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Abstract

Most machine learning applications in Earth system modeling currently rely on gradient-based supervised learning. This

imposes stringent constraints on the nature of the data used for training (typically, residual time tendencies are needed), and

it complicates learning about the interactions between machine-learned parameterizations and other components of an Earth

system model. Approaching learning about process-based parameterizations as an inverse problem resolves many of these

issues, since it allows parameterizations to be trained with partial observations or statistics that directly relate to quantities

of interest in long-term climate projections. Here we demonstrate the effectiveness of Kalman inversion methods in treating

learning about parameterizations as an inverse problem. We consider two different algorithms: unscented and ensemble Kalman

inversion. Both methods involve highly parallelizable forward model evaluations, converge exponentially fast, and do not require

gradient computations. In addition, unscented Kalman inversion provides a measure of parameter uncertainty. We illustrate

how training parameterizations can be posed as a regularized inverse problem and solved by ensemble Kalman methods through

the calibration of an eddy-diffusivity mass-flux scheme for subgrid-scale turbulence and convection, using data generated by

large-eddy simulations. We find the algorithms amenable to batching strategies, robust to noise and model failures, and efficient

in the calibration of hybrid parameterizations that can include empirical closures and neural networks.
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Abstract15

Most machine learning applications in Earth system modeling currently rely on gradient-16

based supervised learning. This imposes stringent constraints on the nature of the data17

used for training (typically, residual time tendencies are needed), and it complicates learn-18

ing about the interactions between machine-learned parameterizations and other com-19

ponents of an Earth system model. Approaching learning about process-based param-20

eterizations as an inverse problem resolves many of these issues, since it allows param-21

eterizations to be trained with partial observations or statistics that directly relate to22

quantities of interest in long-term climate projections. Here we demonstrate the effec-23

tiveness of Kalman inversion methods in treating learning about parameterizations as24

an inverse problem. We consider two different algorithms: unscented and ensemble Kalman25

inversion. Both methods involve highly parallelizable forward model evaluations, con-26

verge exponentially fast, and do not require gradient computations. In addition, unscented27

Kalman inversion provides a measure of parameter uncertainty. We illustrate how train-28

ing parameterizations can be posed as a regularized inverse problem and solved by en-29

semble Kalman methods through the calibration of an eddy-diffusivity mass-flux scheme30

for subgrid-scale turbulence and convection, using data generated by large-eddy simu-31

lations. We find the algorithms amenable to batching strategies, robust to noise and model32

failures, and efficient in the calibration of hybrid parameterizations that can include em-33

pirical closures and neural networks.34

Plain Language Summary35

Artificial intelligence represents an exciting opportunity in Earth system model-36

ing, but its application brings its own set of challenges. One of these challenges is to train37

machine learning systems within Earth system models from partial or indirect data. Here38

we present algorithms, known as ensemble Kalman methods, that can be used to train39

such systems. We demonstrate their use in situations where the data used for training40

are noisy, only indirectly informative about the model to be trained, and may only be-41

come available sequentially. As an example, we present training results for a state-of-42

the-art model for turbulence, convection, and clouds for use within Earth system mod-43

els. This model is shown to learn efficiently from data in a variety of configurations, in-44

cluding situations where the model contains neural networks.45

1 Introduction46

The remarkable achievements of machine learning over the past decade have led47

to renewed interest in informing Earth system models with data (Schneider et al., 2017;48

Reichstein et al., 2019). The spotlight is often on creating or improving models of pro-49

cesses that are deemed important for the correct representation of the Earth system as50

a whole. Examples of these processes include moist convection (Brenowitz et al., 2020),51

cloud microphysical and radiative effects (Seifert & Rasp, 2020; Villefranque et al., 2021;52

Meyer et al., 2022), and evapotranspiration (Zhao et al., 2019), among others.53

Processes governed by poorly understood dynamics, such as biological processes,54

are obvious candidates for representation by purely data-driven models. On the other55

end of the spectrum are fluid transport processes, which are governed by the Navier-Stokes56

equations. Uncertain representation of these processes comes from a lack of resolution,57

not lack of knowledge about the underlying dynamics. Hybrid modeling approaches that58

incorporate domain knowledge and augment it by learning from data are attractive for59

such processes, because they reduce what needs to be learned from data.60

For processes with known dynamics, data-informed models fall into three broad cat-61

egories according to their leverage of domain knowledge. In the first category are mod-62

els that try to learn the entire dynamics using a sufficiently expressive hypothesis set,63
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such as deep neural networks. This approach has proved successful for predicting pre-64

cipitation over short time horizons (Ravuri et al., 2021), and it has been explored for medium-65

range weather forecasting (Rasp & Thuerey, 2021; Pathak et al., 2022; Lopez-Gomez et66

al., 2022). An advantage of these models is that they are typically easy to implement67

and cheap to evaluate. They can afford very large time steps (Weyn et al., 2021), or they68

may learn directly mappings from the initial state to a probability distribution of final69

states with no need of time marching or ensemble forecasting (Sønderby et al., 2020).70

A deficiency of these models is that they often require an extreme amount of data to con-71

strain the many (often > 106) parameters in them and to achieve acceptable performance.72

Methods in the second and third categories employ models of subgrid processes to73

solve the closure problem that arises when coarse-graining the known dynamics, which74

are retained. Retaining the coarse-grained equations of motion ensures conservation of75

mass, momentum, and energy, which is more difficult when using models in the first cat-76

egory (Beucler et al., 2021; Brenowitz et al., 2020). The second category encompasses77

methods that try to learn the functional form of these closures avoiding the use of em-78

pirical laws. For example, Zanna and Bolton (2020) use relevance vector machines to prune79

a library of functions, resulting in a closed form expression of mesoscale eddy fluxes in80

ocean simulations; Ling et al. (2016) learn a neural network closure of the Reynolds stress81

anisotropy tensor while explicitly encoding rotational invariance in the context of k−82

ε models of turbulence.83

Finally, the third category refers to methods that seek to learn the parameters that84

arise in empirical closures of subgrid processes. In general, models in the third category85

are more restrictive, and they may be expected to underperform with respect to those86

in the second category given sufficient data on the target distributions. However, the lim-87

ited parametric complexity of these closures makes them amenable to physical interpre-88

tation, robust to overfitting, and better suited for learning in the low-data regime. This89

may be attractive for Earth system models, for which online learning from limited high-90

resolution data may be a useful strategy to assimilate computationally generated data91

of the changing climate (Schneider et al., 2017).92

A barrier delimiting data-driven and empirical subgrid-scale closures is the access93

to practical calibration tools. Neural network parameterizations are easily calibrated us-94

ing stochastic gradient descent through backpropagation, which limits datasets to those95

including output labels, and models to those that afford automatic differentiation with96

respect to their parameters. Empirical closures, which may depend on time-evolving terms97

with memory (e.g., Lopez-Gomez et al., 2020) or yield unobservable outputs (e.g., tur-98

bulent versus dynamical entrainment in Cohen et al., 2020) cannot be trained using this99

approach. Traditional Bayesian inference techniques, like random walk Metropolis (Metropolis100

et al., 1953) or sequential Monte Carlo (Moral et al., 2006), can be used in this context101

if the number of parameters is small and the model to be trained is cheap to evaluate.102

Such methods additionally provide uncertainty quantification, but they become intractable103

for expensive models with many parameters (e.g., Cotter et al., 2013; Souza et al., 2020).104

Model-agnostic tools that enable fast calibration of subgrid-scale closures from diverse105

data are a necessary step toward the development of hybrid closures that leverage the106

strengths of all modeling approaches.107

With this goal in mind, we present calibration strategies for models of subgrid pro-108

cesses, formulating the learning task as an inverse problem (Kovachki & Stuart, 2019).109

Solutions to the inverse problem are sought using the ensemble and unscented Kalman110

inversion algorithms (Iglesias et al., 2013; Huang, Schneider, & Stuart, 2022). Empha-111

sis is given to practical aspects of this specific inverse problem, which have not previ-112

ously been explored in the literature. These include the construction of a domain-agnostic113

loss function from high-dimensional observations, a heuristic a priori estimate of model114

error, systematic handling of model failures during the training process, and the use of115
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the Kalman inversion algorithms when only noisy evaluations of the loss function are avail-116

able.117

The strategies presented here are designed to have several attractive properties com-118

pared to other learning algorithms. First, framing learning as an inverse problem enables119

the use of partial observations or statistically aggregated data. Second, calibration is per-120

formed using gradient-free methods, which are well suited for stochastic models and/or121

models whose derivatives do not exist or are difficult to obtain. Finally, the strategies122

presented are amenable to parallelization and the use of high-dimensional correlated ob-123

servations. The last two properties draw heavily on the use of Kalman inversion algo-124

rithms to tackle the inverse problem, which themselves build on the success of the en-125

semble Kalman filter (EnKF) for data assimilation (Evensen, 1994; Houtekamer & Mitchell,126

1998; Burgers et al., 1998) and are closely related to iterative EnKF (Chen & Oliver, 2012;127

Emerick & Reynolds, 2013; Bocquet & Sakov, 2013). The methods presented here are128

applicable to models of subgrid-scale processes, within the second and third categories129

described above. They provide an alternative to learning algorithms that impose strin-130

gent requirements on either the model architecture, its computational cost, or the na-131

ture of the training data.132

The article is organized as follows. Section 2 casts learning about parameteriza-133

tions as an inverse problem, which can be solved through the minimization of a regu-134

larized low-dimensional encoding of the data-model mismatch. Section 3 reviews the ap-135

plication of the ensemble and unscented Kalman inversion algorithms to inverse prob-136

lems and proposes modifications to their update equations that enable training models137

that may experience failures. Section 4 then applies these ensemble Kalman algorithms138

to the calibration of closures within an eddy-diffusivity mass-flux (EDMF) scheme of tur-139

bulence and convection, using data generated from large-eddy simulations (LES). The140

robustness of these learning strategies is demonstrated by calibrating the EDMF scheme141

using noisy loss evaluations and partial information, and their flexibility is emphasized142

by learning the parameters in a hybrid model containing both empirical and neural net-143

work closures. Finally, Section 5 ends with a discussion of the findings and concluding144

remarks.145

2 Learning about parameterizations as an inverse problem146

We consider the problem of learning the parameters φ of a dynamical model Ψ(φ),147

using noisy observations y of the true dynamical system ζ that Ψ(φ) seeks to represent.148

