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Abstract

The retrival algorithms used for optical remote sensing satellite data to estimate Earth’s geophysical properties have specific

requirements for spatial resolution, temporal revisit, spectral range and resolution, and instrument signal to noise ratio (SNR)

performance to meet science objectives. Studies to estimate surface properties from hyperspectral data use a range of algorithms

sensitive to various sources of spectroscopic uncertainty, which are in turn influenced by mission architecture choices. Retrieval

algorithms vary across scientific fields and may be more or less sensitive to mission architecture choices that affect spectral,

spatial, or temporal resolutions and spectrometer SNR. We used representative remote sensing algorithms across terrestrial and

aquatic study domains to inform aspects of mission design that are most important for impacting accuracy in each scientific area.

We simulated the propagation of uncertainties in the retrieval process including the effects of different instrument configuration

choices. We found that retrieval accuracy and information content degrade consistently at >10 nm spectral resolution, >30 m

spatial resolution, and >8 day revisit. In these studies, the noise reduction associated with lower spatial resolution improved

accuracy vis à vis high spatial resolution measurements. The interplay between spatial resolution, temporal revisit and SNR

can be quantitatively assessed for imaging spectroscopy missions and used to identify key components of algorithm performance

and mission observing criteria.
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Key Points: 17 

• High spectral resolution (~10nm), high spatial resolution (~30m), and high revisit (less 18 
than 16 days) is needed to estimate Earth’s geophysical properties with imaging 19 
spectroscopy and corresponding retrieval algorithms. 20 

• We simulate the effects of instrument signal-to-noise ratios (SNR) on retrieval accuracy 21 
using a codebase called Hypertrace.  22 

• Our approach provides a framework for current and future mission design planning.  23 
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Abstract 24 
The retrival algorithms used for optical remote sensing satellite data to estimate Earth’s 25 
geophysical properties have specific requirements for spatial resolution, temporal revisit, spectral 26 
range and resolution, and instrument signal to noise ratio (SNR) performance to meet science 27 
objectives. Studies to estimate surface properties from hyperspectral data use a range of 28 
algorithms sensitive to various sources of spectroscopic uncertainty, which are in turn influenced 29 
by mission architecture choices. Retrieval algorithms vary across scientific fields and may be 30 
more or less sensitive to mission architecture choices that affect spectral, spatial, or temporal 31 
resolutions and spectrometer SNR. We used representative remote sensing algorithms across 32 
terrestrial and aquatic study domains to inform aspects of mission design that are most important 33 
for impacting accuracy in each scientific area. We simulated the propagation of uncertainties in 34 
the retrieval process including the effects of different instrument configuration choices. We 35 
found that retrieval accuracy and information content degrade consistently at >10 nm spectral 36 
resolution, >30 m spatial resolution, and >8 day revisit. In these studies, the noise reduction 37 
associated with lower spatial resolution improved accuracy vis à vis high spatial resolution 38 
measurements. The interplay between spatial resolution, temporal revisit and SNR can be 39 
quantitatively assessed for imaging spectroscopy missions and used to identify key components 40 
of algorithm performance and mission observing criteria. 41 

Plain Language Summary 42 

Detailed observations of Earth’s visible to shortwave infrared spectra, known as hyperspectral 43 
imagery or imaging spectroscopy, will provide novel insights across scientific disciplines. 44 
Vegetation, aquatic, mineral, and snow scientists have independently developed techniques for 45 
using hyperspectral imagery to measure different features of their targets. But, developing 46 
measurement objectives that will work well for every kind of measurement target is difficult. 47 
Here, we test several representative image analysis techniques to inform the planning process 48 
future hyperspectral missions. Specifically, we investigate the effect that changing the number of 49 
spectral bands, the size of image pixels, and the frequency of repeat observations has on each 50 
technique’s accuracy. 51 

1 Introduction 52 
Global imaging spectroscopy from NASA’s Surface Biology and Geology (SBG) designated 53 
observable will improve understanding of five focal areas of Earth Science: marine and 54 
terrestrial ecosystems, seasonal to centennial climate variability, weather and air quality, 55 
hydrology and water resources, and dynamics and hazards associated with Earth’s surface and 56 
interior  (National Academies of Sciences, Engineering, and Medicine, 2018; Schimel, 57 
Townsend and Pavlick, 2020). SBG will provide visible through shortwave-infrared reflectance 58 
(~380-2500 nm wavelengths) and thermal (4.5 to 12 μm) emissivity observations from space 59 
with global coverage, frequent revisit, and high spectral fidelity (Stavros et al., in press). 60 
Designing a successful mission that meets diverse scientific objectives requires evaluating 61 
alternative mission architectures (Thompson et al., 2021). In SGB’s case, each science focal area 62 
depends on a different aspect of mission architecture for accuracy (Cawse-Nicholson et al., 63 
2021). To characterize the scientific impact of trade-offs associated with different mission 64 
architectures, we illustrate the driving examples behind each focal area (Table 1) and assess the 65 
effects of measurement trades on a target retrieval. 66 
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Trade-offs are a fundamental component of mission design. Fundamental trade-offs associated 67 
with different mission architectures occur between spectral, spatial, and temporal resolutions and 68 
the radiometric precision of the instrument. Radiometric precision (i.e., signal-to-noise ratio or 69 
SNR) is a function of the number of photons an instrument receives. When integrating over a 70 
smaller spectral (i.e., higher spectral resolution) or spatial area (i.e., higher spatial resolution) at 71 
the fixed orbital speed of a spacecraft, fewer photons will reach the instrument, degrading SNR 72 
with downstream consequences for retrievals of geophysical variables. On the other hand, some 73 
features of interest require fine spectral and spatial resolution to be accurately retrieved. Mission 74 
architecture design must address how optimizing for high instrument SNR impacts spectral, 75 
spatial, and temporal resolution. For a mission like SBG, which covers a range of scientific 76 
disciplines, the trades between each of the three types of resolutions and SNR must be 77 
thoroughly evaluated using a consistent traceability framework. 78 

