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Abstract

Developing a radiation emulator based on machine learning in a weather forecasting model is valuable because it can significantly

improve the computational speed of forecasting severe weather events. In order to fully replace the radiation parameterization

in the weather forecasting model, the universal applicability of radiation emulator is essential, indicating a transition from the

research to the operational level. This study addressed the universal issue of radiation emulators associated with horizontal

resolutions from the climate simulation scale (100 km) to the cloud-resolving scale (0.25 km). All simulations were performed

using an emulator trained at 5 km simulation. In real-case simulations (100–5 km), the forecast errors of radiative fluxes and

precipitation were reduced at coarse resolutions. The ideal-case simulations (5–0.25 km) also showed a similar feature with

increased errors in heating rates and fluxes at fine resolutions. However, all simulations maintained an appropriate accuracy

range compared with observations in real-case simulations or the infrequent use of radiation parameterization in ideal-case

simulations. These findings demonstrate the feasibility of a universal radiation emulator associated with different resolutions

and models and emphasize the importance of future development directions toward the emulation of high-resolution modeling.
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Key Points 20 

- The universal applicability of the radiation emulator was examined at different resolutions 21 

using two modeling frameworks. 22 

- In both frameworks, the forecast errors at coarse resolutions were smaller than those at fine 23 

resolutions. 24 

- Because the stability of radiation emulator was universally maintained, and speed 25 

improvement by the emulator can be highlighted. 26 
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Abstract 34 

Developing a radiation emulator based on machine learning in a weather forecasting model is 35 

valuable because it can significantly improve the computational speed of forecasting severe 36 

weather events. In order to fully replace the radiation parameterization in the weather 37 

forecasting model, the universal applicability of radiation emulator is essential, indicating a 38 

transition from the research to the operational level. This study addressed the universal issue 39 

of radiation emulators associated with horizontal resolutions from the climate simulation 40 

scale (100 km) to the cloud-resolving scale (0.25 km). All simulations were performed using 41 

an emulator trained at 5 km simulation. In real-case simulations (100–5 km), the forecast 42 

errors of radiative fluxes and precipitation were reduced at coarse resolutions. The ideal-case 43 

simulations (5–0.25 km) also showed a similar feature with increased errors in heating rates 44 

and fluxes at fine resolutions. However, all simulations maintained an appropriate accuracy 45 

range compared with observations in real-case simulations or the infrequent use of radiation 46 

parameterization in ideal-case simulations. These findings demonstrate the feasibility of a 47 

universal radiation emulator associated with different resolutions and models and emphasize 48 

the importance of future development directions toward the emulation of high-resolution 49 

modeling. 50 
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1. Introduction 53 
The atmospheric radiation process can be accurately expressed using line-by-line models 54 

(Tjemkes et al., 2003; Clough et al., 2005; Kratz et al., 2005). However, it bears heavy 55 

computation time, which limits its applicability. To overcome this challenge, machine-56 

learning emulators imitating radiative transfer processes have been actively developed. 57 

Initially, it was confined to imitating the radiative transfer model (RTM) under specific 58 

conditions (Chevallier et al., 1998; Liu et al., 2020; Ukkonen et al., 2020; Lagerquist et al., 59 

2021; Veerman et al., 2021; Meyer et al., 2022; Ukkonen, 2022). For RTM emulation studies, 60 

advanced machine-learning techniques besides the common neural network (NN), such as the 61 

random forest (Belochitski et al., 2011), the convolutional neural network (CNN; Liu et al., 62 

2020), the recurrent neural network (RNN; Ukkonen, 2022), and the U-net++ model 63 

(Lagerquist et al., 2021), have been actively attempted. Emulation study applications have 64 

completely replaced radiation parameterization in atmospheric forecasting models 65 

(Krasnopolsky et al., 2005, 2008a, 2008b, 2010; 2012; Belochitski et al., 2011; Pal et al., 66 

2019; Roh and Song, 2020; Belochitski and Krasnopolsky, 2021; Song and Roh, 2021; Song 67 

et al., 2021, 2022; Song and Kim, 2022). These emulator studies have shown sufficient speed 68 

improvements of 10–100 times, compared with theoretical radiation schemes based on 69 

discrete bands (Morcrette, 1991; Iacono et al., 2008; Baek, 2017; Hogan and Bozzo, 2018; 70 

Pincus et al., 2019). All these emulators have been developed using the common NN with 71 

single or multiple hidden layers because most radiation schemes and atmospheric forecasting 72 

models are based on the Fortran software, and techniques besides the NN are difficult to 73 

implement in the Fortran code. This case is different from the independent RTM case, which 74 

is not linked with numerical prediction models such as the global climate model (GCM) and 75 

numerical weather prediction (NWP) model. 76 



The speed improvement by the RTM emulator was confined to the radiation process only. 77 

In contrast, the radiation emulator in the NWP can further provide speedups for the entire 78 

numerical prediction system, benefiting many applications (e.g., typhoon, flood, and heavy 79 

snowfall) in which urgent weather forecasting is essential. In addition, because the radiation 80 

emulator is linked to many dynamic and physical variables in the NWP or GCM, the 81 

emulator can produce tremendous variables and outputs from radiative transfer processes at a 82 

faster speed. Therefore, the radiation emulator in numerical prediction models is 83 

incomparably valuable for broad applications compared to the RTM. Krasnopolsky et al. 84 

(2005) first developed an NN emulator 50–80 times faster than the longwave (LW) 85 

parameterization in the Community Atmospheric Model (CAM) with T42 resolution (~300 86 

km). The emulation for shortwave (SW) parameterization, which was 20-fold faster, was 87 

further included under the same CAM (Krasnopolsky et al., 2008a). Belochitski et al. (2011) 88 

for different machine-learning methods and Krasnopolsky et al. (2008b) for compound 89 

parameterization were conducted under the same CAM framework. NN emulators for both 90 

LW and SW can improve the computational speed of radiative calculations by approximately 91 

30 times and the total computation time by a maximum of 25% under the Climate Forecast 92 

System (CFS) model with T126 resolution (~100 km) (Krasnopolsky et al., 2010). Pal et al. 93 

