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Abstract

The timing of transition between the contractional and extensional regimes along the Pyrenean range remains debated. Com-

pared to its central and western parts, the eastern part of the chain was significantly affected by extensional tectonics mostly

related to the opening of the Gulf of Lion. The Têt normal fault is the best example of this tectonic activity, with topographic

reliefs above 2,000 m in its footwall. In this study, we synthetized previous thermochronological data and performed new (U-

Th)/He and fission-track dating in the Eastern Pyrenean massifs. Output apparent exhumation rate and thermal modeling in

the hanging-wall of the Têt fault highlight a rapid exhumation (0.48 km/Ma) and cooling (˜30°C/Ma) phase between 38 and

35 Ma, followed by slower exhumation/cooling afterwards. In the footwall, cooling subsequently propagated westward along the

fault during Priabonian (35-32 Ma), upper Oligocene and lower Miocene (26-19 Ma), and Serravalian-Tortonian times (12-9

Ma). These data and modeling outcomes suggest that the exhumation of the Têt fault hanging-wall related to southward

thrusting ended at 35 Ma, and was followed by different extensional stages, with a propagation of the deformation towards

the West during the upper Miocene. We propose that the onset of extension in the Eastern Pyrenees occurred during the late

Priabonian period, contemporaneously with the large-scale rifting episode recorded in Western Europe. After this event, the

Têt fault activity and the westward propagation of the deformation appear mainly controlled by the opening of the Gulf of

Lion.
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Abstract 21 

The timing of transition between the contractional and extensional regimes along the Pyrenean range remains debated. 22 
Compared to its central and western parts, the eastern part of the chain was significantly affected by extensional 23 
tectonics mostly related to the opening of the Gulf of Lion. The Têt normal fault is the best example of this tectonic 24 
activity, with topographic reliefs above 2,000 m in its footwall. In this study, we synthetized previous 25 
thermochronological data and performed new (U-Th)/He and fission-track dating in the Eastern Pyrenean massifs. 26 
Output apparent exhumation rate and thermal modeling in the hanging-wall of the Têt fault highlight a rapid 27 
exhumation (0.48 km/Ma) and cooling (~30°C/Ma) phase between 38 and 35 Ma, followed by slower 28 
exhumation/cooling afterwards. In the footwall, cooling subsequently propagated westward along the fault during 29 
Priabonian (35-32 Ma), upper Oligocene and lower Miocene (26-19 Ma), and Serravalian-Tortonian times (12-9 Ma). 30 
These data and modeling outcomes suggest that the exhumation of the Têt fault hanging-wall related to southward 31 
thrusting ended at 35 Ma, and was followed by different extensional stages, with a propagation of the deformation 32 
towards the West during the upper Miocene. We propose that the onset of extension in the Eastern Pyrenees occurred 33 
during the late Priabonian period, contemporaneously with the large-scale rifting episode recorded in Western Europe. 34 
After this event, the Têt fault activity and the westward propagation of the deformation appear mainly controlled by 35 
the opening of the Gulf of Lion. 36 

Plain Language Summary 37 
The Pyrenees result from the North-South convergence of the Eurasian and Iberian plates. The eastern part of the 38 
range experienced strong extensional tectonics mostly related to the opening of the Gulf of Lion, which timing and 39 
influence on the modern topographic relief remain unclear. To better characterize the transition timing between 40 
contractional and extensional regimes and the tectonic evolution in the Eastern Pyrenees, we used low-temperature 41 
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thermochronology and thermal modeling to reconstruct the exhumation/cooling histories of the different massifs along 42 
the Têt fault. Our data and modeling outcomes show a switch between contractional and extensional tectonics during 43 
the Priabonian (ca. 35 Ma), followed by different extensional stages recorded in the Têt fault footwall, coeval with a 44 
global westward propagation of the deformation along the fault until ca. 9 Ma. 45 

