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Abstract

We apply idealized scatter-plot distributions to the sliding threshold of observation for numeric evaluation (STONE) curve, a new

model assessment metric, to examine the relationship between the STONE curve and the underlying point-spread distribution.

The STONE curve is based on the relative operating characteristic (ROC) curve but is developed to work with a continuous-

valued set of observations, sweeping both the observed and modeled event identification threshold simultaneously. This is

particularly useful for model predictions of time series data, as is the case for much of terrestrial weather and space weather.

The identical sweep of both the model and observational thresholds results in changes to both the modeled and observed event

states as the quadrant boundaries shift. The changes in a data-model pair’s event status result in nonmonotonic features to

appear in the STONE curve when compared to a ROC curve for the same observational and model data sets. Such features

reveal characteristics in the underlying distributions of the data and model values. Many idealized datasets were created with

known distributions, connecting certain scatter-plot features to distinct STONE curve signatures. A comprehensive suite of

feature-signature combinations is presented, including their relationship to several other metrics. It is shown that nonmonotonic

features appear if a local spread is more than 0.2 of the full domain, or if a local bias is more than half of the local spread. The

example of real-time plasma sheet electron modeling is used to show the usefulness of this technique, especially in combination

with other metrics.
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Abstract 29 

We apply idealized scatter-plot distributions to the sliding threshold of observation for numeric 30 

evaluation (STONE) curve, a new model assessment metric, to examine the relationship between 31 

the STONE curve and the underlying point-spread distribution. The STONE curve is based on 32 

the relative operating characteristic (ROC) curve but is developed to work with a continuous-33 

valued set of observations, sweeping both the observed and modeled event identification 34 

threshold simultaneously. This is particularly useful for model predictions of time series data, as 35 

is the case for much of terrestrial weather and space weather. The identical sweep of both the 36 

model and observational thresholds results in changes to both the modeled and observed event 37 

states as the quadrant boundaries shift. The changes in a data-model pair’s event status result in 38 

nonmonotonic features to appear in the STONE curve when compared to a ROC curve for the 39 

same observational and model data sets. Such features reveal characteristics in the underlying 40 

distributions of the data and model values. Many idealized datasets were created with known 41 

distributions, connecting certain scatter-plot features to distinct STONE curve signatures. A 42 

comprehensive suite of feature-signature combinations is presented, including their relationship 43 

to several other metrics. It is shown that nonmonotonic features appear if a local spread is more 44 

than 0.2 of the full domain, or if a local bias is more than half of the local spread. The example of 45 

real-time plasma sheet electron modeling is used to show the usefulness of this technique, 46 

especially in combination with other metrics.  47 

 48 

Plain Language Summary 49 

Many statistical tools have been developed to aid in the assessment of a numerical model’s 50 

quality at reproducing observations. Some of these techniques focus on the identification of 51 

events within the data set, times when the observed value is beyond some threshold value that 52 

defines it as a value of keen interest. An example of this is whether it will rain, in which events 53 

are defined as any precipitation above some defined amount. A method called the sliding 54 

threshold of observation for numeric evaluation (STONE) curve sweeps the event definition 55 

threshold of both the model output and the observations, resulting in the identification of 56 

threshold intervals for which the model does well at sorting the observations into events and 57 

nonevents. An excellent data-model comparison will have a smooth STONE curve, but the 58 

STONE curve can have wiggles and ripples in it. These features reveal clusters when the model 59 

systematically overestimates or underestimates the observations. This study establishes the 60 

connection between features in the STONE curve and attributes of the data-model relationship. 61 

 62 

1. Introduction 63 

Given a data set of continuous values and model output that is trying to reproduce that set 64 

of observations, there are many ways to conduct a quantitative comparison between these two 65 

number sets. Metrics, equations or techniques for comparing model output with a corresponding 66 

data set, come in many forms, but all are statistical analysis tools that help numerically specify 67 

what can usually be seen qualitatively from a scatterplot of the number sets against each other. 68 

Many well-known and useful metrics exist, as summarized by research studies such as Murphy 69 

(1991), Kubo et al. (2017), and Morley et al. (2018), or as reviewed in books, such as those by 70 

Joliffe & Stephenson (2012) and Wilks (2019). Each metric distills some aspect of the data-71 
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model relationship down to a single number or curve, which can then be interpreted with respect 72 

to the particular assessment being conducted. It is important to choose metrics that focus on the 73 

facet of the data-model relationship that matters, and combinations of metrics can often lead to 74 

additional insights (e.g., Potts, 2012, Liemohn et al., 2021). The decisions resulting from metrics 75 

usage could range anywhere along the Application Usability Level process (Halford et al., 2019), 76 

from a scientific conclusion at level 1 to a validation assessment at level 3 or 6 to an operational 77 

task at level 9. 78 

One style of data-model comparison is event detection, in which the otherwise 79 

continuous number sets are reduced to yes-no binary designations depending on the number’s 80 

value relative to some threshold value defining “events” (see, e.g., the review by Hogan and 81 

Mason, 2012). Because of the transformation from real values into yes-no labels, this technique 82 

is sometimes called categorical evaluation. Given event identification thresholds for the two 83 

number sets, the scatterplot is converted into a 2x2 matrix, called a contingency table or 84 

confusion matrix, counting the points within each quadrant of the scatterplot above and below 85 

each threshold. That is, the exact values no longer matter, only the event status matters, and 86 

values just barely beyond the threshold are counted as events equally with those that are far 87 

beyond the threshold. This is useful if the assessment being conducted is not concerned with 88 

matching the exact values but rather cares more about the model’s ability to sort the observations 89 

according to event status. Many metrics have been created from these four count values to assess 90 

the quality of the model at achieving a good separation of observed events and nonevents.  91 

An extension of event detection methods that more fully utilizes the continuous aspects 92 

of the two original number sets is the technique of sliding the thresholds of event identification. 93 

These two thresholds, one for the observations and one for the model output, do not have to be 94 

the same number. When the observed event identification threshold is held constant and the 95 

model threshold is swept, this yields a new contingency table at each modeled event 96 

identification threshold setting, from which metrics as a function of threshold setting can be 97 

calculated (e.g., Mason, 1982). These curves of metrics reveal the threshold settings where 98 

certain metrics are optimized, allowing users to choose the model threshold that best suits their 99 

needs.  100 

The usefulness of sweeping the threshold extends beyond these metrics curves, though, 101 

with the technique of plotting the metrics against each other. A technique that has found 102 

particular usefulness across Earth and space science is the relative operating characteristic (ROC) 103 

curve (see, e.g., Hogan & Mason, 2012). Originally known as the receiver-operator characteristic 104 

curve because of its development by the radar community, the ROC curve plots two metrics 105 

against each other: probability of detection (POD) and probability of false detection (POFD). By 106 

holding the observed threshold fixed and sweeping the modeled threshold, the resulting POD and 107 

POFD curves monotonically vary from one to zero (from low to high threshold setting, 108 

respectively), resulting in a ROC curve that monotonically progresses from (1,1) to (0,0) in 109 

POFD-POD space. The area under the curve (AUC), sometimes converted into the ROC skill 110 

score (Swets, 1986), is then used as an overall measure of the quality of the model at correctly 111 

sorting the observations into events and nonevents. 112 

The technique of holding the observed events fixed and sliding the model threshold 113 

through a continuous model output number set has been done for many Earth and space science 114 

applications. The study by Mathieu & Aires (2018) swept model thresholds in order to determine 115 

the best settings for certain climate-based predictors (e.g., rainfall, temperature, drought 116 
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conditions) of corn yield, specifically assessing which predictors were best at determining corn 117 

yield losses. Another example of the usage of sliding threshold technique is the study by 118 

Manzato (2005), who swept the model threshold to optimize weather forecast model usage. They 119 

conclude that the odds ratio metric is particularly useful for maximizing another metric, the 120 

Heidke skill score. A planetary science example is that of Azari et al. (2018), who swept 121 

thresholds to determine the optimal settings for classifying hot plasma injection events in 122 

Saturn’s magnetosphere. Their follow-up study (Azari et al., 2020) assessed their injection event 123 

determination model against several machine learning approaches, showing that the ROC curves 124 

for their model are as good or better than “black box” approaches (that is, including physics 125 

often helps with event classification). Sliding thresholds are used in earth science studies, too, for 126 

example when Meade et al. (2017) swept model event settings to determine which stress metrics 127 

are most effective at predicting aftershocks following major earthquakes. 128 

All of the example usages mentioned above held the observed events fixed and varied 129 

only the model event threshold setting. This is very useful when the observed events are known; 130 

e.g., either an earthquake was recorded or one wasn’t. In addition, this technique is powerful 131 

when the “model” is actually a driver parameter and has a different value range and perhaps even 132 

different units than the observations that it is trying to sort. In these cases, sliding only the model 133 

event identification threshold is possible. 134 

Sometimes, however, the data are real numbers; to use a space weather example, 135 

magnetic perturbation values as a function of time at a particular ground station. Furthermore, 136 

you might have a model that is attempting to exactly reproduce this number set. In this particular 137 

case, there is no need to keep the observed event identification threshold constant; it can be 138 

swept along with the model event identification threshold. Such a technique was conducted by 139 

