maps of temperature anomalies567

that are calculated with respect to a common baseline or by using data with the ensem-568

ble mean first removed. Despite these limitations and future work, this study demon-569

strates that ANNs have the ability to extract regional patterns that are consistent be-570

tween climate models and observations, but the overall practicality of translating this571

approach to existing climate evaluation toolboxes should be further investigated.572

Open Research573

Climate model large ensemble data used in this study are freely available from the574

NCAR Climate Data Gateway (https://www.earthsystemgrid.org/dataset/ucar.cgd575

.ccsm4.CLIVAR LE.html), which is supported by the U.S. National Science Foundation576

(NSF). Atmospheric reanalysis data are openly available for ERA5 (https://cds.climate577

.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means578

?tab=overview) and the preliminary version of the ERA5 back extension (https://cds579

.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly580

-means-preliminary-back-extension?tab=overview), which are both supported by581

the Copernicus Climate Change Service (C3S; Thépaut et al., 2018) Climate Data Store582

(CDS). Twentieth Century Reanalysis Project version 3 (20CRv3) data are provided by583

the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA (https://psl.noaa.gov/data/584

gridded/data.20thC ReanV3.html). References for the datasets are available in Tables585

S1-S2.586

Preprocessing steps were completed using NCO v4.9.3 (Zender, 2008), CDO v1.9.8587

(Schulzweida, 2019), and NCL v6.2.2 (NCAR, 2019). Computer code for the ANN ar-588

chitecture, figures, and other exploratory data analysis is available at https://zenodo589

–24–



manuscript submitted to Earth and Space Science

.org/record/6564106. Python v3.7.6 (Van Rossum & Drake, 2009) packages used for590

this analysis include Numpy v1.19 (Harris et al., 2020), SciPy v1.4.1 (Virtanen et al.,591

2020), and Scikit-learn v0.24.2 (Pedregosa et al., 2011). Additional open source software592

used for development of the ANN and LRP heatmaps include TensorFlow v1.15.0 (Abadi593

et al., 2016) and iNNvestigate v1.0.8 (Alber et al., 2019). Matplotlib v3.2.2 (Hunter, 2007)594

was used for plotting figures, and colormaps were provided by cmocean v2.0 (Thyng et595

al., 2016), Palettable’s cubehelix v3.3.0 (Green, 2011), and Scientific v7.0.0 (Crameri,596

2018; Crameri et al., 2020).597

Conflict of Interest598

The Authors declare no conflicts of interest in regard to this study.599

Acknowledgments600

We thank two anonymous reviewers and the editor for their constructive comments and601

suggestions, which helped us to improve this manuscript. This study was supported by602

NOAA MAPP grant NA19OAR4310289 and by the Regional and Global Model Anal-603

ysis program area of the U.S. Department of Energy’s (DOE) Office of Biological and604

Environmental Research (BER) as part of the Program for Climate Model Diagnosis and605

Intercomparison project. We would like to acknowledge the US CLIVAR Working Group606

on Large Ensembles and high-performance computing support from NCAR’s Compu-607

tational and Information Systems Laboratory’s (CISL) Cheyenne (doi:10.5065/D6RX99HX)608

for the development of the Multi-Model Large Ensemble Archive (https://www.cesm609

.ucar.edu/projects/community-projects/MMLEA/). Lastly, we would like to acknowl-610

edge support for the Twentieth Century Reanalysis Project version 3 (20CRv3) dataset611

provided by the U.S. DOE Office of Science BER, by the NOAA Climate Program Of-612

fice, and by the NOAA Physical Sciences Laboratory.613

References614

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Zheng, X.615

(2016). TensorFlow: A system for large-scale machine learning. In Proceedings616

of the 12th usenix symposium on operating systems design and implementation,617

osdi 2016.618

Agarap, A. F. (2018, mar). Deep Learning using Rectified Linear Units (ReLU).619

–25–



manuscript submitted to Earth and Space Science

arXiv . Retrieved from http://arxiv.org/abs/1803.08375620
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X - 2 LABE AND BARNES: COMPARING CLIMATE MODELS

Table S.1. Summary of the climate model simulation used
from the multi-model large ensemble archive (MMLEA) in this
study (see NCAR, 2020; Deser et al., 2020).

