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Chunhui Zhan1, René Orth1, Mirco Migliavacca1, Sönke Zaehle2, Markus Reichstein1, Jan
Engel2, Anja Rammig3, and Alexander J Winkler1

1Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry,
Jena, Germany
2Department of Biogeochemical Signals, Max Planck Institute for Biogeochemistry, Jena,
Germany
3Land Surface-Atmosphere Interactions, Technical University of Munich, TUM School of
Life Sciences Weihenstephan, 85354 Freising, GermanyLand Surface-Atmosphere
Interactions

November 21, 2022

Abstract

Elevated atmospheric CO2 (eCO2) influences the carbon assimilation rate and stomatal conductance of plants, and thereby

can affect the global cycles of carbon and water. However, the extent to which these physiological effects of eCO2 influence

the land-atmosphere exchange of carbon and water is uncertain. In this study, we aim at developing a method to detect the

emergence of the physiological CO2 effects on various variables related to carbon and water fluxes. We use a comprehensive

process-based land surface model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate

system) to simulate the leaf-level effects of increasing atmospheric CO2 concentrations and their century-long propagation

through the terrestrial carbon and water cycles across different climate regimes and biomes. We then develop a statistical

method based on the signal-to-noise ratio to detect the emergence of the eCO2 effects. The signal in gross primary production

(GPP) emerges at relatively low eCO2 (Δ[῝Ο2] ῀v 20 ππμ) ωηερε τηε λεαφ αρεα ινδεξ (ΛΑΙ) ις ρελατιvελψ ηιγη. ὃμπαρεδ το ΓΠΠ,

τηε ε῝Ο2 εφφεςτ ςαυσινγ ρεδυςεδ 28 τρανσπιρατιον ωατερ φλυξ (νορμαλιζεδ το λεαφ αρεα) εμεργες ονλψ ατ ρελατιvελψ ηιγη ῝Ο2

ινςρεασε (Δ[῝Ο2] >> 40 ππμ), δυε το τηε ηιγη σενσιτιvιτψ το ςλιματε vαριαβιλιτψ ανδ τηυς λοωερ σιγναλ-το-νοισε ρατιο. Ιν γενεραλ,

τηε ρεσπονσε το ε῝Ο2 ις δετεςταβλε εαρλιερ φορ vαριαβλες οφ τηε ςαρβον ςψςλε τηαν τηε ωατερ ςψςλε, ωηεν πλαντ προδυςτιvιτψ ις

νοτ λιμιτεδ βψ ςλιματις ςονστραιντς, ανδ στρονγερ ιν φορεστ-δομινατεδ ρατηερ τηαν ιν γρασσ- δομινατεδ εςοσψστεμς. Ουρ ρεσυλτς

προvιδε α στεπ τοωαρδς ωηεν ανδ ωηερε ωε εξπεςτ το δετεςτ πηψσιολογιςαλ ῝Ο2 εφφεςτς ιν ιν-σιτυ φλυξ μεασυρεμεντς, ηοω το

δετεςτ τηεμ ανδ ενςουραγε φυτυρε εφφορτς το ιμπροvε τηε υνδερστανδινγ ανδ χυαντιφιςατιον οφ τηεσε εφφεςτς ιν οβσερvατιονς οφ

τερρεστριαλ ςαρβον ανδ ωατερ δψναμιςς.
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Abstract 14 

Elevated atmospheric CO2 (eCO2) influences the carbon assimilation rate and 15 

stomatal conductance of plants, and thereby can affect the global cycles of carbon and 16 

water. However, the extent to which these physiological effects of eCO2 influence the 17 

land-atmosphere exchange of carbon and water is uncertain. In this study, we aim at 18 

developing a method to detect the emergence of the physiological CO2 effects on 19 

various variables related to carbon and water fluxes. We use a comprehensive 20 

process-based land surface model QUINCY (QUantifying Interactions between 21 

terrestrial Nutrient CYcles and the climate system) to simulate the leaf-level effects of 22 

increasing atmospheric CO2 concentrations and their century-long propagation 23 

through the terrestrial carbon and water cycles across different climate regimes and 24 

biomes. We then develop a statistical method based on the signal-to-noise ratio to 25 

detect the emergence of the eCO2 effects. The signal in gross primary production 26 

(GPP) emerges at relatively low eCO2!"#$%&2] ~ 20 ppm) where the leaf area index 27 
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(LAI) is relatively high. Compared to GPP, the eCO2 effect causing reduced 28 

transpiration water flux (normalized to leaf area) emerges only at relatively high CO2 29 

increase!"#$%&2] >> 40 ppm), due to the high sensitivity to climate variability and thus 30 

lower signal-to-noise ratio. In general, the response to eCO2 is detectable earlier for 31 

variables of the carbon cycle than the water cycle, when plant productivity is not limited 32 

by climatic constraints, and stronger in forest-dominated rather than in grass-33 

dominated ecosystems. Our results provide a step towards when and where we expect 34 

to detect physiological CO2 effects in in-situ flux measurements, how to detect them 35 

and encourage future efforts to improve the understanding and quantification of these 36 

effects in observations of terrestrial carbon and water dynamics. 37 

1 Introduction 38 

Plants are tightly coupled to the ambient atmosphere through their exchange of 39 

energy, water and carbon (Gentine et al., 2019). Through this coupling, plants play an 40 

essential role in controlling the global cycles of carbon and water, and also modulate 41 

Earth’s surface energy balance (Gedney et al., 2006; Williams and Torn, 2015; 42 

Friedlingstein et al., 2019). Changing atmospheric conditions such as rising air 43 

temperature, or increasing dryness in turn directly impact on plants and their 44 

functioning (Reichstein et al., 2013; Novick et al., 2016; Bastos et al., 2020). Also 45 

changes in the atmospheric composition, such as elevated atmospheric CO2 (eCO2) 46 

can alter plant productivity, for example by stimulating carbon assimilation and by 47 

reducing stomatal conductance (Ainsworth and Long, 2005; Norby and Zak, 2011; 48 

Walker et al., 2021). As a result, the light-use efficiency (LUE; Drake et al., 1997) and 49 

the water-use efficiency of plants (WUE; Peñuelas et al., 2011; Ueyama et al., 2020) 50 
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increase under eCO2. The combined effect is referred to as the CO2 fertilization effect 51 

(Körner et al., 2007; Walker et al., 2021).  52 

Plant leaves respond directly to eCO2 through the physiological mechanisms 53 

associated to the CO2 fertilization effect, which could potentially translate into changes 54 

of gross primary productivity (GPP) and transpiration (Tr) that can propagate further 55 

into the carbon and water cycles (Fernández-Martínez et al., 2017; Lemordant et al., 56 

2018; Walker et al., 2021). Specifically, the eCO2 effect alters the carbon cycle by 57 

triggering changes in GPP resulting in changes in net primary production (NPP) and 58 

various aspects of biomass production, accumulation and allocation (e.g., leaves or 59 

roots). The increased biomass production can potentially contribute to an increased 60 

leaf area index (LAI). Observational evidence suggests that this effect can vary 61 

substantially across different biomes and plant functional types (Norby and Zak, 2011; 62 