Liemohn et al. (2020) to introduce the analysis method they called the sliding threshold of 140 

observations for numeric evaluation (STONE) curve. The STONE curve is like the ROC curve in 141 

that it is a plot of POD versus POFD, but the underlying contingency tables for each point on the 142 

curve are created by sliding both event identification thresholds simultaneously. They showed 143 

that this can result in a STONE curve that varies like the ROC curve from (1,1) to (0,0) but is 144 

less restricted in its path between these endpoints. Specifically, the STONE curve does not have 145 

to be monotonic but might double back on itself in either the x or y axis direction. This is because 146 

all of the data-model paired points in the scatterplot begin in the “hits” quadrant of the 147 

contingency table when both thresholds are set very low but end in the “correct negatives” 148 

quadrant when the sweep is done and both thresholds are set very high. In between, the points 149 

usually pass through the “misses” or “false alarms” quadrants along the way as the thresholds are 150 

changed. This leads to the misses and false alarms cell counts increasing and decreasing 151 

throughout the threshold sweep, possibly resulting in times where the POD or POFD metrics 152 

temporarily increase. 153 

Liemohn et al. (2020) showed two space weather examples of the usage of the STONE 154 

curve. The resulting nonmonotonicities were qualitatively interpreted as intervals when clusters 155 

of points were quite far from the “ideal fit” diagonal line through the data-model scatterplot. That 156 

study hinted that the size of the nonmonotonic feature in the STONE curve could be related to 157 

the size or location of the cluster of overestimated or underestimated values. 158 

In this study, a systematic quantification is conducted of the relationship between features 159 

of the STONE curve and features of the data-model scatterplot. This is done by imposing known 160 

features into the scatterplot, varying the magnitude of the nonideal aspects of the distribution and 161 
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assessing the impact on the resulting STONE curve. The newfound quantitative relationships of 162 

the STONE curve to scatterplot features is applied to real-time space weather model results from 163 

the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM), compared with 164 

satellite data, and used in conjunction with other data-model comparison metrics. 165 

2. Methodology 166 

Our main method of analysis for this study is the creation of idealized distributions with 167 

randomly assigned points in both the x and y axis directions. The distributions will be known and 168 

therefore the appearance of features in the STONE curve can be systematically quantified against 169 

the imposed features of these distributions. All distributions are created using the skew norm 170 

distribution of Azzalini & Capitanio (1999), as implemented in Python. Each distribution to be 171 

analyzed is constructed with 2000 paired 172 

data-model points per scatterplot, defined 173 

with a linear relationship confined to the 174 

zero-to-one range along the x axis. The full 175 

data set is created by concatenating 10 176 

subsets of 200 points each, each with a 177 

uniform width in the x axis direction. The 178 

points along that axis are randomly 179 

distributed within each narrow range, while 180 

the values in the other axis are set with a 181 

random sampling from a Gaussian 182 

distribution with a specified mean and 183 

standard deviation relative to the unity-184 

slope, zero-offset “perfect fit” line. 185 

Figure 1 shows an example 186 

scatterplot, created with random values 187 

along the x axis and a Gaussian distribution 188 

in the y direction of spread 0.1 that follows 189 

the y = x perfect data-model fit (shown as 190 

the red diagonal line on the plot). All of the x-axis “model values” are contained within the [0,1] 191 

range; the Gaussian spread in the y-axis “data values” yields some points that are below zero, 192 

especially at low x values. Both number sets have a mean of 0.500 and the root-mean-square 193 

error (RMSE) between them is 0.099, a score very close to the imposed spread of 0.100. 194 

Two event identification threshold lines are also drawn in Figure 1 (as black dashed 195 

lines), one for the model values and the other for the data values. These two thresholds divide the 196 

scatterplot into quadrants, labeled in Figure 1 as hits (H), misses (M), false alarms (F), and 197 

correct negatives (C). The contingency table is created by simply counting the points within each 198 

quadrant. In this example, most of the points are in the two correct cells (H and C), with very few 199 

points in the two error cells (M and F). 200 

In the creation of the STONE curve, the two thresholds are swept simultaneously from 201 

very low to very high values. As the sweep continues, the cross-over point of the two thresholds 202 

will always occur at a value along the red perfect fit line. With each increment of the threshold 203 

setting, some points will move from H into the other quadrants. A few points that are very close 204 

 

Figure 1. Data-versus-model scatterplot with 

event identification thresholds drawn. The 

arrows indicate the sweep conducted to 

generate a collection of contingency tables as a 

function of threshold setting, moving both 

thresholds simultaneously.  
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to the red perfect fit line will jump directly from H into C, but most will pass first through an 205 

error cell of H or F and then on to C at some higher threshold setting. 206 

Figure 2 shows the quadrant counts for H, M, 207 

F, and C as a function of the threshold setting. The 208 

sweep is conducted with a step size of 0.01. The 209 

threshold sweep starts well below the range for either 210 

the data or model number sets, so at the very low 211 

settings, all points are in the H cell. The sweep 212 

extends beyond the top of both ranges, so at the very 213 

high settings, all of the 2000 points in the scatterplot 214 

are in the C quadrant. In between, H decreases 215 

monotonically and C increases monotonically, but M 216 

and F rise and fall as points enter from the H cell and 217 

leave to join the C cell. Because this example 218 

scatterplot has a rather tight spread around the perfect 219 

fit line, the counts for the F and M quadrants never a 220 

large fraction of the total, but right near zero, F is 221 

larger than C, and near one, M is larger than H. 222 

Metrics can be calculated from the resulting 223 

quadrant counts. For the STONE curve, the two metrics to be plotted against each other are 224 

POD, defined as hits over observed events: 225 

𝑃𝑂𝐷 =
𝐻

𝐻 +𝑀
 226 

  (1) 227 

and POFD, defined as false alarms over observed nonevents: 228 

𝑃𝑂𝐹𝐷 =
𝐹

𝐹 + 𝐶
 229 

  (2) 230 

The resulting POD and POFD values as a function of threshold are shown in the middle 231 

panel of Figure 3. Because the scatterplot is fairly tight along the perfect fit line, these two 232 

curves are mostly monotonic, but not entirely. There are small intervals where one or the other of 233 

these two metrics increase during the upward sweep of the thresholds. The resulting STONE 234 

curve is then created by plotting POD versus POFD, as shown in the upper panel of Figure 3. As 235 

a reference to help the interpretation of this plot relative to the two above it, red dots are included 236 

every 0.1 along the threshold sweep. The small increases in POD and POFD seen in Figure 3b 237 

are barely visible in the STONE curve in Figure 3a. With 2000 points in the number set and a 238 

few points in the F quadrant at a threshold setting of zero, on average there are roughly 19 points 239 

moving out of the H quadrant at each of the threshold increments between zero and one. About 240 

half of these move to M and the other half moving to F, with perhaps one or two converting 241 

directly to the C quadrant. A similar number is being converted out of M and F each threshold 242 

step. Poisson counting uncertainty dictate that there could be small fluctuations, on the order of 243 

3, in the exact number of points moving between the quadrants. It happens occasionally, then, 244 

that this Poisson noise results a larger number of points converted out of M than into M, which 245 

would cause an increase in POD. A similar situation could arise for F, resulting in a very small 246 

 