(2019) developed an NN emulator with multiple hidden layers that can accelerate the 94 

computational speed of the radiation process by a maximum of 10 times under a super-95 

parameterized energy exascale earth system model (SP-E3SM) with a 1° horizontal 96 

resolution (~100 km). Krasnopolsky et al. (2012) further reported a speedup of approximately 97 

37.5 times for the radiation process and a total reduction by a maximum of 18% under the 98 

Global Forecast System (GFS) model with T574 resolution (~25 km). Recently, Belochitski 99 

and Krasnopolsky (2021) demonstrated the universal performance of a radiation emulator 100 

developed in the CFS model (Krasnopolsky et al., 2010) by applying it to the GFS model. 101 



Although the current GFS model has a different horizontal resolution (~13 km) to 100 km of 102 

the CFS, they kept the resolution as 100 km in the GFS experiment. In contrast to global 103 

models, the radiation emulators for the Korean local model with a 5 km resolution called the 104 

Korea Local Analysis and Prediction System (KLAPS; Shin et al., 2022) were developed, 105 

showing a significant speedup of the radiation process by 60-fold and 87% reduction in total 106 

computation time (Song and Roh, 2021; Song et al. 2021, 2022; Song and Kim, 2022). 107 

Uniquely, Roh and Song (2020) developed a radiation emulator with speed improvements for 108 

radiation process by 20–100 times and 82–86% reduction in total model time under a cloud-109 

resolving model (CRM) with a 0.25 km resolution. However, their result was limited to an 110 

ideal case of a 6 h forecast in the daytime. Because previous studies on radiation emulators 111 

were conducted in different modeling frameworks based on different horizontal resolutions 112 

(from GCM to CRM), fully interpreting the meaning of the absolute errors found in the 113 

literature is difficult. Therefore, the impact of the horizontal resolutions on the forecast 114 

accuracy of the radiation emulator needs comprehensive investigation. To evaluate the 115 

accuracy of emulator, various aspects need to be validated, such as a common comparison 116 

between control simulations (Krasnopolsky et al., 2005, 2008a, 2008b, 2010, 2012; 117 

Belochitski et al., 2011; Pal et al., 2019; Belochitski and Krasnopolsky, 2021) and 118 

evaluations with the infrequent use of radiation parameterization and observations (Roh and 119 

Son, 2020; Song and Roh, 2021; Song et al., 2021; Song et al., 2022; Song and Park, 2022). 120 

Precipitation, the most important predictor in the weather forecasting model, is implicitly 121 

determined by cumulus parameterization at coarse horizontal resolutions (e.g., above 100 km). 122 

However, precipitation is explicitly calculated using cloud microphysics parameterization at 123 

convection-permitting scales, typically at resolutions of several kilometers. Owing to the 124 

spatial smoothing effect, precipitation forecasting at coarse resolution is generally more 125 

accurate compared with that at fine resolution (Robert and Lean, 2008; Clark et al., 2016), 126 



while high-resolution forecasting remains important. In contrast, the forecast accuracy at 127 

coarse resolution for surface temperature is generally lower than that at fine resolution 128 

(Pavlik et al., 2012; Kumar et al., 2016) because the smoothing effect at coarse resolution 129 

hinders the realistic prediction of temperature variability. The contrast associated with 130 

horizontal resolutions can lead to the conjecture that the radiation emulators developed in 131 

climate models with 100–300 km resolutions (Krasnopolsky et al., 2005, 2008a, 2008b, 2010, 132 

2012; Belochitski et al., 2011; Pal et al., 2019; Belochitski and Krasnopolsky, 2021) show 133 

different behavior compared with those of the convection-permitting NWP model with 5 km 134 

resolution (Song and Roh, 2021; Song et al., 2021, 2022; Song and Kim, 2022) or CRM with 135 

0.25-km resolution (Roh and Song, 2020). Although it is not linked with numerical 136 

forecasting models, emulation studies for the RTM used datasets based on horizontal 137 

resolutions of 80 km (Liu et al., 2020; Ukkonen et al., 2020; Ukkonen, 2022), 30 km (Meyer 138 

et al., 2022), 13 km (Lagerquist et al., 2021), and 1 km (Veerman et al., 2021). However, 139 

these studies were developed using different numerical models and machine-learning 140 

methods, and it is difficult to conclude which studies show more improved results. 141 

Furthermore, the previous radiation emulators were evaluated under the same conditions as 142 

the trained horizontal resolution. Because the horizontal resolution of datasets and targeting 143 

models can be changed per institutional policy or users’ interest from the trained version, the 144 

universal robustness of the developed radiation emulator at different horizontal scales should 145 

be satisfied for applying the emulator to various modeling systems with horizontal resolutions. 146 

The universal applicability of radiation emulators, partially demonstrated by Belochitski 147 

and Krasnopolsky (2021) and Song and Kim (2022), is associated with the changes in 148 

numerical models (CFS to GFS) and microphysics parameterizations along with different 149 

models (real-case to ideal-case simulations), respectively. However, the effect of the 150 

horizontal resolution on the robustness of the radiation emulator remains unknown. Therefore, 151 



this study aimed to investigate the universal performance of a radiation emulator with a 5 km 152 

resolution developed by Song et al. (2022) when it was applied to different horizontal 153 

resolutions for climate and cloud-resolving simulations (100 km to 0.25 km). As in Song and 154 

Kim (2022), the trained results from three-dimensional real-case simulations were applied to 155 

two-dimensional ideal-case simulations. We expect these quantitative analyses to provide 156 

stability and accuracy in the operational NWP model, in association with the potential use of 157 

a machine-learning radiation scheme. In addition, it can provide a comprehensive insight into 158 

various radiation emulators developed at different resolutions, suggesting a future 159 

development direction for radiation emulators. 160 

2. Data and Methods 161 

This study utilized the NN radiation scheme developed by Song et al. (2022) for the 162 

KLAPS model over the Korean peninsula. The emulator imitated the RRTMG-K radiation 163 

parameterization (Baek, 2017), an updated version of the Rapid Radiative Transfer Model for 164 

GCMs (RRTMG; Iacono et al., 2008) with LW of 14 bands and 256 g points and SW of 16 165 

bands and 224 g points, using NN training on 288 million input-output pairs throughout 166 