In the context of subgrid parameterizations, Ψ(φ) represents a closed version of the coarse-149

grained dynamical system (e.g., the filtered Navier-Stokes equations), where closures are150

parameterized by φ. The model Ψ(φ) maps a user-defined initial state ϕ0 and a forcing151

Fϕ(t) to a state trajectory ϕ̂(t). Thus, our definition of Ψ(φ) can be interpreted as the152

iterative application of the resolvent operator on the initial field ϕ0 (Brajard et al., 2021).153

In the following, we denote any set of initial and forcing conditions collectively as the154

configuration xc = {ϕ0, Fϕ}c; the definition of all symbols is summarized in the appendix.155

For each configuration xc, the dynamical model can be related to the observations
yc by the observational map Hc, which encapsulates all averaging and post-processing
operations necessary to yield the model predictions associated with the observations. More
precisely, the relationship between the observations yc, the true dynamics ζ, and the dy-
namical model Ψ(φ) for a given configuration may be expressed as

yc = Hc ◦ ζ(xc) + ηc = Hc ◦Ψ(φ;xc) + δ(xc) + ηc, (1)

where φ ∈ Rp is the vector of learnable parameters, ηc is the observational noise asso-156

ciated with yc, and δ(xc) is the model or representation error, which we define as the mis-157

match between the denoised observations Hc◦ζ(xc) and the output of a best-fitting model158

Hc ◦ Ψ(φ∗;xc), following Kennedy and O’Hagan (2001). Thus, the model error is ap-159
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proximated as additive (Cohn, 1997; van Leeuwen, 2015) and defined with respect to the160

observational map Hc and the optimal parameters φ∗ that minimize its contribution to161

the data-model relation (1).162

Observations are taken to come from finite spatial and temporal averages of fields163

such as temperature. Learning from averages can help prevent overfitting to trajecto-164

ries in chaotic systems by focusing on the statistics of the dynamics (Morzfeld et al., 2018).165

It also improves numerical stability when coupling to a parent model (Brenowitz & Brether-166

ton, 2018). Under this definition of observations, it is reasonable to assume the noise ηc167

to be additive and Gaussian. In the following, we will further consider δ(·) to be a cen-168

tered Gaussian, although this constitutes a significantly stronger assumption (e.g., that169

the model is unbiased) and may not be appropriate for a detailed characterization of pos-170

terior uncertainty (van Leeuwen, 2015; Brynjarsdóttir & O’Hagan, 2014). The construc-171

tion of more precise error models remains a challenge beyond the scope of this work. These172

assumptions enable us to write δ(xc) + ηc ∼ N (0,Γc).173

In general, we are interested in minimizing the mismatch between yc and the model
output for a wide range of configurations C = {xc, c = 1, . . . , |C|} that are represen-
tative of the conditions in which the model will operate. This defines the global data-
model relation

y = H ◦Ψ(φ) + δ + η, (2)

where y = [y1, . . . , y|C|]
T ∈ Rd, δ = [δ(x1), . . . , δ(x|C|)]

T , η = [η1, . . . , η|C|]
T , H ◦174

Ψ(φ) = [H1 ◦ Ψ(φ;x1), . . . ,H|C| ◦ Ψ(φ;x|C|)]
T and δ + η ∼ N (0,Γ). In addition, im-175

plicit in the definition of the dynamical model Ψ(φ) is a discrete resolution ∆. This de-176

pendence may be lifted if the closures are designed to be scale-aware or scale-independent,177

in which case the relation (2) should be augmented by stacking copies of y and evalu-178

ating H ◦Ψ(φ,∆i) for different discretizations ∆i.179

In practice, the parameters φ are often defined over some subspace U ⊂ Rp out-
side of which the model trajectories are unphysical or numerically unstable. Examples
of these are parameters controlling the diffusion or turbulent dissipation of a scalar field,
for which negative values are not physically valid. On the other hand, many algorithms
designed to solve inverse problems assume φ ∈ Rp. This obstacle may be circumvented
by defining a transformation T : U → Rp, such that the global data-model relation
(2) can be defined in an unconstrained parameter space,

y = G(θ) + δ + η, (3)

where
G := H ◦Ψ ◦ T −1, φ = T −1(θ). (4)

In expressions (3) and (4), θ ∈ Rp is the parameter vector in unconstrained space and
G : Rp → Rd is the map from transformed parameters to model predictions, which
represents the forward model. The task of learning a set of model parameters θ under
relation (3) can be cast as the Bayesian inverse problem of finding the posterior (Kaipio
& Somersalo, 2006; Tarantola, 2005; Huang, Huang, et al., 2022)

ρ(θ|y,Γ) =
e−L(θ;y)

Z(y|Γ)
ρprior(θ), L(θ; y) =

1

2
||y − G(θ)||2Γ, (5)

where Z(y|Γ) is a normalizing constant, ||·||2Γ denotes the Mahalanobis norm 〈·,Γ−1·〉,180

L is the loss or negative log-likelihood, and ρprior(θ) is the prior density. We stress that181

the posterior ρ(θ|y,Γ) is conditioned on our approximation of the noise δ+η; see Kennedy182

and O’Hagan (2001) for a discussion on the usefulness and caveats of such an approach.183

Given the inverse problem (3)–(5), we may be interested in finding the maximum a pos-184

teriori (MAP), approximations of the density ρ(θ|y,Γ) around the MAP for uncertainty185

quantification, or simply the maximum likelihood estimator (MLE) if we have no prior186

information about θ. Algorithms to perform these tasks are described in Section 3.187
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The error covariance Γc appearing in each model-data relation (1), and ultimately188

defining the inverse problem (3)–(5), is yet to be defined. In Section 2.1, we suggest an189

estimate of Γc relevant to the calibration of models with an unknown error structure δ(·).190

In addition, the choice of observational map Hc may not be evident when training dy-191

namical models that aim to represent complex dynamical systems ζ with many observ-192

able fields. Section 2.2 suggests a model-agnostic definition of Hc that can be used to193

construct a regularized inverse problem.194

2.1 Estimate of noise covariances195

Since the structure of the representation or model error δ is unknown a priori, we
must either parameterize it and calibrate it as well (Brynjarsdóttir & O’Hagan, 2014),
or use a heuristic to capture its magnitude. Here, we follow the second route and offer
a heuristic that has worked well for us in practice. If we take yc = yc(t) to be an ob-
servation of the true system in configuration xc aggregated over a time interval [t, t+
τ ], we can write equation (1) as

yc(t)− yc(0) = Hc ◦Ψ(φ;xc, t)− yc(0) + δ(xc; t) + ηc(t). (6)

If we further consider a model with no predictive power of the first kind (Lorenz, 1975;
Schneider & Griffies, 1999), such that Hc ◦ Ψ(φ;xc, t) ≈ yc(0) for all times t, the co-
variance of (6) from t = 0 to t = tc � τ reads

Γc = Cov(yc) ≈ Cov(δ(xc)) + Cov(ηc), (7)

which yields an estimate of the aggregate noise ηc + δ(xc) ∼ N (0,Γc) from the vari-196

ability of the observation yc over a time interval [0, tc]. For non-stationary conditions or197

finite-time averages, Γc depends on tc. Estimating the magnitude of the aggregate noise198

from the internal variability of the true dynamics ensures that the loss or negative log-199

likelihood L(θ; y) penalizes models Ψ(φ) that produce unrealistic outputs, and it rep-200

resents a form of error inflation if the best-fitting model is expected to outperform the201

aforementioned unskillful model. The heuristic (7) is most appropriate when the dynam-202

ical model Ψ(φ) is expressive enough to closely replicate the initial observations yc(0),203

such that any mismatch in the initial condition can be lumped together with the obser-204

vation error.205

2.2 Design of the observational map206

2.2.1 Application to problems with high-resolution data207

High-resolution data are becoming increasingly common, from reanalysis products208

(Muñoz-Sabater et al., 2021), satellite imagery (Schmit et al., 2017), and partial differ-209

ential equation (PDE) solvers such as LES (Shen et al., 2022). Although computation-210

ally generated and thus suffering from their own limitations (e.g., microphysical processes211

still need to be parameterized in LES), data from PDE solvers have some particularly212

desirable properties for the calibration of dynamical models:213

• All variables appearing in the coarse-grained equations of motion are observable.214

As a consequence, the nature of the observational map H used to constrain the215

model is largely a design choice.216

• Data can be obtained systematically for all configurations xc of interest, which may217

be chosen to minimize parameter uncertainty through active learning (Dunbar et218

al., 2022). In contrast, data drawn from physical measurements (e.g., field obser-219

vations) are often sparse in the space of forcing and boundary conditions.220

High-resolution data are often high-dimensional, which poses particular difficulties re-221

garding the conditioning and tractability of linear systems of equations when solving in-222
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verse problems. The guidelines for the construction of the observational map H presented223

here are tailored to solve these issues, with a focus on data from high-fidelity solvers.224

2.2.2 Model calibration225

We define model calibration as the minimization of the mismatch between the ob-
served dynamics and the dynamics induced by the model. We will use this definition to
construct a domain-agnostic map H. As an example, consider a system ζ with coarse-
grained dynamics

∂ϕ̄

∂t
+ v̄ · ∇ϕ̄+∇ · (v′ϕ′) = Fϕ, (8)

where (·) denotes spatial filtering, (·)′ subfilter-scale fluctuations, and Fϕ is the forcing.226

The field v̄ is prescribed and v′ϕ′ is the term parameterized in Ψ(φ). Let S(t) = [ϕ̄(t), v′ϕ′(t)]T227

be the true state augmented with subgrid-scale fluxes, and Ŝ(t) the augmented state pre-228

dicted by the model. For an incompressible fluid model, S(t) would contain the fluid mo-229

mentum, energy, and the subgrid advective fluxes of these fields.230

Model calibration then entails finding the minimizer of the expected state mismatch231

E[‖Ŝ−S‖] with respect to some norm and time interval, where the expectation is taken232

to allow for the calibration of stochastic models. Observations of the augmented state233

S(t), which includes subgrid-scale fluxes, are not always available. Therefore, this def-234

inition of model calibration is representative of the ideal learning scenario. In scenarios235

where the full state is not observable, we will consider S(t) to be an observed state formed236

by all relevant observable spatial fields.237

2.2.3 Observations in physical space238

Following our definition of model calibration, we preliminarily define the observa-
tions in the model-data relation (1) as finite-time averages of the normalized observed
state sc for a set of configurations C,

ỹc =
1

Tc

∫ tc

tc−Tc

sc(τ)dτ, sc =

 vc,1. . .
vc,nc

 =

 Vc,1/σc,1
. . .