1 Introduction 46 

In orogenic belts, crustal-scale faults are key deformation markers that accommodate various regimes of plate tectonics 47 
during rock burial, exhumation or strike slip activity (Jones and Wesnousky, 1992; Norris and Cooper, 2001; 48 
Ratschbacher et al., 2003; Viola et al., 2004; Malusà et al., 2009). When syn- to post-orogenic sedimentary record or 49 
chronological constraints are lacking for bracketting fault activity within orogens, low-temperature (low-T) 50 
thermochronology is a powerful tool to quantify the timing and magnitude of exhumation along major faults, since it 51 
provides time constraints on the thermal evolution of rocks during their exhumation towards the Earth’s surface 52 
(Farley, 2002; Ehlers and Farley, 2003; Malusà et al., 2005; Glotzbach et al., 2011; Stockli, 2005; Colgan et al., 2006; 53 
Reiners and Brandon, 2006). This situation is common within orogens for which the transition between syn- and post-54 
orogenic periods, or the transition from contraction to extension, remains difficult to date and is often highly debated 55 
(Price and Henri, 1984; Carmignani and Kligfield, 1990; Jolivet et al., 2020, 2021a; Séranne et al., 2021). Low-T 56 
thermochronology has been widely used in large-scale extensional domains to date the activity of normal faults, as for 57 
example in the Basin and Range Province (Foster et al., 1999; Surpless et al., 2002; Armstrong et al., 2003; Colgan et 58 
al., 2008) or the Aegean domain (Coutand et al., 2014; Brichau et al., 2006). However, few studies have investigated 59 
the onset of post-orogenic extension using low-T thermochronology (i.e. Cederbom et al., 2000; Danišík et al., 2012; 60 
Fillon et al., 2021; Martín-González et al., 2012) and even less on the lateral migration of the tectonic activity along 61 
normal faults in orogenic context (Deeken et al., 2006, Krugh, 2008; Curry et al., 2016).  62 
 63 
In the Pyrenees, previous thermochronological studies have focused mainly on the central part of the chain, which is 64 
composed of a stack of crustal nappes formed during the main Eocene - early Oligocene orogenic build up (Jolivet et 65 
al., 2007; Mouthereau et al., 2014; Bosch et al., 2016; Labaume et al., 2016; Vacherat et al., 2016, Waldner et al., 66 
2021). In the eastern part of the Pyrenees, less studies have been carried out (Maurel et al., 2002; 2008; Gunnell et al., 67 
2009), which do not provide a detailed view of fault activity through time. This orogen segment shows a similar nappe 68 
structure as further West (Laumonier et al., 2015, 2017; Calvet et al., 2021) but has experienced significant post-69 
orogenic crustal thinning to 25 km of total thickness, as indicated by recent geophysical data (Nercessian et al., 2001; 70 
Lacan and Ortuño, 2012; Chevrot et al., 2018; Diaz et al., 2018). This thinning is assigned to the presence of numerous 71 
and widely distributed normal faults onshore and offshore (Jolivet et al., 2020, 2021a; Romagny et al., 2020; Calvet 72 
et al., 2021, Séranne et al., 2021; Taillefer et al., 2021). The geodynamic origin for the onset of the extension has been 73 
linked to either the initiation of the West European Rifting which formed a large intraplate feature (Mouthereau et al., 74 
2021; Angrand and Mouthereau, 2021) or the early onset of back-arc extension leading to the formation of the Gulf 75 
of Lion (Séranne, 1999; Séranne et al., 2021) The Têt fault is the most prominent normal fault of the Eastern Pyrenees, 76 
which localizes high-relief massifs in its footwall such as the Canigou and Carança (Fig. 1). The development of these 77 
high topographic reliefs has been attributed to normal faulting during the Oligo-Miocene period (Maurel et al., 2008). 78 
However, the pre-extensional history of this area, the onset of extension and its polyphase activity along strike during 79 
the Cenozoic are still poorly understood (e.g. Huyghe et al al., 2020; Jolivet et al., 2020, 2021a, 2021b; Angrand and 80 
Mouthereau; 2021; Taillefer et al., 2021). 81 
 82 
In this study, we present a new low-T thermochronology dataset from bedrock samples collected on both sides of the 83 
Têt fault, including (U-Th)/He on apatite (AHe) and zircon (ZHe), and apatite fission track (AFT). Low-T 84 
thermochronological data from previous studies (Maurel et al., 2002; 2008; Gunnell et al., 2009; Milesi et al., 2019; 85 
2020a, 2020b) have been also synthezised with the new dataset, and all data are used for thermal modeling to assess 86 
the exhumation history of the footwall and hanging wall massifs along the southwestern segment of the Têt fault. 87 
Based on these results, we discuss the onset, timing and spatial evolution of Cenozoic extension in the eastern part of 88 
the Pyrenees as well as the potential driving mechanisms for this evolution. 89 
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2 Geological setting 90 