De Kauwe et al., 2014; Winkler et al., 2021). The water cycle is affected as eCO2 is 63 

triggering changes in the leaf-level Tr flux which controls the largest fraction of the 64 

land-atmosphere water exchange (Good et al., 2015). The eCO2-induced change of 65 

Tr implies a potential influence on other components in the water cycle, such as soil 66 

evaporation, run-off, and consequently soil moisture (Leuzinger and Körner, 2007; 67 

Lemordant et al., 2018). However, reduced transpiration at the leaf level due to 68 

reduced stomatal conductance and stomatal density in response to eCO2 (Woodward 69 

and Kelly, 1995; Ainsworth and Rogers, 2007) could be offset by a simultaneous 70 

increase in leaf area, and thus transpiration at canopy level as more carbon is invested 71 

in leaf growth in response to eCO2 (Wullschleger et al., 2002). These competing 72 

effects of eCO2 could potentially compensate each other, resulting in a non-detectable 73 

effect on the water cycle. Similar but in an opposite way, the increasing leaf area 74 

enhances GPP by controlling light interception (McCarthy et al., 2006). 75 
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The quantification of the effects of eCO2 on carbon and water cycles in experiments 76 

and observations remain inconsistent. The intrinsic WUE inferred from 21 flux site 77 

measurements shows strong increase (Keenan et al., 2013), while the study by 78 

Knauer et al. (2017) indicates a smaller magnitude of WUE response at a recent large 79 

scale. Increased biomass is found in many Free-Air CO2 Enrichment (FACE) 80 

experiments (Walker et al., 2019). However, tree-ring studies indicate the increased 81 

intrinsic WUE does not translate into the increased tree biomass (Peñuelas et al., 82 

2011; van der Sleen et al., 2015). The diverse response of plant physiology to eCO2 83 

is observed in many other aspects. Results from field experiments show the magnitude 84 

of eCO2 stimulation on carbon assimilation rate varies considerably across species 85 

and experimental conditions (Norby et al., 1999; Leakey et al., 2009; Norby and Zak, 86 

2011; Walker et al., 2021). Meta-analysis indicates that stomatal conductance in 87 

young trees show stronger response to eCO2 than old trees, and deciduous forest 88 

show stronger response than conifer forest (Medlyn et al., 2001). Furthermore, 89 

photosynthesis in C4 plants is close to being saturated, while plants in the C3 carbon 90 

pathway are expected to show a greater increase in carbon assimilation rate (Kramer, 91 

1981; Ainsworth and Rogers, 2007; Leakey et al., 2009). Though C4 plants may have 92 

more potential response to eCO2 associated with high WUE (Way et al., 2014). 93 

Overall, the uncertain strength of eCO2 effects across different climate zones and 94 

biomes prevents us from better understanding the governing processes, but this is 95 

necessary to anticipate future changes of carbon and water fluxes in the system. 96 

This study aims to develop a methodology that would be helpful to define the 97 

detectable imprint of CO2 on land-atmosphere fluxes of carbon and water. Such a 98 

detection is challenging with real-world data, mostly due to confounding factors 99 

impacting on long-term plant productivity, such as climatic variability, nitrogen 100 
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deposition, and land cover change (McCarthy et al., 2010; Schimel et al., 2015; 101 

Fernández-Martínez et al., 2017; Liu et al., 2021). FACE experiments provide the 102 

opportunities to observe the response of ecosystems to eCO2 in the field exposed in 103 

open-air conditions (Ainsworth and Long, 2005). Nevertheless, in these experiments, 104 

ecosystems are pushed into an “accelerating mode” where plants are exposed to a 105 

much higher rate of CO2!'()'*)+,-+.()! .)',*-/*! "0112!3345! .)!-!/6(,+! +.4*!3*,.(7 106 

while the climate conditions are changing at a relatively slow speed. Process-based 107 

models provide the opportunity to conduct factorial experiments to isolate the role of 108 

individual drivers, which allows us to test a statistical trend-detection method. Here, 109 

we perform three simulations with the terrestrial biosphere model QUINCY 110 

(QUantifying Interactions between terrestrial Nutrient CYcles and the climate system; 111 

Thum et al., 2019) to isolate the eCO2 effects: (i) a reference simulation with transient 112 

CO2 concentrations and observation-based meteorological forcing, (ii) a simulation 113 

where the CO2 is kept constant at the level of 1901 while the meteorological forcing is 114 

identical to the reference simulation; and (iii) a simulation with the same set up of (i) 115 

but CO2 is kept constant after the year 1988 at the level of 1988. The simulation (iii) is 116 

used to test our method in the recent time period, when the FLUXNET observations 117 

start to be recorded. Analyzing the differences of carbon and water fluxes between 118 

both simulations, we develop a statistical method to detect the time of emergence of 119 

significant eCO2 effects on these fluxes given their natural variability. In other words, 120 

we seek to identify the point in time the eCO2 effects are distinguishable from short-121 

term and long-term climate effects. We concentrate on the two variables which are 122 

most directly affected by rising CO2, GPP and Tr at annual, seasonal and diurnal 123 

scales. To exclude the potential compensation effect of increasing LAI, we normalize 124 

Tr by LAI (Trnorm) to obtain the transpiration flux per leaf area. Subsequently, we 125 



 

 6 

analyze eCO2 effects on ecosystem properties (Table 1) which are important in the 126 

carbon and water cycle and investigate controls of the emergence of the eCO2 effects. 127 

We also include Earth system models from the most recent Coupled Model 128 

Intercomparison Project (CMIP6) to examine whether the controls of the emergence 129 

of the eCO2 effects are exclusive in the QUINCY model.  130 

2 Materials and Methods 131 

2.1 QUINCY model 132 

2.1.1 Model description 133 

The terrestrial ecosystem model, QUINCY (QUantifying Interactions between 134 

terrestrial Nutrient CYcles and the climate system; Thum et al., 2019), is designed to 135 

represent the coupled carbon, nitrogen, and phosphorus cycles and their interactions 136 

with energy and water balances in terrestrial ecosystems. QUINCY simulates half-137 

hourly carbon, water and energy fluxes as well as longer-term ecosystem dynamics 138 

across climate regimes and different plant functional types (PFTs), representing 139 

different plant growth forms (tree, grass), leaf types (leaves, needles) and phenology 140 

(evergreen, cold and drought deciduous, perennial). Calculation of coupled 141 

photosynthesis (Kull and Kruijt, 1998) and stomatal conductance (Medlyn et al., 2011) 142 

are taking for sunlit and shaded leaves separately along the vertical canopy gradient 143 

of light, foliar chlorophyll and photosynthetic N. QUINCY accounts for limitations of 144 

photosynthesis by light, CO2, temperature and water availability. GPP at the canopy 145 

level is integrated from leaf-level gross photosynthesis. The simulated diurnal and 146 

seasonal patterns of GPP have been evaluated against a number of benchmarks, 147 
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including several FLUXNET sites. Leaf area development is dynamically dependent 148 

on plant production (and thereby its response to changing atmospheric CO2, climate 149 

and water availability) as well as stand structural development and turnover through 150 

mortality and establishment. Transpiration is calculated as a function of the stomatal 151 

conductance of the canopy, aerodynamic conductance, and other parameters in terms 152 

of air density and humidity. Soil physics, moisture and biogeochemistry are modelled 153 

for 15 layers with exponentially increasing depth. QUINCY calculates the litter and soil 154 

organic matter turnover by first-order kinetics with temperature and moisture 155 

dependencies. For more detailed explanations of the process representations in 156 

