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Key Points:

o We model three en echelon strike-slip faults governed by rate-
and-state friction using a quasi-dynamic approach and an im-
proved solver.

. The simulations produce power-law distributed earthquake se-
quences both in size and inter-event times in a well-resolved 3-D
continuum.

o The recurrence time distribution shows a 22% chance of main-

shock clustering within the fault system.
Abstract

A physics-based earthquake simulator should reproduce first-order empirical
power-law behaviors of magnitudes and clustering. However, sequences exhibit-
ing these laws have only been produced in discrete and low-dimension continuum
simulations. We show that the same emergence also occurs in 3-D continuum
simulations. Our model approximates a strike-slip fault system slipping under
rate-and-state friction. We produce spatiotemporally clustered earthquake se-
quences exhibiting characteristic Gutenberg-Richter scaling as well as empirical
inter-event time distribution. With fault interaction, partial ruptures emerge
when seismogenic width W over characteristic nucleation length L is larger
than 16.24, but none occurs without fault interaction. The mainshock recur-
rence times of individual faults remain quasi-periodic and fit a Brownian pas-
sage time distribution. The system mainshock recurrence time has a short-term
Omori-type decay, indicating a 22% chance of mainshock clustering. These re-
sults show that physics-based multi-cycle models adequately reflect observed
statistical signatures and show practical potential for long-term hazard assess-
ment and medium-term forecasting.

Plain Language Summary

Earthquakes famously exhibit power-law statistics regarding event size and the
time between events. This means, for example, that for every magnitude 6, there
are about 10 magnitude 5 events. To date, it has been challenging to simulate
earthquakes on a computer that produces these statistics and at the same time
have a resolved rupture in 3-D, meaning that the space-time evolution of each
earthquake rupture is simulated in realistic detail. Our research shows that a



3-D simulation of multiple faults can naturally produce these observed statistics.
We simulate a system of three strike-slip faults in echelon formation in an elastic
medium. The simulations produce full ruptures and partial ruptures when the
width of the seismogenic zone is significantly greater than a characteristic length
scale. We investigate the likelihood of the next event happening, either on the
same fault or on any fault within the system. We find that whenever a mainshock
occurs, there is a one-fifth chance that the next mainshock will follow soon in
the model. Our result shows that these models have the potential to give a
better estimate of seismic hazard of a 100-year horizon.
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1 Introduction

Empirical seismicity, earthquake rupture, and fault observations are inherently
multi-scale in space and time (Ben-Zion, 2008; Faulkner et al., 2010). Exist-
ing numerical models of earthquake processes adopt either a discrete approach
to reproducing the statistical properties of regional seismicity or a continuum
approach that simulates the complexities of single-event rupture processes (Er-
ickson et al., 2020; Tullis et al., 2012). A large gap remains between the two
approaches. Narrowing this gap would be desirable to build more realistic earth-
quake simulators, which are crucial for enhancing process understanding and
probabilistic seismic hazard assessment (PSHA).

When considered as point processes, earthquakes are discrete in time with well-
known empirical distributions. The earthquake size distribution follows the
Gutenberg-Richter power law (Gutenberg & Richter, 1944), aftershock and fore-
shock statistics follow the Omori-Utsu law (Omori, 1895; Utsu, 1961), and inter-
event time can be described using the Omori-Utsu law plus Poisson process
(Saichev & Sornette, 2007). Statistical models such as Epidemic-Type After-
shock Sequence (ETAS) are based on these empirically observed laws (Ogata,
1988). ETAS can reproduce and forecast the seismicity surprisingly well, outper-
forming physics-based models in retrospective and prospective experiments, es-
pecially for aftershock forecasts (Ogata, 1988; Schorlemmer et al., 2018). While
ETAS-type models are shown to be successful for operational earthquake fore-
casts for short horizons (Taroni et al., 2018), a long-term assessment still requires
fault-based seismicity evaluated based on observations (e.g., geodesy, historical
earthquake catalogs, paleoseismology) combined with first-order physical con-
cepts like elastic rebound as the basis (Field et al., 2017).