2.1 Tectonic evolution of the eastern part of the Pyrenees 91 

The Pyrenees result from the North-South convergence of the Eurasian and Iberian plates since the late Cretaceous 92 
(Choukroune et al. 1989; Roure et al. 1989; Muñoz, 1992; Beaumont et al., 2000; Mouthereau et al., 2014; Teixell et 93 
al., 2016), and form a double-wedged mountain range of around 1,000 km long and 150 km wide (Fig. 1a). The 94 
maximum of shortening occurred during the Eocene in the central part of the range (e.g. Vergés et al., 1995; Gibson 95 
et al., 2007; Sinclair et al., 2005; Metcalf et al., 2009; Whitchurch et al., 2011; Fillon and van der Beek, 2012; 96 
Mouthereau et al., 2014; Teixell et al., 2016; Curry et al., 2019). The Pyrenees are divided into three main latitudinal 97 
tectonostratigraphic domains (Vergés et al., 2002; Grool et al., 2018). To the North, three main units are recognized: 98 
the Aquitaine foreland basin, the Sub Pyrenean Zone and the North Pyrenean Zone, the last two being separated by 99 
the North Pyrenean Frontal Thrust (Fig. 1a). Further South, the North Pyrenean Fault (NPF) separates the North 100 
Pyrenean Zone from the Axial Zone and is interpreted as the suture between the Eurasian and Iberian plates. The Axial 101 
Zone consists of a stack of south-verging nappes made of late Proterozoic and Paleozoic sedimentary, metamorphic 102 
and magmatic rocks involved in the Variscan orogeny. The South Pyrenean Zone extends to the South of the Axial 103 
Zone and is composed of a sequence of Mesozoic to Eocene sediments involved in several thrust sheets transported 104 
southward. The Ebro Basin forms the southern foreland basin of the Pyrenean orogen. 105 
 106 
In the eastern Axial Zone, it is accepted that the mountain building occurred through the emplacement of south-verging 107 
nappes rooted in the northern part of the Axial Zone, south of the NPF (Vergés et al., 1995; Sibuet et al., 2004; 108 
Laumonier et al., 2015; Teixell et al., 2016). In the studied area, the balanced cross sections of Ternois et al. (2019) 109 
suggest an Eocene thrusting of the Aspres–Mont-Louis massifs onto the Canigou massif, in agreement with available 110 
thermochronological data (Maurel et al., 2008). The reactivation of Variscan structures during the Pyrenean orogeny 111 
has been proposed, the most significant example being the Merens fault to the North of our study area (McCaig and 112 
Miller, 1986; Burbank et al., 1992; Guitard et al., 1998; Cochelin et al., 2017; Laumonier et al., 2017). The particularity 113 
of the Eastern Pyrenees is the reactivation of compressional structures during extensional tectonic regime (Séranne et 114 
al., 1995; Séranne 1999; Jolivet et al., 2020, Calvet et al., 2021; Séranne et al., 2021). This regional scale extension is 115 
witnessed by geophysical data that show a progressive crustal thinning, with crustal thickness varying between 45 km 116 
in the eastern part of the Axial Zone (~1°E) to 25 km at the margin of the Gulf of Lion (Chevrot et al., 2018; Diaz et 117 
al., 2018). This regional extensional episode led to the (re-)activation of major structures as normal faults with different 118 