QUINCY, please refer to the model description by Thum et al. (2019).  157 

2.1.2 Model setup 158 

2.1.2.1 Boundary conditions and meteorological forcing 159 

The QUINCY model is a 1-D model applied at individual sites (339 sites) distributed 160 

across climate zones and biomes for the time period 1901-2018. As an offline land 161 

surface model, QUINCY takes time-dependent observation-based meteorological 162 

forcing variables as input such as short- and longwave radiation, air temperature, 163 

precipitation, vapor pressure deficit (VPD), atmospheric CO2 concentration, as well as 164 

other boundary conditions such as geographical coordinates, PFTs, and soil physical 165 

and chemical parameters. At each site, a specific boundary condition and 166 

meteorological forcing is taken from the Climate Research Unit and Japanese 167 

reanalysis product (CRU JRA V2.1; Harris, 2020), and disaggregated to the model 168 

time step (half-hourly) using the statistical weather generator (Zaehle and Friend, 169 

2010). The annual atmospheric CO2 concentration is obtained from the Global Carbon 170 

Project (Le Quéré et al., 2018). Soil physical and chemical properties are derived from 171 
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soil texture (Saxton and Rawls, 2006). The texture data are taken from the nearest 172 

grid cell of SoilGrids dataset (Hengl et al., 2017). To improve the interpretability of the 173 

model simulations with respect to the occurrence of the eCO2 signal, we reduce the 174 

model complexity and set the soil-soluble NH4, NO3 and PO4 concentrations at a 175 

prescribed level so that the plant growth is not limited by the nutrient availability, and 176 

disregard the N and P deposition in the model. 177 

2.1.2.2 Model simulation experiments for hypothesis testing 178 

We conduct three factorial model experiments to disentangle the effects of eCO2 from 179 

other drivers: (a) Transient-CO2 experiment. This simulation can be considered as a 180 

historical run that aims to approximate the observed system and thus takes the 181 

transient climate and CO2 concentration for the period 1901-2018 as forcing. The 182 

transient-CO2 experiment simulates an increase in atmospheric CO2 of 110.63 ppm 183 

over 118 years; (b) Constant-CO2 experiment. This simulation includes the same 184 

transient climate as the transient-CO2 experiment. However, the atmospheric CO2 185 

concentration does not change and is fixed to the initial value of 1901 (296.8 ppm) for 186 

the entire simulation period. The climate forcing data contains the effects of rising CO2. 187 

(c) Freeze-CO2 experiment. Here, the atmospheric CO2 increases until 1988, as in the 188 

transient-CO2 experiment, but is then kept constant at this value in the years 189 

thereafter. The year 1988 was chosen as the time close to the setup of the first 190 

FLUXNET sites (Baldocchi et al., 2001).  191 
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2.2 Statistical analysis 192 

2.2.1 The effect of elevated CO2 on annual average GPP and Trnorm 193 

We first calculate the difference in annual average values of GPP and normalized 194 

transpiration (Trnorm = Tr / LAI) between the transient-CO2 and the constant-CO2 195 

experiments. The difference indicates the eCO2 effect on the target variable for the 196 

period 1901-2018. We cluster the sites based on site-PFT in four vegetation groups: 197 

Tropical Forest, Temperate Forest, Boreal Forest and Grasses (Table S1). We further 198 

classify the sites of each vegetation group into three temperature classes, “hot”, 199 

“warm”, and “cold” based on the quantiles of long-term mean 2m air temperature 200 

between the sites in each group. Subdividing the temperature classes further based 201 

on the long-term mean annual precipitation (“low”, “middle”, and “high”), we are able 202 

to assess the role of water availability in controlling the variability in GPP and 203 

normalized transpiration. While the CO2-induced change of LAI compensates the 204 

reduced leaf-level water loss at canopy Tr, it governs GPP in an opposite way. The 205 

structural change of increased LAI increases the amount of absorbed 206 

photosynthetically active radiation (APAR) and therefore vegetation productivity. We 207 

also evaluate the eCO2 effect on annual average LUE (LUE = GPP / APAR). The part 208 

of increased GPP related to increased LAI can be thus disentangled.  209 

2.2.2 Emergence of the elevated CO2 effects 210 

Based on the CO2 fertilization effect, we hypothesize that the continuous CO2 increase 211 

over a long period of time exerts a significant influence on the ecosystem (e.g., GPP), 212 

which stands out as the eCO2 effect from natural variability and other factors after a 213 

given time and strength of atmospheric CO2 concentration increase. We define the 214 
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emergence of the eCO2 effects (EoC, ppm) as the change in CO2 concentration 215 

(Δ[CO2]) required so that the time series of a simulated variable in the transient-CO2 216 

experiment diverges significantly from the constant-CO2 experiment. The significant 217 

divergence between the two time series is defined by the point in time when the signal 218 

exceeds the noise. The noise is intended as the interannual variability of the signal 219 

around the long-term changes. We retrieve the signal and noise from the linear fit in 220 

the historical time period for each experiment. The calculation of EoC consists of 4 221 

steps: (1) For each site, we calculate annual averages for the target variable (e.g., 222 

GPP) from daily model output for both transient-CO2 and constant-CO2 experiments 223 

for the time period 1901-2018; (2) We apply linear least squares regressions to retrieve 224 

the trend in the time series of the target variable from both transient- and constant-225 

CO2 experiments, respectively, over a given time period (Fig.1). We start with the time 226 

period 1901-1910 and iteratively expand this time period year by year by advancing 227 

the final year of the time window. For each time period, we compute the linear trend 228 

and its uncertainty. Accordingly, we obtain an estimate of the trend and its 229 

uncertainties for a total of 𝑛 = 108 points in time for each experiment at each site. The 230 

trend 𝑏 and its standard error 𝜎!in the linear regression model are given by (Weisstein, 231 

n.d.): 232 

𝑏	 = ∑ ($!%$)('!%')
"
!#$
∑ ($!%$)%"
!#$

	  233 

𝜎! 	= (
(∑ (𝑦( − 𝑦))*

(+, − (∑ (𝑥( − 𝑥)(𝑦( − 𝑦) × 𝑏*
(+, )/(𝑛 − 2)
∑ (𝑥( − 𝑥))*
(+,

	 234 

Where 𝑥 is the year at time step 𝑖, and 𝑦 is the value of target variable at the year 𝑥(; 235 

(3) The signal is retrieved as the absolute difference in the regression slopes Δ𝑏 (𝑏 in 236 

transient-CO2 minus 𝑏 in constant-CO2) as a function of time, while the noise is 237 

estimated based on twice the sum of two 𝜎! from the transient-CO2 and constant-CO2 238 
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experiments; (4) The time of emergence is determined by the year when the signal 239 

exceeds the noise for 5 consecutive years for the first time. The EoC is defined as CO2 240 

concentration difference (#[CO2]) between the time of emergence and the year 1901 241 