A popular way to describe discrete complex systems such as seismicity is based
on cellular automata models. These models use simplified rules of interaction



as an analogy to stress transfer to produce similar statistics (Bak & Tang, 1989;
Huang & Turcotte, 1990; Jiménez, 2013). The somewhat arbitrarily defined
rules fail to represent a wide range of physical observations and processes, such
as slow-slip events and non-volcanic tremors that affect earthquake productiv-
ity (Beroza & Ide, 2011). Newer earthquake simulators attempt to represent
earthquake interactions more realistically by creating cellular automata models
using realistic fault geometries, realistic strain-stress relationships, and a failure
criterion (Tullis et al., 2012). The RSQSim simulator is particularly successful
in that it incorporates a simplified version of rate-and-state friction (RSF) to
create sequences that satisfy scaling laws and foreshock and aftershock cluster-
ing (Dieterich & Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012).
However, the simulator is still inherently discrete and thus suffers from the grid
dependence of such models (Rice, 1993). This means that if one changes the grid
size or meshing method, the resulting sequences and behavior will also change.
The RSQSim simulator mitigates the influence of grid dependence on rupture
propagation by altering the friction law in an ad-hoc manner (Richards-Dinger
& Dieterich, 2012).

Researchers use inherently discrete models for synthetic seismicity because using
a well-resolved 3-D continuum model is computationally expensive. A simula-
tion is well resolved if the smallest physical length scale is resolved by several
patches that evolve together as a continuum. This critical size generally consid-
ered to be the cohesive zone size of an unstable slip (equation 4) (Lapusta et
al., 2000; Rubin & Ampuero, 2005). This continuum limit requires the mesh to
be much finer than discrete earthquake simulators, whose patches are allowed
to fail individually. More importantly, a simulation that satisfies the contin-
uum limit does not necessarily produce power-law distributed seismicity but
only characteristic or simple cycling events. Thus, to create catalogs with cer-
tain distributions, studies impose distributions of critical slip distance on the
fault surface (Galvez et al., 2019; Hillers et al., 2007) and hence condition the
simulation to reproduce the desired behavior.

Despite the computational barrier, physics-based models are vital to advanc-
ing our understanding of the rupture process and improving forecasts, whether
by testing friction laws, testing fault properties, or combining other physical
processes in both industrial and tectonic settings (Dublanchet, 2020; van den
Ende et al., 2018; Larochelle et al., 2021; Noda & Lapusta, 2013; Weng & Am-
puero, 2019). Forecasts can be greatly improved by assimilating past sequences
and real-time data into models (van Dinther et al., 2019). Whether continuum
models display the emergent properties of natural seismicity is then the key
to bridging the gap between single-fault rupture studies and regional seismic
hazard analysis.

Past studies have established that partial ruptures emerge above a certain
length-scale threshold, particularly the ratio between fault width and charac-
teristic nucleation size W /L, (Lapusta et al., 2000). Recently, Cattania (2019)
systematically explored the parameter space using 1-D fault simulations and



showed that the modeled frequency-magnitude distribution approaches unity
as this ratio exceeds 102. Simulations of elongate, parallel planar faults showed
that a larger W/L__ promotes fault interaction and synchronized ruptures (Bar-
bot, 2021). However, there is a lack of statistics from the produced sequence
arising from fault interactions, partly because 3-D simulations are increasingly
expensive as W /L__ increases. It is still unclear if and under which conditions
resolved 3-D continuum simulations can spontaneously generate power-law mag-
nitude distributions or a realistic inter-event time distribution.