2009–2019. Stochastic weight averaging (SWA; Izmailov et al., 2018) was applied during the 167 

NN training. The LW/SW emulators for a certain month consisted of four categories: land, 168 

ocean, clear, and cloudy. The input variables for the NN training were vertical profiles of 169 

pressure, temperature, water vapor, ozone, and cloud fraction, in addition to skin temperature 170 

and surface emissivity (LW), as well as insolation and surface albedo (SW). The output 171 

variables used were heating rate profiles, upward fluxes at the top and bottom of the 172 

atmosphere, and downward flux at the bottom. Hereafter, the LW/SW fluxes in this study 173 

indicate the average of three fluxes at the top and bottom. The nonlinear relationship between 174 

the inputs and outputs was approximated by the NN based on 90 neurons and single hidden 175 

layer. As a result of NN training, weight and bias coefficients were obtained, which were 176 



linked to the KLAPS model. The radiation emulator showed an approximately 60-fold 177 

speedup compared to the RRTMG-K and 84–87% reduction of total computation time (Song 178 

and Roh, 2021; Song et al., 2022). 179 

The KLAPS model used in this study was primarily based on Advanced Research of the 180 

Weather Research and Forecasting (WRF-ARW) model (Skamarock et al., 2019). The 181 

physics suites other than radiation parameterization were the WRF double moment 7-Class 182 

microphysics, Simplified Arakawa–Schubert cumulus modified by the Korea Institute of 183 

Atmospheric Prediction Systems (KIAPS), Shin and Hong boundary layer, unified Noah land 184 

surface model, and revised MM5 Monin–Obukhov surface layer (Skamarock et al., 2019). 185 

The European Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5; Hersbach 186 

et al., 2020) reanalysis data with 0.25° horizontal and 37 pressure-level resolutions were used 187 

to simulate the WRF model in real cases. The real-case simulation was integrated by 7 d with 188 

a 20 s time step over 5 km horizontal grids (234×282) based on the Lambert conformal conic 189 

projection and 40 vertical levels. The real-case simulations were initialized from the 1st, 8th, 190 

15th, 22nd days of each month in 2020, consisting of 48 weekly cases. For these cases, the LW 191 

and SW fluxes at 3 h intervals were used to evaluate the forecast accuracy of the radiation 192 

emulator by comparing the control simulation based on the original radiation 193 

parameterization. The forecast accuracy using the emulator was also evaluated by comparing 194 

it with surface observations in South Korea. The 2 m air temperature (T2m) data were 195 

measured from 713 stations, and precipitation data with 5 km resolution were derived by 196 

merging rain gauges and ground-based radar measurements (Fig. 1). In addition, this study 197 

considered a two-dimensional squall line experiment within the WRF model for an extreme 198 

simulation (Skamarock et al., 2019). Although this is a case study, it corresponds to a highly-199 

unstable situation compared with the one-year average of the real-case simulations. For 200 

example, the forecast errors of the LW/SW fluxes were 121% and 185% larger in the ideal-201 



case simulation than in the real case (Song and Kim, 2022). This ideal simulation was forced 202 

by the default initial sounding in the WRF model and based on 201 horizontal and 40 vertical 203 

levels. Furthermore, it was integrated for 24 h with a 3 s time step. The radiation emulator 204 

developed in a real-case simulation (July and land) was applied to the ideal-case simulation to 205 

test the robustness associated with the representation error (Song and Kim, 2022). 206 

To analyze the effects of resolution on the universal performance of the radiation 207 

emulator, simulations were performed at different spatial grids of 234×282 (5 km), 118×142 208 

(10 km), 48×57 (25 km), 25×29 (50 km), 16×20 (75 km), and 13×15 (100 km), while 209 

maintaining similar spatial coverage over the Korean peninsula. The trained results under 5 210 

km resolution were applied to 10–100 km resolutions as a completely independent validation, 211 

although the 5 km simulation was also evaluated for the independent period (2020) to the 212 

training period (2009–2019). In previous studies (Song and Roh, 2021; Song et al., 2021, 213 

2022; Song and Kim, 2022), the surrounding four points around the lateral boundary were 214 

excluded from both training and testing because physically unrealistic data can appear around 215 

the lateral boundary. However, because the 100 km simulation was performed in a small 216 

domain, excluding the data around the lateral boundary was unfair between 5 km and 100 km 217 

in terms of spatial coverage. Thus, this study included data around the lateral boundary by 218 

modifying the width of the relaxation zone from four to one. For ideal-case simulation, 5, 3, 2, 219 

1, 0.5, and 0.25 km resolutions were used while maintaining 201 horizontal grids. 220 

3. Results and Discussion 221 

Previous studies under different resolutions 222 

There is a trade-off between accuracy and speedup in the emulator study; thus, the 223 

accuracy of emulator should be compared under the same (or similar) computation conditions. 224 

Because of this, using many neurons and hidden layers in the NN is a constraint leading to a 225 

slowdown. Therefore, it is against the ultimate goal of the radiation emulator in CGMs and 226 



NWPs. Even if a study showed better accuracy using an advanced machine-learning method, 227 

an additional slowdown from the method should be carefully considered. In offline testing 228 

(not linked to the NWP model) for a two-dimensional ideal simulation under 0.25 km 229 

resolution, as an extreme case, the radiation emulator with a 57-fold speedup produced root 230 

mean square errors (RMSEs) of 1.54 K day-1 for LW heating rate and 1.13 K day-1 for SW 231 

heating rate (Roh and Song, 2020). For 288 million independent data in real-case simulations, 232 

the NN radiation scheme developed under 5 km resolution with a 60-fold speedup (Song and 233 

Roh, 2021) showed the RMSEs of 0.59 K day-1 for LW heating rate, 0.22 K day-1 for SW 234 

heating rate, 4.41 W m-2 for LW flux, and 20.72 W m-2 for SW flux. These RMSEs were 235 

further reduced by 0.46 K day-1, 0.18 K day-1, 3.59 W m-2, and 19.13 W m-2, respectively, 236 

using SWA during the NN training (Song et al., 2022). In contrast, many previous studies 237 

used the common NN (Krasnopolsky, 2014) based on a sequential training (Krasnopolsky et 238 

al., 2005, 2008a, 2008b, 2010; Belochitski et al., 2011; Roh and Song, 2020; Belochitski and 239 