orientations (NE-SW, NW-SE and N-S, Fig. 1b), from the end of the Oligocene to the Quaternary (Taillefer et al., 119 
2021). Some of these faults have been considered as inherited ductile Variscan faults (Guitard et al., 1992, 1998; 120 
Bouchez and Gleizes, 1995; Autran et al., 2005; Laumonier et al., 2015, 2017). Two main NE-SW trending normal 121 
faults are recognized in the studied area: the Têt and the Tech faults (Fig. 1b). The Têt fault represents the southern 122 
margin of the Cerdagne and Conflent basins, while the Tech fault is the southern bounding fault of the Roussillon 123 
basin. Noteworthy is the importance of a NW-SE trending fault network that affects particularly the Mont-Louis and 124 
Carança massifs (e.g. Fontpédrouse and Nuria faults, Fig.1.b) and cuts the North Catalan Coastal Range further South 125 
(Fig.1.a). Some of these faults have nearly E-W directions probably recording spatial and/or temporal changes of 126 
stress orientation and/or stress regime. Major N-S faults in the eastern part of the Pyrenees are rare, among which the 127 
Capçir fault is described as a Quaternary normal fault (Briais et al., 1990). In the study area, the kinematics and amount 128 
of exhumation associated to these different faults are still debated. In Figure 1b, major crustal blocks have been 129 
differentiated and delimited by the Têt fault, namely the Mont-Louis block to the North (hanging wall) and Canigou-130 
Costabonne and Carança blocks (footwall, delimited by the Py secondary fault) to the South.  131 
 132 
Previous multi-thermochronological studies (Maurel et al., 2002; 2008; Gunnel et al., 2009) in the Canigou (footwall 133 
of the Têt fault) and Mont-Louis (hanging wall of the Têt fault) provided insights and results guiding our study. Maurel 134 
et al. (2002, 2008) proposed that the Canigou massif was exhumed during two periods, the first one at a rate of ~0.30 135 
km/Ma between 27 and 21 Ma, followed by a significant slowdown of exhumation (~0.10 km/Ma) until present-day. 136 
In the Mont-Louis massif, thermochronological data suggest an earlier exhumation between 50 and 35 Ma (~0.30 137 
km/Ma) accompanied by a rapid cooling. Since 35 Ma, the Mont Louis exhumation has been relatively slow, estimated 138 
at 0.04-0.06 km/Ma (Maurel et al., 2008). These different exhumation and cooling histories between the two massifs 139 
since 35 Ma were interpreted to be related to the normal motion of the Têt fault, without erasing the 140 
thermochronological record of Eocene tectonic activity in the hanging wall. In the Carança massif, thermal modeling 141 
based on AHe data (Milesi et al., 2019a; 2020b) suggests two main cooling events that occurred in the Oligo-Miocene, 142 
a major one between 30 and 24 Ma (at a rate of 25°C/Ma) followed by a second episode between 12 and 9 Ma (at a 143 
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rate of 15°C/Ma). Despite these previous thermochrological studies, the spatio-temporal evolution of the main tectonic 144 
structures in the eastern part of the Axial Zone of the Pyrenees since the Priabonian remains still poorly constrained 145 
(see Taillefer et al., 2021).  146 
 147 