This study uses a three-dimensional quasi-dynamic physics-based model to sim-
ulate an interacting three-segment en echelon fault embedded in an elastic 3-D
half-space. We investigate whether the nucleation length scale alters seismic se-
quences on individual faults and system-wide. We will show that the resulting
sequences display a characteristic frequency-magnitude distribution and that
the inter-event times also satisfy the proposed empirical inter-event time dis-
tribution seen in natural catalogs (Saichev & Sornette, 2007). Our parameter
exploration produces a range of seismic behavior, from synchronized clusters
at large critical slip distance D, to clustered full and partial ruptures as D,
decreases. The paper first briefly discusses the methodology and model setup in
section 2. Then we present results and offer comparisons to statistical models
in section 3. Finally, in section 4, we discuss the broader context and present
conclusions.

2 Methods
2.1 Model Descriptions

We simulate fault slip and stress transfer on three 2-D planar faults embedded
in a 3-D half-space (Figure 1a). The rate-and-state friction law governs the fault
friction. We use the regularized formulation presented by Ben-Zion and Rice
(1997), Lapusta et al. (2000), and Rice and Ben-Zion (1996) to account for the
singularity near-zero slip rates.

= asinh ™! [25 exp <%)} #(1)

Here, p is the friction coefficient; V* and p* are the reference slip rate and refer-
ence friction coefficient; ¢ and b are constitutive parameters that scale the rate
and state dependence of the coefficient of friction, respectively; D, is the critical
slip distance over which the state variable 6 evolves. We use the Dieterich-Ruina
aging law to describe the evolution of the state (Dieterich, 1978; Ruina, 1983):

41— L a2)

The equation of elastostatic equilibrium relates the stress state and friction to
the slip rate on a point of a fault (Rice, 1993),
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where 7, is the plate loading shear stress; 7, is the elastic shear stress from
dislocation on any other part of the fault; o is the normal stress; G/2c is the ra-
diation damping term that bounds the slip rate from unrealistic values. Taking
the time derivative of (3) and substitute friction p with (2) and the time deriva-
tive of (1), we can obtain two coupled ordinary differential equations (ODESs)
of V and @ for each node (van den Ende et al., 2018). The slip-stress rela-
tions used to obtain 7, are calculated using the rectangular finite dislocation
solutions and accompanying module DC3D formulated by (Okada, 1992). The
simulations are performed using the boundary element software QDYN (Luo et
al., 2017). Galvez et al. (2019) implemented the hierarchical matrix (H-matrix)
compression to the Greens function relating slip and stress tensors in QDYN
(Bradley, 2014), thus replacing the fast Fourier transform method and allowing
non-uniform meshes such as a bending fault or multiple disconnected faults.

In this study, we further improve QDYN'’s time-stepping efficiency by imple-
menting the LSODA solver (Hindmarsh, 1983; Petzold, 1983). When integrating
the rate-and-state ODEs during the interseismic period, the slip rate is of the or-
der of 107! or smaller while 6 is around 10%. The system becomes stiff. Explicit
solvers such as the Runge-Kutta methods require very small steps to be numer-
ically stable (Erickson et al., 2008). This becomes a problem when we attempt
to simulate multiple seismic cycles in a reasonable time. The LSODA solver
monitors the stiffness of the system and automatically switches between Adams
methods (predictor-corrector) in the non-stiff case and backward differentiation
formula (BDF) methods (Gear methods) in the stiff case. The implementa-
tion is successful in that the iterations spent in interseismic time are largely
reduced without sacrificing the resolution of each event. Using a Runge-Kutta
solver of order 4 and 5, a full rupture takes approximately 9,000 iterations while
interseismic periods take around 500,000 iterations. After switching solver, a
full rupture on a fault section takes about 22,000 iterations, while an extended
interseismic period takes around 37,000 iterations to complete.