(see Fig. 1 for example). We also test the sensitivity of the arbitrary choice of 5 years 242 

in the calculation of EoC and present results also for n (n = 3, 5, 7, 9) years (Fig. S4). 243 

For analyzing the freeze-CO2 experiment we use the same approach to derive the 244 

EoC. The only difference is that we set the initial year of keeping CO2 constant to 1988 245 

instead of 1901.  246 

 247 

Fig. 1 Illustration of detection of emergence of the elevated CO2 effects (EoC). 248 

The solid lines depict the time series of annual mean GPP for one example site in 249 

QUINCY (80.75° W, 37.75° N, temperate broadleaved summer green tree). Black 250 

color denotes the time series from the transient-CO2 experiment, while gray color 251 

denotes the time series from the constant-CO2! *83*,.4*)+! "9(,! 7*+-.:/! /**! /*'+.()!252 

;<=<;<;5<!>6*!/6-7*7!-,*-!,*3,*/*)+/!+6*!/+-)7-,7!*,,(,!(9!+6*!:.)*-,!,*?,*//.()!/:(3*!253 

"@:-'A!(,!?,-B!7-/6*7!:.)*5<!>6*!C*,+.'-:!7-/6*7!,*7!:.)*!.)7.'-+*/!+6*!*-,:.*/+!+.4*!-+!254 
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D6.'6! +6*! @:-'A! -)7! ?,-B! +,*)7/! 7*C.-+*! /.?).9.'-)+:B<! E(%! 7*/',.@*/! +6*! C-:F*! (9!255 

#$%&2] needed to reach this point. 256 

Table 1 Variables and metrics analyzed for the emergence of the elevated CO2 257 

effects. 258 

Variable or metric Abbreviation 

Gross primary production GPP 

Transpiration Tr 

Normalized transpiration per leaf area (𝑇𝑟/𝐿𝐴𝐼) Trnorm 

Leaf area index LAI 

Net primary production NPP 

Biomass   

Evaporation   

Interception loss   

Root-zone soil moisture   

Light-use efficiency  
(𝐺𝑃𝑃/𝐴𝑏𝑠𝑜𝑟𝑏𝑒𝑑	𝑝ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐𝑎𝑙𝑙𝑦	𝑎𝑐𝑡𝑖𝑣𝑒	𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛	(𝐴𝑃𝐴𝑅)) 

LUE 

Underlying water-use efficiency (𝐺𝑃𝑃 × √𝑉𝑃𝐷/𝑇𝑟) uWUE 

Normalized canopy conductance  
(𝑐𝑎𝑛𝑜𝑝𝑦	𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒	(𝑔𝑐)/(𝑉𝑃𝐷 × 𝐿𝐴𝐼) 

gcnorm 

95th percentile of daily GPP values in each year GPP95 

95th percentile of daily Trnorm values in each year Trnorm
95 

 259 
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In this study, we mainly focus on the CO2-induced change on annual average values 260 

of the relevant variables and metrics for all sites. Based on existing knowledge, we 261 

select variables or metrics (Table 1) that are hypothesized to be most sensitive to 262 

eCO2 (Drake et al., 1997; Novick et al., 2016; Knauer et al., 2017; Ueyama et al., 2020; 263 

Migliavacca et al., 2021) to investigate the first manifestations of eCO2. In addition, to 264 

analyze the variation of the CO2 fertilization effect at different time scales, we apply 265 

the same detecting method at specific times-of-day in each year (e.g., 1 May, 8am) 266 

instead of annual means, to derive the EoC at seasonal and diurnal scale for 267 

representative sites from each vegetation classes (Table S1). 268 

2.2.3 Variable importance determined with random forest analysis 269 

After determining EoC for each site-level simulation, we obtain the respective spatial 270 

7./+,.@F+.()!(9!E(%!-',(//!/.+*/<!G*!*C-:F-+*!+6*!,*:-+.C*!'()+,.@F+.()!9,(4!-::!7,.C*,/!271 

+(! +6*! /3-+.-:! C-,.-@.:.+B! .)! E(%! @B! -33:B.)?! HI-3:*B! J77.+.C*! *8K:-)-+.()! "HIJK5!272 

C-:F*!-)-:B/./!@-/*7!()!+6*!,-)7(4!9(,*/+!"LM5!4(7*:<!M.,/+N!D*!+,-.)!+6*!LM!4(7*:273 

O/'.A.+P:*-,)! L-)7(4M(,*/+L*?,*//(,! JKQ! .)! KB+6()N! Pedregosa et al., 2011) to 274 

predict the previously computed EoC patterns across sites using site-specific long-275 

term (1901-2018) means of climate factors (i.e., temperature, precipitation, soil 276 

moisture, VPD, aridity index (evapotranspiration/precipitation)) and vegetation related 277 

factors (i.e. GPP, LAI, canopy height, growing season length) as predictors (Fig. S10). 278 

The long-term mean values are computed over the entire simulation period from the 279 

transient-CO2 experiment. The out-of-bag (oob) score estimates the accuracy of the 280 

prediction from the RF model as compared with the actual EoC values, where a higher 281 
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value (the maximum score equals 1) represents a better performance of the model. 282 

Finally, we use the module “SHAP TreeExplainer” from the software package shap in 283 

Python (Lundberg and Lee, 2017; Lundberg et al., 2020) to examine the influence of 284 

all the involved predictors. The average of the absolute SHAP values for each predictor 285 

indicates its impact on the target variable (i.e., spatial variability of EoC).  286 

2.3 Comparison with simulations from Earth system models 287 

(CMIP6) 288 

In addition, we perform the EoC analysis for GPP and Trnorm using simulations from 7 289 

Earth system models (ESMs) from the most recent Coupled Model Intercomparison 290 

Project (CMIP6). We use simulation output of the CMIP6 experiments 1pctCO2 and 291 

1pctCO2-rad. In both experiments, the CO2 concentration increases gradually at a rate 292 

of 1 percent per year until quadrupling, starting at the pre-industrial equilibrium state 293 

(Meehl et al., 2014). The fully coupled model setup is used in the 1pctCO2 experiment, 294 

while for the 1pctCO2-rad experiment the CO2 concentration is kept at the pre-295 

industrial level for the carbon cycle and the increasing CO2 has only a radiative effect 296 

(i.e., CO2-induced climatic changes, Jones et al., 2016). Therefore, the 1pctCO2 297 

experiment is comparable to our transient-CO2 experiment, and the 1pctCO2-rad 298 

experiment is comparable to our constant-CO2 experiment, although the QUINCY 299 

simulations follow the observed CO2 concentration for the last 120 years. EoC is 300 

calculated by applying the same detection method as described in section 2.2.2. To 301 

obtain comparability to the EoC results based on the QUINCY simulations, we select 302 

cells in gridded CMIP6 output which correspond to the locations of simulated sites with 303 

QUINCY. Further, we only consider the CMIP6 time series from the year 1850 until 304 

the doubling of the atmospheric CO2 concentration, i.e., roughly 560 ppm. The ESMs 305 
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used in this study are (1) Beijing Climate Center (BCC) BCC-CSM2-MR, (2) Institut 306 