Krasnopolsky, 2021; Song and Roh, 2021; Song et al., 2021). In CGM studies, the RMSEs 240 

for LW and SW heating rates in the offline testing were 0.34 K day-1 and 0.19 K day-1 in 300 241 

km resolution (CAM), 0.49 K day-1 and 0.20 K day-1 in 100 km resolution (CFS), and 0.52 K 242 

day-1 and 0.26 K day-1 in 25 km resolution (GFS), respectively (Krasnopolsky et al., 2020, 243 

2012). The radiation emulators for CFS and GFS were 30–40 times faster than that for 244 

RRTMG, similar to RRTMG-K for targeting reported by Roh and Song (2020), Song and 245 

Roh (2021), Song et al. (2021), Song et al. (2022), and Song and Kim (2022). Because the 246 

CGM studies were performed in the same group using the same NN technique and input-247 

output structure, we suspect that the heating rate errors by the emulator reduced when the 248 

horizontal resolution became coarse. The results of Krasnopolsky’s groups were obtained by 249 

using 0.4 million data (both LW and SW) based on individual NN training for each GCM 250 

model. Pal et al. (2019) used additional training datasets of 16.2 million. Furthermore, Song 251 



and Roh (2021) and Song et al. (2022) used a large number of training sets (288 million data) 252 

for a small area (i.e., Korea). Because the representation error can be reduced by using more 253 

datasets covering natural variability, despite the 5 km resolution, the RMSEs of the LW and 254 

SW heating rates in Song et al. (2022) were smaller than those in Krasnopolsky et al. (2010, 255 

2012). 256 

Numerical errors caused by a radiation emulator can be rapidly amplified during long-257 

term integration into CGMs or NWPs (called online testing). For an ideal-case simulation 258 

under 0.25 km resolution, the RMSEs of LW/SW fluxes were amplified by 135% and 72% 259 

during 6 h forecasts (7200-time steps) compared with the offline testing results (Roh and 260 

Song, 2020). For real-case simulation under 5 km resolution, the RMSEs for LW/SW fluxes 261 

during 1 d forecasts (4320-time steps) increased by 84% and 136%, respectively (Song and 262 

Roh, 2021). For 7 d forecasts (30240-time steps), the RMSEs for LW/SW fluxes were further 263 

increased by 148% and 215%, respectively (Song et al., 2022). From these results, we expect 264 

that the numerical errors of the radiation emulator can be amplified more in the case of 265 

seasonal or inter-annual predictions based on the GCM. However, because the GCM 266 

forecasts are evaluated at monthly or yearly scales in contrast to the hourly scale for the NWP 267 

forecasts, error amplification by the long-term integration of the radiation emulator was 268 

mostly hidden in previous GCM studies (Krasnopolsky et al., 2005, 2008a, 2008b, 2010, 269 

2012; Belochitski et al., 2011; Pal et al., 2019; Belochitski and Krasnopolsky, 2021). For 270 

example, although Belochitski and Krasnopolsky (2021) attempted a universal application of 271 

the radiation emulator by applying the training results based on the 100-km CFS into the 100-272 

km GFS, they did not quantitatively evaluate the hourly scale (e.g., RMSE), except for global 273 

mean bias showing systematic stability. Under 5 km resolution, the RMSEs of LW/SW 274 

heating rates and fluxes for the radiation emulator of Song et al. (2022) can be magnified by 275 

8.6%–41.3% if different microphysics schemes with the trained version are used (Song and 276 



Kim, 2022). The one-year mean bias for LW and SW fluxes (−0.08 W m-2 and 0.57 W m-2) in 277 

Song and Kim (2022) was smaller than those (−0.26 W m-2 and 0.59 W m-2) in Belochitski 278 

and Krasnopolsky (2021), despite different resolutions (5 km vs. 100 km). From these 279 

previous studies, we can conclude that the radiation emulator developed by Song et al. (2022) 280 

is the most mature among the developed radiation emulators in terms of universal robustness.. 281 

This emulator also showed stable results when evaluated with surface temperature, 282 

precipitation observations (Song et al., 2022), and the changes in 14 microphysics schemes 283 

(Song and Kim, 2022). 284 

Real-case simulations 285 

The forecast accuracy of radiation emulator in the NWP model can be evaluated by 286 

comparing the control simulations based on the original radiation parameterization or 287 

observation data. To evaluate the accuracy of the LW/SW fluxes using a radiation emulator, 288 

we utilized the framework used by Song et al. (2022) and Song and Kim (2022). This 289 

framework considered 48 weekly cases (approximately one year) with a 3 h interval for 290 

234×282 grids (5 km); thus, the statistics were obtained from 177,375,744 data points. 291 

Because different domain sizes, such as 118×142 (10 km), 48×57 (25 km), 25×29 (50 km), 292 

16×20 (75 km), and 13×15 (100 km), were considered for resolution experiments, the data 293 

points used were also reduced in proportion to the domain size. The emulator results at 294 

different resolutions were compared with each control simulation. T2m and 3-hourly 295 

accumulated precipitation simulated using the radiation emulator were compared with surface 296 

observation data for the 48 weekly cases. 297 

Figure 2 illustrates the spatial distributions of RMSEs for LW/SW fluxes when the 298 

radiation emulator developed at 5 km resolution was applied to 10–100 km resolutions. The 299 

WRF simulation results based on the Lambert conformal conic projection were interpolated 300 

to the latitude-longitude projection with a regular grid interval to draw the plots. First, the 301 



RMSEs of the LW flux showed a clear contrast between the land and ocean because the skin 302 

temperature and surface emissivity, as inputs for the LW radiation process, were separated 303 

between land and ocean. Furthermore, mountainous areas can represent a strong variability in 304 

skin temperature toward colder temperatures than the surrounding low-latitude areas. 305 

Because KLAPS models use a terrain-following vertical coordinate, and vertical profiles (e.g., 306 

pressure, temperature, and moisture) around the surface are affected by topographic altitudes. 307 