2.2 Experiment Setup

To study the importance of fault interactions in a realistic yet simple geometry,
we design a system of three en echelon right-lateral faults. Each fault has the
same geometry and distribution of frictional properties (Figure 1). A fault mea-
sures 32 km by 24 km in size. A 3-km wide velocity-strengthening padding and
1-km transition belt surround the velocity-weakening patch (Figure 1a). The
frictional behaviors are decided by a and b-values (Figure 1b). The seismogenic
region is then ~26 km x 18 km. The segments are offset by 1 km and overlapped
by 9 km. If the velocity-strengthening zone is excluded, the seismogenic regions
overlap for 3 km. The overlap and offset are computed given the fault length
based on scaling relations from field observations (de Joussineau & Aydin, 2009;
Klinger, 2010). We use grid sizes of 143 m and 200 m. They are chosen to be



at least one third or smaller than the minimum length of an unstable slip L,
(Dieterich, 1992; Rubin & Ampuero, 2005), given by

L, = %L= 3(4)

We do not enforce any additional heterogeneity on the fault surfaces. Stud-
ies have shown that even on a single fault, stress heterogeneity and complex
ruptures can emerge without enforcing heterogeneity (Barbot, 2019; Cattania,
2019; Heimisson, 2020). In particular, the rupture mode starts to deviate from
single-event cycles when the ratio of seismogenic width W and critical nucleation
length L is large enough:

Lo = G255 #(5)
where G is the shear modulus; a, b, and D, are rate-and-state friction parame-
ters; o is the effective normal stress (Rubin & Ampuero, 2005). Cattania (2019)
found that for a 1-D fault, the minimum ratio to generate two and more events
per cycle is ~10. We test the ratios from 10.82 to 32.47 by varying only D, and
keeping the profile of a, b, and o fixed in all simulations. We also test the effect
of loading rate on nucleation style using three different values: 5, 35, and 50
mm/year. All other parameters and initial conditions remain the same for all
simulations (see Table S1).
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Figure . Model setup visualizations. (a) Model geometry and fault numbering.

(b) The profiles of frictional parameters. Opaque patches at the center of the
faults mark the velocity-weakening regions, corresponding to the profile where
a-b = -0.007 and a/b = 0.5. There is a 1-km buffer zone between two frictional
regimes. The normal stress linearly increases from 1 MPa at fault top to 52.5
MPa at 6 km and remains constant afterward.
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We initiate all the simulations with the initial slip rates equal to 0.99, 1.01, and
1 time Vp, on faults 1, 2, and 3 respectively, and let initial state § = D_/Vpy,,
which is also the reference state. We run every simulation until there are more
than 100 seismic events. Each simulation runs on a node of 24 cores and typically
takes less than 360 hours to finish.

3 Results
3.1 Model Behavior and Sequence Statistics

We present eight simulations. For D, equals 10 and 14 mm, we simulate three
loading rates: 5, 35, and 50 mm/year. We run two additional simulations
using larger D, values of 20 mm and 30 mm and a slip rate of 50 mm/year.
Visualizations of each sequence and the catalogs are presented in Figure S1 (see
Supplementary Materials).

A typical seismic cycle from one full rupture on a fault to another consists of
several partial ruptures and slow-slip events in between two mainshocks (Figure
2 and Movie S1). The slip velocity on the three faults distinguishes different
slipping states. Blueish green represents areas close to the loading rate. Deep
purple shows the locked areas. Warm colors indicate areas that is seismically
slipping. In Figure 2a, fault 1 on the left has just entered the post-seismic locking
stage as the slip rate in a seismogenic patch drops with time (Figure 2a—d), while
faults 2 and 3 are further advanced in their seismic cycles. The slip rate starts
to increase at the overlapped area of fault 3, and an event of M5.7 nucleates
(Figure 2b). Slow-slip events also occur on the periphery of locked areas (Figure
2c¢). Partial ruptures continue to nucleate at the overlapping area and the outer
corners, creating patches of “velocity” asperities and irregular seismicity. Finally,
a full rupture on fault 3 (Figure 2j) resets the heterogeneous slip rate distribution
and returns the slip rate distribution to a similar distribution to fault 1 in
Figure 2a. In our model, partial ruptures act like foreshocks before a mainshock
resets the slip rates and states back to a uniform distribution. In addition,
partial ruptures cascade around the edge of seismogenic zones while full ruptures
propagate the whole seismogenic zone and rupture the foreshock regions again.
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Figure . Snapshots of the slip rate field during a seismic cycle. Subplots a—j
show 10 snapshots in subsequent time (years) and event magnitudes. Warm
colors mark the seismically slipping patches with slip rates larger than 0.1 m/s.
Black dashed lines outline the seismogenic velocity-weakening patches. Grey
dashed lines mark the overlaps as seen from the side (Figure 1a). Snapshots are
from the simulation with W/L_= 32.47 and a loading rate of 50 mm/year.