Name CMIP5 Forcing Years # Members Horizontal Resolution Reference
(Atmosphere / Ocean)

CanESM2 Historical to 2005, RCP 8.5 1950-2019 16 ∼ 2.8◦ × 2.8◦/∼ 1.4◦ × 0.9◦ Kirchmeier-Young, Zwiers, and Gillett (2017)
MPI Historical to 2005, RCP 8.5 1950-2019 16 ∼ 1.9◦ × 1.9◦/nominal 1.5◦ Maher et al. (2019)

CSIRO-MK3.6 Historical to 2005, RCP 8.5 1950-2019 16 ∼ 1.9◦ × 1.9◦/ ∼ 1.9◦ × 1.0◦ Jeffrey et al. (2013)
EC-EARTH Historical to 2005, RCP 8.5 1950-2019 16 ∼ 1.1◦ × 1.1◦/nominal 1.0◦ Hazeleger et al. (2010)
GFDL-CM3 Historical to 2005, RCP 8.5 1950-2019 16 ∼ 2.0◦ × 2.5◦/ ∼ 1.0◦ × 0.9◦ Sun, Alexander, and Deser (2018)

GFDL-ESM2M Historical to 2005, RCP 8.5 1950-2019 16 ∼ 2.0◦ × 2.5◦/ ∼ 1.0◦ × 0.9◦ Rodgers, Lin, and Frölicher (2015)
LENS Historical to 2005, RCP 8.5 1950-2019 16 ∼ 1.3◦ × 0.9◦/nominal 1.0◦ Kay et al. (2015)

Table S.2. Summary of atmospheric reanalysis data used in this study.