Imaging spectroscopy (i.e., 100s to 1000s of contiguous wavelength channels) allows for more 79 
precise discrimination of Earth surface properties than multispectral imagery (i.e., 3 to 20 80 
wavelength channels) because of the higher information content in these hyperspectral 81 
measurements (Thompson, Boardman, et al., 2017; Cawse-Nicholson et al., 2019). The spectral 82 
resolution of a hyperspectral image has been shown to greatly affect mineral (Swayze, 2003) and 83 
vegetation (Shiklomanov et al., 2016) retrieval accuracy because these algorithms require fine 84 
spectrally resolved information. In both these cases, high spectral resolution may compensate for 85 
lower SNR by contributing more information content. Requirements also vary considerably by 86 
algorithm type . For example, snow retrieval algorithms are similar to common mineral retrieval 87 
algorithms that consider the spectral signature around known absorption wavelengths (Nolin and 88 
Dozier, 1993). As such, a stronger focus on fine spectral resolution is needed to discriminate and 89 
identify key mineral absorption features associated with specific mineral species or to identify or 90 
discriminate dust versus snow grain particles, as well as determine water content and age of 91 
snowpack (REFS).  On the other, vegetation algorithms are typically based on statistical models 92 
(e.g., Partial Least Squares Regression, PLSR; Burnett et al., 2021) or physically-based models 93 
(e.g., radiative transfer model inversion) that relate plant properties at leaf or canopy level to 94 
more broad absorption features (e.g. Curran, 1989) and spectral information (Verrelst et al., 95 
2019; Serbin and Townsend, 2020) As such, vegetation algorithms tend to require higher SNR or 96 
spatial resolution over very fine spectral resilution. Aquatic algorithms are especially sensitive to 97 
the additive atmospheric contribution to the spectral signal, and their retrieval accuracy may be 98 
particularly susceptible to degrading spectral resolution and the effects of low SNR because of 99 
how aquatic properties such as glint (Hu, 2011), bubbles (Dierssen, 2019), and optical variability 100 
in the water column (Garcia et al., 2020) interact with water-leaving radiances. In our analyses, 101 
we demonstrate how retrieval algorithms that depend on hyperspectral imagery respond to the 102 
effects of degrading spectral resolution and radiometric precision on retrieval accuracy. 103 

Holding SNR constant, finer spatial resolution or increased number of pixels per image will 104 
typically lead to higher information content in an image (Cawse-Nicholson et al., 2019). 105 
However, instrument SNR decreases with finer spatial resolution because smaller pixels result in 106 
fewer photons received by each focal plane array detector element. A driving case for spatial 107 
resolution is the ecological focal area where different ecosystems have different dominanting 108 
spatial scale processes (Turner, Dale and Gardner, 1989; Wang et al., 2018). For instance, a 109 
homogenous scenes (e.g., dense deciduous forest) may not require fine spatial detail to 110 
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understand plant functional traits while a heterogeneous scenes (e.g., sparse lower montane 111 
ecosystem) with a variety of ecosystem types may require fine spatial detail. 112 

Frequent temporal revisit is another fundamental aspect of the mission architecture and provides 113 
a basis for quantifying the effects of natural disasters and seasonal phenomena (Schimel, 114 
Townsend and Pavlick, 2020). The ability to detect a short duration event (e.g., a volcanic 115 
eruption or mudslide) or frequent changes during a season (e.g., snow albedo) may be hindered 116 
by longer revisit time intervals or areas where cloud cover is common, or by overpass time. 117 
However, increasing revisit frequency can be obtained at the cost of spatial resolution and must 118 
be quantitatively justified.  119 

To optimize for retrieval accuracy across five scientific areas, mission architecture design must 120 
consider tradeoffs between spectral, spatial, and temporal resolutions. In this study, we look at 121 
specific driving case studies to quantify the performance impacts of these design choices on the 122 
range of SBG science objectives.  Specifically, we perform a simulation experiment in which we 123 
synthesize artificial imaging spectroscopy data and apply state of practice retrieval algorithms 124 
with varying sensor noise and resolution. Currently, high resolution hyperspectral time series 125 
data are uncommon, so our strategy is to show the probability of detecting an event depending on 126 
event duration and revisit time interval using simulated data. Our approach compares algorithm 127 
accuracy with and without instrument noise along gradients of coarsening resolutions to 128 
determine optimal resolutions for imaging spectroscopy architecture design. 129 

2 Materials and Methods 130 

Radiance measurements from hyperspectral missions will be converted into surface reflectance 131 
values through atmospheric correction, which isolates and removes the contribution of 132 
absorption and scattering from atmospheric aerosols, water vapor, and other components on the 133 
overall radiance signal, and provides estimates of incoming and outgoing radiation for each pixel 134 
at the Earth surface (Vermote and Kotchenova, 2008). In this study, we use an atmospheric 135 
correction approach that employs a physically based atmospheric radiative transfer model 136 
inversion. We use the Imaging Spectrometer Optimal FITting codebase (i.e., ISOFIT; Thompson 137 
et al., 2018), whereby atmospheric and surface reflectance can be estimated jointly using optimal 138 
estimation (OE; Thompson et al., 2018). Estimated surface reflectance from the OE  procedure 139 
then provides the information for algorithms that retrieve geophysical properties. These 140 
algorithms can take many forms. The retrieval algorithms listed in Table 1 were chosen to span 141 
each of the five core scientific areas and were made available through collaborations with the 142 
algorithms working group.  143 