For these reasons, the LW flux shows the largest error above 11 W m-2 in the Gaema Plateau 308 

area in North Korea, having the highest topographic altitude (Fig. 2a). For the RMSEs of the 309 

SW flux, the land–ocean contrast is unclear; it tends to slightly increase toward the southern 310 

region (Fig. 2g). The more abundant cloud conditions and slightly larger insolation in the 311 

southern region explain the error pattern of SW flux. In contrast, in the Chinese desert areas 312 

located in the northwest, the lowest RMSEs for SW flux were found because of the low-cloud 313 

condition. When the horizontal resolutions increased to 10, 25, 50, 75, and 100 km, the 314 

RMSEs in both LW and SW dropped sharply. Because the radiation emulator used in this 315 

study was trained at 5 km resolution, the results at different resolutions should produce 316 

outputs with greater uncertainty in terms of representation error. However, the smoothing 317 

effects for input-output variables contributed to producing more accurate results with a 318 

universal application beyond the representation error at different resolutions. The lower 319 

representation error could be due to using large training sets for the small Korean domain. 320 

The number of training sets used by Song and Roh (2021) and Song et al. (2022) was 720 321 

times larger than those used by Krasnopolsky et al. (2010, 2012) and Belochitski and 322 

Krasnopolsky (2021). Because the GCM domain covers the entire globe, using more training 323 

sets is essential to ensure universality and accuracy in the global region, similar to Song et al. 324 

(2022). Therefore, we can conclude that the 5 km simulation results of Song and Roh (2021), 325 

Song et al. (2021), Song et al. (2022), and Song and Kim (2022) were developed under more 326 



difficult condition to secure the universality of radiation emulators compared with 25 km 327 

resolution (Krasnopolsky et al., 2012) and resolutions larger than 100 km (Krasnopolsky et 328 

al., 2005, 2008a, 2008b, 2010; Belochitski et al., 2011; Pal et al., 2019; Belochitski and 329 

Krasnopolsky, 2021). Similarly, we can expect that the development of a radiation emulator 330 

at resolutions less than 5 km, such as the 0.25 km resolution in Roh and Song (2020), would 331 

be more difficult. Because of the limitation of computational resources, although this study 332 

did not consider real-case simulations at resolutions less than 5 km, this issue will be dealt 333 

with in the ideal-case simulation framework. 334 

Figure 3 shows the temporal variations in RMSEs for LW/SW fluxes, T2m, and 3-hourly 335 

accumulated precipitation during the 7-day forecasts averaged from the total 48 weekly cases 336 

and entire domain. The RMSEs of the LW flux increase steadily with forecast time while 337 

showing diurnal variation between night and day (Fig. 3a). Because the variability in surface 338 

temperature is larger during the daytime, the RMSEs of the LW flux also show an amplified 339 

error during the day. The RMSEs of the SW flux are characterized by a strong diurnal 340 

variation associated with the evident diurnal cycle of insolation while showing a gradual 341 

increase in error with forecast time (Fig. 3b). In both LW and SW fluxes, the RMSEs at 342 

coarse resolutions were lower than those at fine resolutions. For resolutions larger than 50 km, 343 

the RMSE patterns in the LW flux tended to be saturated (Fig. 3a); similar trends are found in 344 

the spatial distribution (Figs. 2d–f). The total RMSEs for the three LW and SW fluxes are 345 

listed in Table 1. The RMSEs of LW and SW fluxes for 5, 10, 25, 50, 75, and 100 km were 346 

9.59, 9.16, 8.16, 7.79, 7.78, and 7.99 W m-2 and 63.17, 60.34, 52.78, 49.03, 46.89, and 47.40 347 

W m-2, respectively. Accordingly, the 5-km results were more uncertain by 20% (LW) and 33% 348 

(SW) compared with the 100-km results. If the results were re-trained at each resolution, not 349 

aiming at the universal application of the 5-km radiation emulator, the difference between the 350 

5-km and 100-km results would have been more. These results show that the 5-km 351 



simulations in Song and Roh (2021), Song et al. (2021), Song et al. (2022), and Song and 352 

Kim (2022) were harsher environments than resolutions larger than 100 km (Krasnopolsky et 353 

al., 2005, 2008a, 2008b, 2010; Belochitski et al., 2011; Pal et al., 2019; Belochitski and 354 

Krasnopolsky, 2021). The evaluation results compared with the observation data revealed the 355 

contrast between T2m and precipitation (Figs. 3c–d). The RMSEs of T2m increased with 356 

increasing resolution (2.2619 K to 2.9405 K in Table 1), whereas an opposite trend was found 357 

for the 3-hourly precipitation (1.5515 mm to 1.1479 mm in Table 1). When the horizontal 358 

resolution is coarse, the spatial variability of the surface temperature in the model simulation 359 

can be reduced from actual observations. Thus, overly coarse resolutions can degrade the 360 

forecast accuracy of surface temperature. Pavlik et al. (2012) and Kumar et al. (2016) 361 

reported similar results, showing lower accuracy at coarse resolution for surface temperature. 362 

Because precipitation forecast is highly uncertain, the smoothing effect at a coarse resolution 363 

can be more important in determining the forecast error of precipitation. The forecast skill of 364 

precipitation in numerical models was rather improved at coarse horizontal scales (Robert 365 

and Lean, 2008; Clark et al., 2016). This illusion effect at coarse resolution does not indicate 366 

that high-resolution modeling is unnecessary. 367 

The role of cumulus parameterization in determining precipitation and surface 368 

temperature is more important at coarse resolutions than at fine resolutions. Therefore, we 369 

need to examine the behavior of radiation emulator results with a turned-off cumulus scheme. 370 

To turn off the cumulus scheme, the RMSEs for LW/SW fluxes and T2m in Table 1 were 371 

changed by a maximum 0.9% (at 100 km resolution), while the general trends were 372 

unchanged. The RMSEs of the 3-hourly precipitation forecasts at 100 km resolution were 373 

changed the most by 6.7%, resulting in 0.2472 mm. Nevertheless, these results do not affect 374 

the conclusion of this study regarding the universal application of a radiation emulator. 375 