In agreement with the 2-D single-fault case (Cattania, 2019), we find that simu-
lations with a larger W/L __ ratio produce seismicity with frequency-magnitude
distribution closer to what is observed in nature (Figure 3a). Note that we do
have a significant portion of characteristic events. A ratio of 32.47 gives the par-
tial ruptures a b-value of 0.5, while the b-value decreases to 0.3 when the ratio
is 23.19. More partial ruptures also mean smaller magnitudes for characteristic
events. On the other hand, loading rates have a very slight effect on the b-value
in that the b-values seem to be larger when loading rates are higher, but the
effect is negligible compared to the W/L__ ratio. We find that for our model
setup, partial ruptures cease to emerge at W/L, = 10.82 (D,= 30 mm).

Our catalogs also reproduce the empirical inter-event time distribution and its
coefficients proposed by Saichev and Sornette (2007) based on the Omori-Utsu
law (Figure 3b). The two simulations with ratios equal to 10.82 and 16.24
deviate from the curve (black and grey circles respectively), suggesting that

v (m/s)



characteristic events plus fault interaction alone do not create the inter-event
time distribution (Figure S1). These simulations produce synchronized clusters
shown as the bi-modal distribution of very short and very long inter-event time.

The six simulated sequences with ratios of 23.19 and 32.47 fit both a short-term
Omori decay of P and a long-term Poisson process that distributes exponen-
tially. A dip exists at the simulated inter-event time distribution at the onset of
exponential decay around 0.1 normalized time (Figure 3b), suggesting that our
fault system only produces the two end-member distributions. The transition
between the two is filled either by a weaker-coupled fault system or by other
physical processes with a longer time scale of interaction.
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tribution fits the empirical distribution better when more partial ruptures are
present. (c¢) CDF of recurrence time normalized by the averaged single fault
return time. The green curve: CDF of the next full ruptures on the same fault.



The olive-color curve: BPT CDF with the aperiodicity taken from the sequence
Cy- The blue curve: recurrence time to the next event, including partial events,
on the same fault. The red curve: the CDF of the system-wide full rupture
occurrence. We see a ~20% chance of another segment rupturing immediately
after a full rupture and a drop of probability between 0.1 and 0.5 compared
to a Poisson distribution. Grey vertical dashed and solid lines mark 1/3 and 1
normalized recurrence time. Magnifying the immediate recurrence time from 0
to 0.04 in (d), we observe an Omori-type rate decay that we manually fit with
a log curve and a negative deviation after 0.02.

3.2 Recurrence Times

The spontaneous emergence of an inter-event time distribution very similar to
the empirically observed ones gives us the confidence to examine the condi-
tional probability of the next event after the occurrence of a full rupture 1)
on a fault and 2) within the system. We summarize the recurrence times of
the six sequences that have good fits to the empirical inter-event time distribu-
tion in Figure 3c—d. We analyze the cumulative density functions (CDFs) of
the single-fault mainshock recurrence time (green), single-fault recurrence time
including partial ruptures (blue), and system-wide mainshock recurrence time
(red). Due to the different loading rates, the recurrence times are normalized
by the averaged single-fault recurrence time of each sequence before combining.

