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Key Points:

• Relationship of urban flooding to storm-drain system deficiency is studied.

• A non-linear optimization model in an integrated GIS and Python envi-
ronment is developed.

• A case study using the storm-drain system data from Baltimore County
is performed.

Abstract

Urban flooding is caused due to poor drainage design, extreme weather, and
excessive rain. Such flooding severely affects the road infrastructure. While
there are a number of hydrologic software (e.g., TR-55, HydroCAD, TR-20,
HEC-RAS, StreamStats, L-THIA, SWMM, WMOST, MAST, HY-8) available
to examine extent of urban flooding, the softwares primarily require walking
through a series of manual steps and address each study area individually pre-
venting a collective view of an urban area in an efficient manner for hydrologic
analysis. Furthermore, the softwares have no ability to recommend optimal
culver pipe sizes to minimize flooding. In this paper, we develop a non-linear
optimization formulation to minimize urban flooding using underdrain pipe size
as a decision variable. We propose a solution algorithm in an integrated GIS and
Python environment. Monte Carlo Simulation is used to simulate rainfall inten-
sity by using empirical data on extreme weather from the National Oceanic and
Atmospheric Administration. An example using the storm-drain system for the
Baltimore County is performed. The results show that the model is effective in
identifying storm-drain deficiencies and correcting them by choosing appropriate
storm-drain inlet types to minimize flooding. The proposed method eliminates
the need to examine each study area manually using existing hydrologic tools.
Future works may include expanding the methodology for large datasets. They
may also include a more sophisticated modeling approach for estimating rainfall
intensity based on extreme weather patterns.

Plain Language Summary

Urban flooding is attributed to extended periods of rain due to extreme weather
and climate change. The situation is exacerbated due to poor drainage system
In this paper, we study the relationship of urban flooding to storm-drain system
deficiency. A non-linear optimization model in an integrated GIS and Python
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environment is developed to optimize storm-drain inlet culverts to minimize ur-
ban flooding. Empirical data on rainfall intensity from the National Oceanic
and Atmospheric Administration (NOAA) is used in the optimization process.
A case study using the storm-drain system data from Baltimore County is per-
formed, which shows that the model is effective in identifying storm-drain defi-
ciencies and correcting them by choosing appropriate storm-drain inlet types to
minimize flooding. Future works may include expanding the methodology for
large datasets.

1 Introduction

Urban flooding is a serious issue that is primarily caused due to storm-drain
system deficiency, extreme weather, and unusual weather patterns, such as ex-
cessive rain or hurricanes. Such disasters have surged in recent years. According
to the Center for Research on the Epidemiology of Disasters (CRED 2022), over
the last 20 years, 7,348 disaster events were recorded. These disasters claimed
more than a million lives and led to about US$ 3 trillion in economic losses
worldwide.

Many cities in the world have poor storm-drain design which causes flooding
due to rain. The situation exacerbates in the event of hurricanes or when the
rain is more persistent and intense. A number of methods have been proposed
for urban flood management, including numerical simulation and a geographic
information system (Eldho et al. 2028), nature-based solution (Bremer et al.
2021), and bioretention (Jones and Jha 2009). However, none of these methods
offer an analytical solution for an optimal design of storm-drain culverts based
on rainfall intensity, peak discharge, and drainage area. This paper addresses
the issue of storm-drain design by offering an analytical optimization solution
that can serve as a guide to counties, cities, and municipalities around the world
in reducing urban flooding.

2 Literature Review

Cherqui et al (2015) developed an innovative method for assessing urban poten-
tial flooding risk and identifying effective risk-reduction measures. The method
was based on a spatial analysis and a causal tree. A case study from Bor-
deaux, France was presented to illustrate the method. Chang and Huang (2015)
assessed urban flooding vulnerability with an emergy approach. A systems ap-
proach was proposed for assessing vulnerability. Xie et al. (2017) proposed an
integrated evaluation framework for urban flooding mitigation. The study incor-
porated a 2D hydrologic simulation and life-cycle cost analysis into an integrated
framework to assess potential flooding risk. Zhou, et al. (2017) performed a
study to understand the trends in urban extreme rainfall to urban flooding in
China. The study recommended that storm‐induced urban flooding should con-
sider both spatial disparities in climate and future changes in extreme rainfall
events. Kim et al. (2017) developed a policy-oriented decision-making strategy
for urban flooding under climate change. The strategy used a multi-criteria
decision approach to show stakeholders’ preferences for particular adaptation
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characteristics in the event of flooding. Flynn and Davidson (2016) discussed
the issues associated with poor storm-drain design. They concluded that de-
spite major investments in stormwater infrastructure, urban areas continued to
experience urban flooding.