 148 

Figure 1. a) Structural map of the Pyrenees showing the main structural domains delimited by faults (modified after 149 
Taillefer et al., 2017). The major Neogene normal faults of the Eastern Pyrenees are reported in red. The study area is 150 
outlined with an open purple-dashed box. b) Structural sketch map of the study area showing the different massifs (in 151 
bold italics) and basins (in italics) along the Southwestern (SW) and Northeastern (NE) segments of the Têt fault 152 
(modified from Taillefer et al., 2021). Secondary faults are indicated by red numbers (see legend for details). 153 

2.2 Tectonic evolution and sedimentary record along the Têt fault 154 

The southern segment of the Têt normal fault is a NE-SW north-dipping and 100-km long crustal-scale fault (Maurel 155 
et al., 2002; 2008; Chevrot et al., 2018; Diaz et al., 2018; Fig. 1a). It crosscuts Palaeozoic magmatic and metamorphic 156 
rocks of the Mont Louis, Canigou and Carança massifs along which Neogene sedimentary basins developed (Fig. 1b). 157 
In the Canigou massif, the main period of fault activity during the Oligo-Miocene has been well constrained using 158 
low-T thermochronology (Maurel et al., 2002; 2008). A second stage of normal motion along the entire Têt fault has 159 
been recorded between the middle-Miocene and the late Pliocene, with associated vertical displacements in the range 160 
of 150-500 m (Pous et al., 1986; Rehault et al., 1987; Cabrera et al., 1988; Roca and Desegaulx, 1992; Tassone et al., 161 
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1994; Calvet, 1999; Carozza and Baize, 2004; Delcaillau et al., 2004; Agustí et al., 2006; Clauzon et al., 2015) to 162 
kilometric (Calvet, 1996; Mauffret el al. 2001). However, thermochronological data in the Canigou massif (Maurel et 163 
al., 2008) are apparently not consistent with an hypothesis of km-scale vertical displacements. Since the end of 164 
Miocene, a main difference is recorded along the Têt fault between the western (Cerdagne basin) and eastern (Conflent 165 
and Roussillon basins) segments. Indeed, only the western segment of the Têt fault has been active (Calvet, 1999) 166 
which led to the opening of the Cerdagne pull-apart basin accommodated by normal (Pous et al., 1986; Agustí et al., 167 
2006) and right-lateral displacement along the Têt fault (Cabrera et al., 1988). Based on geomorphological 168 
observations, a westward propagation of the deformation along the Têt fault has also been proposed to occur during 169 
the Plio-Pleistocene (Carozza and Delcaillau, 1999; Carozza and Baize, 2004). The amplitude of Pliocene to 170 
Quaternary normal activity on the eastern segment of the Têt fault is still debated. For some authors, the presence of 171 
triangular facets along the Têt fault scarp documents a recent normal fault activity (Briais et al., 1990; Calvet, 1999). 172 
However, Petit and Mouthereau (2012) suggested these are only the morphological expression of the differential 173 
erosion within Variscan mylonites. It is important to note that facets are also observed on scarps with no apparent 174 
mylonite nor favorably-oriented Variscan foliation (western segment of the Têt fault, Py and Capcir faults, Delmas et 175 
al., 2018). Finally, over the last 6 Ma, low incision rates of maximum 25 m/Ma in the Têt valley indicate weak vertical 176 
uplift in the study area (Sartégou et al., 2018), bringing further evidence to the ongoing discussion on Late-Miocene 177 
potential uplift from paleoelevation studies (Huyghe et al., 2020; Suc and Fauquette, 2012). 178 
 179 
The sedimentary record is not continuous along the Têt fault system, and three main depositional areas can be 180 
distinguished from East to West: (1) the Roussillon basin bounded to the North by the northern segment of the Têt 181 
fault that is antithetic to the southern segment, (2) the Conflent basin that connects to the Roussillon basin to the East 182 
and (3) the Cerdagne basin along the southwestern segment of the Têt fault (Fig. 1b). The Roussillon basin is a large 183 
graben belonging to the West European Rift system and was highly subsident during the Oligocene-Aquitanian 184 
interval that corresponds to the rifting phase preluding the Liguro-Provencal Sea opening. Post-rift deposits within the 185 
Roussillon basin were deposited in a passive margin geotectonic setting with low tectonic subsidence, and were deeply 186 
incised during the Messinian salinity crisis after which the passive margin sedimentation resumed during the Pliocene 187 
(Clauzon et al., 1987; Clauzon, 1990; Calvet et al., 2015; Calvet et al., 2021). The Conflent basin is an intramontane 188 
half-graben lying along the southwestern segment of the Têt fault, at an elevation ranging from 250 to 1,000 m. Its 189 
sedimentary infill is composed of up to ~1,000 m thick continental deposits, thought to be related to the main tectonic 190 
activity of the Têt fault (Guitard et al., 1998; Calvet et al., 2014). However, the stratigraphy of this basin is debated 191 
and the main sedimentary units, peculiarly an olistostrome with km-scale olistoliths originated from the Canigou 192 
massif, may be either early Burdigalian (Guitard et al., 1998; Calvet et al., 2014) or Pliocene (Clauzon et al., 2015). 193 
Towards the southwest, the Cerdagne basin, at an elevation of 1,100 m, is interpreted as a pull-apart basin formed by 194 
dextral-strike slip along the Têt fault (Cabrera et al., 1988). It has been infilled by 400 to 1,000 m of Neogene sediments 195 
divided in two depositional units from early Miocene and late Miocene, separated by an unconformity (Pous et al., 196 
1986; Augusti and Roca, 1987; Cabrera et al., 1988; Roca, 1996). The source area of clastic sediments switched from 197 
the North to the South between these two units, with tectonic activity strongly decreasing during the late Miocene 198 
(Roca and Santanach, 1986; Cabrera et al., 1988).  199 