Vc,nc/σc,nc

 , c = 1, . . . , |C|, (9)

where Tc is the averaging time, vc,j ∈ Rhc are the normalized spatial fields compris-
ing sc, Vc,j are the components of the state Sc prior to normalization, nc is the number
of fields observed in configuration xc, and hc is the number of degrees of freedom of each
field. As an example, the first configuration’s observed state S1 may include as fields at-
mospheric soundings of temperature and specific humidity (n1 = 2) measured at h1 ver-
tical locations above the surface, and the second configuration’s state S2 may include
these fields as well as horizontal velocity profiles (n2 = 4), measured at h2 different lo-
cations. Normalization of the observed state Sc is performed using the pooled time stan-
dard deviation σc,j of each field Vc,j , with

σ2
c,j = h−1

c tr
[
Cov(Vc,j)

]
. (10)

Covariances are computed over a time tc ≥ Tc following the heuristic of Section 2.1 to
capture the expected magnitude of the data mismatch,

Cov(Vc,j) =
1

tc

∫ tc

0

Vc,jV
T
c,jdτ −

1

t2c

(∫ tc

0

Vc,jdτ
)(∫ tc

0

Vc,jdτ
)T
. (11)

We resort to pooled normalization, instead of normalizing each of the dimensions of the239

observed state Sc by their standard deviation, because some of the dimensions of the spa-240

tial fields Vc,j may not vary with a given forcing, resulting in zero-variance components.241

For example, in the atmospheric boundary layer, observations of liquid water specific hu-242

midity will always be zero below the lifting condensation level.243
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Stacking the observations from all configurations together, the full observation vec-
tor ỹ is

ỹ =

 ỹ1

. . .
ỹ|C|

 ∈ Rd̃, d̃ =

|C|∑
c=1

d̃c =

|C|∑
c=1

nchc. (12)

Following again the heuristic in Section 2.1, the noise covariance associated with each
observation vector ỹc ∈ Rd̃c is Γ̃c = Cov(sc), computed as in equation (11). Given that
the noise is estimated independently for each configuration, the full noise covariance is
the block diagonal matrix

Γ̃ =

Γ̃1 0
. . .

0 Γ̃|C|

 ∈ Rd̃×d̃, Γ̃c = Cov(sc) ∈ Rd̃c×d̃c , (13)

where Γ̃c is the noise covariance matrix of configuration c.244

2.2.4 Observations in a reduced space245

Each covariance matrix Γ̃c, possibly associated with high-dimensional observations
and a finite sampling interval, is likely to be rank-deficient and have a large condition
number κ = µc,1/µc,rc , where µc,i is the i-th largest eigenvalue of Γ̃c and rc is the ap-
proximate rank of the matrix (Hansen, 1998). Numerically rank-deficient problems arise
when d̃c is greater than or equal to the number of samples used to construct Γ̃c, or when
there exist eigenvalues µc,i such that µc,i/µc,1 . εm, where εm is a measure of data or
machine precision. An efficient regularization method for rank-deficient problems is to
project the data from each configuration onto a lower-dimensional encoding, adding Tikhonov
regularization to limit the condition number of the resulting global covariance matrix.
If the lower-dimensional encoding is obtained through principal component analysis (PCA),

yc = PTc ỹc, Γc = dcP
T
c Γ̃cPc + κ−1

∗ µ1Idc , (14)

where yc ∈ Rdc , Pc is the projection matrix formed by the dc leading eigenvectors of246

Γ̃c, Idc is the identity matrix, µ1 is the leading eigenvalue of the unregularized global co-247

variance and κ∗ is the limiting condition number of the global covariance, which should248

be chosen to be κ∗ < ε
−1/2
m . The encoding dimension dc should be chosen such that dc ≤249

rc ≤ d̃c, where rc is the approximate rank of Γ̃c. The actual value of dc may be cho-250

sen through the discrepancy principle, generalized cross validation, or based on the preser-251

vation of a given fraction of the total variance, among other criteria (Reichel & Rodriguez,252

2013; Hansen, 1998). The Tikhonov inflation term regularizes problems where PCA is253

performed between eigenvalues that are close in value, or where the range of configura-254

tion variances tr(Γ̃c) is large (Hansen, 1990). In projection (14), since the number of re-255

tained principal components may differ among configurations for a given truncation cri-256

terion, each block covariance matrix is scaled by dc.257

Projection (14) enables the use of arbitrarily correlated observations by regular-
izing the linear system Γ−1(G(θ)− y) that appears in the gradient of the loss

∇L(θ; y) ∝ (DG(θ))TΓ−1(G(θ)− y), (15)

and lowering its computational cost. Here, DG(θ) ∈ Rd×p is the Jacobian matrix of G258

evaluated at θ. Although the ensemble Kalman algorithms presented in Section 3 do not259

compute the gradient (15) explicitly, they do rely on approximations of it, so this reg-260

ularization effect still applies.261

Since Γ̃ in equation (13) is block diagonal, PCA can be performed in parallel for
different configurations. The projection (14) maximizes the projected variance for each
configuration; it is different than performing PCA on Γ̃ in that it does not discriminate
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based on the total variance of each configuration. Disparities between the two approaches
are discussed in Appendix A. Finally, the regularized observation vector and noise co-
variance matrix read

y =

 y1

. . .
y|C|

 ∈ Rd, Γ =

Γ1 0
. . .

0 Γ|C|

 ∈ Rd×d, (16)

which define a regularized inverse problem of the form (3)–(5). A schematic of the in-262

verse problem construction process is given in Figure 1. The construction of yc from each263

dynamical system configuration ζ(xc) defines the observational map Hc, used to obtain264

the forward model evaluation Gc : Rp → Rdc for the same configuration from the dy-265

namical model. The construction of each (yc,Γc) pair, and the evaluation of Gc(·), can266

be done in parallel.267

Figure 1: Schematic of the strategy used to construct a regularized inverse problem from
observations of a dynamical system ζ. The two branches represent different configurations
of the dynamical system. From left to right: (a) the observed state is obtained following
Section 2.2.2 or from any observable fields for each configuration c; (b) the observed state
is normalized; (c) mean and covariance of the normalized state are computed; (d) ỹc and
Γ̃c are projected onto a lower dimension and regularized; (e) the statistical summaries of
each configuration are aggregated, defining the global inverse problem (3)–(5).

2.3 Bayesian interpretation of the loss and batching268

Once the data and noise estimate encodings (16) have been defined, iterative meth-
ods to solve inverse problem (3)–(5) require evaluating the loss L(θ; y) at each iteration,
which entails running the dynamical model in all configurations C and can be very com-
putationally demanding. A less onerous alternative is to use a mini-batch of configura-
tions B ⊂ C to evaluate the average configuration loss,

L(θ; yB) =
1

2|B|

|B|∑
c=1

||yc − Gc(θ)||2Γc
=

1

2

|B|∑
c=1

||yc − Gc(θ)||2|B|Γc
, (17)

which acts as a surrogate of the configuration-averaged loss L(θ; y) = L(θ; y)/|C|. The269

use of L(θ; yB) in lieu of L(θ; y) may be regarded as using noisy evaluations of the loss270

for each parameter update. From a Bayesian perspective, using L(θ; y) in expression (5)271

leads to the same MAP estimator as L(θ; y) but a wider uncertainty about it, since we272

no longer consider configurations independent. This is important when interpreting the273

posterior uncertainty. To employ the loss (17), we only need to use the scaling Γc →274

|B|Γc; to approximate the aggregate loss L(θ, y) when batching, we can use Γc → (|B|/|C|)Γc275

instead.276
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Batching is widely employed in data assimilation (Houtekamer & Mitchell, 2001)277

and deep learning, where it has been shown to help avoid convergence to local minima278

that generalize poorly (M. Li et al., 2014; Keskar et al., 2016). Understanding the be-279

havior of algorithms when using mini-batches is crucial for online learning, where obser-280

vations become available sequentially and the full loss cannot be sampled. Moreover, it281

provides insight into the appropriateness of training sequentially on seasonal or geograph-282

ically sparse data in Earth system modeling applications. We explore the effect of batch-283

ing on the solution of the inverse problem in Section 4.2, training sequentially on ran-284

domly sampled configurations with markedly different dynamics.285

3 Ensemble Kalman methods286

We consider two highly parallelizable gradient-free algorithms to solve the inverse287

problem defined in Section 2: ensemble Kalman inversion (EKI, Iglesias et al., 2013) and288

unscented Kalman inversion (UKI, Huang, Schneider, & Stuart, 2022). Both algorithms289

are based on the extended Kalman filter and draw heavily on Gaussian conditioning for290

their derivation: underlying their update rules is the approximation of the parameter dis-291

tribution as Gaussian. They afford a Bayesian interpretation when augmented with prior292

information at every iteration (Huang, Huang, et al., 2022); how to do this is discussed293

in Section 3.2. If prior information is not used, which may be desirable when training294

for instance neural networks, they can be regarded as derivative-free methods to obtain295

the MLE.296

EKI and UKI have been used succesfully in a wide variety of inverse problems (Iglesias297

et al., 2013; Iglesias, 2016; Xiao et al., 2016; Kovachki & Stuart, 2019; Huang, Schnei-298

der, & Stuart, 2022). We demonstrate them here in the context of training models that299

may experience numerical instabilities for a priori unknown parameter combinations, start-300

ing with a brief review of the algorithms.301

3.1 Ensemble Kalman inversion (EKI)302

Ensemble Kalman inversion searches for the optimal θ∗ given an inverse problem
(3)–(5) through iterative updates of an initial parameter ensemble Θ0 = [θ