Pierre Simon Laplace (IPSL) IPSL-CM6A-LR, (3) Centre National de Recherches 307 

Météorologiques (CNRM) CNRM-ESM2-1, (4) United Kingdom (UK) UKESM1-0-LL, 308 

(5) Canadian Centre for Climate Modelling and Analysis (CCCma) CanESM5, (6) 309 

Meteorological Research Institute of the Japan Meteorological Agency (MRI) MRI-310 

ESM2-0, (7) Max Planck Institute for Meteorology (MPI) MPI-ESM1.2-LR. More details 311 

on the used CMIP6 ESMs can be found in (Arora et al., 2020). Due to missing 312 

respective output, the analysis for normalized transpiration (Trnorm) only involves the 313 

first 4 models in the CMIP6 archive. 314 

3 Results and Discussion 315 

3.1 The effect of elevated CO2 on gross primary production 316 

Our analysis based on model simulation experiments indicates that eCO2 generally 317 

increases GPP. This increase in GPP differs in magnitude and interannual variability 318 

across climate and vegetation types (Fig. 2). The trend of increasing GPP over 118 319 

years is clearly visible in all forested sites and less clear at grassland sites due to high 320 

year-to-year variability in GPP. In comparison to the forested sites, the variability in 321 

GPP is considerably higher at grassland sites, because grass-dominated ecosystems 322 

are more sensitive to climate variability partly related to shallower roots (Kulmatiski et 323 

al., 2020; Miguez-Macho and Fan, 2021) and less regulated by stomatal closure 324 

(Konings et al., 2017). Grasslands are also predominantly located in semi-arid regions, 325 

in which interannual variability of precipitation is large, and therefore has a larger 326 

imprint on GPP that it would have in mesic ecosystems with lower precipitation 327 
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interannual variability (Maurer et al., 2020). The grassland sites that are located in 328 

relatively cold regions show less variability and more clear trends in GPP in contrast 329 

to grassland sites located in warmer (and drier) regions. 330 

Overall, the results show that the CO2 fertilization effect is strong where vegetation 331 

productivity is not strongly limited by energy or water availability. Subdividing the 332 

temperature classes further based on the amount of annual precipitation, we are able 333 

to assess the role of water availability in controlling the variability in GPP (Fig. S2). 334 

Sites located in relatively warm and wet regions in the Temperate and the Boreal 335 

Forest vegetation class (Fig. S2 b and c) also exhibit the sharpest increase in GPP. 336 

This is probably related to the temperature-dependent response of photosynthetic rate 337 

of CO2 uptake through the kinetics of the Rubisco enzyme (Long, 1991; Hickler et al., 338 

2008; Baig et al., 2015). However, the difference of increase in LUE across 339 

temperature and precipitation classes are not apparent compared to where we find the 340 

sharp increase in GPP, especially in the Temperate Forest vegetation class (Fig. S1 341 

b). The increased carbon assimilation due to rising CO2 leads to a build-up of more 342 

biomass, some of which is allocated to increased leaf growth resulting in an extension 343 

of the leaf area (Winkler et al., 2021). Canopies with higher LAI are more available for 344 

light interception and therefore it leads to enhancement of vegetation productivity. In 345 

temperate forest, the enhancement of GPP due to eCO2 is the combination of 346 

increased both LAI and photosynthetic efficiency (Norby et al., 2005; McCarthy et al., 347 

2006). 348 
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 349 

Fig. 2 Differences in annual average GPP between the transient-CO2 and the 350 

constant-CO2 experiments across climate and vegetation classes. All global sites 351 

(339 sites) are first grouped by vegetation type (a-d, Table S1) and then by long-term 352 

mean temperature using quantiles within each group (cold in blue: ≤0.33; warm in 353 

orange: 0.33 - 0.66; hot in purple: ≥0.66). The shaded area depicts standard deviation 354 

around the multi-sites mean value (solid lines). 355 

3.2 The effect of elevated CO2 on transpiration per leaf area 356 

Decreased transpiration (Tr) due to down-regulated gas exchange with the 357 

atmosphere at the leaf level can be offset by an extension in leaf area at the canopy 358 

level. The simulated Tr exhibits both increasing and decreasing trends in response to 359 

eCO2. To account for that, we normalized Tr by LAI which is denoted by Trnorm. Trnorm 360 

thus represents the transpiration per leaf area. 361 
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As expected, we find consistently decreasing Trnorm across all vegetation types and 362 

temperature classes (Fig. 3). Similar to the result in section 3.1 (Fig. 2), the variability 363 

in Trnorm is high in grasslands. In contrast to GPP, Trnorm responds to eCO2 strongly 364 

where temperature and precipitation are relatively low except for tropical forest sites 365 

(Fig. S2). Barton et al. (2012) suggested that the ratio of net photosynthesis to 366 

transpiration increases in proportion to the increase in atmospheric CO2 concentration. 367 

They further demonstrated that stomatal conductance responds to eCO2 not as 368 

strongly as the photosynthesis apparatus. At the leaf level, the decreased stomatal 369 

conductance is likely to result in the increase of leaf skin temperature (Leakey et al., 370 

2009), which demands higher transpiration. However, the direct relationship between 371 

ambient temperature and eCO2 effect on stomatal regulation is still ambiguous 372 

(Medlyn et al., 2001; Barton et al., 2012). 373 

 374 

Fig. 3 Differences in annual average Trnorm between the transient-CO2 and the 375 

constant-CO2 experiments across climate and vegetation classes.  All global sites 376 
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(339 sites) are first grouped by vegetation type (a-d, Table S1) and then by 377 

temperature using quantiles (cold in blue: ≤0.33; warm in orange: 0.33 - 0.66; hot in 378 

purple: ≥0.66). The shaded area depicts standard deviation around the multi-sites 379 

mean value (solid lines).  380 

3.3 Emergence of the elevated CO2 effects (EoC) in GPP 381 

and Trnorm 382 

A lower EoC indicates a detection of eCO2 effects earlier in the analyzed time period 383 

and thus a stronger response in the target variable to the eCO2 effects compared to 384 

its background or natural variability. Our results show that the eCO2 effect in GPP is 385 

strongest in the tropical forests. 44 sites exhibit an EoC of less than 20 ppm (Fig. 4). 386 

This means that a change in atmospheric CO2 of 20 ppm is sufficient to detect the CO2!387 