2.1 Hypertrace and instrument modeling 144 

We developed the Hypertrace simulation workflow to trace the hyperspectral data 145 
uncertainty pipeline from top of atmosphere radiance to bio- and geophysical retrievals 146 
(https://github.com/isofit/isofit/tree/master/examples/py-hypertrace). Operationally, 147 
Hypertrace starts from known surface reflectance and atmospheric conditions based on a 148 
specific spectral resolution, and then simulates top-of-atmosphere radiance and 149 
instrument radiances based on the proposed instrument design, and then performs 150 
atmospheric correction via optimal estimation to estimate surface reflectance. 151 
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Pragmatically, Hypertrace is a wrapper around the ISOFIT codebase (See: Brodrick et al, 152 
2021) which provides both forward and inverse reflectance modeling for translation 153 
between reflectance and radiance.  Our ISOFIT configuration files can be found in the 154 
supplemental materials. Hypertrace manages this simulation process at runtime, and 155 
applies geophysical retrieval algorithms to the estimated surface reflectance.  Hypertrace 156 
is written in Python and can be configured with a simple JSON interface. 157 

Hypertrace allows for the inclusion of different imaging spectrometer detector 158 
configurations that provide various SNR profiles (Figure 1). An imaging spectrometer 159 
includes the optical system and the detector. The optics include the telescope, a 160 
dispersive element such as a prism or diffraction grating, and the slit, the entrance width 161 
that determines photon throughput. In our experiments, we used configurations for two 162 
Chroma instruments (i.e., focal plane array) Instrument-A and Instrument-B detectors and 163 
also Hyperion, where Instrument-A has a detector pixel pitch of 0.0030 cm and a slit 164 
width of 30 microns while Instrument-B has a detector pixel pitch of 0.0018 cm and a slit 165 
width of 18 microns. We selected these Chroma spectrometers as examples because they 166 
have been used in the Earth Surface Mineral Dust Source Investigation (EMIT) mission, 167 
a similar imaging spectroscopy mission to SBG (Connelly et al., 2021). We compare 168 
against Hyperion to show the abilities of our workflow to include SNR from both future 169 
and past instuments.  These spectrometer settings as well as desired instrument spatial 170 
resolution alter the SNR along the visible to shortwave infrared (Figure 1).  171 

For the Chroma instruments, we derived instrument SNR using the following approach. 172 
The SNR describes the ratio of the signal to noise for the given spatial resolution element, 173 
where the signal is defined as the total number of collected electrons per unit area (i.e. 174 
pixel) over the total noise for the same area. The signal is proportional to the following 175 
equation: 176 

Signal  = L * dl  * A
o
 * W

d 
 * t

int
 * T  * h                                                                         (1) 177 

Where L is spectral radiance at sensor, dl is the instrument’s spectral resolution, A
o
 is the 178 

instrument telescope aperture, W
d
 is the solid angle of the instrument, t

int
 is the integration 179 

time per spatial sample, T is transmission, and h is the detector quantum efficiency. 180 

For a given spatial sample, the noise comes from multiple contributing factors, including 181 
the shot noise, read noise, dark noise, electronics noise and quantum noise. 182 

Noise = !𝑁!"#$% +	𝑁&'()% + 𝑁(*'&% + 𝑁*+*,$(#-.,!%                                                           (2) 183 

The shot noise is usually the largest contributor to the noise and is a poissonian effect that 184 
is an inherent property of the photon collection pheonomenon in optical devices. The 185 
dark noise is the product of the dark current of the focal plane array and the integration 186 
times we work with. The read noise is associated with every frame read. For digital focal 187 
plane array like Instrument-B the electronics noise is zero while it is a non-zero value for 188 
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the analog version Instrument-A. Usually the focal plane array gets characterized in a 189 
laboratory thermal-vacuum chamber that allows the read noise, dark current, well 190 
capacity, linearity and crosstalk to be measured and chacraterized. The results of these 191 
characterizations are critical to the design and performance predictions of imaging 192 
spectrometers using the focal plane array.  193 

For the Hyperion instrument, we used a parametric approach for calculating instrument 194 
SNR. First, we collected invariant scenes from early in the Hyperion campaign. We then 195 
used the radiance from the invariant scenes and the parameter noise estimation process 196 
from Bioucas-Dias and Nascimento, 2005 to derive SNR for Hyperion.  197 

 198 

Figure 1: Instrument SNR over the visible and near-infrared (VNIR; 400 - 1000 nm) and short 199 
wave infrared (SWIR; 1000 - 2500 nm) for Instrument-A (left) and Instrument- (right) 200 
spectrometers colored by spatial resolution (m) range considered in this study. The vertical line 201 
in each panel represents the split between the VNIR and the SWIR. 202 

2.2 Spectral and spatial sensitivity 203 

Our simulation experiments have two parts: In ‘direct’ experiments, we apply retrieval 204 
algorithms to degraded reflectance data, and compare the outcome a similar retrieval at 205 
native resolution (Figure 2 black). In ‘instrument’ experiments, we degrade the radiance 206 
at sensor in Hypertrace using an instrument model, perform an atmospheric correction, 207 
and then apply the retrieval algorithm to the estimated surface reflectance. Therefore, 208 
only the instrument experiments include the effect of imperfect instrument radiometry 209 
(“noise”). We illustrate the concept behind our simulations in Figure 2. In the 210 
‘instrument’ experiments, we consider two instrument models, representing state-of-the 211 
art detectors due to launch in the near future (EMIT, Connelly et al., 2021). We use 212 
Hypertrace to simulate the contributions of imperfect radiometry in Instrument-A, 213 
Instrument-B, or Hyperion spectrometer to biases and uncertainties in the geophysical 214 
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variable of interest (Figure 2 red). We repeat the direct and instrument application steps 215 
along the resolution degradation range of interest. We then compare both the direct 216 
retrievals and the Hypertrace retrievals to the direct retrieval at the native resolution using 217 
a variety of standard validation statistics, e.g., root mean square error (RMSE) and kappa 218 
score (for categorical data) to illustrate the effects of degrading resolution on retrieval 219 
accuracy. 220 