(1)
0 , . . . , θ

(J)
0 ],

used to obtain empirical estimates of covariances between parameters and the model out-
put at each step of the algorithm. We form the initial ensemble by randomly sampling
J parameter vectors θ

(j)
0 ∈ Rp from a Gaussian N (m0,Σ0). The EKI update equation

for the ensemble at iteration n is (Schillings & Stuart, 2017)

Θn+1 = Θn + Cov(θn,Gn)
[
Cov(Gn,Gn) + ∆t−1Γ

]−1
ε(Θn), (18)

where Θn ∈ Rp×J , ∆t is the nominal learning rate of the algorithm, and ε(Θn) ∈ Rd×J
encodes the mismatch between the forward model evaluations and the data,

ε(Θn) = [y
(1)
n+1 − G(θ(1)

n ), . . . , y
(J)
n+1 − G(θ(J)

n )], (19)

where
y

(j)
n+1 = y + ξ

(j)
n+1, ξ

(j)
n+1 ∼ N (0,∆t−1Γ). (20)

All covariances in update (18) are estimated as sample covariances of the J ensemble mem-
bers,

Cov(θn,Gn) =
1

J

(
Θn −

1

J

∑
j

θ(j)
n 1T

)(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)T
, (21)

Cov(Gn,Gn) =
1

J

(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)(
GΘn
− 1

J

∑
j

G(θ(j)
n )1T

)T
, (22)

where GΘn = [G(θ
(1)
n ), . . . ,G(θ

(J)
n )], and 1 ∈ RJ is the all-ones vector. Note that the303

sample covariances (21) and (22) have at most ranks min(min(d, p), J−1) and min(d, J−304
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1), respectively. From definitions (14) and (16), rank(Γ) = d by construction, so the305

linear system in (18) is well-defined even for J < d.306

Through iterative application of the update (18), the ensemble Θ minimizes the307

projection of the model-data mismatch on the linear span of its J members. In this study,308

we limit the use of EKI and UKI to the calibration of dynamical models for which us-309

ing an ensemble size J ∼ p is feasible. For models with a large number of parameters,310

localization or sampling error correction techniques can be used to maintain performance311

with J � p members (Lee, 2021; Tong & Morzfeld, 2022), like in EnKF for data as-312

similation (Anderson, 2012). The update (18) also drives the ensemble toward consen-313

sus, in the sense that |Cov(θn,Gn)| → 0 as n → ∞; a popular method to control col-314

lapse speed is additive inflation (Anderson & Anderson, 1999; Tong & Morzfeld, 2022).315

This collapse property precludes obtaining information about parameter uncertainties316

directly from EKI. However, the sequence of parameter-output pairs {Θn,GΘn} can be317

used to train emulators for uncertainty quantification (Cleary et al., 2021).318

3.1.1 Addressing model failures within the ensemble319

For some parameters θf , simulations may be physically or numerically unstable.320

For instance, the Courant–Friedrichs–Lewy condition in fluid solvers may change non-321

linearly with model parameters, or the initialized weights from a neural network param-322

eterization may lead to unstable trajectories. In such situations, we need to modify up-323

date (18) to account for model failures within the ensemble.324

Here we propose a novel failsafe EKI update based on the successful parameter en-
semble. Let Θs,n = [θ

(1)
s,n, . . . , θ

(Js)
s,n ] be the successful ensemble, for which each evalua-

tion G(θ
(j)
s,n) is stable or physically consistent, and let θ

(k)
f,n be the ensemble members for

which the evaluation of the forward model G(θ
(k)
f,n) fails. We update the successful en-

semble Θs,n to Θs,n+1 using expression (18), and redraw each failed ensemble member
from a Gaussian defined by the successful ensemble

θ
(k)
f,n+1 ∼ N (ms,n+1,Σs,n+1) , (23)

where

ms,n+1 =
1

Js

Js∑
j=1

θ
(j)
s,n+1, Σs,n+1 = Cov(θs,n+1, θs,n+1) + κ−1

∗ µs,1Ip (24)

are the sample mean and regularized sample covariance matrix of the updated success-325

ful ensemble. In expression (24), κ∗ is a limiting condition number and µs,1 is the largest326

eigenvalue of the sample covariance Cov(θs,n+1, θs,n+1). This update has proved very ef-327

fective for us in practice, even in situations where Js < J/2; we use it throughout Sec-328

tion 4. The failsafe update may be combined with other conditioning techniques at ini-329

tialization. For instance, the initial ensemble Θ0 may be drawn recursively until the num-330

ber of failed members is reduced below an acceptable threshold.331

3.2 Bayesian regularization in ensemble Kalman methods332

EKI implicitly regularizes the inverse problem by searching for the optimal solu-
tion θ∗ over the finite-dimensional space spanned by the initial ensemble. Although UKI
does not share this property, both algorithms can be equipped with Bayesian regular-
ization by considering the augmented data-model relation (Chada et al., 2020)

ya = Ga(θ) + ξ :=

[
y
mp

]
=

[
G(θ)
θ

]
+

[
δ̂ + η̂
λ

]
, (25)

instead of expression (3). Here, mp ∈ Rp is the parameter prior mean, λ ∼ N (0, 2Λ)
defines the degree of regularization, δ̂ + η̂ ∼ N (0, 2Γ), and ξ ∼ N (0,Γa) is the aug-
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mented error defined by relation (25). In practice, using expression (25) amounts to sub-
stituting {G, y,Γ} by {Ga, ya,Γa} in both algorithms. The Kalman inversion solution to
the inverse problem defined by relation (25) then satisfies

θ∗ = arg min
θ

[
L(θ; y) +

1

2
||θ −mp||2Λ

]
. (26)

From a Bayesian perspective, the solution (26) approximately maximizes the posterior333

density (5) for the Gaussian prior ρprior ∼ N (0,Λ). This is particularly interesting for334

UKI, which provides parametric uncertainty estimates (Huang, Huang, et al., 2022). When335

using a nominal learning rate ∆t 6= 1, the scaling Λ → ∆t · Λ must be used to retain336

the Bayesian interpretation of Λ as the prior variance, due to the fact that ∆t effectively337

modifies the noise in update (18) to be ∆−1Γ. As noted before, if the original data-model338

relation (3) is used instead of the augmented relation (25), UKI and EKI provide max-339

imum likelihood estimators.340

3.3 Unscented Kalman inversion (UKI)341

Unscented Kalman inversion seeks a Gaussian approximation of the posterior ρ(θ|y,Γ)
around the MAP (given relation (25)), or an approximation of the likelihood around the
MLE (given (3)), by deterministically evolving an initial Gaussian estimate N (m0,Σ0)
through updates

mn+1 = mn + Covq(θn,Gn)
[
Covq(Gn,Gn) + ∆t−1Γ

]−1
ε(mn), (27)

Σn+1 = (1 + ∆t)Σn − Covq(θn,Gn)
[
Covq(Gn,Gn) + ∆t−1Γ

]−1
Covq(θn,Gn)T , (28)

where mn and Σn are the mean and covariance estimates of the Gaussian after n iter-
ations of the algorithm, and ε(mn) = y − G(mn) is the data-model mismatch of the
mean estimate. The covariances Covq(θn,Gn) and Covq(Gn,Gn) in expressions (27) and
(28) are computed through quadratures over 2p+ 1 sigma points defined as

θ̂(j)
n = mn + a

√
p[
√

Σn(1 + ∆t)]j , 1 ≤ j ≤ p, (29)

θ̂(j+p)
n = mn − a

√
p[
√

Σn(1 + ∆t)]j , 1 ≤ j ≤ p,

where [
√

Γ]j is the j-th column of the Cholesky factor of Γ, a = min(
√

4/p, 1) is a hy-

perparameter defined in Huang, Schneider, and Stuart (2022), and θ̂
(0)
n = mn is the cen-

tral sigma point. The quadratures are then defined as

Covq(θn,Gn) =

2p∑
j=1

wj(θ̂
(j)
n −mn)(G(θ̂(j)

n )− G(mn))T , (30)

Covq(Gn,Gn) =

2p∑
j=1

wj(G(θ̂(j)
n )− G(mn))(G(θ̂(j)

n )− G(mn))T , (31)

where wj = (2a2p)−1 are the quadrature weights.342

A limitation of this algorithm is that the number of sigma points scales linearly with
p, which precludes its use when training models with a large number of parameters. How-
ever, for situations where using an ensemble of 2p + 1 members is tractable, UKI im-
proves upon EKI by providing uncertainty quantification, instead of collapsing to a point
estimate. In particular, when updates (27) and (28) are applied to the augmented data-
model relation (25), UKI ensures that Σn in the limit n→∞ converges towards a Gaus-
sian estimate of parametric uncertainty (Huang, Schneider, & Stuart, 2022),

Σ∞ ≈ Covq(θ∞,Ga,∞) [∆t · Covq(Ga,∞,Ga,∞) + Γa]
−1

Covq(θ∞,Ga,∞)T , (32)
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which involves the augmented forward model Ga(·) and covariance Γa defined in Section343