3 Methodology 200 

3.1 Low-temperature thermochronology 201 

3.1.1 Sampling strategy 202 

Our main objective is to quantify the exhumation and thermal evolution of the different crustal blocks separated by 203 
main regional faults, and to provide new data on the kinematic history of these faults. In the hanging wall of the Têt 204 
fault, two main blocks, separated by the Mérens fault, have been studied: respectively the North and South Mérens 205 
blocks. The North Mérens block is composed of the Millas and Querigut granitic massifs, and the South Mérens block 206 
is formed by Mont-Louis, Campcardos and Carlit massifs (Fig. 1b). In the footwall of the Têt fault, two main blocks, 207 
separated by the NE-SW trending Py fault, have been sampled: the Canigou-Costabonne block (eastern segment of 208 
the Têt fault, Canigou and Costabonne sub-blocks separated by the NW-SE Llipodère fault) and the Carança block 209 
(western segment). New AHe, AFT and ZHe ages have been obtained mainly in the footwall of the Têt fault (Carança 210 
and Canigou-Costabonne blocks), which represents a total of 44 AHe ages, 3 AFT ages and 25 ZHe ages (Tables 1 211 
and 2). Thermochronological data from previous studies (Maurel et al., 2008; Gunnell et al., 2009) have been 212 
synthetized and supplemented by AHe ages from our previous studies (Milesi et al., 2019, 2020b). Note that we have 213 
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excluded samples affected by hydrothermalism and Rare Earth Element mobility, thererefore not relevant to define 214 
regional exhumation and thermal evolution of the studied area (Milesi et al., 2019, 2020b, Fig. 2). Sample localities 215 
and corresponding thermochronological data from literature are summarized in Supplementary Section Table S1 and 216 
shown in Figure 2. 217 
 218 
In the hanging wall of the Têt fault, six samples at an elevation between 730 m and 2,380 m were analyzed in the 219 
North Mérens block (DON, MAD and MTB). The South Mérens block (i.e. Mont-Louis massif) provided seventeen 220 
samples (CAR, CMPC, GAL, LPCH, ML, ST) with an elevation difference of ~1800 m between the lowest sample in 221 
the Têt Valley (1,081 m) and that of the summit of Campcardos (2,900 m). In the footwall of the Têt fault, the 222 
Costabonne massif includes four samples (GUIL and POMA) from Gunnell et al. (2009) and two samples (VER) 223 
dated in this study. In the Canigou massif, Maurel et al. (2008) reported thermomochronological data on seven samples 224 
(CAN) collected along a profile from the base of the massif (970 m) to the summit (2,784 m). Three apatite samples 225 
(CAN4, CAN9 and CAN12), initially dated with the AHe population method, have been redated with AHe single 226 
grain method (see section 3.1.2). Two augen gneiss blocks (OL1 and OL2) from the olistostrome formation deposited 227 
in the Conflent basin and originating from the Canigou massif (Clauzon et al., 2015) have been also dated with the 228 
AHe single-grain method. In the Carança block, five new samples have been dated with the AHe method (GAL5, ST6, 229 
ST7, ST9 and ST10) to complete the AHe dataset from Milesi et al. (2019, 2020b). AFT ages have been obtained on 230 
three samples from different sampling profiles (ST2, GAL4 and TET4). Finally, a ZHe age-elevation profile (900 to 231 
1900 m) has been realized with six samples from the Carança block (TET1.1, TET4, TET5, GAL7, GAL3, PLA3 and 232 
ST3). 233 
 234 