 221 

Figure 2: Conceptual diagram of one iteration of our analysis. A. True surface reflectance is 222 
used to obtain true or direct retrievals that are not affected by the noise (black). B. and C. True 223 
surface reflectance is run through hypertrace forward (B) and inverse (C) models to obtain 224 
estimated surface reflectance including uncertainties from atmospheric correction and instrument 225 
design signal to noise ratio (SNR). D. These estimated reflectances (red) are given to the same 226 
algorithms and then compared to the directly estimated retrievals (E). 227 

We chose spectral and spatial resolution experiments to demonstrate accuracy 228 
degradation across the full range of current mission design choices and corresponding 229 
trades with SNR. In our spectral resolution experiments, we varied the bandwidth from 230 
5nm to 30nm in 5nm increments, resulting in 6 experiments with a minimum of 70 bands 231 
and a maximum of 421 bands. Similarly, we varied spatial resolution from 20 m to 60 m 232 
by 10 m increments. We also included 100 m spatial resolution experiments to 233 
demonstrate algorithm accuracy at very low spatial resolutions. The scenes were 234 
resampled to coarser resolutions using Gaussian convolution aggregation for spectral 235 
resolution and bilinear averaging for spatial resolution (ignoring potential autocorrelation 236 
between spectral bands). We then repeated these experiments including the 237 
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corresponding effects of SNR shown in Figure 1 (See Figure 2 black versus red). All 238 
experiments were conducted with 1000 randomly drawn points from each scene. 239 

We chose representative hyperspectral scenes based on a set of science areas where 240 
retrieval algorithms were available and provided by the algorithm developers (Table 1). 241 
These scenes have been BRDF corrected and atmospherically corrected, meaning they 242 
provide estimates of the hemispherical-directional reflectance factor (HDRF, sensu 243 
Schaepman-Strub et al. 2006) for a nadir viewing angle. Table 1 lists the supporting 244 
citations for each scene. 245 

The algorithms use a variety of methods. Absorption feature matching uses specific 246 
features of the reflectance spectrum and measures the depth of the feature to approximate 247 
the amount of the mineral present (Swayze et. al., 2003). Benthic reflectance inversion 248 
(Thompson et al., 2017)  and benthic cover classifier (Hochberg and Atkinson, 2003) 249 
which we refer to together as ‘benethic cover classifier’ and least squares (Dozier and 250 
Painter, 2004) approaches rely on in situ data to determine which benthic cover type or 251 
snow grain size a particular reflectance represents. PLSR also uses in situ data to derive 252 
coefficients that are then applied to the reflectance to retrieve a vegetation property (e.g., 253 
leaf nitrogen mass fraction). 254 

 255 

Resolution Core science area 
(Scene) 

Algorithm L3 retrieval (units) 

Spectral Mineral (Cuprite, 
Nevada, USA; 
AVIRIS-C; Swayze 
et al., 2014) 

Absorption feature 
matching 

Mineral mass fraction 
(unitless; i.e., spectral 
abundance) 

 Aquatic (Arlingtion, 
Great Barrier Reef, 
Australia; DESIS; 
German Aerospace 
Center) 

Benthic cover 
classifier 

Benthic cover type 
(unitless) 

 Vegetation (Western 
Ghants, South India; 
Zheng et al. In 
Review) 

Partial least squares 
regression 

Leaf nitrogen mass 
fraction (g/mg) 

 Snow (Southern 
Rocky Mountains, 
USA; Skiles and 
Painter, 2017) 

Least squares Snow grain size (µm) 

Spatial Vegetation (Western 
Ghants, South India; 

Partial least squares 
regression 

Leaf nitrogen mass 
fraction (g/mg) 
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Zheng et al. In 
Review) 

 Vegetation (Crested 
Butte, Colorado, 
USA; Chadwick et 
al., 2020) 

Partial least squares 
regression 

Leaf nitrogen mass 
fraction (g/mg) 

Temporal Event detection 
(Simulation) 

NA Event (no units) 

Table 1: Experiment List. Each row describes the components of an experiment in our study 256 
grouped by the trade study resolution of interest. If citations are applicable, they are found in 257 
parentheses. 258 

2.3 Temporal revisit 259 

Acquisitions with high temporal revisit for hyperspectral data are rare in airborne (i.e., 260 
AVIRIS-NG) and spaceborne archives, including PRISMA and DESIS. Lack of high 261 
revisit hyperspectral data is problematic for assessing algorithm performance and 262 
expected event detection efficiency (Schimel, Townsend and Pavlick, 2020). To 263 
overcome this obstacle here to provide quantitative information for mission architecture 264 
design in terms of revisit, we use an analytical approach where we calculate event 265 
detection probability by dividing event duration by the revisit interval. The analytical 266 
study quantifies the amount of information missed by decreasing temporal resolution for 267 
disturbance events such as fires, volcanic eruptions or landslides, which have been listed 268 
as SBG designated observables (National Academies of Sciences, Engineering, and 269 
Medicine, 2018).  270 

Satellite constellations have been proposed to increase revisit time intervals by increasing 271 
the number of instruments. We provide a brief analysis of uncertainty in a vegetation 272 
retrieval caused by instrument calibration drift. Calibration drift is the time between 273 
instrument calibration at an invariate site where the longer the time the more uncertainty 274 
from drift can be expected. For this analysis, we use calibration drift uncertainty 275 
estiamtes derived from AVIRIS-NG where we took a random draw from a multivariate 276 
normal with mean zero and covariance from the AVIRIS-NG estimate. We applied this 277 
draw linearly to a single radiance vector to represent how drift may increase uncertainty 278 
over time. From this set of radiances with increasing drift, we estimated surface 279 
reflectance using an ISOFIT inversion. Finally, we calculated the canopy nitrogen 280 
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content in the set of estimated reflectances using PLSR and compared the nitrogen 281 
estimates over days since calibration by calculating the relative error percentage.  282 