3.2. Σ∞ approximates the covariance of the posterior (5) around m∞ if the full loss is344

evaluated at every UKI iteration and ∆t = 1 (Huang, Huang, et al., 2022). When batch-345

ing, an equivalent approximation can be recovered by using ∆t = |C|/|B| to compen-346

sate for sampling errors in the construction of the empirical covariances (30) and (31);347

this is demonstrated in Section 4.2.348

Finally, note that the limit (32) does not depend on Σ0, only on the Bayesian prior349

covariance Λ. This enables using a tight initial guess (i.e., tr(Σ0)� tr(Λ)), which can350

reduce the fraction of model failures within the ensemble. To ensure robustness to the351

model failures that may still arise, we propose a modification of the UKI dynamics ro-352

bust to model failures, similar to the one proposed for EKI, in Appendix B.353

4 Application to an atmospheric subgrid-scale model354

In this section, the framework and algorithms discussed in Sections 2 and 3 are used355

to learn closure parameters within an EDMF scheme of atmospheric turbulence and con-356

vection. The EDMF scheme is derived by spatially filtering the Navier-Stokes equations357

for an anelastic fluid, and then decomposing the subgrid flow into n > 1 distinct sub-358

domains with moving boundaries (Cohen et al., 2020). In practice, the subdomain de-359

composition requires the use of n−1 additional equations per grid-mean prognostic field,360

and n−1 additional equations tracking the volume fraction of each subdomain within361

the grid (Tan et al., 2018). We retain second-order moments for one of the subdomains,362

the environment. Covariances within the other subdomains (updrafts) are neglected, which363

circumvents the need for turbulence closures therein. In the end, the EDMF equations364

require closure for the turbulent diffusivity and dissipation in the environment, and the365

mass, momentum, and tracer fluxes between environment and updrafts. In what follows,366

we consider an EDMF scheme with a single updraft (n = 2).367

We consider the EDMF scheme discussed in Cohen et al. (2020); Lopez-Gomez et368

al. (2020), which is implemented in a single-column model (SCM). Within this SCM, we369

first seek to learn 16 closure parameters: 5 describing turbulent mixing, dissipation, and370

mixing inhibition by stratification (Lopez-Gomez et al., 2020), 3 describing the momen-371

tum exchange between subdomains (He et al., 2021), 7 describing entrainment fluxes be-372

tween updrafts and the environment (Cohen et al., 2020), and another one defining the373

surface area fraction occupied by updrafts. In Section 4.4, we substitute the empirical374

dynamical entrainment closure proposed in Cohen et al. (2020) by a neural network, and375

train the resulting physics-based machine-learning model.376

To showcase the versatility of the algorithms, UKI is used for approximate Bayesian377

inference of empirical parameters (using relation (25)), and EKI is used for both MAP378

estimation of empirical parameters (relation (25), Sections 4.2, 4.3) and MLE estima-379

tion of neural network parameters (relation (3), Section 4.4). In all cases, we employ our380

failsafe modifications of the algorithms (Section 3.1.1 and Appendix B). The name, prior381

range U , and reference to the definition of each empirical parameter in the literature are382

given in Table 1. The prior mean is taken to be equal to the parameter values used in383

Lopez-Gomez et al. (2020) and Cohen et al. (2020). The prior in unconstrained space384

N (mp,Λ) is obtained from the physical prior mean and range through transformations385

defined in Appendix C. Finally, we initialize EKI ensembles from the prior, N (m0,Σ0) ≡386

N (mp,Λ), and all UKI sigma points from a tighter initial guess N (mp,Λ/16) to demon-387

strate the ability of UKI to decouple from the initial guess.388

4.1 Description of LES data and model configurations389

The data used for training and testing the EDMF scheme are taken from the LES390

library described in Shen et al. (2022). This library contains high-resolution simulations391
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Table 1: Parameters φ considered for calibration in this study. The prior mean values are
taken from LG2020 (Lopez-Gomez et al., 2020), C2020 (Cohen et al., 2020) and H2021
(He et al., 2021), where a physical description of the parameters may be found.

Symbol Description Prior range Prior mean

cm Eddy viscosity coefficient (0.01, 1.0) 0.14, LG2020
cd Turbulent dissipation coefficient (0.01, 1.0) 0.22, LG2020
cb Static stability coefficient (0.01, 1.0) 0.63, LG2020
Prt,0 Neutral turbulent Prandtl number (0.5, 1.5) 0.74, LG2020
κ∗ Ratio of rms turbulent velocity to friction velocity (1.0, 4.0) 1.94, LG2020
cε Entrainment rate coefficient (0, 1) 0.13, C2020
cδ Detrainment rate coefficient (0, 1) 0.51, C2020
cγ Turbulent entrainment rate coefficient (0, 10) 0.075, C2020
β Detrainment relative humidity power law (0, 4) 2.0, C2020
µ0 Entrainment sigmoidal activation parameter (10−6, 10−2) 4 · 10−4, C2020
χi Updraft-environment buoyancy mixing ratio (0, 1) 0.25, C2020
cλ Turbulence-induced entrainment coefficient (0, 10) 0.3, C2020
as Updraft surface area fraction (0.01, 0.5) 0.1, C2020
αb Updraft virtual mass loading coefficient (0, 10) 0.12, H2021
αa Updraft advection damping coefficient (0, 100) 0.001, H2021
αd Updraft drag coefficient (0, 50) 10.0, H2021

of low-level clouds spanning the stratocumulus-to-cumulus transition in the East Pacific392

Ocean. The large-scale forcing used for these simulations is derived from the cfSites out-393

put of the HadGEM2-A model, retrieved from the Coupled Model Intercomparison Project394

Phase 5 (CMIP5) archive. In particular, the monthly climatology of the cfSites output395

is computed over the 5-year period 2004-2008, and used to initialize and force large-eddy396

simulations for a period of 6 days. Radiative forcing is computed interactively using the397

Rapid Radiative Transfer Model (RRTM, Mlawer et al., 1997).398

The SCM runs are initialized from the coarse-grained LES fields after 5.75 days of
simulation and are run for 6 hours. This runtime was chosen to be much longer than the
equilibration time of the SCM to the steady forcing; experiments using a runtime of 12
hours resulted in no statistical changes of the results. Large-scale forcing is identical to
that of the LES, and the radiative heating rates are given by the horizontal mean of the
rates experienced by the high-resolution simulations. The observational map used to de-
fine the inverse problem follows the guidelines of Section 2.2, using time and horizon-
tally averaged vertical profiles from the last Tc = 3 hours of simulation, at a vertical
resolution of ∆z = 50 m; this is also the resolution of the SCM simulations, which em-
ploy 80 vertical levels. Following the strategy in Figure 1, we extract the observations
from each configuration as

Sc = [ū, v̄, s̄, q̄l, q̄t, w′q′t, w
′s′]T , (33)

where (·) denotes time and horizontal averaging, ū and v̄ are the horizontal velocity com-399

ponents, s̄ is the entropy, q̄t is the total specific humidity, w′q′t and w′s′ are vertical fluxes400

of moisture and entropy, and q̄l is the liquid water specific humidity. The pooled vari-401

ances for normalization and covariance matrix Γ̃c associated with the observed state Sc402

are obtained from the full 6 day statistics of the LES to capture the internal variabil-403

ity of the system. Finally, a low-dimensional encoding is obtained from the normalized404

time-averaged observations through truncated PCA as in equation (14), truncating the405

dimension of the noise covariance matrix so as to preserve 99% of the total noise vari-406
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ance. Calibration results using fewer observed fields at a coarser resolution are discussed407

in Section 4.3.408

As training data we include a total of 60 LES configurations from the Atmospheric409

Model Intercomparison Project (AMIP) experiment, spanning the months of January,410

April, July and October, and locations from the coasts of Peru and California to the trop-411

ical Pacific. Results are also shown for a validation set, which includes January and July412

simulations from an AMIP4K experiment, where sea surface temperature is increased413

by 4 K with respect to AMIP. This temperature increase leads to 10–20% weaker large-414

scale subsidence, higher cloud tops, and reduced cloud cover; see Shen et al. (2022) for415

a detailed comparison. Validation results are representative of the generalizability of the416

trained model for the simulation of a warming climate; the model was not trained on these417

warmer conditions.418

4.2 Calibration using mini-batch loss evaluations419

To demonstrate the effectiveness of Kalman inversion in settings where evaluating420

all configurations of interest per iteration may be too expensive or impossible (e.g., due421

to sequential data availability), we present calibration results using mini-batches. Batch-422

ing introduces noise in the loss evaluations due to sampling error. For this reason, the423

behavior of Kalman inversion algorithms using mini-batches is representative of their ro-424

bustness to other sources of noise, such as noise in the data or stochasticity of the dy-425

namical model. To correct for sampling noise due to batching, we use ∆t = |C|/|B| as426

discussed in Section 3.3.427

For training, data are fed to the algorithm by drawing |B| configurations randomly428

and without replacement from the training set at every iteration. Configurations are reshuf-429

fled at the end of every epoch (i.e., every full pass through the training set). Figure 2430

shows the evolution of the training and validation errors for UKI and EKI, using train-431

ing batches of 5 and 20 configurations. Since the total number of configurations in the432

training set is 60, an epoch requires 12 iterations when using |B| = 5 and 3 when us-433

ing |B| = 20. For many geophysical applications, the cost of evaluating an ensemble434

of long-term statistics G(·) from a forward model is significantly higher than perform-435

ing the inversion updates (18) or (27). In these situations, a training epoch has similar436

computational cost for any value of |B|.437

The training error is evaluated in normalized physical space with respect to the cur-
rent batch,

MSE(θ; ỹB) =
1

d̃B
||ỹB − G̃B(θ)||2 =

1∑|B|
c=1 d̃c

|B|∑
c=1

||ỹc − G̃c(θ)||2, (34)

where ỹB ∈ Rd̃B . The validation error is defined similarly, but it is computed over the438

entire validation set at every iteration. Thus, variations in the validation error are only439

due to changes in the model parameters; there is no random data sampling. The train-440

ing and validation errors decrease sharply during the first epoch (Fig. 2). Subsequent441

epochs fine-tune the model parameters, further reducing the data-model mismatch. It442

is remarkable and important that the validation error decreases by about the same mag-443

nitude as the training error, demonstrating that the parameterization approach that lever-444

ages a physical model generalizes successfully out of the present-climate training sam-445

ple to a warmer climate.446

Both EKI and UKI display efficient training in the low batch-size regime: the val-447

idation error tends to be lower for smaller batches after a fixed number of epochs. Hence,448

decreasing batch size in EKI and UKI can help reduce the computational cost of train-449

ing models. The optimal batch size will depend on the CPU and wall-clock time con-450
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Figure 2: Batch (a) training and (b) validation MSE as defined in equation (34). Lines
represent the error of the ensemble mean θ̄, MSE(θ̄; ỹB), and the shading represents the
ensemble standard deviation of MSE(θ; ỹB) around the optimal point estimate θ̄. All
errors are normalized with respect to the largest initial MSEv(θ̄; ỹB), so they can be com-
pared. Results are shown for EKI and UKI, using J = 2p + 1 and training batch sizes
|B| = 5, 20. Errors for |B| = 5 are averaged using a rolling mean of 20 configurations
to enable comparison with |B| = 20. In (b), the inset focuses on the validation error
evolution for a longer training period.