Many studies have proposed green infrastructure and bioretention to curb ur-
ban flooding (e.g., Hatt et al. 2004, Villarreal et al. 2004, Tzoulas et al. 2007,
Jones and Jha 2009). However, there are practical limitations for actual imple-
mentation of green infrastructure and bioretention, including limited resources
available to counties, cities, and municipalities.

Some studies have been reported on numerical methods for drainage culvert re-
design. For example, Duan, et al. (2016) developed a multiobjective approach
for the design of detention tanks in the urban stormwater drainage system.
Jun, et al. (2017) developed a storm-drain based bivariate frequency analysis
methos to design urban storm drains. Selbig, et al. (2016) investigated the
effect of particle size distribution on the design of urban stormwater control
measures. Monrabal-martinez, et al. (2019) investigated the seasonal variation
in pollutant concentrations and particle size distribution in urban stormwater
design. Chen, et al. (2016) developed a tool for urban rainwater management
using integrated design workflow.

Majority of the literature presented above are qualitative in nature. While
some of them (e.g., Duan, et al., 2016; Eldho et al., 2018) discuss analytical
and mathematical approaches for urban flood management, the approaches are
still manual since one must go through a series of manual steps to examine each
storm-drain outlet individually. This process is very time consuming and cannot
ensure a reduction in flooding in each urban segment since direction of flow of
water cannot be collectively examined.

Elsevier (ScienceDirect) has put out a list of papers highlighting selected re-
search articles under a web-page titled “Urban Flooding” (Urban Flooding 2022).
While these papers do acknowledge the vulnerability of urban cities due to flood-
ing, they fail to deal with the non-linear nature of the optimization problem that
may aid in the correction of under-drain system deficiencies.

3 Hydrologic Modeling Software

There are a number of hydrologic modeling software (e.g., TR-55, HydroCAD,
TR-20, HEC-RAS, StreamStats, L-THIA, SWMM, WMOST, MAST, HY-8)
which are traditionally used to examine flooding risks and make recommenda-
tions to address them. The first author undertook a number of flooding analysis
using these softwares and reported the results in his dissertation (Ekeh 2020).
For brevity, a sample result using HEC-RAS is shown here. The study area is
from Baltimore County, MD. The existing culverts and cross sections are shown
in Fig. 1. The study area contains 4 cross sections and one culvert.
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Figure 1. Sample Hydrologic Analysis in HEC-RAS

A cross-section output for 10 years is shown in Table 1. It shows relevant cross-
section, culvert, and other values of the watershed, such as peak discharge rate,
velocity of the head, slope, maximum channel depth, flow-area, hydrologic depth,
and wetted perimeter.

Table 1. Sample HEC-RAS Analysis for a 10-year floodplain

4 Contribution to the State of Hydrologic Science

Most of available literature and hydrologic software offer solution to urban flood-
ing either in a qualitative way or by iterating through a series of manual steps.
This makes the process of identifying attributes causing flooding very ineffi-
cient. For example, there are thousands of culvert pipes buried under ground
and it is not possible to analyze each of them individually unless there is an
efficient procedure to analyze their combined effect collectively in understand-
ing the likelihood of future flooding. In other words, while existing studies and
hydrologic softwares are useful, they are primarily manual in nature requiring
repetitive manual iterations to examine the effect of flooding due to certain
rainfall intensity and watershed, cross-section, and culvert characteristics. Un-
der this backdrop, in the paper we develop a non-linear optimization model to
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efficiently correct the underdrain pipe size which will minimize flooding in a
particular jurisdiction, such as a county, city, or municipality.

5 Methodology

We develop a method to collectively examine the peak discharge flow from the
storm-drain outlets in a given study region. The hydrologic technique most
often used in urban drainage design is the rational method expressed as:

𝑄 = 𝐶𝐼𝐴 (1)

where:

Q=peak discharge (cfs)

C=runoff coefficient

I=design storm rainfall intensity (in/hr)

A=drainage area (acres)

The quantity, I can be further formulated as a function of extreme weather as
follows:

𝐼 = 𝐼(𝑒𝑤) (2)

Using the TR-55 method, peak discharge, runoff depth, initial abstraction, unit
peak discharge, and pond/swamp factor can be computed as follows:

𝑄𝑃 = 𝑄𝑢AQ𝐹𝑝 (3)