9*,+.:.R-+.()!*99*'+!.)!+6*!SKK!+.4*!/*,.*/!9(,!+6(/*!/.+*/<!>6*!9(,*/+*7!)(,+6*,)!4.7P!388 

-)7!6.?6P:-+.+F7*/!-:/(!*86.@.+! /.?).9.'-)+!'6-)?*/! .)!SKKN!D6.'6N!6(D*C*,N! ./!():B!389 

7*+*'+-@:*!-+!4F'6!6.?6*,!#$%&2] (consistent with Schimel et al., 2015). GPP in arid 390 

regions is highly variable due to the high sensitivity towards intermittent water 391 

availability, and this prevents a detection of the CO2 fertilization effect. The effect of 392 

eCO2 on GPP further rarely emerges in regions dominated by C4 grasses, most likely 393 

because they are less responsive to eCO2 due to their different photosynthetic 394 

pathway (Leakey et al., 2009). Also, evidence from FACE experiments suggests that 395 

trees exhibit the greatest response to eCO2 compared to C3 and C4 grasses 396 

(Ainsworth and Long, 2005). The magnitude of plants’ responses to eCO2 comes down 397 

to the variations of photosynthetic capacity, which is indicated by the maximum rate of 398 
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RuBisCO carboxylase activity (Vcmax) and the maximum rate of photosynthetic 399 

electron transport (Jmax; Long, 1991). We find a similar pattern of distribution for EoC 400 

in LUE (Fig. S5) with EoC in GPP, which could support the physiological effect of eCO2 401 

on GPP rather than structural change, namely the change of LAI.  402 

EoC in Trnorm!./!/F@/+-)+.-::B!6.?6*,!'(43-,*7!+(!SKKN!.<*<N!+6*!/.?)-:!*4*,?*/!():B!-+!403 

'()/.7*,-@:B! 6.?6*,! #$%&2]. Further, the global spatial pattern of EoC is more 404 

homogeneous for Trnorm +6-)!9(,!SKK<!H*C*,-:!*TF-+(,.-:!/.+*/!*86.@.+!-!,*:-+.C*:B!:(D!405 

E(%!"/(4*!(9!+6*4!*C*)!:*//!+6-)!U2!3345N!@F+!9(,!4(/+!/.+*/!"=;V!.)!=1;!7*+*'+*7!406 

/.+*/5!+6*!/.?)-:!():B!*4*,?*/!-+!#$%&2] > 70 ppm or not at all. Especially at sites in 407 

arid and semi-arid regions, no significant effect of eCO2 can be detected, even though 408 

a strong response in water-use efficiency is expected to occur in these water-limited 409 

ecosystems (Medlyn et al., 2001). In the QUINCY model, canopy conductance and 410 

transpiration does not scale linearly with LAI at canopy level. So, the Trnorm could still 411 

be affected by increasing LAI to some extent. Next to this, transpiration can be affected 412 

by other factors which may overshadow the role of stomatal conductance. For 413 

example, transpiration is affected by incoming radiation particularly when vegetation 414 

is strongly decoupled with the boundary layer, i.e., a low exchange rate between 415 

vegetation and atmosphere (Jarvis, 1985; De Kauwe et al., 2017). Due to the limited 416 

representation of the coupling between vegetation and the boundary layer in models, 417 

the reduced transpiration flux at the leaf-level might not scale to the canopy-level.  418 

The freeze-CO2 experiment (see section 2.1.2.2) reveals if the results are still 419 

informative for climate change in recent years (1988-2018). Due to the limited length 420 

of the time period, there are only a few sites where the eCO2 effect on GPP can be 421 
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detected (Fig. S6). Nevertheless, as the result shown in Fig. 4a, the signal first 422 

emerges in the tropical regions, with a rather low EoC of around 20 ppm. Furthermore, 423 

the EoC for tropical GPP is consistent between two time periods (1901-2018 and 1988-424 

2018). This encourages future study of the CO2 fertilization effect in recent years.  425 

 426 

 427 

Fig. 4 Global distribution of emergence of the elevated CO2 effects (EoC) in (a) 428 

GPP and (b) Trnorm. Bright color indicates an earlier detection (lower EoC), and dark 429 

color indicates a later detection (higher EoC). Non-colored points indicate sites where 430 

the elevated CO2 does not translate into significant changes in GPP or Trnorm within 431 

the historical time period. 432 

3.4 Seasonal and diurnal variation of EoC in GPP 433 
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We find plants respond differently to the effects of eCO2 across different climate zones 434 

and vegetation types, but also in different seasons and times of the day. For example, 435 

EoC in GPP is lower in summer than in other seasons at sites in the temperate and 436 

boreal forests (Fig. S7 a, d), which is obviously driven by favorable growing conditions. 437 

However, this is not always the case at the diurnal time scale where lowest EoC are 438 

partly found at other times than noon. For the sites in temperate and boreal forests, 439 

the strong signal already emerges early in the morning on some days during summer. 440 

It could be related to the increased aridity at midday. The excessive atmospheric 441 

moisture demand at high temperature results in the midday depression of carbon 442 

uptake, and thus stomatal limitation, which can be simulated by the model. Unlike for 443 

the boreal forest site, at the tropical forest site (Fig. S7 b), the plant response to eCO2 444 

can be detected for any time during the daytime and in all seasons. Although the effect 445 

of eCO2!()!SKK!'-))(+!@*!7*+*'+*7!-+!?,-//!/.+*/!-+!+6*!-))F-:!/'-:*N!D*!'-)!7*+*'+!446 

.+!.)!+6*!*-,:B!?,(D.)?!/*-/()N!-:@*.+!():B!-+!C*,B!6.?6!#$%&2] > ~100 ppm (Fig. 3, Fig. 447 

S7 c). The EoC in Trnorm however is not detectable at any point of the the seasonal 448 

and diurnal cycle, probably related to high variability of the meteorological conditions, 449 

which can be reduced to some extent by the aggregation to annual values. In the 450 

future, researchers may explore the drivers of the variation across diurnal and 451 

seasonal scales. Furthermore, we find the EoC in GPP is lower at some points of the 452 

seasonal and diurnal cycle than EoC in GPP at the annual scale (Fig. S7). This 453 

motivates future study of eCO2 effects in observations at the seasonal and diurnal time 454 

scale. 455 
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3.5 EoC in secondary variables triggered by plant physiological 456 

effects 457 

Changes in GPP and Trnorm triggered by the effects of eCO2 can cascade into 458 

secondary state and process variables of the carbon (e.g., LAI, biomass, NPP) and 459 

water cycles (e.g., evaporation, interception loss, soil moisture). The EoC in LAI and 460 

biomass are generally low (Fig. S8 a, b), even lower than in the case of GPP. Note 461 

that this does not mean that LAI responds more strongly to CO2 increases than GPP, 462 

but rather this finding illustrates the effect of the internal variabilities of each variable 463 

on our results where LAI and biomass as state variables are less influenced by short-464 

term and interannual hydro-meteorological variations and therefore its variation has a 465 

substantially lower standard deviation. The higher signal-to-noise ratio enables the 466 

detection of the eCO2 effects already early in the time series where CO2 has not yet 467 

increased much. Additionally, there is a non-linear relationship between GPP and LAI 468 

when LAI is high. GPP tends to saturate with high LAI due to clumping and the 469 

increase of shaded leaves in the canopy (Street et al., 2007; Chen et al., 2012; Lee et 470 

al., 2019). However, except for the eCO2 effect, different carbon allocation 471 

representations in models also affect the prediction for where the additionally 472 

assimilated carbon goes (Kauwe et al., 2014). Further, the modeled carbon pathways 473 

do not always agree with observational evidence from elevated CO2 experiments 474 