Figure 2. Quadrant counts for H, C, 

F, and M as a function of sweeping 

the data and model event 

identification thresholds 

simultaneously through the example 

scatterplot shown in Figure 1.  
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increase in POFD. For this particular number set, 247 

the maximum increase in POD is 0.0094 and the 248 

maximum increase in POFD is 0.0038, with the 249 

majority of the increases below 0.002. Increases on 250 

the order of Poisson noise fluctuations are not 251 

significant and should not be interpreted as a 252 

meaningful feature of the STONE curve. 253 

Figure 3a shows the STONE curve comes 254 

very close to the upper left (0,1) corner of POFD-255 

POD space. This indicates that these imposed x-axis 256 

“model” values are very good at sorting the y-axis 257 

“observations” into events and nonevents, 258 

regardless of the event threshold setting. It is well 259 

above the pink-dashed unity-slope line, drawn for 260 

reference (here and on all of the STONE curve plots 261 

below) to provide a comparison against the case 262 

when the model is equivalent to random chance. 263 

Several additional metrics will be included 264 

in the analysis below. Because any single metric is 265 

designed to assess a specific aspect of the data-266 

model relationship, several metrics are needed to 267 

fully quantify the goodness of the fit between two 268 

number sets. Categories for metrics have been 269 

defined by Murphy (1991), and a mapping of many 270 

event detection metrics to these categories has been 271 

provided by Liemohn et al. (2021). An accuracy 272 

metric is useful for determining the overall 273 

goodness of the fit between the two number sets. 274 

The F1 score will be used in this study:  275 

𝐹1 =
2𝐻

2𝐻 +𝑀 + 𝐹
 276 

  (3) 277 

At the lowest threshold settings, everything is a hit, 278 

so F1 will be one, its perfect score. As the thresholds 279 

sweep to higher values, hits are converted to either 280 

misses or false alarms, and F1 will drop. This 281 

decrease does not have to be monotonic, however; it could increase if there is a cluster of points 282 

that leave the M or F quadrants for the C quadrant. At the highest threshold setting, it usually 283 

drops to zero when H = 0 and then becomes undefined when all points are in the C quadrant. For 284 

example, an F1 of 0.5 could be achieved with H equal to the average of M and F while a score of 285 

0.67 could be attained with H equal to the sum of M and F. 286 

Accuracy metrics are nearly always symmetric, comparing the point count in H (perhaps 287 

also with C) against the combined value of M + F, all points in the error cells. To understand the 288 

 

Figure 3. For the example scatterplot 

shown in Figure 1 with simultaneously 

threshold sweeps, (a) POD and (b) 

POFD scores as a function of threshold 

and (c) the resulting STONE curve, 

with a red dot shown every 0.1 along 

the threshold sweep.  
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asymmetry of the contingency table, a metric from the bias category is needed. For this study, 289 

frequency bias, FB, will be adopted: 290 

𝐹𝐵 =
𝐻 + 𝐹

𝐻 +𝑀
 291 

  (4) 292 

This metric compares the points with the model value in its event state to the points with the 293 

observed value in its event state. The ideal value for FB is one, with larger value indicating that 294 

the model overpredicts events and smaller values indicating an underprediction of events. The H 295 

is both the numerator and denominator acts to mitigate the influence of small but different F and 296 

M counts; if H is much larger than both error cell counts, then FB will be close to one regardless 297 

of the imbalance between F and M. A value of FB of 0.75 can be arrived at if H = F = 2M, while 298 

a score of 1.33 could be from H = M = 2F. 299 

Another useful category to include in the analysis is association, which in the case of 300 

event detection metrics is assessing the balance of the contingency table and how well that 301 

balance favors the two good quadrants. We will use the odds ratio skill score, ORSS, which is 302 

typically written in this form: 303 

𝑂𝑅𝑆𝑆 =
(𝐻 ∙ 𝐶) − (𝐹 ∙ 𝑀)

(𝐻 ∙ 𝐶) + (𝐹 ∙ 𝑀)
 304 

  (5) 305 

ORSS varies from a perfect score of +1 to a worst-case score of -1, with scores above zero 306 

indicating that the model is better than random chance. If the H times C product is double the 307 

value of the F times M product, then ORSS will be 0.33. If H and C are equal and double the 308 

values of F and M (also equal), then this combination yields ORSS = 0.6. 309 

The final metric to be considered in this analysis is the Heidke skill score, HSS. Skill 310 

scores compare a metric score of the data-model comparison against that same metric for a 311 

reference model. In the case of HSS, the metric is “proportion correct” and the reference model 312 

is random chance, as given by the expected values for the contingency table cells given the same 313 

column and row totals. The formula for HSS is this: 314 

𝐻𝑆𝑆 =
2[(𝐻 ∙ 𝐶) − (𝐹 ∙ 𝑀)]

(𝐻 +𝑀)(𝑀 + 𝐶) + (𝐻 + 𝐹)(𝐹 + 𝐶)
 315 

  (6) 316 

If F = M = 0, then HSS will be one, its perfect score. If H = C = 0, then HSS reverts to -317 

FM/(F2+M2), which is either zero if one or the other of F or M is zero and drops to its lowest 318 

value of -1 if F and M are equal. Any HSS score greater than zero indicates that the model is 319 

better than random chance. While this is sometimes taken as the threshold for a good HSS value, 320 

it is a relatively low bar to satisfy. If H = C = 2F = 2M, the case of a well-balanced contingency 321 

table with hits equal to the sum of the error cell counts, then HSS = 0.33.  322 

These four additional metrics will be reported along with POD, POFD, and the STONE 323 

curve to assess the connection between known features in the scatterplot and calculated 324 

signatures in the metric values. They are shown in Figure 3c for the example distribution being 325 

considered in this section. At a threshold setting of zero, nearly all of the points are in the H 326 

quadrant, a few (those with negative y values) are in the F quadrant, and M = C = 0. This results 327 
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in F1 very close to one, FB slightly larger than one, an undefined ORSS, and HSS = 0. The 328 

values for these 4 metrics are close to one for most of the threshold sweep, until the threshold 329 

approaches a setting of one, in which case three of the four metrics plunge to zero. At a threshold 330 

setting of one, nearly all of the points are in the C quadrant, a few are in the M quadrant (those 331 

with y values above one), and H = F = 0. For these values, F1, FB, and HSS are all zero and 332 

ORSS is undefined. 333 

To conduct an assessment of how the STONE curve relates to features in the underlying 334 

scatterplot, two parameters are adjusted to this baseline data-model number set collection. The 335 

first is the spread of the distribution around the perfect-fit line, which will be systematically 336 

increased in either all or part of the x domain. The second parameter is the deviation of the local 337 

mean of the data minus model error distribution away from the perfect fit line. This change will 338 

be made for specific intervals of the x domain.  339 

3. Results 340 

Here we present the resulting STONE curves from the systematic variation of the data-341 

model scatterplots. In all of the plots below, 2000 data-model pairs are used, with a threshold 342 

step size of 0.01. For each threshold setting, the points in each quadrant are counted, a 343 

contingency table is created, and the metrics listed above are calculated. 344 

3.1. Variations in spread 345 

 Figure 4 shows a set of distributions with different settings for RMSE between the 346 

y-axis “data” and x-axis “model” number sets. The same RMSE is applied across the full (0,1) x 347 

domain. The top row presents the scatterplot, the second row the resulting STONE curve, the 348 

third row shows the underlying POD and POFD curves used to make the STONE curve, and the 349 

fourth row presents several other data-model comparison metrics. 350 

 It is seen that the STONE curves are very close to a perfect value in the upper-left 351 

corner (see Figure 4b), but pull away from this ideal as RMSE is increased. None of the STONE 352 

curves, however, include significant nonmonotonic features. This is revealed by the nearly 353 

monotonic curves of POD and POFD; while some very small increases are seen in every curve 354 

due to Poisson counting noise, the POD and POFD curves steadily decrease throughout the 355 

threshold sweep from low to high values. For the largest RMSE case, the POD and POFD curves 356 

(see in Figure 4o) lack the steep slopes seen for the other RMSE settings, indicating that this 357 

spread is seriously degrading the quality of the data-model comparison. The POD values are still 358 

larger than the POFD values for all threshold settings, though, so the STONE curve in Figure 4n 359 

is above the unity-slope “random chance” reference line. 360 

The additional metrics in the lower row are shown for context. When the STONE curve is 361 

very close to the upper-left corner, all four of the chosen metrics are close to one for most of the 362 

zero-to-one threshold setting range. As the RMSE increases, these metrics worsen in some or all 363 

of the threshold setting range. For example, for the smallest RMSE setting used in Figure 4, HSS 364 

peaks at 0.93 (seen in Figure 4d), while for largest RMSE, HSS only reaches a maximum value 365 

of 0.45 (Figure 4p). This is still a number indicating substantial skill relative to random chance, 366 

but the interpretation of such a value for HSS depends on the specific data-model comparison 367 

being conducted.  368 
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Figure 5 shows a slightly different case, in which RMSE is only increased at the high end 369 

of the x domain. To create these distributions, the x domain was segmented into 10 equal 370 

intervals, each with 200 randomly distributed values. The corresponding y values are a Gaussian 371 

spread around the x axis value, with an imposed RMSE of 0.1 for the first 6 bins and then 372 

incrementally increasing the RMSE in the remaining 4 bins. For the left column, the increase 373 

increment is 0.01, so the final x-axis bin has an imposed RMSE of 0.14. The second column has 374 

an increment of 0.02 (maximum RMSE in the last bin of 0.18), the third column has an 375 

increment of 0.03 (maximum RMSE of 0.22), and the fourth column has an increment of 0.04 376 

(maximum RMSE of 0.26). The panels of Figure 5 are in the same format as those of Figure 4. 377 