𝑄 = (𝑃−𝐼𝑎)2

𝑃−𝐼𝑎+𝑠 (4)

𝐼𝑎 = 0.2𝑠 (5)

𝑠 = 1000
CN − 10 (6)

𝑄𝑢 = 𝑓(𝑇𝐶 , 𝐼𝑎
𝑃 , 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑇 𝑦𝑝𝑒) (7)

𝐹𝑝 = 𝑓(% 𝑃 𝑜𝑛𝑑𝑠 𝑎𝑛𝑑 𝑆𝑤𝑎𝑚𝑝𝑠) (8)

where: A = total watershed area (mile2); CN = overall curve number for the
watershed; Fp = pond and swamp adjustment factor; Ia = initial abstraction
(inch) losses before runoff begins (surface depressions, interception by leaves,
evaporation, infiltration); P = precipitation (inch) for 24-hr duration storm
of return period for which the study is interested; Q = depth of runoff over
entire watershed (inch); Qp = peak discharge (cfs); Qu = unit peak discharge
(cfs/mile2-inch); s = potential maximum watershed water retention after runoff
begins (inch); Tc = time of concentration for the watershed (hr); time for runoff
to travel from the furthest distance (by time) in the watershed to the location
where to be determined Qp.

Ia can be further defined as a function of extreme weather as:

𝐼𝑎 = 𝐼𝑎(𝑒𝑤) (9)
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There are typically three distinct runoff patterns in a watershed: sheet flow,
shallow concentrated flow, and channel flow. Each of the flow patterns requires
a unique mathematical expression as follows:

𝑇𝑐 = 𝑇𝑡(𝑠ℎ𝑒𝑒𝑡) + 𝑇𝑡(shallow concentrated) + 𝑇𝑡(𝑐ℎ𝑎𝑛𝑛𝑒𝑙) (10)

𝑆ℎ𝑒𝑒𝑡 𝐹 𝑙𝑜𝑤 ∶ 𝑇𝑡 = 0.007(𝑛𝐿)0.8

(𝑃2)0.5𝑆0.4 (11)

𝑆ℎ𝑎𝑙𝑙𝑜𝑤 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑 𝐹 𝑙𝑜𝑤 ∶ 𝑇𝑡 = 𝐿
3600𝑉 (12)

𝐼𝑓 𝑝𝑎𝑣𝑒𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑉 = 20.3282𝑆0.5; 𝑈𝑛𝑝𝑎𝑣𝑒𝑑 ∶ 𝑉 = 16.1345𝑆0.5 (13)

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐹 𝑙𝑜𝑤 ∶ 𝑇𝑡 = 𝐿
3600 𝑉 ; 𝑉 = 1.49

𝑛 𝑅2/3𝑆0.5 (𝑀𝑎𝑛𝑛𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛) (14)

where: L = length of flow pattern (ft) ( includes all wiggles in channels); n =
Manning’s n value; for sheet flow, n represents the ground cover to a depth of
about 1.2 inches (3 cm); for channel flow, n represents bank full conditions for
an open channel or full conditions for a culvert; P2 = 2-yr return period, 24-hr
duration precipitation for the geographic region where your watershed is located
(inch); R = hydraulic radius (ft) of bank full open channel or culvert flowing
full (computed automatically if channel cross-section dimensions are input); S
= average ground slope of each flow pattern (ft vertical/ft horizontal); Tc =
time of concentration for the watershed (hr); time for runoff to travel from the
furthest distance (by time) in the watershed to the location where you wish to
determine Qp’ Tt = travel time for flow regime of interest (hr) - sheet, shallow
concentrated, or channel flow’ V = average velocity of water in each flow regime
(ft/s).

The flood minimization problem can be formulated as:

𝑀𝑖𝑛 𝐹 = 𝑓(𝑄, 𝑇 , 𝐿, 𝑆, 𝑉 ) (15)

where: F = Flooding (in cubic ft. per sec.); Q = discharge rate; T = length of
time of rain (in hours),; L= Land characteristics (e.g., impervious, grassy, other
soil type, etc.); V = volume of the storm-drain; S = slope.

The purpose of Eq. (15) is to illustrate conceptually the independent variables
which may influence the flooding. This equation by no means presents an exact
relationship between the dependent variable, F and the independent variables.
It can be observed from the above equation that lower discharge rate, longer
rain hours, smaller volumes of storm-drains, and larger impervious areas will
tend to increase the flooding.