Furthermore, readers may suspect that the observational evaluations in Table 1 are a 376 



characteristic of the radiation emulator. However, the control simulations based on the 377 

original radiation parametrization showed similar RMSEs for T2m (2.2619 K to 2.9895 K) and 378 

3-hourly precipitation (1.5641 mm to 1.1433 mm). Therefore, we can conclude that the 379 

radiation emulator developed at 5 km resolution can be universally applied for horizontal 380 

resolutions larger than 5 km while maintaining the accuracy and stability. However, the 381 

opposite situation (coarse to fine resolutions) cannot be guaranteed because the potential error 382 

from the radiation emulator can lead to unstable results in numerical models (Krasnopolsky et 383 

al., 2008b; Song et al., 2021; Belochitski and Krasnopolsky, 2021; Song and Kim, 2022). 384 

This drawback led to the next analysis based on ideal-case simulations. 385 

Ideal-case simulations 386 

Considering a tremendous computation resource for long-term simulations at fine 387 

resolutions less than 5 km, the universal application of a radiation emulator at 5 to 0.25 km 388 

resolutions was evaluated in a two-dimensional idealized squall line simulation as an extreme 389 

precipitating case. Similar ideal simulations were conducted by Roh and Song (2020), Song 390 

et al. (2022), and Song and Kim (2021). Song and Kim (2021) examined the universal 391 

application of a radiation emulator with changes in 14 additional microphysics schemes at 5 392 

km resolution. As a follow-up, this study examined the effects of horizontal resolution on a 393 

universal radiation emulator. The radiation emulator used in this study was obtained from 394 

real-case simulations (July and land). This study considered a 24-hour integral period with a 395 

3-s time step; hence, the emulator was applied four times more than Roh and Song (2020) for 396 

a 6-hour forecast and 6.66 times more than Song et al. (2022) and Song and Kim (2022) 397 

using a 20 s time step. A 3 s time step was essential for the control simulation at 0.25 km (the 398 

use of larger time step led to a blow up of the control simulation). Comparing the 399 

representation error of the real-case simulation to the ideal case, the RMSEs of the radiation 400 

emulator in Song and Kim (2022) were larger by 23%–48% than the infrequent use of 401 



radiation parameterization by 60 times in Song et al. (2022). Because an ideal simulation is 402 

an extreme case, the error caused by the emulator can be rapidly amplified. Accordingly, the 403 

RMSEs of the radiation emulator in Table 2 appear moderately large. These RMSEs were 404 

calculated for 201 horizontal grids and 1440 temporal data points at 10 m intervals. The 405 

heating rate and flux in this study represent the average of 39 vertical layers and three flux 406 

components (at top and bottom), respectively. To minimize the error associated with 407 

universal representation, Song and Kim (2022) attempted compound parameterization (CP), 408 

returning the original parameterization when the predicted heating-rate errors exceeded a 409 

predefined threshold. They used thresholds of 1.0341 and 0.4820 K day-1 for LW and SW 410 

heating rates, respectively, to target an approximately 3-fold slowdown to the emulator with 411 

60-fold speedup. When the same concept was applied in this study, the emulator + CP results 412 

were 3.23–4.21 times slower than the emulator only. This result implies that the emulator + 413 

CP is still 14–19 times faster than the original radiation parameterization. By adding CP, the 414 

total RMSEs at 5 km resolution was reduced by 27.3%, 26.7%, 22.3%, and 16.8% for the LW 415 

heating rate, SW heating rate, LW flux, and SW flux, respectively. The resulting RMSEs of 416 

heating rates (2.61 K day-1 and 1.21 K day-1) are comparable to 2.57 K day-1 and 1.20 K day-1 417 

based on the infrequent use of radiation parameterization by 30 times (Song et al., 2022). 418 

These results indicate that using a radiation emulator along with CP can maintain stable 419 

accuracy while overcoming the representation error induced by the difference between real 420 

and ideal cases, as well as different horizontal resolutions. The successful results of this study 421 

associated with universal robustness are novel and worthy of recognition. 422 

Figure 4 displays the temporal and spatial variations of outgoing LW radiation (OLR) and 423 

upward LW flux at the top of the atmosphere for 5, 3, 2, 1, 0.5, and 0.25 km resolutions. Each 424 

simulation had the same number of horizontal grids but different coverage areas from 1000 425 

km to 50 km. The difference in area coverage induced different evolutionary patterns among 426 



the control simulations. A low OLR indicates vigorous deep convention, whereas a high OLR 427 

represents a clear condition. While the 5-km control simulation is characterized by widely 428 

spread clear areas (expressed by high OLR values) before hour 12 (Fig. 4a), the clear sky 429 

portion is rapidly reduced when the horizontal resolution decreases from 5 to 0.25 km. At 430 

0.25 km, there are small clear areas before hour 1. Because cloud simulation is uncertain in 431 

the radiation parameterization, the 0.25-km simulation corresponds to a more highly 432 

nonlinear situation than the 5-km simulation. The sharp effect at a fine resolution (in contrast 433 

to smoothing effect at a coarse resolution) provides a more uncertain situation at 0.25-km 434 

resolution. For these reasons, the occurrence frequencies of lower OLRs, regarded as deep 435 

convective clouds, are higher at fine resolutions in both real and ideal cases (Fig. 5). In 436 

contrast to the long-term (one year) results for the real case showing a stable smoothing effect 437 

with resolution (Fig. 5a), the ideal simulations based on one case show great variability in 438 

probability density functions (Fig. 5b). Because of the sharp effect and high cloud conditions 439 

at fine resolutions, the occurrence frequencies of OLRs less than 180 W m-2 were higher at 440 

fine resolutions, whereas those around 270 W m-2, regarded as a clear condition, were 441 

relatively reduced at fine resolutions. Characteristically, the 0.25-km simulation showed a 442 

rare occurrence with OLRs less than 180 W m-2. In contrast, it showed frequent occurrences 443 

with OLRs in the range of 180–220 W m-2, compared with other fine resolutions (2 km, 1 km, 444 

and 0.5 km). As shown in blue colors in Fig. 4f, the 0.25-km simulation produced medium 445 