Name Data Set Years Reference

ERA5 ECMWF Reanalysis v5 1979–2019 Hersbach et al. (2020)
ERA5-BE ECMWF Reanalysis v5 Back Extension 1950-1978 Bell et al. (2021)
20CRv3 NOAA-CIRES-DOE Twentieth Century Reanalysis v3 1950-2015 Slivinski et al. (2019, 2021)
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Figure S1. Time series showing annual mean near-
surface temperature (T2M; ◦C) anomalies averaged
over the Arctic (60◦N-87◦N) from 1950 to 2019 us-
ing European Centre for Medium-Range Weather Fore-
casts ERA5 preliminary back extension (ERA5-BE;
dashed black line) (Hersbach et al., 2020; Bell et al.,
2021), National Oceanic and Atmospheric Administra-
tion/Cooperative Institute for Research in Environmen-
tal Sciences/Department of Energy Twentieth Century
Reanalysis (20CR) version 3 (20CRv3; solid purple line)
(Slivinski et al., 2019), Berkeley Earth Land/Ocean Tem-
perature Record (BEST; solid blue line) (Rohde & Haus-
father, 2020), Goddard Institute for Space Studies Sur-
face Temperature product version 4 (GISTEMPv4; solid
green line) (Hansen et al., 2010; Lenssen et al., 2019),
and Hadley Centre/Climatic Research Unit Temperature
version 5.0.1.0 (HadCRUT5; solid orange line) (Morice et
al., 2021). Note that 20CRv3 is only available from 1950
to 2015. Gray shading shows the 5th-95th percentiles
of T2M anomalies in the Arctic across all 7 global cli-
mate models with 16 ensemble members each (as used in
the main analysis) from the multi-model large ensemble
archive (MMLEA) (Deser et al., 2020). All anomalies are
computed in respect to their 1981 to 2010 climatology.
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Figure S2. (a) Composite of T2M (contour interval of
1◦C) for ERA5-BE reanalysis averaged over the 1950 to
1999 period. (b), As in (a), but for 20CRv3. (c) Differ-
ence in annual mean T2M for ERA5-BE minus 20CRv3
over the 1950 to 1999 period. (d-f) As in (a-c), but for
the 2000 to 2015 period.
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Figure S3. (a) Annual linear least squares trends of
T2M (◦C per decade) for ERA5-BE reanalysis over the
1950 to 1999 period. (b), As in (a), but for 20CRv3. (c)
Difference in decadal trends of T2M for ERA5-BE minus
20CRv3 over the 1950 to 1999 period. (d-f) As in (a-c),
but for the 2000 to 2015 period.
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Figure S4. Time series showing annual mean T2M (◦C)
averaged over the Arctic (60◦N-87◦N) from 1950 to 2019
using ERA5-BE (dashed black line) and 20CRv3 (solid
purple line). Note that 20CRv3 is only available from
1950 to 2015. Gray shading shows the 5th-95th per-
centiles of T2M in the Arctic across all 7 global climate
models with 16 ensemble members each (as used in the
main analysis) from the MMLEA. The solid gray line
shows the mean by considering all 7 global climate mod-
els and their ensemble members.
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Figure S5. (a-g) Composite of T2M (contour inter-
val of 1◦C) for the ensemble mean averaged over the
1950 to 2019 period for CanESM2, MPI, CSIRO-MK3.6,
EC-EARTH, GFDL-CM3, GFDL-ESM2M, and LENS,
respectively.
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Figure S6. (a-g) Composite heatmap using the layer-
wise relevance propagation z-rule (LRPz) for correct test-
ing data predictions averaged over the 1950 to 2019 pe-
riod for CanESM2, MPI, CSIRO-MK3.6, EC-EARTH,
GFDL-CM3, GFDL-ESM2M, and LENS, respectively.
(h-n) As in (a-g), but calculated using the LRP epsilon-
rule (LRPε). (o-u) As in (a-g), but calculated using
the Integrated Gradients method. Higher values indicate
greater relevance for the ANN’s prediction.
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Figure S7. (a-g) Composite of the mean T2M bias (con-
tour interval of 0.1◦C) for the ensemble mean averaged
over the 1950 to 2019 period for CanESM2, MPI, CSIRO-
MK3.6, EC-EARTH, GFDL-CM3, GFDL-ESM2M, and
LENS, respectively. The T2M bias is calculated as the
difference from each climate model ensemble member mi-
nus ERA5-BE.
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Figure S8. (a) Composite of T2M (contour interval of
1◦C) for ERA5-BE reanalysis averaged over the 1950 to
2019 period. (b) Composite of T2M calculated from the
mean of the training data (see text for details) using 12
ensemble members from the 7 climate models over 1950
to 2019. (c) Difference in annual mean T2M for ERA5-
BE minus the training mean. (d-f) As in (a-c), but for
using 20CRv3 from 1950 to 2015.
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Figure S9. (a) Composite of ERA5-BE T2M over the
1950 to 1978 period, which is rescaled by subtracting the
mean of the training data and dividing by the standard
deviation of the training data. The training mean and
standard deviation are calculated at every grid point by
considering all years from 1950 to 2019. (b) As in (a),
but for a composite over 1979 to 1999. (c) As in (a), but
for a composite over 2000 to 2019.
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Figure S10. (a) Composite of ERA5-BE T2M with
the annual mean of the Arctic first removed separately
in each year from 1950 to 1978 from every grid point.
The composite is rescaled by subtracting the mean of the
training data and dividing by the standard deviation of
the training data (with their annual mean also first re-
moved; RM). The training mean and standard deviation
are calculated at every grid point by considering all years
from 1950 to 2019. (b) As in (a), but for a composite over
1979 to 1999. (c) As in (a), but for a composite over 2000
to 2019.
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Figure S11. Ranking the order of the ANN confidence
values (after a softmax operator) for each GCM class af-
ter inputting an annual mean map of T2M from ERA5-
BE over the period of 1950 to 2019. For every T2M map,
the annual mean of the Arctic is first removed separately
in each year from every grid point. A value of 1 indi-
cates that the GCM received the highest confidence (i.e.,
winning predicted category) for each yearly T2M map.
If the confidence value of the ANN output is lower than
random chance (≈1/7), the ranking is then set to 7.