straints of the user. Although using smaller batches reduces CPU time, it requires more451

serial operations, so using larger batches can reduce wall-clock time.452

The sampling noise due to the use of different configurations (e.g., stratocumulus453

versus cumulus regimes) increases for smaller batches. Although both algorithms achieve454

convergence for a wide range of batch sizes, we find that EKI is more robust than UKI455

to high levels of noise. This is shown in the inset of Figure 2b for |B| = 5, and in Ap-456

pendix D for |B| = 1. Other differences between UKI and EKI are observed in Figure457

2. The consensus property of EKI leads to a collapse of the model error spread after a458

few iterations, converging to a point estimate. On the other hand, the UKI ensemble con-459

verges to an MSE spread characteristic of the parameter uncertainty as approximated460

by the distribution N (mn,Σn).461

The evolution of the parameter estimate (mn,Σn) is depicted in Figure 3 for the462

turbulent dissipation cd, updraft advection damping αa and surface area fraction as. The463

initial parameter estimate depends on the stochastic initialization for EKI. The UKI es-464

timate provides information about parameter uncertainty, whereas EKI only provides465

a point estimate (i.e., mn). From the UKI estimate, we observe that the training set con-466

strains the likely values of the turbulent dissipation (cd) and surface area fraction (as)467

to a significantly smaller region than the prior. However, the magnitude of updraft ad-468

vection damping (αa) is not identifiable using this dataset: the corresponding diagonal469

element of Σn converges to the prior variance used in the regularized problem (25) (Fig-470

ure 3b).471

The covariance estimate Σn also provides information about correlations between472

model parameters and total reduction of uncertainty (Figure 4). For the current stratocumulus-473

to-cumulus transition dataset, our EDMF model shows moderate correlations between474

parameters regulating the turbulence kinetic energy budget in the boundary layer (cb, cm, cd,475

see Lopez-Gomez et al., 2020). We also find entrainment to be negatively correlated with476
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Figure 3: Parameter evolution of the turbulent dissipation (a), updraft advection damp-
ing (b), and updraft surface area fraction (c). All values are given in physical space.
The solid lines describe the trajectories of the mean estimate, T −1(mn). For UKI,
the marginal ±σ uncertainty band is included in shading. This uncertainty is equal to
±T −1(

√
(Σn)i,i) for the i-th parameter. The black dashed lines are the ±σ uncertainty

bands of the prior used for regularization. Legend as in Figure 2.

surface updraft area fraction, detrainment and drag. These correlations can be used to477

improve parameterizations at the process level by identifying or developing a set of un-478

correlated parameters. Figure 4b shows how Σn converges to a quasi-steady state esti-479

mate of the posterior covariance after ∼ 30 iterations.480

Vertical profiles of q̄l, w′q′t and ū from the validation set are compared to the ref-481

erence LES profiles in Figure 5. The calibrated model yields smoother and more accu-482

rate profiles than the model before training. In particular, calibration significantly re-483

duces biases in liquid water specific humidity and moisture transport for both stratocu-484

mulus and cumulus cloud regimes in the 4 K-warmer AMIP4K experiment. These re-485

sults confirm that the dynamical model can be trained using a low-dimensional encod-486

ing of the time statistics, as proposed in Section 2. They also highlight the generalizabil-487

ity of sparse physics-based models.488

4.3 Calibration using partial observations489

Another application of synthetic high-resolution data is the study of calibration sen-490

sitivity to data resolution and partial loss of information. Such sensitivity studies can491

inform the technical requirements of future observing systems or field campaigns (Suselj492

et al., 2020), and are easily implemented with ensemble and unscented Kalman inver-493

sion through modifications of the observational map H.494

Here, we employ the EKI and UKI algorithms for this task by using coarser train-495

ing data at a vertical resolution of ∆z = 200 m. In addition, we consider only a sub-496

set of fields for which observational data may be obtained in practice: the liquid water497

potential temperature θ̄l, the total water specific humidity q̄t and the liquid water spe-498

cific humidity q̄l (National Academies of Sciences, Engineering, and Medicine, 2018; Suselj499

et al., 2020). Figure 6 compares calibration results using this reduced setup with the re-500

sults obtained using the full high-resolution observations of Section 4.2. The loss of in-501

formation is evident in the inability of the algorithms to find the same minimum reached502
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Figure 4: Parameter correlations estimated from UKI using |B| = 20 (a), and evolution
of the total parameter variance from UKI using |B| = 20, 10 and 5, normalized by the
prior variance tr(Λ) = 16 (b). Note that the initial covariance estimate used in UKI (with
tr(Σ0) = 1) is decoupled from the prior. Symbols follow Table 1.

with richer observations. Nevertheless, Kalman inversion significantly reduces the val-503

idation error from the prior even with sparser data and a limited number of fields.504

The identifiability of individual parameters as a function of the observational map505

H can be inferred from the UKI Σn diagnostic. Figure 6 shows that the partial obser-506

vations of temperature and humidity are enough to constrain the entrainment coefficient507

in the EDMF scheme. However, the loss of information with respect to the original ob-508

servations leads to much poorer constraints on the turbulent dissipation coefficient. The509

same comparison can be performed for any parameter of interest to inform observational510

requirements to constrain models at the process level. This diagnostic is an important511

advantage of UKI over EKI; identifiability is not directly inferable from ensemble Kalman512

inversion due to the ensemble collapse. However, this information can be recovered through513

the emulation of the forward map (Cleary et al., 2021).514

The use of partial observations also highlights the benefits of learning from time515

statistics instead of tendencies. Learning from statistics not only ensures that the cal-516

ibrated dynamical model is stable, which requires a leap of faith when training on in-517

stantaneous tendencies (Bretherton et al., 2022). It also couples the evolution of ther-518

modynamic and dynamical fields, which can improve the forecast of fields unseen dur-519

ing training. An example is shown in Figure 7. The model calibrated using thermody-520

namic profiles improves upon the prior model in the forecast of horizontal velocities within521

the boundary and cloud layers. A common reason to use tendencies for calibration is that522

they enable the use of supervised learning techniques, which are easy to implement for523

neural network architectures (e.g., Bretherton et al., 2022). In the next subsection, we524

demonstrate the power of UKI and EKI to calibrate hybrid models with embedded neu-525

ral network parameterizations.526

4.4 Calibration of a hybrid model with embedded neural network clo-527

sures528

We consider now a hybrid EDMF scheme that substitutes the dynamical entrain-
ment and detrainment closures proposed by Cohen et al. (2020) with a three-layer dense
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Figure 5: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), subgrid-
scale moisture flux (w′q′t) and zonal velocity (ū) for cfSites 5 (top) and 14 (bottom) using
July forcing from the AMIP4K experiment as in Shen et al. (2022). The gray shading rep-
resents the internal variability of the LES simulations over 6 days of steady forcing, and
the full lines represent 3-hour time-averaged profiles. EKI prior and posterior results are
point estimates evaluated at the parameter vector closest to the ensemble mean. The UKI
posterior shading spans the central 68% of the profile posterior distribution. All Kalman
methods used |B| = 5 and J = 2p+ 1.

neural network. We define the fractional entrainment (ε) and detrainment (δ) rates as[
ε
δ

]
=

1

z
NN3(Π1, . . . ,Π6), (35)

where z is the height, and the hidden layers of NN3 have 5 and 4 nodes, from input to
outputs. Our closure (35) seeks to learn local expressions for the z-normalized entrain-
ment/detrainment rates, which have been shown to vary weakly in empirical studies of
shallow cumulus convection (Siebesma, 1996; de Roode et al., 2000). The neural network
inputs Π1, . . . ,Π6 are 6 nondimensional groups on which entrainment and detrainment
may depend, defined as

Π1 =
z(bup − ben)

(wup − wen)2 + w2
d

, (36a)

Π2 =
aupw

2
up + (1− aup)w2

en

2(1− aup)een + aupw2
up + (1− aup)w2

en

, (36b)

Π3 =
√
aup, (36c)
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Figure 6: Evolution of the validation error (a) and estimates of the turbulent dissipation
(b) and entrainment coefficient (c) for calibration processes using observations of the state
(33) at 50 m resolution (UKIf , EKIf ), or from θ̄l, q̄t and q̄l at 200 m resolution (UKIo,
EKIo). All inversion processes use |B| = 20. Shading is defined as in Figures 2 and 3.