Our models show that first, the mainshock recurrence times on a single fault
remain quasi-periodic even if partial ruptures and fault interactions are present.
The coefficient of variation (Cy/), or the standard deviation over the mean, is
0.103. We compare the distribution with a Brownian passage time (BPT) distri-
bution with its mean equal to 1 and aperiodicity equal to its Cy, computed from
the simulated sequence (Matthews et al., 2002). The theoretical (dark green)
and simulated CDFs agree well, except that the simulated sequences have a
longer tail. If we consider the recurrence from one mainshock to another shock
on the same fault (blue curve in Figure 3c), thus including partial events, the
distribution becomes left-skewed, confirming that the partial ruptures act like
foreshocks. The onset time is around 0.5 recurrence time.

Finally, we calculate the system recurrence time, meaning the time between one
mainshock and another mainshock within the system. The null hypothesis is a
memoryless Poisson distribution of rate = 3 shown in grey in Figure 3c. The
system CDF in red deviates from the Poisson CDF. About 22% of the mainshock
pairs occur within 0.02 normalized return time, representing strong clustering
in time. From 0.02 and beyond, the shape of the remaining CDF resembles
the BPT distribution. The highest probability falls at around one third of the
recurrence time (grey dashed line), but the spread is wider than single-fault
BPT. Focusing on the first 0.04 normalized return time segment in Figure 3d,
we see an Omori-type decay that we can manually fit with a log function up to
around 0.2.

From this analysis, we derive that in our model setup, there is a one-fifth chance
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of another mainshock on a nearby fault immediately following a mainshock.
Beyond the first 2% of normalized fault return time, the next mainshock can
occur at any time within the fault recurrence time.

4 Discussion and Conclusions

In this study, we demonstrate that a simple simulated fault system, which
resembles natural fault geometry, can generate realistic earthquake statistics,
including a realistic earthquake size distribution, clustering, and realistic inter-
event times. These statistics are not prescribed in the model but emerge from
first-order physical representation and interaction between faults. Because our
models are well resolved in the continuum domain, it preserves rich and realistic
slip behaviors independent of model meshing.

Our result shows that in 3-D, fault geometry plays an essential role in producing
the power laws observed in regional seismicity. Our model produces frequency-
magnitude distributions with characteristic, system-level earthquakes. A gap
of 0.5 to 0.75 magnitude units separates full and partial ruptures. Below the
gap, events have a power-law scaling with small b-values of 0.3 to 0.5 (Figure
3). This low b-value may be due to the limitation of the ratio of W/L__ that
we can reasonably simulate. It is likely that the b-value would approach unity
as the ratio grows, as seen in the 1-D experiment and large regional catalogs
like California (Cattania, 2019; Field et al., 2014). However, as noted first
by Wiemer and Wyss (1997) for the Parkfield asperity, and later confirmed in
other places (Tormann et al., 2015), when mapping b-values with high spatial
resolution, the actual asperities that will rupture in mainshock are characterized
by a b-value of 0.5 (Schorlemmer & Wiemer, 2005).

As for the long-standing debate in seismology about whether faults and fault
systems show Gutenberg-Richter or characteristic earthquake distributions, our
results suggest that not only individual faults but also fault systems can exhibit
characteristic behavior. In our simulations, we see that events of all sizes can
occur, with a power-law size distribution, but only up to a certain threshold of
~M6.3 (Figure 3a). Beyond that threshold, all ruptures will be run-away full rup-
tures of magnitude 6.5 to 6.9. This kind of behavior is observed for earthquakes
in Parkfield, for example. Since 1857, there have been six earthquakes with a
magnitude of about 6 (Toppozada et al., 2002), but no events with magnitudes
between 5.2 and 5.9. Our identical, homogeneous faults seem to mimic a mature
fault zone like the Parkfield section. A more continuous magnitude-frequency
distribution instead emerges from complex geometries and fault heterogeneity.