(Norby and Zak, 2011). EoC in NPP shows a similar spatial pattern compared to EoC 475 

in GPP, only the EoC is overall higher due to the added variability from autotrophic 476 

respiration (Fig. S8 c). 477 

The natural variability of process and state variables in the water cycle (e.g., 478 

evaporation, interception, root-zone soil moisture) is substantially higher than for the 479 
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carbon cycle variables. The increasing LAI could provide more shading area, resulting 480 

in a cooling of the surface soil layer. The evaporation from bare soil decreases as a 481 

consequence of this reduced radiative energy input. Consequently, the EoC in 482 

evaporation can be detected in sites located mainly in tropical regions and mid-latitude 483 

regions (Fig. S8 d). Evaporation from rainfall interception is expected to remarkably 484 

increase due to the substantial increase in LAI. However, the magnitude of increased 485 

interception loss does not stand out from the year-to-year variability controlled by 486 

stochastic precipitation events. Also, the root-zone soil moisture does not exhibit a 487 

clear response to eCO2. This is related to the complex and interacting effects on 488 

related water fluxes such as soil evaporation, transpiration, interception loss and 489 

runoff. The interannual variability in precipitation likely also overshadows the subtle 490 

changes in soil moisture in response to the effects of eCO2 (De Kauwe et al., 2021).  491 

3.6 First manifestations of elevated CO2 492 

In this section we compare the EoC across several variables and metrics (Table 1) 493 

related to the carbon and water cycles. These variables and metrics include the 494 

underlying water-use efficiency (uWUE), the light-use efficiency (LUE), the normalized 495 

canopy conductance (gcnorm), LAI and the 95th percentiles of GPP (GPP95) and Trnorm 496 

(Trnorm95). EoC is lowest for GPP95 and LAI for most sites (167 in 214 detected sites; 497 

Fig. 5). We consider the 95th percentile of daily GPP values in each year (GPP95) to 498 

be representative of the maximum capacity of vegetation productivity, which is less 499 

affected by day-to-day weather variability. EoC in GPP95 is significantly lower since 500 

much of the variability is removed compared to annual mean GPP. EoC in GPP95 and 501 

LAI are comparable in the vegetation classes Tropical and Boreal Forests (Fig. S9). 502 

However, EoC in LAI in the Temperate Forests and Grass vegetation classes tends to 503 
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be considerably higher. Probably, this is due to the different fraction of carbon 504 

allocated to foliage versus other plant components across vegetation types (De Kauwe 505 

et al., 2014). 506 

EoC in LUE emerges first for sites located in the high latitudinal regions, where plant 507 

growth is considered to be energy-limited. EoC in WUE emerges first for sites in arid 508 

regions, where plant growth is limited by water availability. Compared to variables 509 

related to the carbon cycle (e.g., GPP, GPP95, LAI), variables related to the water cycle 510 

(e.g., gcnorm, Trnorm, Trnorm95) show weaker responses to the physiological effects of 511 

eCO2. 512 

 513 

Fig. 5 Comparison of EoC across variables and metrics. (a) Box plots depict the 514 

GPP, 95th percentile of daily GPP values in each year (GPP95), LAI, light-use efficiency 515 

(LUE), underlying water-use efficiency (uWUE), gcnorm, Trnorm, 95th percentile of daily 516 

Trnorm values in each year (Trnorm95). Box plots indicate medians and inter-quantile 517 

ranges, and are ordered according to the mean EoC across sites for each variable. 518 

Numbers above the boxplots indicate how many sites can be detected for each 519 

variable or metric (339 sites in total). (b) The map shows the first-emerging variable or 520 

metric with the lowest EoC. The white points on the map refer to the geographical 521 

locations of all sites. 522 
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3.7 Explaining the spatial variability of EoC in GPP and 523 

Trnorm 524 

The ecosystem responses to eCO2 are complex and modulated by several concurrent 525 

effects. All drivers considered to explain the spatial variability of EoC are calculated as 526 

long-term mean values (see section 2.2.3). We find that the spatial variability of EoC 527 

in GPP and Trnorm between sites is mainly explained by varying levels of mean LAI and 528 

mean GPP,!,*/3*'+.C*:B!"M.?<!H=25<!>6*!6.?6*,!+6*!4*-)!WJQ!"(,!4*-)!SKK5N!+6*!:*//!529 

#$%&2] is required such that the physiological effects of eCO2 emerge in GPP, 530 

respectively, Trnorm fluxes. Next, we compare these relationships based on the 531 

QUINCY model with output from similar simulations of Earth system models conducted 532 

in CMIP6 (see section 2.3). Most CMIP6 models qualitatively agree with the QUINCY 533 

results, i.e., the negative relationship between spatial EoC in GPP and LAI, and the 534 

negative relationship between spatial EoC in Trnorm and GPP (Fig. 6). Four models in 535 

CMIP6 (Fig. S11 (a)(e)(f)(g)) agree with QUINCY (Fig. S11 (h)), while the other three 536 

of them do not show a negative relationship between EoC in GPP and the long-term 537 

mean LAI. Also, there are considerable differences between the magnitude of EoC 538 

across the models as well as the strength of the relationships vary among the 539 

individual models in CMIP6 (Fig. S11, Fig. S12). We note, however, that this direct 540 

comparison between the QUINCY and the CMIP6 simulations is limited due to the 541 

conceptually different setup of the analysed simulations. Furthermore, in contrast to 542 

the QUINCY model, which is an offline terrestrial biosphere point model, the CMIP6 543 

ensemble comprises fully coupled Earth system models, which represent a gridded 544 

and coupled land-atmosphere system. Despite these conceptual differences, the 545 
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overall agreement between the QUINCY and CMIP6 models illustrated in Fig. 6 546 

corroborates our findings based on the QUINCY model formulation. 547 

 548 

Fig. 6 EoC in QUINCY versus coupled Earth system models. Spatially varying EoC 549 

is plotted against the predictor that explains most of its spatial variability according to 550 

the SHAP value analysis illustrated in Fig. S10. The relationship of (a) EoC in GPP is 551 

plotted against respective LAI of each model; and (b) EoC in Trnorm is plotted against 552 

respective baseline GPP from each model.    553 

4 Conclusion 554 

We evaluate the plant physiological effects of elevated CO2 (eCO2) on the land-555 

atmosphere exchange of carbon and water. Increasing atmospheric CO2 stimulates 556 

plant carbon assimilation and reduces stomatal conductance, which both may result 557 

in a potential increase in ecosystem productivity and also affect ecosystem 558 

transpiration. Analyzing approximately the last 120 years simulated by the terrestrial 559 

biosphere model QUINCY, we assess how strong the increase in CO2 needs to be 560 
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such that the effects of eCO2 surpass the noise and effects induced by short and long-561 

term meteorological conditions.   562 

We find that the eCO2 effects on GPP can be earlier detected compared with 563 

transpiration (Tr). The eCO2 effects on GPP are different across climate and biomes, 564 

whereas eCO2 effects on normalized transpiration (Trnorm) exhibit less spatial 565 

variability. The eCO2 effects on GPP are detectable at relatively low CO2! .)',*-/*!566 

"#$%&2] ~ 20 ppm) in regions where vegetation productivity is not strongly constrained 567 

by climatic conditions, i.e., water- or temperature-limited plant growth. Carbon 568 

assimilation and carbon pools show stronger responses to eCO2 across sites while we 569 

do not find a widespread strong eCO2 effect in variables describing the water cycle. 570 