Π4 = RHup − RHen, (36d)

Π5 = z/Hup, (36e)

Π6 = gz/RdTref . (36f)

In expressions (36), wd = (Hinvw′b′|s)1/3 is the Deardorff convective velocity, Hinv is529

the inversion height, w′b′|s is the surface buoyancy flux, g is the gravitational acceler-530

ation, Rd is the ideal gas constant for dry air and Tref is a reference temperature. The531

subscripts up and en denote updraft and environment: aup is the updraft area fraction,532

Hup the updraft top height, and een the environmental turbulence kinetic energy. The533

relative humidity RH, vertical velocity with respect to the grid mean w, and buoyancy534

b are defined for both updraft and environment.535

The neural network closure (35) introduces 63 additional coefficients with respect536

to the entrainment and detrainment closure calibrated in Sections 4.2 and 4.3, for a to-537

tal of 79 parameters. As the closure complexity increases, it is most practical to use EKI538

for calibration, since it enables the use of ensembles with J < 2p+1 members. In Fig-539

ure 8, we present training and validation errors for the hybrid model using ensemble sizes540

J = 50, 100, and 159, and for the empirical EDMF scheme with J = 2p + 1 = 33 en-541

semble members. We initialize the neural network weights as θNN ∼ N (θ0
NN, I) with542

θ0
NN ∼ U(−0.05, 0.05). In all cases, we use Bayesian regularization as discussed in Sec-543

tion 4.2 for all model parameters except for the neural network weights. We calibrate544

all parameters of the empirical and hybrid models, to compare the optimal performance545

of both closures.546

Both the empirical and hybrid EDMF schemes generalize well to the validation set,547

with training and validation errors reaching levels of about 5% of the largest a priori val-548

idation error. The strong generalization to 4 K-warmer cloud regimes contrasts with re-549

sults from approaches that try to learn unresolved tendencies directly, without encod-550

ing the physics (Rasp et al., 2018). Using a physics-based hybrid approach, all learned551

closures are consistently placed within the coarse-grained dynamics of the system (Cohen552

et al., 2020), which also vastly reduces data requirements. Further, targeting closure terms553

that isolate a single physical process lends itself to interpretability in a manner difficult554
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Figure 7: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), vertical
moisture flux (w′q′t) and zonal velocity (ū) for cfSite 3 using July forcing (top) and cfSite
14 using January forcing (bottom) from the AMIP4K experiment (Shen et al., 2022). Pos-
terior results are shown for a model calibrated using the high-resolution state (33) (Full
Obs.), and coarse-resolution observations of θ̄l, q̄t and q̄l (Partial Obs.). Shadings and
legend as in Figure 5. Results obtained using UKI with |B| = 20.

for purely machine-learning based parameterizations that simultaneously model many555

physical processes. After training, relationships between EDMF variables and targeted556

physical quantities like entrainment can be teased out using partial dependence plots or557

ablation studies. In addition, the learned relationships are point-wise and causal.558

The inset in Figure 8b shows how the higher-complexity hybrid model moderately559

overfits to the training set after ∼ 10 epochs, a behavior that is not observed with the560

empirical model. Hence, in the low-data regime (d . p), adoption of techniques such561

as early stopping (Prechelt, 1998) or sparsity-inducing regularization (Schneider et al.,562

2020) becomes necessary. The compact support property of EKI, which mandates that563

the solution be in the linear span of the initial ensemble, also regularizes the learned hy-564

brid model with decreasing J ; for J = 50 < p overfitting is significantly reduced. Thus,565

reducing the ensemble size is an efficient regularization technique when training large566

machine-learning models that tend to overfit, at the expense of reduced expressivity. Ad-567

ditional EKI-specific regularization techniques for deeper networks are discussed in Kovachki568

and Stuart (2019).569

Another difference between the empirical and the hybrid models is that for the lat-570

ter, we do not know a priori the parameter ranges for which the model trajectories re-571
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main physical. During the training sessions shown in Figure 8, the hybrid models expe-572

rienced a maximum of 25 (J = 50), 30 (J = 100) and 72 (J = 159) failures in a sin-573

gle iteration, all occurring during the first epoch. The use of the failsafe update proposed574

in Section 3.1.1 proved crucial to enable training in the presence of model failures, and575

it reduced the number of failures to a small fraction of the J ensemble members after576

a few EKI iterations.577
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Figure 8: Batch (a) training and (b) validation normalized MSE for the hybrid
(EDMF+NN) and empirical (EDMF) models. Lines, shading and inset as in Figure 2.
Results are shown for calibration with EKI, using J = 50, 100 and 2p + 1 = 159 ensemble
members for the hybrid model. The empirical model training uses J = 2p + 1 = 33. All
inversion processes use batch size |B| = 10.

Profiles of q̄l, q̄t and w′q′t are shown in Figure 9 for the trained empirical and hy-578

brid EDMF models. To produce the profiles with the hybrid model, we retain the pa-579

rameters learned at the iteration with lowest validation error from a training session span-580

ning 25 epochs, effectively similar to early stopping. As expected from the validation er-581

ror, the hybrid model slightly improves upon the skill of the empirical model, predict-582

ing more accurate profiles of q̄l within the cloud layer. This is, of course, at the cost of583

a significantly higher parameter complexity of the closure.584

As shown here, ensemble Kalman inversion allows for rapid prototyping and com-585

parison of closures within an overarching black-box model. Importantly, this compar-586

ison can be done during training in terms of the online performance of the fully calibrated587

dynamical model.588

5 Discussion and conclusions589

Ensemble Kalman methods such as ensemble and unscented Kalman inversion are590

powerful tools for training possibly expensive models. By leveraging covariances between591

the model output and its parameters, they do not impose any constraint on the data used592

for learning, or the architecture of the closures to be calibrated. This means that ensem-593

ble Kalman methods can be used to learn all parameters within complex overarching mod-594

els, regardless of where those parameters appear in the formulation of the model. Fur-595

thermore, the Gaussian approximation of the parameter distribution makes them far more596

efficient than standard Bayesian inference techniques, at the cost of neglecting uncer-597
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Figure 9: Prior, posterior and LES profiles of liquid water specific humidity (q̄l), total
water specific humidity (q̄t) and vertical moisture flux (w′q′t) for cfSite 14 using July
forcing (top) and cfSite 8 using January forcing (bottom) from the AMIP4K experiment
(Shen et al., 2022). Definitions of prior, posterior and shading as in Figure 5. Poste-
rior results are shown for the EDMF model with empirical closures (EDMF), and with
the neural network entrainment closure (35) (EDMF+NN), using early stopping and 25
epochs of training. Results obtained using EKI with |B| = 10.

tainty beyond the second moment of the posterior, and the possible convergence to lo-598

cal minima (as for stochastic gradient descent and other optimization methods).599

This enables training physics-based machine-learning parameterizations, as demon-600

strated here by substituting an internal component of the EDMF model by a neural net-601

work, which required no change in the data or framework used for training. The ben-602

efits of combining physics and data are demonstrated by the performance of our trained603

hybrid closure in simulations of clouds typical of conditions 4 K warmer than the clouds604

in the training set.605

To use these algorithms, parameter learning must be framed as an inverse prob-606

lem. This allows great flexibility, but raises the problem of choosing a reasonable obser-607

vational map H and noise covariance Γ to define an inverse problem. Through a domain-608

agnostic strategy and a reasonable heuristic about the expected model error, we have609

demonstrated a systematic way of constructing a well-defined inverse problem from high-610

dimensional data. This strategy is designed to maximize the information content through611

a lossy principal component encoding H and to allow the use of time averages as obser-612

vations, making it amenable to harnessing, e.g., satellite observations in addition to com-613
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putationally generated data. The success of this strategy is demonstrated in a variety614

of settings, using empirical and hybrid models.615

The flexibility of the inverse problem allows to define the observational map H through616

any observable diagnostic of the model, be it differentiable or not. For instance, Barthélémy617

et al. (2021) use a neural network as the mapping H, to train a low-resolution dynam-618

ical model directly from features at high resolution. One could also envision the construc-619

tion of H through other statistics of the model dynamics, such as the variance or skew-620

ness. These choices may be preferable for particular tasks, such as the prediction of ex-621

treme events or the correct representation of emergent phenomena.622

Given an inverse problem, we have shown that EKI and UKI are robust to noise623

and amenable to batching strategies. This establishes the ability of the Kalman algo-624

rithms to train models using sequentially sampled data. The same robustness can be ex-625

pected for other sources of noise, such as stochasticity in the model (Schneider, Stuart,626

& Wu, 2021). In addition, we have proposed modifications of the EKI and UKI updates627

that enable calibrating models that may fail during training, which is often the case for628

Earth system models.629

Although similar, each ensemble Kalman algorithm presents its own relative strengths630

in our analysis. Calibration through EKI appears to be more robust to noise, and the631

number of ensemble members may be chosen to be lower than for UKI when the param-632

eter space is high-dimensional. Indeed, Kovachki and Stuart (2019) show successful re-633

sults for EKI when the number of parameters (e.g., p ∼ 106) is two orders of magni-634

tude higher than the ensemble size. Using fewer ensemble members than parameters also635

introduces a regularization effect. On the other hand, UKI provides information about636

parametric uncertainty and correlations, which can be used to improve models at the pro-637

cess level, and to rapidly compare the added value of increasingly precise observing sys-638

tems. Other ensemble Kalman methods, such as the sparsity-inducing EKI (Schneider639

et al., 2020) or the ensemble Kalman sampler (Garbuno-Inigo et al., 2020), can provide640

solutions to the inverse problem with other useful properties. In addition, all these en-641

semble methods generate parameter-output pairs that can be used to train emulators642

for uncertainty quantification that can capture non-Gaussian posteriors (Cleary et al.,643

2021).644

Finally, ensemble Kalman methods may be used for the rapid comparison of pa-645

rameterizations in terms of the online skill of an overarching Earth system model. The646

same framework could be used to train Gaussian processes, random feature models (Nelsen647

& Stuart, 2021), Fourier neural operators (Z. Li et al., 2020), or stochastic closures (Guillaumin648

& Zanna, 2021), for example. These are some of the exciting research avenues that we649

will be exploring in the future.650

Appendix A Configuration-based principal component analysis651

Performing PCA on each configuration allows retaining principal modes from low-652

variance configurations while filtering out trailing modes from high-variance configura-653

tions. The importance of this is demonstrated in Figure A1 for three configurations of654

our LES solver (Pressel et al., 2015) based on observational campaigns of a stable bound-655

ary layer, a stratocumulus-topped boundary layer, and shallow cumulus convection (Beare656

et al., 2006; Stevens et al., 2005; Siebesma et al., 2003). Performing global PCA is equiv-657

alent to using a cutoff µc,i > µ∗c in Figure A1a, where we need to choose between ne-658

glecting most modes from certain configurations (e.g., GABLS in Figure A1a) or retain-659

ing highly oscillatory modes from others (e.g., Bomex), as measured by the number of660

zero-crossings of the eigenmode (Hansen, 1998). Highly oscillatory modes may have a661

disproportionate contribution to the loss when calibrating imperfect models. On the other662

hand, performing PCA on each Γ̃c alleviates this problem by aligning the eigenspectra663
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before applying the cutoff, as shown in Figure A1b. Appropriate conditioning of the global664

covariance matrix is still enforced when applying configuration-based PCA through the665

Tikhonov regularizer in equation (14).666
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Figure A1: (a) Scatter plot of covariance eigenvalues µc,i and the number of zero-
crossings of their corresponding eigenmode for three different configurations of an LES
solver. (b) The same plot, with eigenvalues normalized by the leading eigenvalue of each
configuration (µc,1). Trailing eigenvalues are associated with high-wavenumber oscillatory
modes with frequent sign changes.