Our models reproduce Gutenberg-Richter relation and realistic inter-event time
distributions with a simple fault system geometry we choose to be consistent
with geological evidence. Studies summarized observations over the shear zones
of different scales and found the ratio between faults and their steps maintains
a fixed ratio as faults link up and smooth out through earthquake cycles (de
Joussineau & Aydin, 2007; Stirling et al., 1996). In this regard, we can see our
modeled fault system as a segmented fault that consists of steps: an inherent
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roughness. In fault rupture studies, a power-law-inducing roughness is imple-
mented by the heterogeneous frictional property, approximated shear resistance,
or non-planar mesh (Dieterich & Richards-Dinger, 2010; Fang & Dunham, 2013;
Heimisson, 2020; Hillers et al., 2006). Nevertheless, we show that simple seg-
ments instead of fractal topography or D, distribution are already enough for
power-law statistics. Since the cracks grow and coalesce in a self-similar way
into the crustal faults, we would see a similar stress interaction exist over a simi-
lar volume around the cracks, thus creating the self-similar power laws observed
in both seismicity and our simulations from the scale of damage zones to fault
zones.

Complex seismicity does not occur when we model a single fault segment even
with the highest W/L_ value of 35.18 (Movie S2). In other words, the good fit
with empirical distributions is a consequence of the interaction within the fault
systems. To have spontaneous partial ruptures on a single fault, a simulation
study on megathrusts shows that W/L__ needs to reach about 60 (Michel et al.,
2017). Studies show that the aspect ratio also affects rupture behaviors. The
length-to-width threshold for complex sequences needs to be larger than ~3.4
(Hirose & Hirahara, 2004). The same behavior is also present in dynamic simu-
lations of self-arrest ruptures (Weng & Yang, 2017). Barbot (2021) shows that
one can generate partial ruptures with a low W/L_ of 5.33 but this requires an
elongated seismogenic zone of 75 km by 10 km or a ratio of 7.5. Our seismogenic
zone is 26 km by 18 km or a ratio of 1.44 on a fault. Elongated fault geome-
try is motivated by very long, plate-boundary strike-slip faults. However, even
these faults are also segmented by step-overs and kinks, as seen by both source
inversions and paleoseismicity (Howarth et al., 2021; Klinger, 2010; Mildon et
al., 2016).

Therefore, fault geometry likely plays a significant role in controlling the seismic-
ity, probably more so than frictional heterogeneity. The evidence comes from 1)
ease of generating partial ruptures on short faults and 2) the nucleating positions
of seismic events (Figure 2 and Movie S1). Excluding the first event, all events
nucleate exclusively on the corners and step-overs once the stress field evolves
away from the initial condition. Stress perturbations also restrict the partial
events within the overlapped area (Figure 2d). The same phenomenon not only
exists in jagged crustal faults but also happens on the Main Himalayan Thrust,
where the ramp concentrates partial ruptures in between through-going events
that reach the surface (Dal Zilio et al., 2019; Mildon et al., 2019; Sathiakumar
& Barbot, 2021).

In section 3.2, we have shown that our model generates a meaningful conditional
expectation of the next full rupture in a minimalistic setup. However, we did not
conduct a complete sensitivity study, and there remain several relevant param-
eters that may affect the modeled earthquake statistics, e.g., different segment
loading rates, other complex geometries, different faulting types, heterogeneous
friction properties, and more. When building a fault database for hazard mod-
els, the slip rates often have the largest range of uncertainty attached (e.g.,

13



Basili et al., 2013; Litchfield et al., 2014). From our results, individual fault
recurrence time largely falls within 20% around the mean, and we observe a
heightened chance of ruptures on nearby faults. However, it is not clear how
much the statistics will change if the loading rates are slightly different on each
fault. Through interaction, it is possible that the clustering would average out
the slip rate difference, so that every fault gives the same apparent slip rate. Ex-
periments with the loading rate sensitivity will also show how the conditional
expectation of the next event changes from a single fault to faults within a
system. Moreover, we could further verify the uncertainties of current seismic
hazard models by systematically performing more simulations.

The modeling approach we present here could readily be adapted to more com-
plex fault systems and consider observed fault geometries and slip rates. The
advances in computational efficiency that we have included are essential to mov-
ing towards simulation-based PSHA with 3-D continuum models, which is a
medium- to long-term goal of our study.
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