OLRs of 180–220 W m-2 after 12 h. Accordingly, this is the result of nonlinear characteristics 446 

in the cloud-resolving simulation. 447 

With these control simulation characteristics, the radiation emulators (along with CP) 448 

successfully reproduce similar features to the control simulations until 24 h (Figs. 4g–i). The 449 

ideal simulation is sensitive to small initial perturbations and rapidly changed during 450 

integration; therefore, obtaining accurate plots for Figs. 4g–i is difficult. The clear area in the 451 



initial stage at coarse resolutions and the subsequent widely spread clouds are realistically 452 

expressed in the emulator results, despite the results being trained from real-case simulations. 453 

The difference between control and emulator results tended to be larger at fine resolutions. 454 

For example, OLRs higher than 200 W m-2 after 20 h in the control simulation at 0.25 km are 455 

not found in the 0.25-km emulator result. Figure 6 illustrates the vertical RMSEs of the 456 

heating rates and temporal RMSEs of the fluxes. The RMSEs were calculated for the total 457 

temporal-horizontal grids and horizontal grids, respectively. The 1-km and 0.5-km 458 

simulations show a larger error in the heating rates at middle levels (Figs. 6a–b). The 0.5-km 459 

simulation is also characterized by a large error in the LW heating rate around the surface 460 

(Fig. 6a). For the LW flux, no characteristic features were observed at a specific resolution 461 

(Fig. 6c). The RMSE of the SW flux is the largest in the 0.25-km simulation, especially 462 

around 15–16 h. In contrast, the RMSEs for 1-km and 0.5-km simulations are 463 

characteristically lower than those for coarse resolutions (Fig. 6d). The total RMSE statistics 464 

are listed in Table 2. Because the ideal simulation is a highly nonlinear process, a consistent 465 

tendency with resolutions, such as in the real case, is not found. In general, increasing errors 466 

at fine resolutions using an emulator are evident. Compared with the 5-km simulation, for the 467 

0.25–3 km resolutions, the errors of the LW heating rate, SW heating rate, LW flux, and SW 468 

flux increased by 19%–128%, 41%–104%, 11%–123%, and 17%–57%, respectively,. These 469 

errors increase with horizontal resolutions and are larger than those induced by changes in 470 

microphysics parameterization at 5-km resolution in Song and Kim (2022). By using CP, the 471 

increased RMSE in the LW and SW heating rates are further reduced by 13%–72% and 9%–472 

45%, respectively, compared with the 5-km simulation. For LW and SW fluxes, the RMSEs 473 

were improved by a maximum of 6% and 37%, respectively, in coarse resolutions. These 474 

features are closely related to the CP because using CP contributed more to the improvements 475 

in LW/SW fluxes (25%–35% and 27%–52%) than LW/SW heating rates (22%–67% and 476 



17%–64%), especially for 1 km and 0.5 km resolutions. Although the RMSEs are higher at 477 

fine resolutions than at coarse resolutions, this study is not the blow-up issue of the entire 478 

model, such as the unphysical OLR in Belochitski and Krasnopolsky (2021). Therefore, we 479 

can conclude that the radiation emulator developed at 5 km resolution can be universally 480 

applied for cloud-resolving resolutions less than 5 km while maintaining accuracy at the 481 

expense of computational speed by using CP (i.e., 60-fold to 14–19-fold speedup). 482 

4. Summary and Conclusions 483 

In this study, we considered different horizontal resolutions under two simulation 484 

frameworks: KLAPS over the Korean peninsula (real case) and two-dimensional squall line 485 

simulation (ideal case) to examine the impact of horizontal resolution on the universal 486 

applicability of the radiation emulator in NWP models. The real-case simulation was 487 

performed for approximately one year with a 7 d forecast time, whereas the ideal-case 488 

simulation was an extreme squall line case with a 1 d forecast time. The horizontal 489 

resolutions were 5, 10, 25, 50, 75, and 100 km (convection-permitting scale to climate 490 

simulation scale) for the real-case simulation and 5, 3, 2, 1, 0.5, and 0.25 km (convection-491 

permitting scale to cloud-resolving scale) for the ideal-case simulations. All emulator 492 

simulations were based on the NN radiation scheme developed under the real-case at 5-km 493 

simulations by Song et al. (2022). This emulator was 60-fold faster than the RRTMG-K 494 

radiation parameterization. Here, all simulations were tested in an independent period using 495 

training sets (2009–2019). The real-case simulation focused only on the impact of horizontal 496 

resolutions on the universal applicability of the 5-km radiation emulator. In contrast, the 497 

ideal-case simulation further considered the universal robustness arising from the difference 498 

between the real and ideal cases. Despite the different horizontal resolutions with the trained 499 

5-km resolution, the forecast error of LW/SW fluxes was significantly reduced from fine to 500 

coarse resolutions (9.59 to 7.79 W m-2 and 63.17 to 46.89 W m-2). In addition, the RMSEs of 501 



T2m and precipitation, compared with the observations, increased and decreased from fine to 502 

coarse resolutions (2.2619 K to 2.9405 K and 1.5515 mm to 1.1479 mm), respectively. 503 

Because control simulations also showed the same error characteristic for T2m, these results 504 

suggested that the radiation emulator developed at a 5 km resolution is universally applied for 505 

horizontal resolutions larger than 5 km while maintaining accuracy and stability. For the 506 

ideal-case simulation, the temporal and spatial evolutions of the OLRs were examined for 507 

different horizontal resolutions (5, 3, 2, 1, 0.5, and 0.25 km). Each control simulation showed 508 

a large difference in the temporal and spatial cloud patterns owing to the smoothing effect at 509 

coarse resolutions and different cloud conditions. Using radiation emulator successfully 510 

reproduces features similar to those of the control simulations. For 0.25–3 km resolutions, the 511 

forecast errors of the LW heating rate, SW heating rate, LW flux, and SW flux increased by 512 

19–128%, 41–104%, 11–123%, and 17–57%, respectively, compared with the 5-km 513 

simulation. To minimize these errors, the compound parameterization 3.23–4.21 times slower 514 

than the emulator was further used (i.e., 14–19 times faster than the original radiation 515 

parameterization). By adding CP, the total RMSEs at 5 km resolution was reduced by 27.3%, 516 