Appendix B Addressing model failures with unscented Kalman inver-667

sion668

In the presence of model failures, we perform the UKI quadratures over the suc-
cessful sigma points. Consider the set of off-center sigma points {θ̂} = {θ̂s}∪{θ̂f} where

θ̂
(j)
s , j = 1, . . . , Js are successful members and θ̂

(k)
f are not. For ease of notation, con-

sider an ordering of {θ̂} such that {θ̂s} are its first Js elements, and note that we deal
with the central point θ̂(0) separately. We estimate the covariances Covq(Gn,Gn) and Covq(θn,Gn)
from the successful ensemble,

Covq(θn,Gn) ≈
Js∑
j=1

ws,j(θ̂
(j)
s,n − θ̄s,n)(G(θ̂(j)

s,n)− Ḡs,n)T , (B1)

Covq(Gn,Gn) ≈
Js∑
j=1

ws,j(G(θ̂(j)
s,n)− Ḡs,n)(G(θ̂(j)

s,n)− Ḡs,n)T , (B2)

where the weights at each successful sigma point are scaled up, to preserve the sum of
weights,

ws,j =

( ∑2p
i=1 wi∑Js
k=1 wk

)
wj . (B3)

In equations (B1) and (B2), θ̄s,n and Ḡs,n must be modified from the original formula-
tion if the central point θ̂(0) = mn results in model failure,

θ̄s,n =

mn if θ̂(0) successful,
1

Js

∑Js
j=1 θ̂

(j)
s,n otherwise,

(B4)
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Ḡs,n =

G(mn) if θ̂(0) successful,
1

Js

∑Js
j=1 G(θ̂

(j)
s,n) otherwise.

(B5)

These modified UKI quadrature rules are used throughout Section 4 to deal with model669

failures. Since UKI can be initialized from a tighter prior than EKI, due to the absence670

of ensemble collapse, failures are much easier to avoid than with EKI.671

Appendix C Parameter transformation and prior672

Given a prior range [φi, φf ] for a parameter φ ∈ R, we define the transformation

θ = T (φ) = ln
φ− φi
φf − φ

, (C1)

such that the interval midpoint is mapped to θ = 0, and the bounds to ±∞. An un-
constrained Gaussian prior may then be defined for θ given the prior mean in physical
(constrained) parameter space φp as

θ0 ∼ N (T (φp), σ
2
0), (C2)

where σ2
0 is a free parameter controlling the size of the region within the interval [φi, φf ]673

containing most of the probability. This means that the magnitude of σ0 is already nor-674

malized with respect to the prior range, so we will generally choose σ0 ∼ O(1). The675

p−dimensional prior N (m0,Σ0) is then constructed as an uncorrelated multivariate nor-676

mal with marginal distributions given by expression (C2). The normalization induced677

by (C1) also enables the use of isotropic regularization in equations (25)–(26), even though678

the physical parameters φ may differ in order of magnitude. For more examples of pa-679

rameter transformations in the context of EKI and UKI, see Huang, Schneider, and Stu-680

art (2022), Schneider, Dunbar, et al. (2021), and Dunbar et al. (2022).681

Appendix D Calibration using very noisy loss evaluations682

The Kalman inversion results are expected to deteriorate above some noise thresh-683

old, as the signal-to-noise ratio in the training process decreases. We explored the sen-684

sitivity of UKI and EKI to noise by sampling a single configuration per iteration from685

the training set described in Section 4.1. As shown in Figure D1, UKI fails to converge686

to the minimum found with larger batches in this limit. The validation error is charac-687

terized by large oscillations due to strong changes in the value of model parameters like688

the entrainment coefficient cε or the eddy diffusivity coefficient cm. On the other hand,689

EKI proves robust to noise even in this limit, converging to the minimum found by UKI690

employing larger batches.691

In the context of Kalman inversion, decreasing the step size ∆t is equivalent to in-692

creasing the noise variance, as shown in updates (18) and (27). We investigate the time693

step role in the small batch limit by performing the ensemble Kalman inversion with ∆t =694

|C|−1 = 1/60. The smaller time step increases the parameter uncertainty, which leads695

to a reduction in parameter oscillations and estimates closer to the prior. This is accom-696

panied by a moderate reduction in validation error oscillations. We performed additional697

inversions using even smaller time steps, which resulted in a convergence of the param-698

eter estimates towards the prior and a minor reduction in validation error with respect699

to the initialization. We conclude that decreasing ∆t in UKI can reduce oscillations due700

to high levels of noise, but it does not result in the same robustness as EKI.701

Notation702

φ ∈ Rp Learnable parameters, in physical space.703
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Figure D1: Evolution of the validation error (a) and estimates of the entrainment (b),
and eddy diffusivity (c) coefficients. Results shown for UKI using batch sizes of 10 and 1,
and EKI using a batch size of 1. Parameter uncertainty only shown for UKI10 and UKI1,
∆t = 1/60 for clarity. All results shown use ∆t = |C|/|B| unless otherwise specified.
Shading as in Figures 2 and 3.

θ ∈ Rp Transformed learnable parameters, in unconstrained space.704

θ∗ ∈ Rp Optimal unconstrained parameter estimate (MAP or MLE).705

ϕ0 Initial dynamical state.706

Fϕ Dynamical forcing.707

xc = {ϕ0, Fϕ}c Configuration of the dynamical system.708

ζ(xc) : ϕ0 → ϕ(t) True dynamical system evolution.709

Ψ(φ;xc) : ϕ0 → ϕ̂(t) Dynamical model evolution.710

Hc Observational map for configuration c.711

yc ∈ Rdc Observation vector for configuration c.712

ηc ∈ Rdc Observation error for map Hc.713

δ(xc) ∈ Rdc Model or representation error for configuration c.714

Γc ∈ Rdc×dc Covariance of the Gaussian noise ηc + δ(xc).715

Gc : Rp → Rdc Forward model for configuration c.716

C = {xc, c = 1, . . . , |C|} Set of configurations.717

y = [y1, . . . , y|C|]
T ∈ Rd Global observation vector.718

δ = [δ(x1), . . . , δ(x|C|)]
T Global representation error.719

η = [η1, . . . , η|C|]
T Global observation error.720

Γ ∈ Rd×d Global noise covariance matrix.721

T : U → Rp Parameter transformation to unconstrained space.722

G : Rp → Rd Forward model.723

ρ(θ|y,Γ) Parameter posterior probability density, given Γ and y.724

ρprior(θ) Parameter prior probability density, independent of Γ.725

L : Rp × Rd → R Loss or negative log-likelihood given Γ.726

Sc(t) ∈ Rd̃c Observed state.727

Vc,j(t) ∈ Rhc Spatial field j within the observed state Sc.728

sc(t) ∈ Rd̃c Normalized observed state.729

vc,j(t) ∈ Rhc Spatial field j within the normalized state sc.730

σc,j ∈ R Pooled time standard deviation of Vc,j .731
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Tc ∈ R Time-averaging window used in map Hc.732

ỹc ∈ Rd̃c Counterpart of yc prior to encoding.733

ỹ ∈ Rd̃ Global observation vector prior to encoding.734

Γ̃c ∈ Rd̃c×d̃c Counterpart of Γc prior to encoding.735

Γ̃ ∈ Rd̃×d̃ Counterpart of Γ prior to encoding.736

Id ∈ Rd×d Identity matrix of size d× d.737

µc,i ∈ R i-th largest eigenvalue of Γ̃c.738

κ ∈ R Approximate condition number of a matrix.739

rc ∈ R Approximate rank of matrix Γ̃c.740

εm ∈ R Machine or data precision.741

κ∗ < ε−1/2
m Limiting matrix condition number.742

Pc ∈ Rd̃c×dc Truncated PCA projection matrix.743

DG(θ) ∈ Rd×p Jacobian of forward model at θ.744

B = {xc, c = 1, . . . , |B|} Mini-batch of configurations.745

L : Rp × Rd → R Configuration-averaged loss.746

yB ∈ RdB Observation vector for batch B.747

ỹB ∈ Rd̃B Counterpart of yB prior to encoding.748

G̃B : Rp → Rd̃B Forward model corresponding to observations ỹB .749

Θn ∈ Rp×J Parameter ensemble at iteration n.750

mn ∈ Rp Mean parameter estimate at iteration n.751

Σn ∈ Rp×p Parameter covariance estimate at iteration n.752

GΘn ∈ Rd×J Forward model evaluation ensemble at iteration n.753

ε(Θn) ∈ Rd×J Data-model mismatch ensemble at iteration n.754

∆t ∈ R Nominal learning rate.755

Θs,n ∈ Rp×Js Successful parameter ensemble at iteration n.756

θ
(k)
f,n ∈ Rp k-th failed parameter vector at iteration n.757

mp ∈ Rp Parameter prior mean.758

Λ ∈ Rp×p Gaussian prior covariance.759

ya ∈ Rd+p Observation vector augmented with mp.760

Ga(θ) ∈ Rd+p Forward model augmented with θ.761

ξ ∈ Rd+p Aggregate noise in the augmented data-model relation.762

Γa ∈ R(d+p)×(d+p) Covariance of the aggregate noise ξ.763

θ̂(j)
n ∈ Rp j-th sigma point for UKI quadrature.764

Πj j-th nondimensional input to neural network.765
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