3 Results 283 

3.1 Spectral resolution 284 

High spectral resolution (< 20 nm) resulted in greater algorithm accuracy across all 285 
scientific areas in the direct algorithm application (Figure 3). The 10 nm standard 286 
proposed by NASA Earth Sciences Decadal Survey (2017) provided the algorithm 287 
accuracy across experiments (Figure 3 vertical dotted line). On average, vegetation PLSR 288 
was the most sensitive to spectral resolution degradation, with an average RMSE change 289 
of 1.7 between experiments followed by the least squares snow grain size retrieval and 290 
the aquatic benthic cover classifier with an average of -8.78 and -7.38 change in kappa 291 
score respectively. Least squares (i.e., snow) appears to be the least sensitive to spectral 292 
resolution degradation.  293 

Accuracy was not degraded significantly with the inclusion of instrument noise for the 294 
mineral or aquatic spectral resolution experiments (Figure 4). Both Instrument-A and 295 
Instrument-B had increased retrieval accuracy between 5nm and 10nm because of the 296 
tradeoffs between SNR and spectral resolution (Figure 4a). The vegetation retrievals were 297 
similar across spectral resolutions for Instrument-A and Instrument-B. However, 298 
Hyperion performed poorly (i.e., RMSE = 23.54 mg/g; Figure 4b). The benthic cover 299 
classifier for the aquatic spectral resolution experiment incorrectly classified the majority 300 
of pixels at low spectral resolutions, classifying all pixels as algae (Figure 4c). This 301 
convergence to algae classification caused a dip in the 20 nm spectral resolution 302 
experiment). For the snow algorithm, SNR degraded algorithm accuracy across spectral 303 
resolution experiments for both Instrument-A, Instrument-B, and Hyperion (Figure 4d). 304 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

Approximately 20% of the snow spectra were categorized as having the highest snow 305 
grain size in each of the instrument application experiments. 306 

 307 

Figure 3: Direct application algorithm accuracy across spectral resolution colored by scientific 308 
area. These retrievals were calculated using true reflectance and each of the retrieval algorithms. 309 
Root mean square error (RMSE) was calculated for mineral and vegetation spectra while kappa 310 
score was calculated for aquatic and snow spectra. Vertical lines represent spectral resolution 311 
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targets defined by the National Academies’ 2017 Decadal Survey on Earth Science and 312 
Applications. 313 

 314 

Figure 4: Instrument application algorithm accuracy across spectral resolution colored by 315 
scientific area for Instrument-A (purple), Instrument-B (red), and Hyperion (black) for mineral 316 
(a), vegetation (b), aquatic (c), and snow (d) retrivals. Root mean square error (RMSE) was 317 
calculated for mineral and vegetation spectra while kappa score was calculated for aquatic and 318 
snow spectra. Vertical lines represent spectral resolution targets defined by the National 319 
Academies’ 2017 Decadal Survey on Earth Science and Applications. 320 

3.2 Spatial resolution 321 

Retrieval accuracy decreased with coarsening spatial resolutions for both the Colorado 322 
and the South India sites in the direct application of the vegetation algorithms. Retrieval 323 
accuracy declined more quickly in the heterogeneous Colorado scene than the 324 
homogeneous South India scene (black versus green Figure 5). The 30 m standard 325 
proposed by NASA Earth Science Decadal Survey (2017) provided the most algorithm 326 
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accuracy across experiments (Figure 5 vertical dotted line).  There was a slight increase 327 
in retrieval accuracy in the state of Colorado scene between the 50 m and 60 m spatial 328 
resolution experiments. We assumed this was caused by spectral mixing between 329 
vegetated and non-vegetated spectra within a heterogenous scene (Figure S3). 330 

Instrument-A, Instrument-B, and Hyperion applications that included the affects of noise 331 
both greatly decreased retrieval accuracy compared to the direct applications (Figure 6). 332 
Increasing SNR over decreasing spatial resolution caused accuracy to increase somewhat 333 
for both Instrument-A and Instrument-B applications, especially between 20 m and 30 m 334 
spatial resolution experiments. Average SNR increased in the SWIR between instruments 335 
configured for 20 m to 30 m spatial resolution by 78% SNR for Instrument-A and 81% 336 
SNR for Instrument-B (Figure 1, dark purple). Hyperion was most sensitive to the PLSR 337 
algorithm (Figure 4b). In comparison to both Instrument-A and Instruement-B, Hyperion 338 
poorly estimated canopy nitrogen content.  339 

 340 

Figure 5: Direct application algorithm accuracy calculated by root mean square error (RMSE) 341 
between the degraded resolution and the native resolution across spatial resolution experiments 342 
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colored by scene. Vertical lines represent spectral resolution targets defined by the National 343 
Academies’ 2017 Decadal Survey on Earth Science and Applications. 344 

 345 

Figure 6: Instrument application algorithm accuracy for South India (a) and Colorado (b) scenes. 346 
The instrument application includes the effects of noise on retrieval accuracy while the direct 347 
application (Figure 5) does not. Hyperion noise (black diamond) caused large inaccuracy in both 348 
vegetation retrievals, but especially in the Colorado scene (b). We have broken the vertical axis 349 
to include this point. Vertical lines represent spectral resolution targets defined by the National 350 
Academies’ 2017 Decadal Survey on Earth Science and Applications. 351 

3.3 Temporal resolution (revisit) 352 

Mission revisit cadence greatly affected the probability of detecting short term events 353 
(Figure 7). Revisiting more than 20 days for a short-term event (< 5 days in duration) 354 
resulted in a probability of detection of less than 20%. Long duration events (> 21 days in 355 
duration) had a higher probability of detection even for greater than 60 day revisits 356 
(probability > 40%). Lastly, calibration drift decayed retrival accuracy (Figure 8). Percent 357 
error reached 60% in 175 days since calibration and 100% in 300 days since calibration.   358 