A basic concept of optimization problems is that the same problem can be pre-
sented either as a minimization problem or a maximization problem. Therefore,
while the minimization problem can be formulated as minimization of flooding
which can be represented as the difference between inflow and outflow, con-
versely, the problem can also be represented as a maximization problem to
maximize the discharge rate.

The maximization problem can be formulated as:
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𝑀𝑎𝑥 𝑄(𝑑1, 𝑑2, … … , 𝑑𝑛) (16)

subject to:

𝑑𝑖 ≤ 𝑥𝑖 ∀ 𝑖 (17)

where: 𝑄 = 𝑝𝑒𝑎𝑘 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (cfs)

𝑑𝑖 = 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑚𝑤𝑎𝑡𝑒𝑟 𝑑𝑟𝑎𝑖𝑛𝑔𝑒

𝑥𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

The rainfall intensity can be assumed to be as low as 10-year storm event and
25-year storm events; or as high as 50-year storm events and 100-year storm
events. Models from NOAA are used to estimate appropriate rainfall intensity
considering extreme weather events using a Monte Carlo Simulation.

6 Model Input Parameters

Storm-drain system deficiency means inability of the storm-drain to be effective
in storm water runoff conveyance. This relates to poor design of the stormwater
inlet systems and waterways, such as channels, conduits, swales and drainage
paths. This is the reason why the stormwater design variables are used as input
parameters to the optimization model. The model input parameters include
rainfall intensity, land characteristics (e.g., gray v. green infrastructure, imper-
vious, grassy, other soil type, etc.), and design variables for the storm-drain
(including constrains placed on the design variables). For example, effective ra-
dius (R) of various sizes of box culverts can be considered as a design variable.

Using the Rational method, the peak discharge rate can be formulated as:

𝑄1 = 𝐶𝐼(𝑒𝑤)𝐴 (18)

where:

Q1=peak discharge (cfs)

C=runoff coefficient

I(ew)=design storm rainfall intensity expressed as a function of extreme weather
(in/hr)

A=drainage area (acres)

The Manning Equation to calculate the outflow to a particular storm-drain inlet
is expressed as:

𝑄2 = KA𝑅2/3𝑆1/2
𝑛 (19)

where, A = area of the storm-drain; R = hydraulic radius; S = slope of the
storm-drain inlet; K = unit conversion factor = 1.49 for English units; and n =
Manning Coefficient.
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From the inspection of Eqs. (18) and (19), it is clear that flooding will occur if:
Q1> Q2; and flooding will not occur if 𝑄1 ≤ 𝑄2. This will result in:

CI𝐴𝑤 ≤ 𝐾𝐴𝑠𝑅2/3𝑆1/2

𝑛 (20)

where 𝐴𝑤 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑; 𝐴𝑠 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑟𝑚−𝑑𝑟𝑎𝑖𝑛 𝑖𝑛𝑙𝑒𝑡 𝑝𝑖𝑝𝑒
In this research, it is assumed that storm-drain is an inlet pipe. Therefore, the
area of the inlet pipe is 𝜋𝐷2

4 and hydraulic radius of the pipe is: 𝐷
4 where D is

the pipe diameter in inch. Using these values, Eq. (20) will reduce to:

CI𝐴𝑤 ≤ 2𝐾𝜋𝐷 8
3 𝑆 1

2
12×𝑛 = K�𝐷 8

3 𝑆 1
2

6𝑛 (21)

or 𝐼 ≤ K�𝐷8/3𝑆1/2
6𝐶𝐴𝑤𝑛 (22)

Because in order to avoid flooding, 𝑄1 ≤ 𝑄2, assuming everything else to be a
constant for a given watershed, will lead to the following situation:

𝐼 ≤ 𝛼𝐷8/3
𝐴𝑤

(23)

where, � is a constant, I=Rain Intensity (inch/hr.); D=inlet pipe size (or diam-
eter); 𝐴𝑤=Area of the watershed.

The optimization problem can be presented as:

Min 𝑄1 − 𝑄2 (24)

subject to:

𝑥0 ≥ 2 (25)

This means the minimum pipe size must be at least 2 inches

𝑄2 ≥ 𝑄1 (26)

This means outflow must be greater that inflow so as to minimize
flooding

𝑥0 is the pipe diameter (in inches).

7 Rainfall Intensity

The rainfall intensity for 100 years is simulated and plotted in Python as shown
in Figure 2.