For this group of distributions, the STONE curves in the second row show the 378 

progression from monotonicity to a curve containing a nonmonotonic wiggle. Here, a “wiggle” is 379 

defined as a statistically significant increase in the x-axis value, POFD, while the y-axis value, 380 

 

Figure 4. Scatterplots (top row), the corresponding STONE curves (second row), its 

underlying POD and POFD values as a function of threshold (third row), as well as several 

other metrics versus threshold (fourth row). The formats of the plots are identical to those in 

Figures 1 and 3. The four columns have data-model errors with Gaussian distributions with no 

offset but different spreads, as indicated. Note that the y-axis scales in the top row are 

different for each panel. 
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POD, continues to decrease. That is, a wiggle is a left-to-right oscillation in the STONE curve. 381 

This is the case for the two column on the right, seen in Figures 5j and 5n. These increases are 382 

seen in the POFD values displayed in Figures 5k and 5o. The wiggle is very subtle in Figure 5j, 383 

but it exists for a relatively large number of threshold steps. For a threshold setting of 0.58, the 384 

POFD value in Figure 5j is 0.089; at a threshold of 0.67 (9 steps later), POFD has risen to 0.102. 385 

This increase is larger than the Poisson noise fluctuations and indicates a response to a real 386 

feature in the relationship between the two number sets. The increase in POFD is even more 387 

dramatic in Figure 5o, rising from a relative minimum of 0.097 at a threshold of 0.41 up to a 388 

relative maximum of 0.135 at a threshold of 0.57. This results in a small but noticeable wiggle in 389 

the STONE curve, just at the moment of its closest approach to the upper-left corner. 390 

The wiggle can be related to features in other metric values as a function of threshold 391 

setting. It is particularly seen in FB, which increases slightly above unity in the vicinity of the 392 

wiggle. As seen in equation (4), FB includes F in the numerator, indicating that at these 393 

 

Figure 5. Like Figure 4, but systematically varying the width of the distribution but only for x 

> 0.6. All distributions have  = 0.10 for x < 0.6, then increase within each 0.1 interval by a 

given increment: left column by 0.01, second column by 0.02, third column by 0.03, and right 

column by 0.04. Again note that the y-axis ranges in the top row are all slightly different.  
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threshold settings, there is an imbalance in the contingency table between the two error cells, 394 

specifically an excess of F counts relative to M. As points preferentially move from H to F 395 

(instead of equally to M), FB and POFD systematically increase. As the threshold continues to 396 

increase, eventually these points will move from F to C, and both FB and POFD will be reduced. 397 

The other metrics, in particular ORSS and HSS, show slight downward kinks beginning at the 398 

same threshold as the increase in FB and POFD. 399 

3.2. Variations in both spread and offset 400 

Another test is to not only vary the spread but also impose a slight shift of the bias 401 

between the y values relative to the x values. The plots from this experiment are shown in Figure 402 

6. The distributions are constructed in the same manner as those in Figure 5, but in addition to an 403 

 

Figure 6. Like Figure 5, but also varying the offset of the Gaussian error distribution away 

from the unity-slope line. All distributions have  = 0.10 and y = 0 for x < 0.6, then increase 

the spread within each 0.1 interval by 0.03. Each column has a different negative y shift at 

high x: left column by 0.01 bin , second column by 0.02, third column by 0.03, and right 

column by 0.04. Note that the y-axis ranges are unique for each panel in both the first and last 

rows.  
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incremental increase in RMSE for the last 4 x-axis bins, an increment shift in the mean value 404 

between the 200 x and y values in that bin is also imposed. Because Figure 5 reveals a slight 405 

wiggle for an incremental RMSE change of 0.03, this RMSE increment is imposed for all of the 406 

distributions in Figure 6. The bias increment, always downward for this set, is varied from -0.1 in 407 

the first column (for a maximum offset of -0.4 in the final x-axis bin) up to an increment of -0.4 408 

(for a maximum offset of -0.16).  409 

The wiggle in the STONE curves is visible in every panel of the second row of Figure 6. 410 

For the smallest offset increment, the STONE curve (seen in Figure 6b) wiggle is small and the 411 

increase in POFD occurs near a threshold setting of 0.6 (seen in Figure 6c). For the other three 412 

bias increment settings, the STONE curve wiggle is clear, with the POFD increase beginning at a 413 

threshold setting around a value of 0.4. This is because the points in the final two x-axis bins 414 

have a spread and bias setting that allows some points to be at y values at low as 0.4. This begins 415 

the imbalance of the conversion of points out of the H quadrant, now favoring F over M.  416 

The additional metrics shown in the lower row reflect this imbalance of F over M. It is 417 

most clearly seen in the FB metric, peaking at a value of 1.87 for the largest imposed offset 418 

increment (Figure 6p). As seen in Figure 5, the other metrics have a downward change in slope 419 

at the same threshold setting as the initial increase in FB and POFD. Before this downward trend, 420 

though, the metrics have very good scores because the imposed spread is small for the left 421 

section of the distribution. 422 

Figure 7 shows a very similar experiment as that shown in Figure 6 but this time 423 

imposing a positive bias between the y and x values in the four highest x-axis bins. Exactly the 424 

same settings are used for this set of distributions, with a 0.1 spread for x below 0.6, then a 0.3 425 

RMSE setting for x greater than 0.6. The offsets are incremented in these bins of increased 426 

spread, with imposed increments of +0.01, +0.02, +0.03, and +0.04 for the four distributions, 427 

respectively. 428 

In this case, only the first distribution has a STONE curve with a very subtle but 429 

statistically significant wiggle. From Figure 7c, at a threshold setting of 0.48, POFD is 0.092; it 430 

then rises to 0.107 at a threshold of 0.58. This is a similar feature to what was seen in the third 431 

column of Figure 5. The other three STONE curves in the second row of Figure 7 have no 432 

significant features beyond Poisson noise fluctuations. The metrics in the last row of Figure 7 433 

reflect this subtle or nonexistent feature set in the STONE curves. In Figure 4d, the first 434 

distribution with the smallest imposed offset has a slight increase in FB. All of the distributions, 435 

though, have an FB curve that drops below unity at lower x values than previously seen in 436 

Figures 4 – 6. The other three metrics (F1, ORSS, and HSS) have nearly identical curves for the 437 

four distributions. 438 

The distributions used in Figure 7 are included to illustrate the point that not all offsets 439 

result in nonmonotonic features in the STONE curve. This set has an offset that is positive, so 440 

the increased spread at large x does not result in additional points in the F quadrant. They remain 441 

in the H quadrant until the final threshold steps of the sweep. In fact, the F quadrant has a 442 

reduced count for high x values for these distributions, causing the early downward shift in FB. 443 

The upward shift of the distributions does not, however, result in an increased count in M until 444 

the very last threshold steps of the sweep. So POD never undergoes an increase for these 445 

distributions. In short, this upward offset at high x values is not revealed by the STONE curve. 446 
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As another test case to further reveal features of the STONE curve, Figure 8 shows a set 447 

of distributions that are essentially the inverse of those used in Figure 6. That is, an increased 448 

spread (RMSE of 0.3) and upward offset are applied at low x values (below 0.4), while the 449 

distribution above x = 0.4 has no offset and an imposed RMSE of 0.1 (the nominal case). The 450 

offset values are incremented the same as in Figure 6, but now upward so the distributions 451 

remain more within the (0,1) range in the y values. The offset is largest in the lowest x-axis bin. 452 

The STONE curves in the second row of Figure 8 all include a ripple feature. A “ripple” 453 

is defined here as a statistically significant increase in the y-axis value, POD, while the x-axis 454 

value, POFD, continues to decrease. More plainly, a ripple is an up-and-down oscillation in the 455 

STONE curve. The POFD curves in the third row of Figure 8 include small fluctuations due to 456 

Poisson noise in the distributions but the increases in POD that is seen in these plots exist over a 457 

larger span of thresholds and reveal an important feature of the underlying data-model 458 

comparison. In particular, they show that there is a cluster of points in the M quadrant that are 459 

being quickly converted into the C quadrant, faster than new points are entering the M quadrant. 460 

Remembering equation (1), this causes a systematic decrease in the denominator of POD and 461 

 

Figure 7. Like Figure 6 except with positive shifts in the Gaussian peak relative to the unity 

slope line.  
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therefore an increase in this metric. The larger the spread and upward offset in the points at low x 462 

values, the larger the cluster in the M quadrant that is not removed until high threshold settings, 463 

resulting in a clear increase in POD and therefore a ripple in the STONE curve. 464 