 359 
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 360 

Figure 7: Detection probability as a function of increasing revisit interval colored by the 361 
duration of the event where shorter events are more difficult to detect with higher revisit time 362 
intervals.  363 

 364 
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 365 

Figure 8: a. Example radiances with increasing error due to drift or days since calibration. b. 366 
Estimated reflectances of the radiances in (a). c. canopy nitrogen percent error as a function of 367 
days since calibration. Colors in a, b, and c correspond to days since calibration. 368 

4 Discussion 369 
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This suite of driving cases covering three aspects (i.e., spectral, spatial, and revisit) of mission 370 
architecture interlinked with SNR and four of the five core science areas shows where high 371 
resolution requirements are necessary to preserve algorithm accuracy. Our analyses confirm that 372 
high spectral (~10nm), high spatial (~30m), and high revisit (less than 16 days) is needed to 373 
effectively quantitatively constrain Earth’s geophysical property estimation with hyperspectral 374 
imagery and corresponding retrieval algorithms. We represent these targets with Figure 3 375 
through 6 vertical dotted lines. Specifically, instruments with spatial resolution of 30 m and 376 
spectral resolution of 10 nm obtain the largest accuracies, across the five scientific foci explored 377 
here.  This largely corroborates the performance proposed by the Decadal Survey in their 378 
original description of the SBG mission concept. We also highlight the difference between 379 
instrument choices Instrument-A and Instrument-B and past instrument Hyperion to showcase 380 
how the instrument selection process may be informed by simulation experiments using 381 
hypertrace or similar mission design workflows. Overall, the instruments performed similarly 382 
and outperformed Hyperion (See Figure 4 and Figure 6). In the following paragraphs, we 383 
elaborate on our findings for each type of resolution and finally describe our vision for the future 384 
of NASA mission architecture studies. 385 

We build upon previous research of mineral and vegetation retrieval algorithms (Swayze et al, 386 
2003; Kokaly et al 2009; Shiklomanov et al., 2016) showing that high spectral resolution 387 
(~10nm)  improved retrieval estimation across all scientific areas (Figure 3). In our mineral 388 
assessment, we used Kaolinite absorption feature matching. This retrieval algorithm depends on 389 
a narrow range of wavelengths (i.e., 2100nm - 2300nm). As the spectral resolution is coarsened, 390 
the number of data points within this range decreases rapidly and results in an exponential loss of 391 
information over spectral resolution. Similarly, least squares spectral matching uses a spectral 392 
library as a reference for determining the amount of snow in a pixel (Dozier and Painter, 2004). 393 
Aquatic benthic cover classification and vegetation PLSR algorithms use coefficients that are 394 
empirically estimated using in situ and concurrently measured hyperspectral data, and are then 395 
applied to remotely sensed imaging spectrometer data (Thompson, Hochberg, et al., 2017; Serbin 396 
and Townsend, 2020; Cawse-Nicholson, et al 2019) The in situ data are collected at a particular 397 
spectral and spatial resolutions at particular locations usually during the summer months with 398 
both airborne and in site data, which may ultimately drive the sensitivity of these algorithms to 399 
degrading spectral resolution (e.g., Hochberg and Atkinson, 2003). More work is needed to 400 
understand what the optimal sampling scheme is for both in situ and remotely sensed 401 
hyperspectral data and how to use these data in tandem for improving aquatic classifications and 402 
vegetation trait estimation algorithm retrievals. 403 

Increased spatial resolution is a particularly important component for vegetation research 404 
because plants operate on individual plant scales and aggregate and interact at ecosystem scale to 405 
drive Earth system level phenomena (e.g., individual spruce tree to the boreal forest). Earth 406 
system scientists are increasingly arguing for representing cohorts or individual level plant traits 407 
and processes at a large scale to inform Earth system models (Fisher et al., 2018). SBG would 408 
greatly influence these models by providing a large-scale dataset at a relevant level of plant 409 
organization (i.e., ~30m; Malenovsky et al, 2019). We show (Figure 4) a quantitative threshold 410 
for spatial resolution from the vegetation algorithm perspective. However, both mission and 411 
instrument design must be carefully constructed to include high spatial resolution and 412 
accommodate physical barriers that may decrease the SNR. For the same instrument and global 413 
coverage, narrower swath/field-of-view means better spatial resolution and more consistent 414 
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angular sampling but worse temporal resolution. So, an advance in spatial resolution may mean 415 
compromising in temporal resolution. Coordinated international collaborations with other global 416 
imaging spectroscopy missions (e.g. Eurpean Space Agency’s Copernicus Hyperspectral 417 
Imaging Mission) might provide a path forward for meeting high revisit science requirements 418 
while also improving spatial resolution. Future work may focus on understanding how high 419 
spatial resolution multispectral imagery informs lower spatial resolution hyperspectral trait 420 
estimation to ultimately improve global vegetation trait data.  421 

Altering the orbiting altitude of an instrument with a particular spatial resolution configuration 422 
can increase SNR by allowing more photons to be received from a particular pixel. But, a 423 
particular orbiting altitude with longer revisit intervals may not be desirable for short duration 424 
event detection (Figure 6, dark purple). While our assessment relies on simulated data, it is clear 425 
that increased revisit will increase the probability that events such as volcanic eruptions or 426 
mudslides are detected by SBG. Extreme events are increasing with frequency as the climate 427 
changes (NASA ESAS, 2016) and the effects of these types of events may be some of the most 428 
important aspects of mission design to the public. Furthermore, our analysis is optimistic as it did 429 
not include a source of clouds where the presence of clouds will lead to missing data and in turn 430 
longer revisit. Higher revisit will enable a higher probability that any image is taken because it 431 
will be more likely that an overpass occurs on a clear or semi-clear day. While satellite 432 
constellations may help improve the revisit interval, the calibration drift greatly affects retrieval 433 
accuracy (Figure 8) and would need to be included in the uncertainty propagration of retrievals 434 
from satellite consteallations.  435 