8



Figure 2. Plot of 100-Year Hourly Rainfall Intensity Based on Extreme
Weather Events

Alternatively, another empirical formula or chart can be used to calculate the
rainfall intensity which will be an input to the optimization model. For exam-
ple, EPAs national stormwater calculator can be used to calculate the rainfall
intensity (EPA 2020) as shown in Figs. (3)-(5) below.

Figure 3. EPA method to calculate the rainfall intensity-screenshot 1.
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Figure 4. EPA method to calculate the rainfall intensity-screenshot 2.
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Figure 5. EPA method to calculate the rainfall intensity-screenshot 3

Based on the bottom graph of Fig. 5, the maximum 24-hour rainfall for Balti-
more County is 6.65 which results into an hourly rainfall intensity of 0.277.

8 Non-Linear Optimization in Python

An inspection of Eq. (23) reveals that because the rainfall intensity varies non-
linearly with the pipe diameter, it is a non-linear optimization problem. In
Python, the minimize function provides a common interface to unconstrained
and constrained minimization algorithms for multivariate scalar functions in
scipy.optimize. To demonstrate the minimization function, the following non-
linear optimization problem is considered as an illustration:

11



Min 𝑥1𝑥4 (𝑥1 + 𝑥2 + 𝑥3) + 𝑥3 (27)

subject to

𝑥1𝑥2𝑥3𝑥4 ≥ 25 (28)

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 40 (29)

1 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 5 (30)

𝑥0 = (1, 5, 5, 1) (31)

This problem has a nonlinear objective that the optimizer attempts to minimize.
The nonlinear nature of the objective function is obvious by the left-hand side
of Eq. (27) where degree of the decision-variables is 4. The variable values at
the optimal solution are subject to both equality (=40) and inequality (>25)
constraints. The product of the four variables must be greater than 25 while
the sum of squares of the variables must also equal 40. In addition, all variables
must be between 1 and 5 and the initial guess is x1 = 1, x2 = 5, x3 = 5, and x4
= 1.

For the above illustrative nonlinear optimization problem represented, an op-
timization procedure is developed in Python using the nonlinear optimization
solver called Sequential Least Squares Programming (SLSQP). This solver which
is based on the principles of sequential least squares is a package within Python’s
model called Scipy.optimize. The screenshot below shows the optimization
model set up and the solution obtained from Python.
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Figure 6. Python Non-Linear Optimization Screenshot 1
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Figure 7. Python Non-Linear Optimization Screenshot 2

9 Example, Results, and Discussion

We apply the proposed methodology to an underdrain pipe culvert network for
Baltimore County, Maryland. A GIS map of the Baltimore County storm-drain
network used for the study is shown in Fig. 8.
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Figure 8. Storm-drain Map of Baltimore County

The map has 124,913 culvert pipes and contains information, such as watershed,
pipe roughness, flowrate, velocity, geometric slope, and other relevant informa-
tion to conduct the optimization. Several scatter plots are shown in Figs. 9-11
to understand the input characteristics of the inlet pipes and flow. For example,
Fig. 9 shows a scatter plot of velocity v. flowrate. It shows that majority of the
pipes have a velocity ranging from 0 to about 180 ft. per sec. and flowrate of
about 0-1,300 cubic ft. per sec.

15



Figure 9. Scatter Plot of Velocity (ft. per Sec.) v. Flowrate (cubic ft. per
sec.)

A plot of design length and flowrate is shown in Fig. 10. It shows that flowrates
are higher for shorter length pipes.

Figure 10. Scatter Plot of Design length v. Flowrate

Fig. 11 shows a scatter plot of geometric slope v. velocity. It shows that velocity
is generally higher for smaller slopes.
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Figure 11. Scatter Plot of Geometric Slope v. Velocity

The optimization is performed in Python for a rainfall intensity of 0.277 inch
per hour and additional assumed values of input parameters. Because the op-
timization procedure is nonlinear, an initialization step is necessary. In this
step certain dummy initial variables are used based on which initial flooding
rate (in cfs) is calculated. The following input values are considered for the first
example: Runoff coefficient=0.84; Rainfall intensity =0.277 inches per hour;
Geometric slope=2%; Roughness=0.012; Initial value of the pipe diameter=2
inches; Initial value of the watershed area=10,000 sq. ft.; allowable bounds of
pipe size=[2,100]; and allowable bounds of the watershed=[10000, 100000].