For the first distribution with the smallest imposed offset, the ripple is subtle. The POD 465 

curve in Figure 8c reaches a relative minimum value of 0.871 at a threshold of 0.41 and a relative 466 

maximum of 0.899 11 bins later at a threshold of 0.52. The change in POD for the next-largest 467 

offset increment (Figure 4f) is already more clearly seen, with a relative minimum of 0.867 at a 468 

threshold of 0.34, rising to a POD value of 0.901 at a threshold of 0.58. Because it occurs over a 469 

longer interval of threshold settings, the ripple is more apparent in the STONE curve of Figure 8f 470 

than the one in Figure 8b. The largest setting for the imposed offset has a very clear ripple, with 471 

a POD change of 0.051 from relative minimum to maximum, but the span of x values over which 472 

this occurs is nearly identical to the other cases in this set. 473 

The additional metrics shown in the last row of Figure 8 are somewhat different than 474 

their counterparts in earlier figures. The F1 metric scores decrease sooner (at lower threshold 475 

settings) than earlier cases, although they remain quite good through most of the threshold 476 

 

Figure 8. Like Figure 6 except with the increasing spread and positive shift of the error 

distribution at low x value, below 0.4. 
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sweep. The FB scores drop below unity at low thresholds, then increase back to unity for the 477 

second half of the sweep before plummeting to zero as all points are converted to C. ORSS 478 

appears to be a mirror image of its shape in previous plots, being reduced at the low threshold 479 

settings and better at the higher settings. Finally, HSS also appears to be a mirror image of earlier 480 

plots, with lower values at low thresholds and higher values at higher thresholds. All of these 481 

features are caused by the imposed difference between the y and x values at low x; once the 482 

thresholds increase to a point where these points with large differences are all contained within 483 

the C quadrant, they no longer influence the metrics, which return to their values from the 484 

nominal distribution case presented in Figure 3.  485 

3.3. Variations in offset 486 

The two sections above show that an offset is more effective than an increased spread at 487 

creating a feature of interest in the STONE curve. To further examine this relationship, the 488 

RMSE of the y-value Gaussian distribution will held constant at 0.1 and systematic offsets at 489 

different x ranges will be imposed. 490 

The first of these assessments is shown in Figure 9. In the creation of these distributions, 491 

three of the x-axis bins are given negative y-value offsets. The 200 points in the x = [0.7, 0.8] 492 

interval are defined with the maximum offset (-0.025, -0.05, -0.1, and -0.2 for the four columns 493 

in Figure 9, respectively), and the two x-axis intervals on either side of this (the [0.6, 0.7] and 494 

[0.8, 0.9] intervals) are given half of that bias. The fourth distribution, with an offset of twice the 495 

spread in the x = [0.7, 0.8] interval, has very few points above the unity-slope line in this x range. 496 

The STONE curves for this set of distributions are shown in the second row of Figure 9. 497 

Three of the four have a feature that appears as a downward-to-the-right diagonal excursion of 498 

the STONE curve that returns nearly along itself. This feature is especially evident in the 499 

STONE curves from the larger offsets but is present even in the curve for the smallest offset. As 500 

seen in the POD and POFD curves plotted in the third row of Figure 9, the two features of wiggle 501 

and ripple are both occurring in these STONE curves.  502 

Let’s consider the most obvious example, the largest offset setting, and the POD and 503 

POFD curves in Figure 9o. At lower thresholds, POFD quickly drops to a relative minimum of 504 

0.120 at a threshold setting of 0.36. As the threshold rises from this level, a few points from the 505 

downward-shifted distribution at high x values move from the H to F quadrant. POFD then 506 

steadily rises to a relative maximum of 0.209 at a threshold of 0.56, after which it then decreases 507 

towards zero. This rise in POFD creates a wiggle in the STONE curve. The POD curve appears 508 

to be making a steady decline from one towards zero, but stops its descent at a threshold of 0.62 509 

(at which point POD = 0.850). It then increases to a new maximum of 0.996 at a threshold of 510 

0.82, after which it quickly drops to zero. This rise in POD is caused by the lack of points above 511 

the unity-slope line in the x = [0.7 0.8] interval; very few points shifted from H to M, yet many 512 

left M for C. This yields a smaller denominator for POD and the metric increases, creating a 513 

ripple in the STONE curve. The POD and POFD curve increases are less pronounced in Figures 514 

9g and 9k, but still exist and are large enough to cause a noticeable feature in the corresponding 515 

STONE curves of Figures 9f and 9j. The combination of a wiggle immediately followed by a 516 

ripple forms the nearly diagonal line excursion in the STONE curve.  517 

Examining Figure 9b, the STONE curve from the distribution with the smallest imposed 518 

shift, it is seen that it has a small feature of this same type, occurring between threshold settings 519 
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of 0.6 to 0.8. The change in POD and POFD are both 0.010, just a bit more than the maximum 520 

swing caused by Poisson noise (as evaluated above in Figure 3). This is, therefore, a significant 521 

feature of the same type and origin as seen in the other STONE curves of Figure 9, but the 522 

increases are difficult to distinguish in the POD and POFD curves of Figure 9c because they are 523 

so close to the noise level. 524 

The last row of Figure 9 shows how this diagonal-line feature in the STONE curve relates 525 

to other metrics. At the start of the diagonal excursion, where POFD begins its increase, all of the 526 

chosen metrics worsen, with F1, ORSS, and HSS starting downward trends and FB increasing 527 

away from unity. When the STONE curve starts its return along the diagonal – when POFD 528 

starts to decline and POD starts to increase – it is seen that F1 ORSS, and HSS reverse their trend 529 

and recover somewhat. FB continues to rise away from unity, though, because decrease in F 530 

count is slower than the decrease in M count.  531 

An analogous test can be conducted for a systematic positive shift in the distribution. 532 

This is shown in Figure 10. For optimal effect on the STONE curve, the shift is imposed at low x 533 

 

Figure 9. Like Figure 4 but with a constant spread of 0.1 and a negatively shifting bias to the 

error distribution in three x-axis bins (between 0.6 and 0.9), two halfway and the middle the 

full shift. From left to right, the maximum shifts are -0.025, -0.05, -0.10, and -0.20.  
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values, so the y values stay mostly within the (0,1) range. The largest offset is applied in the x = 534 

[0.2, 0.3] interval, with the two neighboring intervals given half of the full bias. The amplitudes 535 

of the shifts are the same size as those imposed for the distributions in Figure 9. 536 

The resulting effect of a positive shift on the STONE curves presented in the second row 537 

of Figure 10 is to create the same diagonal excursion as seen in Figure 9. The main difference 538 

with the previous set is that the excursion occurs at an lower threshold setting. For the smallest 539 

offset , the increase is only significant for POFD, not for POD, so the STONE curve in Figure 540 

10b only exhibits a small wiggle near a threshold of 0.3. For the next column, the STONE curve 541 

in Figure 10f contains a diagonal excursion but, like Figure 9b, it is barely above the Poisson 542 

noise level. The diagonal excursion is more visible in the STONE curves of the next two 543 

examples, Figure 10j and 10n. For these distributions, the POFD curves reach a relative 544 

minimum near a threshold of 0.2, rise to a peak near a threshold of 0.4, at which POD reaches a 545 

relative minimum and begins its ascent to a maximum near a threshold of 0.6.  546 

The other metrics plotted in the final row of Figure 10 only have substantial features for 547 

the largest of the imposed shifts (Figure 10p). Because the shift is positive, the M quadrant has 548 

excess points compared to F, so FB drops to values below unity. Even for the large setting, 549 

 

Figure 10. Like Figure 9 but with a positive shift in 3 x-axis bins (between 0.1 and 0.4).  
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though, FB never attains a poor score; it is always above 0.8 in the threshold region of the 550 

diagonal excursion of the STONE curve. The HSS curve in Figure 10p is a nearly perfect mirror 551 

image of the HSS curve in Figure 9p. 552 

The final assessment to conduct with shifting the distribution is shown in Figure 11, in 553 

which two shifts are applied. The procedure is a superposition of the two techniques used for the 554 

distributions in Figure 9 and 10, offsetting the distributions by a maximum of 0.2 in the y 555 

direction in two bins (both x = [0.2, 0.3] and x = [0.7, 0.8]), in either the upward or downward 556 

direction. 557 

The first column of Figure 11 has a downward shift at both low and high x values. At low 558 

threshold settings, a few points pass through the M quadrant but, due to the downward shift in 559 

the x = [0.1, 0.4] interval, the points in the M quadrant are evacuated and not replaced. This 560 

yields a relative minimum in POD near a threshold of 0.1 (Figure 11c) and results in a shallow 561 

ripple in the STONE curve (Figure 11b). As the threshold passing a setting of 0.4, it is now 562 

completely past the low-x-value downward shifted part of the distribution (all of those points are 563 

not in the C quadrant). From here, the STONE curve mimics that in Figure 9n. The downward 564 

 