The SBG mission is driven by the ideals of the decadal survey, striving to better understand the 436 
changing geophysical properties across the Earth system (National Academies of Sciences, 437 
Engineering, and Medicine, 2019). We have shown the dominant components that drive retrieval 438 
uncertainty across four core scientific areas. Our approach utilizes a workflow for simulating the 439 
SNR effects of mission instruments and includes many aspects of data processing uncertainties. 440 
Future work may focus on using this type of setup for mission planning where simulations may 441 
be run to parse out different dominant contributors of uncertainty. For example, intrinsic 442 
dimensionality can provide an algorithm agnostic evaluation approach by focusing simply on 443 
information content (Cawse-Nicholson et. al, 2019). Once the mission design has been finalized 444 
our method can be used to inform the data pipeline from SBG or future hyperspectral missions 445 
by applying realistic uncertainties along the data processing steps.  446 

Acknowledgments 447 

Some of the research described in this paper was carried out at the Jet Propulsion Laboratory, 448 
California Institute of Technology, under contract with the National Aeronautics and Space 449 
Administration. Government sponsorship acknowledged. We acknowledge funding from 450 
NASA’s Surface Biology and Geology Designated Observable. 451 
 452 
Open Research Statement 453 

The data used in this work are hyperspectral images collected from past published works (Listed 454 
in Table 1). The software used in this work is ISOFIT 455 
(https://doi.org/10.5281/ZENODO.4614338), HYPERTRACE 456 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

(https://github.com/isofit/isofit/tree/master/examples/py-hypertrace), and four types of 457 
hyperspectral algorithms (See Table 1).  458 

References 459 

Bioucas-Dias, J. M., & Nascimento, J. M. P. (2005). Estimation of signal subspace on hyperspectral data. 460 
In L. Bruzzone (Ed.) (p. 59820L). Presented at the Remote Sensing, Bruges, Belgium. 461 
https://doi.org/10.1117/12.620061 462 

Burnett, A. C., Anderson, J., Davidson, K. J., Ely, K. S., Lamour, J., Li, Q., et al. (2021). A best-practice 463 
guide to predicting plant traits from leaf-level hyperspectral data using partial least squares 464 
regression. Journal of Experimental Botany, 72(18), 6175–6189. https://doi.org/10.1093/jxb/erab295 465 

Cavender-Bares, J., Gamon, J. A., & Townsend, P. A. (Eds.). (2020). Remote sensing of plant 466 
biodiversity. Cham: Springer. 467 

Cawse-Nicholson, K., Hook, S. J., Miller, C. E., & Thompson, D. R. (2019). Intrinsic Dimensionality in 468 
Combined Visible to Thermal Infrared Imagery. IEEE Journal of Selected Topics in Applied Earth 469 
Observations and Remote Sensing, 12(12), 4977–4984. https://doi.org/10.1109/JSTARS.2019.2938883 470 

Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M., Blake, P. L., Buongiorno, M. F., et al. 471 
(2021). NASA’s surface biology and geology designated observable: A perspective on surface imaging 472 
algorithms. Remote Sensing of Environment, 257, 112349. https://doi.org/10.1016/j.rse.2021.112349 473 

Chadwick, K. D., Brodrick, P. G., Grant, K., Goulden, T., Henderson, A., Falco, N., et al. (2020). 474 
Integrating airborne remote sensing and field campaigns for ecology and Earth system science. Methods 475 
in Ecology and Evolution, 11(11), 1492–1508. https://doi.org/10.1111/2041-210X.13463 476 

Committee on Extreme Weather Events and Climate Change Attribution, Board on Atmospheric Sciences 477 
and Climate, Division on Earth and Life Studies, & National Academies of Sciences, Engineering, and 478 
Medicine. (2016). Attribution of Extreme Weather Events in the Context of Climate Change. Washington, 479 
D.C.: National Academies Press. https://doi.org/10.17226/21852 480 

Connelly, D. S., Thompson, D. R., Mahowald, N. M., Li, L., Carmon, N., Okin, G. S., & Green, R. O. 481 
(2021). The EMIT mission information yield for mineral dust radiative forcing. Remote Sensing of 482 
Environment, 258, 112380. https://doi.org/10.1016/j.rse.2021.112380 483 

Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–484 
278. https://doi.org/10.1016/0034-4257(89)90069-2 485 

Dierssen, H. M. (2021). Corrigendum: Hyperspectral Measurements, Parameterizations, and Atmospheric 486 
Correction of Whitecaps and Foam From Visible to Shortwave Infrared for Ocean Color Remote 487 
Sensing. Frontiers in Earth Science, 9, 683136. https://doi.org/10.3389/feart.2021.683136 488 

Dozier, J., & Painter, T. H. (2004). Multispectral and hyperspectral remote sensing of alpine snow 489 
properties. Annual Review of Earth and Planetary Sciences, 32(1), 465–494. 490 
https://doi.org/10.1146/annurev.earth.32.101802.120404 491 

Garcia, R. A., Lee, Z., Barnes, B. B., Hu, C., Dierssen, H. M., & Hochberg, E. J. (2020). Benthic 492 
classification and IOP retrievals in shallow water environments using MERIS imagery. Remote Sensing 493 
of Environment, 249, 112015. https://doi.org/10.1016/j.rse.2020.112015 494 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

German Aerospace Center (DLR). Available at: https://geoservice.dlr.de/data-assets/hxom21uqeo90.html 495 
(Accessed: 8 December 2021). 496 

Hu, C. (2011). An empirical approach to derive MODIS ocean color patterns under severe sun 497 
glint. Geophysical Research Letters, 38(1), n/a-n/a. https://doi.org/10.1029/2010GL045422 498 