Using the above values, initial flooding is obtained to be 2,326.49 cfs; optimal
flooding is obtained to be 1.36e-12 cfs; and optimal pipe size is obtained to be
56.85 inches. This means, the optimization procedure obtains an optimal pipe
size which will result in a zero (or less) flooding. The initialization process and
results are shown in Figs. 12-13 below:
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Figure 12. First screenshot of the python optimization code under the first
scenario
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Figure 13. Second screenshot of the python optimization code under the first
scenario

Another example is performed using the following input values: Runoff coeffi-
cient = 0.84; Rainfall intensity = 0.05 inches per hour; Geometric slope=2%;
Roughness=0.012; Initial value of the pipe diameter = 2 inches; Initial value of
the watershed area=10,000 sq. ft.; allowable bounds of pipe size= [2,100]; and
allowable bounds of the watershed=10000, 100000].

Using the above values, initial flooding is obtained to be 419.69 cfs; optimal
flooding is obtained to be -1e-08 cfs; and optimal pipe size is obtained to be
29.92 inches. The initialization process and results are shown in Fig. 14-15. A
comparison of both set of results shows that an underestimated value of rainfall
intensity may result in a reduced optimal pipe size. Therefore, it makes sense
to use a realistic value of the rainfall intensity using extreme weather.
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Figure 14. Screenshot of the initialization of the optimization process
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Figure 15. Initial flooding for the Baltimore county database for different
slopes
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A plot of geometric slope v. initial flooding is shown in the Figure below.

Figure 16. Plot of geometric slope v. initial flooding

It can be seen that as the slope increases initial flooding decreases. It means
that it may not be necessary to optimize inlet pipe size for locations for higher
slopes since the risk of flooding is less.

Using the optimization algorithm, a revised pipe size (rounded off to the nearest
integer) is obtained. As an example, number of flooding issues in Jones Falls
watershed is reviewed based on the optimization procedure developed in the
paper, and an adjusted pipe size is recommended. The result is shown in the
Table 2.

Table 2. Recommended Pipe Size for Jones Falls Watershed

Pipe Number Street Name Number of Flooding Discharge rate (cfs) Underground culvert diameter Adjusted (optimal diameter)
1 Ridge Terrace 9 49 - 44”
2 Crossland Road 18 64 18” CMP 54”
3 Midfield Road 15 245 42” X 27” Elliptical 48”X 84” ”
4 Southvale Road 12 45 None 36”
5 Seven Mile Lane 28 158 36” RCCP 72”
6 Fairway Road 25 27 42” X 27” Elliptic 30”
7 Overbrook Road 20 92 15”D Conc. Circular 72”
8 Barton Oaks Road 19 50 - 42”
9 Traymore Road 3 24 - 21”
10 Lorry Lane 10 28 21”D Conc. Circular 27”
11 Lee court 6 80 I8” D Conc. Circular 66”
12 Greenvale Road 12 63 15”D Conc. Circular 54”
13 Slade Avenue 27 251 24”D Conc. Circular 84”
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Pipe Number Street Name Number of Flooding Discharge rate (cfs) Underground culvert diameter Adjusted (optimal diameter)
14 Marnat Road 17 196 36”D Conc. Circular 72”
15 Carla Road 9 94 18”D Conc. Circular 84”

It can be seen that the recommended pipe size to minimize flooding is higher
than the existing pipe size.

10 Conclusions and Future Works

The paper formulated a non-linear mathematical optimization problem to ad-
dress the flooding on urban roadways due to deficient culvert pipe geometry.
The study was carried out to investigate the optimal culvert capacity associated
with the hydraulic analysis that could justify the sizing of the pipe culvert to
minimize flooding. The GIS and Python-based non-linear optimization was per-
formed using storm-drain data from Baltimore County, Maryland. Based on the
sample results, it is shown that the GIS and Python-based non-linear optimiza-
tion model within a Python environment is an effective tool in identifying storm-
drain deficiencies and correct them by choosing appropriate storm-drain inlet
types to minimize flooding. Moreover, the developed procedure eliminates the
need to perform manual analysis using existing hydrologic software, although
those softwares can be used in subsequent stages for micro-level analysis.

The results showed that deficient and poor design of culvert pipes are key con-
tributors to urban flooding. For the Baltimore County case study, flooding was
attributed to the difference between in-flow and out-flow. Whenever there was
excess in-flow, a flooding scenario was observed. This scenario was removed by
performing optimization and selecting optimal pipe sizes.

Future works may include expanding the non-linear optimization methodology
on larger datasets with complex hydrological features as well as modeling the
spatial disparity when considering the effects of extreme weather/climate change.
Additional sensitivity analysis for a range of input values, such as roughness,
geometric slope, and watershed area can also be undertaken in future works.
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