Figure 11. Like Figure 9 but with two shifts in 3 x-axis bins (one between 0.1 and 0.4, and 

another between 0.6 and 0.9).   
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shift at in the high x range then contributes a large number of points into the F quadrant, causing 565 

a rise in POFD and therefore a wiggle in the STONE curve. This is immediately followed by an 566 

increase in POD and the return from the wiggle has a superimposed ripple, making the STONE 567 

curve retrace its diagonal excursion. The other metrics for this distribution, shown in Figure 11d, 568 

resemble those of Figure 9p with the added features at low threshold values of a reduced ORSS 569 

and an elevated FB. 570 

The second column of Figure 11 presents the case of two upward shifts in the distribution 571 

relative to the unity-slope line. Because of the upward shift at low x values, the first half of the 572 

STONE curve in Figure 11f resembles that of Figure 10n. At higher thresholds, however, the 573 

second upward shift causes a dearth of F quadrant counts, with a nearly perfect POFD (equal to 574 

0.002) at a threshold setting of 0.73. At the end of the threshold sweep, the return of the 575 

distribution to being centered on the unity slope line causes an increase in F quadrant counts and 576 

therefore a slight increase in POFD to 0.038 at a threshold setting of 0.90. This appears as a 577 

wiggle in the STONE curve as it descends nearly parallel to the y axis towards its high-threshold 578 

(0,0) location. The other metrics, shown in Figure 11h, resemble those in Figure 10p, except that 579 

all of the metrics are a bit worse at the high-end of the threshold sweep. 580 

The third column of Figure 11 is the scenario with a downward shift in the low-x range 581 

and an upward shift in the high-x range. These options were not explored in the distributions of 582 

Figures 9 and 10, but were part of the distributions considered in the first two columns of Figure 583 

11. This distribution’s STONE curve, shown in Figure 11j, is the nearly perfect case of the x-axis 584 

“model” values correctly sorting the y-axis “data” values into events for all threshold settings. It 585 

is not quite perfect, though. The few points above the unity-slope line at very-low x values 586 

results in a ripple in the STONE curve as it runs nearly parallel to the top axis, while the few 587 

points below the unity-slope line at very-high x values produces a wiggle in the STONE curve 588 

while it descends nearly parallel to the left axis. In Figure 11l, it is seen that both the ORSS and 589 

HSS curves are nearly symmetric about a threshold of 0.5, with both attaining excellent values in 590 

the middle of the threshold sweep. Because F1 and FB are heavily dependent on H, which 591 

monotonically decreases as the threshold is swept, these two metrics do not exhibit symmetry. 592 

Finally, the fourth column of Figure 11 shows the case of an upward shift at low-x values 593 

and a downward shift at high-x values. This is the combination of the fourth case from Figures 9 594 

and 10. The scatterplot in Figure 11m shows a broad interval in the center from roughly x = 0.25 595 

to x = 0.75 in which the y axis distribution has essentially no slope. This imposed configuration 596 

has profound implications for the STONE curve and other metrics. Figure 11n shows that the 597 

STONE curve twice comes very close to the upper-left (0,1) corner of POFD-POD space; at a 598 

threshold of 0.21 it attains (0.007, 0.904) and then at a threshold setting of 0.80 it reaches (0.082, 599 

0.988). In between these two thresholds, though, the STONE curve undergoes a wiggle and then 600 

a ripple. First, POFD increases as points from the “zero slope” portion of the distribution enter 601 

the F quadrant. While POFD is still increasing, the increasing threshold makes the points at low-602 

x values above the unity-slope line leave the M quadrant for the C quadrant, increasing POD. 603 

This offset of the maximum in POFD and the minimum in POD is clearly seen in Figure 11o. 604 

The effect is that the ripple begins before the wiggle reaches its maximum excursion, so instead 605 

of the STONE curve retracing its original path, it now swings in an more circular pattern. After 606 

reaching its peak POD value and second closest approach to the (0,1) corner, the STONE curve 607 

then plummets along the left axis. The metrics in the final panel (Figure 11p) show that the 608 

ORSS and HSS curves are again symmetric about a threshold of 0.5 with a relative minimum 609 
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score at the middle of the sweep. F1 and FB are not symmetric and have essentially the worst 610 

elements of the corresponding curves from Figures 9p and 10p. 611 

3.4. Variations in event identification threshold sweep stepsize 612 

One more assessment to conduct is with respect to the threshold step size. This is shown 613 

in Figure 12, for which four different threshold increment settings were used four of the 614 

distributions above (one each from Figures 5 and 10, plus two from Figure 11). Figure 12 is 615 

shown in a different format than Figures 4 – 11, showing only the STONE curves. The number 616 

of steps for the top row is very coarse, then it was increased by a factor of three to four between 617 

each adjacent row in Figure 12 (with the 100 steps used above as the version between the third 618 

and fourth row). 619 

 

Figure 12. Changing the resolution of the threshold sweep when calculating the STONE 

curve and other metrics. Four of the distributions from previous figures were used, as 

indicated above each column. The original STONE curve above was conducted with 100 

steps between 0 and 1; these STONE curves were created with a different number of steps in 

that interval: 5 for the top row, 10 for the second row, 30 for the third row, and 400 for the 

fourth row. 
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It is seen in the STONE curves in each column of Figure 12 are essentially the same. 620 

Nearly all significant features are still visible in the top row with a threshold step size of 0.2. The 621 

only feature that is missing is the subtle wiggle and ripple in the third column. With a step size of 622 

0.1, all main features are captured by the sweep. The only addition with more threshold steps is 623 

Poisson noise, the small-scale fluctuations along the curve. With 30 steps, there are with each 624 

threshold step, on average, about 30 points moving from H to M and another 30 moving to F 625 

(plus, perhaps, a few moving directly to C), and on average a similar number moving from M 626 

and F to C. Poisson noise on 30 counts rounds to 5, and the two counts (in and out of an error 627 

cell) will very rarely yield a fluctuation in POD or POFD from counting statistical uncertainty. 628 

With 400 steps, the 30 number drops to a little over 2, for which the Poisson noise over half of 629 

this value. Therefore, it will regularly experience counting uncertainty fluctuations. For the plots 630 

above with 100 steps, the 30 number is roughly 10. For this step size and average number of 631 

points moving from quadrant to quadrant, fluctuations are uncommon but expected. For these 632 

test distributions with 2000 points in the scatterplot, 100 steps across the domain of the x-axis 633 

“model” values is about the limit for a good STONE curve creation. As shown in Figure 12, 634 

fewer steps would still work to reveal most, if not all, of the main features of interest. 635 

4. Discussion 636 

The STONE curve is a data-model comparison tool that can be used when both the model 637 

and observed values are sets of real numbers and the model is trying to exactly reproduce the 638 

corresponding data. It has a calculation concept that is nearly identical to the ROC curve, 639 

plotting POD versus POFD, but with the threshold sweep occurring for both the model and data 640 

event identification thresholds (not just the model threshold, as is done for the ROC curve). This 641 

simultaneous sweep of both thresholds is only possible with the above-mentioned stipulations on 642 

the number sets. 643 

As the threshold is swept from low to high values, the points in the data-model scatterplot 644 

are systematically shifting from one quadrant to another. At a very low threshold, all points are  645 

in the H quadrant. As the threshold increases, the points change from H to C, but usually not 646 

directly, most points visit the F or M quadrant along the way. The quadrant counts change in this 647 

way as the event identification threshold is increased: H always decreases; C always increases; 648 

and F and M increase then decrease (starting and ending at zero). 649 

In general, the shape of a STONE curve resembles a ROC curve. For low thresholds, it 650 

has a value of (1,1) in POFD-POD space. It then moves “down and to the left” as the threshold is 651 

increased, eventually reaching the (0,0) corner for very high threshold settings. For well-behaved 652 

“good fit” data-model comparisons, the STONE curve is monotonic, like the ROC curve. The 653 

exception to this is if the threshold sweep step size is small and the number of points shifting 654 

from quadrant to quadrant with each step is, on average, less than 10. In this case, there will be 655 

small-scale fluctuations in the STONE curve due to the randomness of Poisson counting 656 

uncertainty. Such elements within a STONE curve are typically not important.  657 