The transpiration at canopy level is regulated by the reduced stomatal conductance 571 

and meanwhile, the increasing LAI in response to eCO2. These two opposing effects 572 

appear to be cancelled each other out at ecosystem level and longer time scales, 573 

resulting in an insignificant eCO2 effect on transpiration and other water cycle variables 574 

(e.g., evaporation, interception loss and soil moisture) which are affected by the 575 

response of Tr. While mostly GPP and LAI are the first variables to exhibit detectable 576 

eCO2 effects, in northern high-latitude regions where vegetation growth is limited by 577 

radiation, light-use efficiency responds to eCO2 first among all the other variables, and 578 

the eCO2 effects on water-use efficiency emerges first in some sites located in semi-579 

arid regions. 580 

Climate variations can partly explain the spatial heterogeneity of the plant 581 

physiological effects of eCO2. The strongest response of GPP or Trnorm to eCO2 occurs 582 

dominantly where GPP is not limited by either temperature or precipitation (e.g., sites 583 

in tropical regions). The weakest response of GPP or Trnorm occurs in arid regions 584 
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(e.g., grassland sites), where the high variability overshadows the eCO2 effect. In 585 

addition to climate factors, eCO2-induced plant physiological effects are amplified 586 

where vegetation productivity is already high. We find the long-term mean LAI is the 587 

dominant driver of spatial variability of the eCO2 effect on GPP, whereas the long-term 588 

mean GPP is the dominant driver of spatial variability of the eCO2 effect on Trnorm. 589 

Despite the different model structures and simulation setups, the CMIP6 models 590 

essentially are consistent with the insights gained from the QUINCY model about what 591 

drives spatial variance in the emergence of the eCO2 effects. Overall, our results thus 592 

suggest that high-LAI regions, e.g., tree-dominated ecosystems are more sensitive to 593 

the eCO2 effect than low-LAI, e.g., grass-dominated ecosystems. 594 

Models have the advantage for hypothesis testing by conducting idealized 595 

experiments. Using these experiments, we determine when and where we expect to 596 

detect the eCO2 effects according to our theoretical understanding formulated in the 597 

models. This knowledge provides a first step towards assessing long-term changes 598 

and trends in carbon and water flux observations using eddy covariance 599 

measurements (Baldocchi et al., 2001). In a future study, we will apply this 600 

methodology to analyze whether eCO2 effects can already be detected in the time 601 

series of long-term measurement campaigns of land-atmosphere exchange fluxes, 602 

focusing on the regions and time scales of eCO2 effects spotlighted in this precursory 603 

study. Overall, the model-based analyses presented here, along with the ongoing 604 

observational study focused on the detection and potential quantification of eCO2 605 

effects, are critical and have long been called for in order to provide robust 606 

assessments of how the system will continue to change as CO2 continues to rise. 607 
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Supplemental materials 1 

Table S1 Vegetation classes used in this study. 2 

Vegetation classes Plant functional types (PFTs) defined in the QUINCY model 

Tropical Forest Tropical broadleaf evergreen (TrBE) 

Tropical broadleaf rain deciduous (TrBR) 

Temperate Forest Temperate broadleaf evergreen (TeBE) 

Temperate broadleaf summer green (TeBS) 

Boreal Forest Boreal needleleaf evergreen (BNE) 

Boreal needleleaf summer green (BNS) 

Grass C3 grass (TeH) 

C4 grass (TrH) 

 3 



 

 

 4 

Fig. S1 Differences in annual average light-use efficiency (LUE) between the 5 

transient-CO2 and the constant-CO2 experiments across climate and vegetation 6 

classes.  Analogous to Fig. 2 but with additional grouping of sites by precipitation 7 

using quantiles (low in dotted line: ≤0.33; middle in dashed line: 0.33 - 0.66; high in 8 

solid line: ≥0.66). 9 



 

 

 10 

Fig. S2 Differences in annual average GPP between the transient-CO2 and the 11 

constant-CO2 experiments across climate and vegetation classes.  Analogous 12 

to Fig. S1. 13 

  14 



 

 

Fig. S3 Differences in annual average Trnorm between the transient-CO2 and the 15 

constant-CO2 experiments across climate and vegetation classes. Analogous to 16 

Fig. S1. 17 

 18 

Fig. S4 Spatial distribution of EoC in GPP while changing the number (n = 3, 5, 19 

7, 9) of consecutive years in the definition of EoC (section 2.2.2).  20 

 21 

Fig. S5 Global distribution of EoC in light-use efficiency (LUE). Bright color 22 

indicates an earlier detection (lower EoC), and dark color indicates a later detection 23 



 

 

(higher EoC). Non-colored points indicate sites where the elevated CO2 does not 24 

translate into significant GPP changes within the historical time period. 25 

 26 

 27 

Fig. S6 Global distribution of EoC in GPP in recent years. Analogous to Fig. 4 but 28 

the EoC is derived from the transient-CO2 and freeze-CO2 experiments (see section 29 

2.1.2.2). 30 

 31 



 

 

Fig. S7 Temporal variation in EoC in GPP across the seasonal and daily cycle. 32 

Insets show so-called fingerprint plots illustrating EoC along the seasonal (y-axis) and 33 

diurnal cycle (x-axis) at representative sites for the vegetation classes (a) Boreal 34 

Forest, (b) Tropical Forest, (c) Grass and (d) Temperate Forest. The gray points on 35 

the map refer to the geographical locations of the four sites. 36 

 37 

Fig. S8 Global distribution of EoC in LAI (a), biomass (b), NPP (c) and 38 

evaporation (d). Bright color indicates an earlier detection (lower EoC), and dark color 39 

indicates a later detection (higher EoC). Non-colored points indicate sites where the 40 

elevated CO2 does not translate into significant GPP changes within the historical time 41 

period. 42 



 

 

 43 

Fig. S9 Analogous to Fig. 5 but for different vegetation types. The dashed yellow 44 

line connects each point showing the mean EoC in each variable and metric. The 45 

definition of vegetation groups is the same as in Fig. 2.   46 

                                    47 

Fig. S10 Variable importance explaining the spatial patterns of EoC in GPP and 48 

Trnorm. The figure shows the mean SHAP values from 1000 simulations based on a 49 



 

 

random forest model to examine the variables that explain the spatial variability of EoC 50 

in (a) GPP and (b) Trnorm. The variables used as predictors are the long-term mean 51 

values of each variable. The average Out of Bag (oob) score indicates the random 52 

forest model performance and can be interpreted as the explained fraction of the 53 

variance of the target variable. 54 

 55 

Fig. S11 EoC in GPP across the participating CMIP6 models and QUINCY. EoC 56 

in GPP is plotted against the long-term mean LAI, and each dot represents the grid-57 

cell value in closest proximity to the particular QUINCY site. The red line refers to the 58 

least-squares regression best-fit. 59 



 

 

 60 

Fig. S12 EoC in Trnorm across the participating CMIP6 models and QUINCY. EoC 61 
in Trnorm is plotted against the long-term mean GPP, and each dot represents the grid-62 
cell value in closest proximity to the particular QUINCY site. The red line refers to the 63 
least-squares regression best-fit. 64 