Isofit, Brodrick, P., Erickson, A., Jfahlen, Winstonolson, Thompson, D. R., et al. (2021). isofit/isofit: 499 
2.8.0 (Version v2.8.0). Zenodo. https://doi.org/10.5281/ZENODO.4614338 500 

Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E., & Wessman, C. A. (2009). Characterizing 501 
canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote 502 
Sensing of Environment, 113, S78–S91. https://doi.org/10.1016/j.rse.2008.10.018 503 

National Academies of Sciences, Engineering, and Medicine (U.S.), National Academies of Sciences, 504 
Engineering, and Medicine (U.S.), & National Academies of Sciences, Engineering, and Medicine (U.S.) 505 
(Eds.). (2018). Thriving on our changing planet: a decadal strategy for Earth observation from space. 506 
Washington, DC: The National Academies Press. 507 

Nolin, A. W., & Dozier, J. (1993). Estimating snow grain size using AVIRIS data. Remote Sensing of 508 
Environment, 44(2–3), 231–238. https://doi.org/10.1016/0034-4257(93)90018-S 509 

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). 510 
Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing of 511 
Environment, 103(1), 27–42. https://doi.org/10.1016/j.rse.2006.03.002 512 

Schimel, D., Townsend, P. A. and Pavlick, R. (2020) ‘Prospects and Pitfalls for Spectroscopic Remote 513 
Sensing of Biodiversity at the Global Scale’, in Cavender-Bares, J., Gamon, J. A., and Townsend, P. A. 514 
(eds) Remote Sensing of Plant Biodiversity. Cham: Springer International Publishing, pp. 503–518. 515 

Serbin, Shawn P., and Philip A. Townsend. "Scaling functional traits from leaves to canopies." Remote 516 
Sensing of Plant Biodiversity. Springer, Cham, 2020. 43-82. 517 

Stavaros et al. (In Review) ‘Designing an Observing System to Study the Surface Biology and Geology of 518 
the Earth in the 2020s’, Journal of Geophysical Research: Biogeosciences 519 

Shiklomanov, A. N., Dietze, M. C., Viskari, T., Townsend, P. A., & Serbin, S. P. (2016). Quantifying the 520 
influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to 521 
RTM inversion. Remote Sensing of Environment, 183, 226–238. 522 
https://doi.org/10.1016/j.rse.2016.05.023 523 

Skiles, S. M., & Painter, T. (2017). Daily evolution in dust and black carbon content, snow grain size, and 524 
snow albedo during snowmelt, Rocky Mountains, Colorado. Journal of Glaciology, 63(237), 118–132. 525 
https://doi.org/10.1017/jog.2016.125 526 

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and 527 
Change Detection Using Landsat TM Data. Remote Sensing of Environment, 75(2), 230–244. 528 
https://doi.org/10.1016/S0034-4257(00)00169-3 529 

Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., et al. (2014). 530 
Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic 531 
Geology, 109(5), 1179–1221. https://doi.org/10.2113/econgeo.109.5.1179 532 

Swayze, Gregg A. (2003). Effects of spectrometer band pass, sampling, and signal-to-noise ratio on 533 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

spectral identification using the Tetracorder algorithm. Journal of Geophysical Research, 108(E9), 5105. 534 
https://doi.org/10.1029/2002JE001975 535 

Thompson, D. R., Boardman, J. W., Eastwood, M. L., & Green, R. O. (2017). A large airborne survey of 536 
Earth’s visible-infrared spectral dimensionality. Optics Express, 25(8), 9186. 537 
https://doi.org/10.1364/OE.25.009186 538 

Thompson, D. R., Hochberg, E. J., Asner, G. P., Green, R. O., Knapp, D. E., Gao, B.-C., et al. (2017). 539 
Airborne mapping of benthic reflectance spectra with Bayesian linear mixtures. Remote Sensing of 540 
Environment, 200, 18–30. https://doi.org/10.1016/j.rse.2017.07.030 541 

Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao, B.-C., & Eastwood, M. L. (2018). 542 
Optimal estimation for imaging spectrometer atmospheric correction. Remote Sensing of 543 
Environment, 216, 355–373. https://doi.org/10.1016/j.rse.2018.07.003 544 

Thompson, D. R., Bearden, D., Brosnan, I., Cawse-Nicholson, K., Chrone, J., Green, R. O., et al. (2021). 545 
NASA’s Surface Biology and Geology Concept Study: Status and Next Steps. In 2021 IEEE International 546 
Geoscience and Remote Sensing Symposium IGARSS (pp. 112–114). Brussels, Belgium: IEEE. 547 
https://doi.org/10.1109/IGARSS47720.2021.9554480 548 

Turner, M. G., Dale, V. H., & Gardner, R. H. (1989). Predicting across scales: Theory development and 549 
testing. Landscape Ecology, 3(3–4), 245–252. https://doi.org/10.1007/BF00131542 550 

Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land 551 
surfaces. Journal of Geophysical Research, 113(D23), D23S90. https://doi.org/10.1029/2007JD009662 552 

Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., et 553 
al. (2019). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on 554 
Retrieval Methods. Surveys in Geophysics, 40(3), 589–629. https://doi.org/10.1007/s10712-018-9478-y 555 

Wang, R., Gamon, J. A., Cavender‐Bares, J., Townsend, P. A., & Zygielbaum, A. I. (2018). The spatial 556 
sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie 557 
grassland. Ecological Applications, 28(2), 541–556. https://doi.org/10.1002/eap.1669 558 

Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., et al. (2020). Foliar functional traits from 559 
imaging spectroscopy across biomes in eastern North America. New Phytologist, 228(2), 494–511. 560 
https://doi.org/10.1111/nph.16711 561 

Zheng, T. et al. (in prep) ‘Variability in forest plant traits along the Western Ghats of India and their 562 
environmental drivers at different resolutions’, The New Phytologist. 563 