It has been shown above that there are two key nonmonotonic features of the STONE 658 

curve, a right-then-left wiggle and an up-then-down ripple. These are produced when there are 659 

clusters of points away from the unity-slope perfect fit line. A wiggle is produced when there is a 660 

small cluster of model over-predictions (points below the perfect fit line), producing an increase 661 

in F counts and therefore an increase in POFD over a small interval of the threshold sweep. A 662 

ripple is created in the STONE curve when there is a small cluster of model under-predictions 663 
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(points above the perfect fit line), resulting in increased M for that part of the sweep. As these 664 

points leave the M quadrant, there is a corresponding rise in POD. If there are still many points 665 

spread around the perfect fit line, then the cluster will only influence F or M, producing either a 666 

wiggle or a ripple, respectively. If, however, the cluster is because of a shift in the distribution 667 

and there are few points spread around the perfect fit line, then the increase in one error quadrant 668 

corresponds to a decrease in the other, producing a wiggle-ripple combination. If this shift of the 669 

distribution exists over only a small, isolated portion of the domain, then the STONE curve will 670 

exhibit diagonal excursion and then retrace itself. If, however, there are upward and downward 671 

offsets close to each other in the domain, then the STONE curve will develop a circular pattern. 672 

If there is large spread of the points relative to the perfect fit line but this spread is fairly 673 

uniform across the model value space, then the STONE curve will be monotonic. The bigger the 674 

spread, the farther the STONE curve will be from the ideal (0,1) value in the upper left corner of 675 

POFD-POD space, but it will not exhibit nonmonotonic features. A wiggle or ripple feature 676 

requires a cluster away from the perfect fit line, uniform spread will not cause these STONE 677 

curve properties. If, however, the spread around the perfect fit line is only in one part of the 678 

value domain space, then this will appear as a cluster and the STONE curve will include a wiggle 679 

or ripple. 680 

It was shown above that these wiggle and ripple characteristics of the STONE curve will 681 

appear if the local RMSE of the distribution (spread of observed values within a very limited 682 

model value range) reaches a fractional value of 0.2 of the full model value domain. It will also 683 

appear if a local bias of the distribution (difference of the mean of the observed values and mean 684 

of the model values within a very limited model value range) is more than half of the local 685 

RMSE. Deviations larger than either of these thresholds result in clear wiggles and/or ripples in 686 

the STONE curve. 687 

These wiggles and ripples in the STONE curve are useful for identifying the domain 688 

values where these clusters occur. These clusters will influence other metrics, as shown above 689 

for a few well-known formulas. Together, the feature in the STONE curve and the variation in 690 

the other metrics provide a robust description of the data-model relationship. It is highly 691 

encouraged to use the STONE curve with metrics from several categories (as discussed by 692 

Liemohn et al., 2021), including subsetting around the interval of the cluster. 693 

This entire analysis has been conducted with idealized distributions over normalized 694 

value domains. Two issues should be stated regarding this. The first is that no derivations were 695 

conducted in this analysis. It is left as future work for a more theoretical investigation of STONE 696 

curve features relative to characteristics of the scatterplot distribution. The second is that, when 697 

applying the STONE curve to a specific data-model comparison, the scatterplot could be far 698 

more complicated than the simple variations of the imposed distributions above. It is hoped that 699 

the idealized nature of the distributions in this study provide clear connections between the 700 

scatterplot and the STONE curve. All of the imposed distributions used above were random 701 

values from Gaussian functions; real distributions might not have a Gaussian histogram, which 702 

could complicate the interpretation. We hope, however, that this work provides guidance to using 703 

the STONE curve with real data-model comparisons. 704 



Confidential manuscript submitted to Space Weather 

 24 

5. Application to Space Weather: IMPTAM-GOES comparisons 705 

As an application of these relationships between scatterplot and STONE curve features, 706 

let’s use the same example as in Liemohn et al. (2020), specifically the prediction of energetic 707 

electron observations (40 keV energy channel) from the geosynchronous orbiting environmental 708 

satellites (GOES) spacecraft (Rowland & Weigel, 2012) to real-time output from the inner 709 

magnetosphere particle transport and acceleration model (IMPTAM). IMPTAM has been 710 

running in real time for nearly a decade (Ganushkina et al., 2015), and these two particular 711 

number sets were originally compared by Ganushkina et al. (2019). The time period is from 712 

September 2013 through March 2015 and, as with Liemohn et al. (2020), the magnetic local time 713 

(MLT) of the comparison will be restricted to the dawn sector (specifically, the 03 to 09 MLT 714 

range), when the model performs the best of any MLT sector. 715 

Figure 13 shows a set of plots for this data-model comparison. The first four plots are 716 

similar to what has been shown above, while the final two plots are new: histograms of subsets 717 

of one the number sets. Figure 13e shows discrimination subsetting, IMPTAM histograms using 718 

ranges of the GOES values, while Figure 13f is reliability subsetting, showing GOES histograms 719 

using ranges of the IMPTAM values.  720 

To go along with these plots are statistics of the number sets, presented in Table 1. The 721 

first row of values are for the full number sets, while the two lower groupings of values are for 722 

the discrimination and reliability subsetting intervals, respectively. Listed are the mean, standard 723 

deviation, and skewness coefficient (using the definitions in Liemohn et al., 2021), for both the 724 

GOES observations and the IMPTAM output, the RMSE score between them, along with the 725 

number of data-model pairs in each interval. 726 

 727 

Table 1. Statistics of the number sets for the IMPTAM-GOES comparison 728 

 Full number set statistics 

Interval 
Data 

Mean 

Data St. 

Dev. 

Data 

Skew 

Model 

Mean 

Model St. 

Dev. 

Model 

Skew 
RMSE 

Count in 

subset 

Full range 4.58 0.46 0.4 4.57 0.77 -0.2 0.7 28659 

 Discrimination subsetting (based on GOES value ranges) 

Interval  

(log flux) 

Data 

Mean 

Data St. 

Dev. 

Data 

Skew 

Model 

Mean 

Model St. 

Dev. 

Model 

Skew 
RMSE 

Count in 

subset 

Up to 4.0 3.83 0.18 -3.9 3.91 0.77 1.0 0.8 2367 

4.0 to 4.5 4.30 0.14 -0.4 4.36 0.73 0.08 0.7 11533 

4.5 to 5.0 4.67 0.13 0.8 4.76 0.68 -0.3 0.7 9241 

5.0 to 5.5 5.25 0.14 0.02 4.94 0.63 -0.5 0.7 4347 

5.5 to 6.0 5.63 0.10 1.1 5.10 0.68 -0.8 0.9 1165 

6.0 and above 6.14 0.04 -0.2 5.7 0.08 0.5 0.5 6 

 Reliability subsetting (based on IMPTAM value ranges) 

Interval  

(log flux) 

Data 

Mean 

Data St. 

Dev. 

Data 

Skew 

Model 

Mean 

Model St. 

Dev. 

Model 

Skew 
RMSE 

Count in 

subset 

Up to 4.0 4.30 0.39 0.8 3.56 0.35 -1.0 0.9 7176 

4.0 to 4.5 4.50 0.39 0.8 4.26 0.14 -0.9 0.5 5568 

4.5 to 5.0 4.65 0.42 0.5 4.75 0.14 0.2 0.4 6943 

5.0 to 5.5 4.78 0.43 0.3 5.23 0.14 0.1 0.6 5601 

5.5 to 6.0 4.82 0.47 0.2 5.70 0.14 0.4 1.0 2867 

6.0 and above 4.64 0.69 -0.6 6.19 0.19 2.1 1.7 504 

 729 
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First, let’s consider the full number set comparison. Figure 13a is a scatterplot of the 730 

GOES flux values against the corresponding real-time IMPTAM output. In general, the points 731 

are spread fairly evenly on either side of the diagonal perfect fit line. Table 1 shows that the 732 

means are very close and both skewness coefficients are low. The IMPTAM values have a larger 733 

spread, which can been seen in the scatterplot. The GOES values are rather constricted in their 734 

 

Figure 13. Comparison of 40 keV electron differential number fluxes (log base 10 of 

electrons cm-2 s-1 sr-1 keV-1) from GOES and real-time IMPTAM. Shown are: (a) scatterplot 

of the data-model pairs, with 10 bins per decade and contours drawn every 40 counts/bin 

increment; (b) the STONE curve; (c) the POD and POFD curves as a function of threshold; 

(d) the four other metrics discussed in this study; (e) discrimination subsetting histograms of 

IMPTAM values for 6 ranges of the GOES values; and (f) reliability subsetting histograms of 