X - 14 LABE AND BARNES: COMPARING CLIMATE MODELS

Figure S12. (a) Spatial pattern of temporal correlation
coefficients (interval of 0.1) of annual mean T2M between
ERA5-BE and CanESM2 from 1950 to 2019. Correla-
tions are first calculated per each ensemble separately
and then averaged across ensemble members. (b-g), As
in (a), but for MPI, CSIRO-MK3.6, EC-EARTH, GFDL-
CM3, GFDL-ESM2M, and LENS, respectively.
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Figure S13. Ranking the order of the ANN confidence
values (after a softmax operator) for each GCM class af-
ter inputting an annual mean map of T2M from 20CRv3
over the period of 1950 to 2015. A value of 1 indicates
that the GCM received the highest probability (i.e., win-
ning predicted category) for each yearly T2M map. If the
confidence value of the ANN output is lower than random
chance (≈1/7), the ranking is then set to 7.
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Figure S14. (a) Confidence values for all GCM class
outputs (after a softmax operator) for inputs of ERA5-
BE from 1950 to 2019 after training an ANN with the
same architecture as the main analysis, but using a L2

regularization value of 0. The marker color is darker for
the GCM class with the highest confidence in each year.
(b) Same as (a), but using a L2 regularization value of
0.01. (c) Same as (a), but using a L2 regularization value
of 0.5. (d) Same as (a), but using a L2 regularization
value of 1, (e) Same as (a), but using a L2 regularization
value of 5. (f) As in (a-e), but only showing the winning
GCM class label (i.e., highest confidence value) for each
T2M map input from ERA5-BE over the period of 1950
to 2019.
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Figure S15. As in Figure S14, but with the annual
mean of each T2M map from ERA5-BE first removed at
every grid point before inputting into the ANN.
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Figure S16. (a-g) Composites of LRP heatmaps for
each GCM classification after inputting annual mean
maps of T2M from 20CRv3 into the ANN. Higher values
indicate greater relevance for the ANN’s prediction. (h-
n) Composites of T2M from 20CRv3 that are first scaled
by the training data mean and training data standard
deviation. Maps are then composited according to each
predicted GCM class for every year. Maps that are gray
indicate that the GCM was never classified, and the num-
ber in the upper left-hand corner indicates the number
of times the GCM was classified from 1950 to 2015.



LABE AND BARNES: COMPARING CLIMATE MODELS X - 19

Figure S17. (a-g) Composites of LRP heatmaps for
each GCM classification after inputting annual mean
maps of T2M from ERA5-BE into the ANN. The an-
nual mean of each map is first removed at every grid
point before inputting into the ANN. Higher values in-
dicate greater relevance for the ANN’s prediction. (h-n)
Composites of T2M (annual mean removed) from ERA5-
BE that are first scaled by the training data mean and
training data standard deviation. Maps are then compos-
ited each year that the GCM was classified, respectively.
Maps that are gray indicate that the GCM was never
classified, and the number in the upper left-hand corner
indicates the number of times the GCM was classified
from 1950 to 2019.



X - 20 LABE AND BARNES: COMPARING CLIMATE MODELS

References

Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., . . . Thépaut, J.-N. (2021). The
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Hazeleger, W., Severijns, C., Semmler, T., Ştefǎnescu, S., Yang, S., Wang, X., . . . Willén, U. (2010, oct). EC-

Earth: A Seamless Earth-System Prediction Approach in Action. Bulletin of the American Meteorological
Society , 91 (10), 1357–1364. Retrieved from https://journals.ametsoc.org/view/journals/bams/91/

10/2010bams2877{\ }1.xml doi: 10.1175/2010BAMS2877.1
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., . . . Thépaut, J.-N. (2020,
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