26.7%, 22.3%, and 16.8% for the LW heating rate, SW heating rate, LW flux, and SW flux, 517 

respectively. The resulting RMSEs of LW heating rate, SW heating rate, LW flux, and SW 518 

flux at 5–0.25 km resolutions were 2.61 to 4.49 W m-2, 1.21 to 1.75 W m-2, 15.60 to 17.65 W 519 

m-2, and 101.52 to 174.04 W m-2, respectively. Here, the resulting RMSEs of heating rates at 520 

5 km resolution (2.61 and 1.21 K day-1) were comparable to 2.57 and 1.20 K day-1 based on 521 

the infrequent use of original radiation parameterization by 30 times (Song et al., 2022). 522 

This study provides a comprehensive insight into radiation emulator studies using 523 

numerical prediction models at different resolutions. From this study, it was found that 524 

coarse-resolution modeling was easier than fine-resolution simulation to ensure the accuracy 525 

and stability of the radiation emulator. Therefore, previous emulator studies at convection-526 



permitting and cloud-resolving scales were regarded as more valuable than low-resolution 527 

studies based on climate models. In addition, these results provide important information on 528 

the universal applicability of radiation emulators associated with using different horizontal 529 

resolutions and modeling platforms. Although the universal robustness of the radiation 530 

emulator has already been examined for changes in numerical models and microphysics 531 

parameterization (Belochitski and Krasnopolsky, 2021; Song and Kim, 2022), no 532 

experiments at a different resolution from the trained resolution have been conducted. The 533 

efforts in this study are particularly variable as this study is the first to show the universal 534 

applicability of radiation emulators at different resolutions. Therefore, the complete 535 

replacement of radiation parameterization by a machine-learning emulator with a significant 536 

speedup is nearing. This study can also accelerate the computational speed of regional 537 

climate simulations or high-resolution modeling in terms of a faster radiation scheme. The 538 

findings in this study also suggest an evident direction for developing the universal radiation 539 

emulator in the future that it should be developed at a resolution as high as possible. The 540 

emulator trained at low resolution has a great uncertainty when it is applied to high-resolution 541 

model, because the occurrence frequency of extreme far corner events is underestimated at 542 

the low-resolution modeling. In terms of universal application, one drawback of this study 543 

confined to the Korean peninsula can be improved by expanding the training sets for global 544 

regions. 545 
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Table 1. Total root mean square error (RMSE) statistics for real-case simulations. The LW 692 
and SW fluxes [W m-2], along with three upward (↑) and downward (↓) fluxes at the top and 693 
bottom, were compared with the control model simulations, whereas 2-m temperature (T2m) 694 
[K] and 3-hourly precipitation [mm] were compared with surface observations. 695 

 5 km 10 km 25 km 50 km 75 km 100 km 

LW flux 9.5888 9.1575 8.1587 7.7853 7.7776 7.9902 

- top ↑ 11.2884 10.6651 9.2559 8.8752 9.2227 9.8026 

- bottom ↑ 3.8179 3.7173 3.4111 3.3648 3.2523 3.3526 

- bottom ↓ 13.6601 13.0901 11.8089 11.1159 10.8579 10.8154 

SW flux 63.1709 60.3422 52.7777 49.0250 46.8944 47.3956 

- top ↑ 79.3886 75.9043 62.3987 61.6078 58.9609 59.6203 

- bottom ↑ 13.6354 12.9018 11.3199 10.4635 10.0865 10.0846 

- bottom ↓ 96.4886 92.2204 80.6146 75.0035 71.6357 72.4819 

T2m 2.2619 2.4536 2.6596 2.7026 2.8249 2.9405 

Precipitation 1.5515 1.5170 1.3788 1.2800 1.1747 1.1479 
 696 
  697 



Table 2. Total root mean square error (RMSE) statistics for idealized squalline simulations. 698 
The LW and SW heating rates [K day-1], as well as the LW and SW fluxes [W m-2], were 699 
compared with the control simulations. The numbers before and after arrows indicate the 700 
emulator only and the emulator with compound parameterization. 701 

 LW heating rate SW heating rate LW flux SW flux 

5 km 3.59 à 2.61 1.65 à 1.21 21.33 à 16.57 193.19 à 160.76 

3 km 4.42 à 2.96 2.48 à 1.64 34.02 à 16.06 260.52 à 154.19 

2 km 4.29 à 2.98 2.32 à 1.33 23.69 à 17.65 225.13 à 147.67 

1 km 5.19 à 3.87 3.37 à 1.75 37.39 à 16.09 291.27 à 104.46 

0.5 km 5.90 à 4.49 3.30 à 1.75 47.59 à 15.60 269.50 à 101.52 

0.25 km 5.29 à 3.44 2.99 à 1.43 43.36 à 16.01 245.47 à 174.04 
 702 
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704 
Figure 1. Locations of surface 713 stations (red circles) used for 2-m temperature along with 705 
gauge-radar merged precipitation data with 5-km resolution (grey colors). 706 
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708 
Figure 2. Spatial distributions of RMSEs for LW and SW fluxes compared to the control runs 709 
with different horizontal resolutions in real-case simulations. 710 
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712 
Figure 3. Time series of RMSEs for (a) LW and (b) SW fluxes compared to the control runs 713 
with different horizontal resolutions in real-case simulations. The results of (c) 2-m 714 
temperature and (d) 3 hourly precipitation compared with surface observations were also 715 
given. 716 
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718 
Figure 4. Spatio-temporal evolutions of outgoing longwave radiation (OLR) with different 719 
horizontal resolutions between control and emulator results in ideal-case simulations. 720 
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722 
Figure 5. Probability density functions of outgoing longwave radiation (OLR) between (a) 723 
real-case and (b) ideal-case simulations at different horizontal resolutions. 724 
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726 
Figure 6. Vertical RMSEs of (a) LW and (b) SW heating rates, as well as temporal RMSEs of 727 
(c) LW and (d) SW fluxes, compared to the control runs with different horizontal resolutions 728 
in ideal-case simulations. 729 
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