GOES values for 6 ranges of the IMPTAM values. Dashed lines in cyan are included for 

reference.  
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range, with most measurements confined within half an order of magnitude and only small count 735 

values beyond this central peak. The IMPTAM values, however, are spread across a wider range, 736 

spanning two full orders of magnitude.  737 

Figures 13b shows the STONE curve for this comparison. The STONE curve is nearly 738 

always above the unity slope diagonal line, indicating that IMPTAM has skill (better than 739 

random chance) at sorting the GOES dawnside 40 keV electron fluxes into high and low flux 740 

categories. The only thresholds below the diagonal line are at the very low and very high 741 

settings.  742 

As presented in Liemohn et al. (2020), this comparison yields both a left-right wiggle as 743 

well as an up-down ripple in the STONE curve. The wiggle occurs when POFD exhibits an 744 

increase with increasing threshold, seen in the red curve of Figure 13c as occurring between log-745 

flux threshold settings of 4.0 and 4.7. This occurs when a large number of points enter the F 746 

quadrant. As seen in Figure 13a, the peak of the distribution is “below” the unity-slope line; as 747 

the threshold sweeps past this peak, they first enter the F quadrant before shifting to the C 748 

quadrant. When they leave F for C, POFD decreases and the STONE curve continues its trek 749 

towards the left-side axis. The ripple occurs when POD increases with increasing threshold. This 750 

occurs at rather high settings, between log-flux values of 5.5 and 6.0, as seen in the blue curve in 751 

Figure 13c. A ripple occurs when a cluster leaves the M quadrant. The cluster is seen in Figure 752 

13a as the red contour extends around a group of points above the unity slope line. Because they 753 

are above the unity slope line, the model event identification threshold sweeps past them first, 754 

resulting in an increase in M (a reduction in POD). At a higher threshold setting, the observed 755 

event identification threshold sweeps past them, putting them in the C quadrant. Because so 756 

many leave at one time, POD increases. 757 

The other metrics, shown in Figure 13d, also quantify features of the data-model 758 

relationship. The F1 score (blue line) has a slight downward trend at low threshold settings as 759 

points are converted into the M quadrant. We know it is the M quadrant that dominates F1 760 

because the FB metric is below one and M is in the denominator of this equation. It then exhibits 761 

a downward kink around a log-flux value of 4.5. This is coincident with an upward turn of FB, 762 

indicating that it is due to many points entering the F quadrant. This is also the same threshold as 763 

when the STONE curve exhibited a left-to-right wiggle. Because the two number sets have every 764 

similar means, the ORSS metric has high values near each end of the threshold sweep, with a 765 

lower value in the middle because of the large spread of the IMPTAM model values relative to 766 

the GOES measured values. HSS is always at or above unity, confirming that IMPTAM has skill 767 

at organizing the GOES flux values into high-flux events and low-flux nonevents. Its peak score 768 

occurs just before the threshold is swept over the large cluster of points below the perfect fit line.  769 

All of this can be further clarified with a subsetting analysis of the number sets. One 770 

method of subsetting, known as discrimination, is constructed using only the data-model pairs 771 

that lie within a specified range of observed values. Figure 13e shows histograms of IMPTAM 772 

flux values for 6 intervals of the GOES data range. As the observed interval is incremented 773 

upwards in flux range, it is seen that the modeled values are also shifting upward. This is what is 774 

expected. 775 

Table 1 lists some key statistics of both the GOES and IMPTAM values in each of these 776 

GOES-value interval ranges. The means of the GOES values should increase, as they are limited 777 

within the intervals. There is no guarantee that the IMPTAM means should increase with 778 
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increasing interval, though. For the lower 3 intervals, where most of the points are located, the 779 

log-flux means are within 0.1 of each other. Note that if a skew is moderate-to-large (say, above 780 

an absolute value of 0.7), then the distribution is most likely not close to a Gaussian distribution 781 

and the typical probabilities with statistical tests and inference cannot be applied. This is the case 782 

for several of the intervals in one number set or the other, so no mean-testing calculations are 783 

performed as the resulting p-value would be meaningless. 784 

Figure 13f shows the opposite case of subsetting, known as reliability, in which value 785 

intervals of the model values define the subsets. This is exactly analogous to how the idealized 786 

distributions above were constructed and evaluated. Two features are immediately evident in 787 

these histograms of GOES flux values within each of the 6 IMPTAM value ranges: first, the 788 

modes of the 6 histograms are very close; and second, there is another peak in the distribution at 789 

high flux values. This lack of movement of the histogram modes is evident in the scatterplot – 790 

the GOES values do not have a large spread around a log-flux value of 4.5. The secondary peak 791 

in the histograms is also evident in the scatterplot – it is the extended region surrounded by the 792 

red contour above the perfect fit line. 793 

These histograms are further quantified in the final section of numbers given in Table 1. 794 

Here, the IMPTAM means rise with increasing interval, as they should, but it is seen that the 795 

means of the GOES values are all within 0.5 of each other and all below 5.0. At the lowest 796 

interval, the GOES mean is well above the IMPTAM mean, it’s then close for two of the 797 

intervals, and then it is lower than the IMPTAM mean in the top three intervals. The standard 798 

deviations of the GOES values are larger than those of the IMPTAM points within each interval, 799 

as expected, but these spread values are not as large as those of the IMPTAM spreads in the 800 

discrimination analysis. 801 

The wiggle is due to the main grouping of points for which IMPTAM overestimates the 802 

GOES fluxes, while the ripple is due to high-flux observations for which IMPTAM 803 

underestimates the GOES fluxes. As seen in Figure 13f, the GOES measurements have a 804 

bimodal distribution, with a secondary peak at higher flux values than the primary peak. The 805 

ratio of the mode of the secondary-to-primary peak for the reliability intervals goes up 0.36 for 806 

the green, orange, and red curves (within 0.01). Table 1 shows that the calculated RMSE of 0.4 807 

at the lower intervals but then much larger than this at the high log-flux intervals. Furthermore, 808 

the shift of the secondary peak from the primary one is a full order of magnitude, larger than half 809 

of this RMSE value. The combination of a relatively large secondary peak (as evidenced by the 810 

mode ratios) and a separation of the peaks much larger than the local spread results in an easily-811 

discernible ripple in the STONE curve.  812 

6. Conclusions 813 

The STONE curve is a data-model comparison technique that is very similar to a ROC 814 

curve, but with a key difference: the event identification threshold is swept for both the model 815 

and data, not just the model threshold. The STONE curve is best used with a continuous-valued 816 

data set for which the model is trying to predict those exact values. The STONE curve answers 817 

the question: does the model predict events at each threshold setting? This is a question that 818 

cannot be answered by a ROC curve, for which the observed events and nonevents are fixed. The 819 

ROC curve is still very useful for what it does – optimizing a prediction of known observed 820 

events from a continuous-valued model – which is not something that the STONE curve can do. 821 
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They are complementary but unique tools within the array of statistical methods available for 822 

comparing number sets. 823 

The STONE curve identifies intervals of the event threshold identification setting range 824 

where the model performs well at sorting the observations into events and nonevents. When the 825 

STONE curve is close to the (0,1) upper left corner of POFD-POD space, this indicates that the 826 

observed values (classified as events and nonevents, whether above or below that particular 827 

threshold setting, respectively) are mostly classified correctly by the event-nonevent status of the 828 

corresponding model values. A perfect classification – one with no counts in the M and F error 829 

quadrants – could occur for multiple threshold settings, in which case the STONE curve would 830 

linger or return to the (0,1) corner. Furthermore, the STONE curve technique of sweeping both 831 

thresholds simultaneously identifies thresholds where metrics often surpass “goodness cutoffs.” 832 

This is especially seen in plotting a metric versus threshold, using the same technique of 833 

sweeping both thresholds together and then calculating other event detection metrics from the 834 

resulting collection of contingency tables. 835 

An example was shown of how to use the STONE curve, in conjunction with other 836 

metrics, for a robust evaluation of a data-model comparison for magnetospheric real-time 837 

predictions. Note, however, that this technique is not limited to space physics. It is particularly 838 

useful for model predictions of time series data, as is the case for other fields, such as terrestrial 839 

weather. In fact, it can be used for any scientific discipline, any time there is a comparison of 840 

real-numbered observed values to a model output number set. It augments the standard set of 841 

metrics, providing a method to identify intervals for which the model is particular good at 842 

reproducing the data, and other intervals for which there is a cluster of points far from a perfect 843 

match. 844 

To summarize, the main findings of this study are as follows: 845 

• A key feature of the STONE curve is that it can be nonmonotonic – exhibiting wiggle and 846 

ripple features. These have been quantified with idealized number set distributions. 847 

• The left-right wiggle is produced when there is an influx of points into the F (false alarm) 848 

quadrant of the contingency table, that is when there is a cluster of model 849 

overpredictions.  850 

• The up-down ripple is produced when there is a rapid outflux of points from the M 851 

(misses) quadrant, that is when there was a cluster of model underpredictions.  852 

• These two features can occur independently or in combination.  853 

• These extra characteristics of the STONE curve will appear if the local RMSE of the 854 

distribution (spread of observed values within a very limited model value range) reaches 855 

a fractional value of 0.2 of the full model value domain.  856 

• The extra characteristics will also appear if a local bias of the distribution (difference of 857 

the mean of the observed values and mean of the model values within a very limited 858 

model value range) is more than 0.5 of the local RMSE.  859 

 860 
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