 235 

Figure 2. Location of samples projected on DEM under GMT (Wessel et al., 2019) using SRTM1s. Different crustal 236 
blocks are delimited by regional major faults. From the North to the South, the sample names are for ST profile : ST2, 237 
ST3, ST4, ST10, ST9, ST8, ST7, ST6 and for GAL profile: GAL7, GAL6, GAL5, GAL4, GAL3, GAL1. Samples 238 
ST2, ST6, ST7, ST9, ST10, GAL4 and GAL5 were dated in this study. 239 

3.1.2 Apatite and zircon (U-Th)/He dating 240 

Apatite and zircon (U-Th)/He analyses were conducted at the Noble Gas Laboratory of Géosciences Montpellier 241 
(France). All samples were crushed and sieved, and apatite and zircon concentrates were obtained by heavy liquid 242 
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methods. Inclusion-free crystals with no evidence of fracture were hand-picked under a binocular microscope. Each 243 
single grain was packed in Pt tubes for apatite or Nb tube for zircon, placed under vacuum, and heated with a 1,090-244 
nm fibre laser operating at 4.0W (900°C) for apatite and 6.2W (1,100°C) for zircon. We applied a duration of heating 245 
of 5 min for apatite and 15 min for zircon. After 3He spiking, gas purification was achieved by a cryogenic trap and 246 
two SAES AP-10-N getters, and helium content was measured on a quadrupole PrismaPlus QMG 220. The 4He content 247 
was determined by the peak height method and was 10–10000 times above typical blank levels. A second heating run 248 
using the same analytical procedure was systematically conducted to verify that more than 99% of 4He was extracted 249 
during the first run. After helium extraction, Pt or Nb tubes were retrieved from the sample chamber and transferred 250 
in a 2 ml polypropylene conical tube. Samples were doubly spiked (230Th and 233U) and dissolved using procedures 251 
previously described by Wu et al. (2016) for apatite and Gautheron et al. (2021) for zircon. The resulting solutions 252 
were diluted, and U (233U and 238U) and Th (230Th and 232Th) were measured by using isotope dilution ICPMS. For 253 
age calculation, alpha ejection correction (Farley et al., 1996) was calculated using the Ft software (Gautheron and 254 
Tassan-Got, 2010; Ketcham et al., 2011). Durango apatite and Fish Canyon Tuff (FCT) zircon replicates were analysed 255 
between four unknown grains and yielded a mean age of 31.24 ± 2.18 Ma and 29.19 ± 1.19 Ma , respectively, during 256 
the different analyses of this study. These results are consistent with the Durango reference age of 31.02 ± 1.01 Ma 257 
given by McDowell et al. (2005) and FCT reference age of 28.30 ± 2.8 Ma (Reiners and Nicolescu, 2006). 258 
Conservatively, the He Partial Retention Zone (PRZ) for the zircon system is assumed to be between 140°C and 220°C 259 
(Guenthner et al., 2013) and in the range of 40°C to 80°C for apatite (Stockli et al., 2000). It is important to note that 260 
the helium retention is sensitive to the crystal chemistry (eU values, chlorine content) and cooling history of samples 261 
(see Ault et al., 2019), and also that the PRZ can spread over a larger range of temperature (see Ault et al., 2019) 262 

3.1.3 Apatite fission tracks  263 

Apatite grains were mounted and polished for etching to reveal the natural spontaneous fission tracks. Apatites were 264 
etched using 5.5N HNO3 at 20°C for 20s. Etched grain mounts were packed with mica external detectors and corning 265 
glass (CN5) dosimeters and irradiated in the Chilean CCHEN nuclear reactor. Following irradiation, the external 266 
detectors were etched using 40% HF at 20°C for 40 minutes. Analyses were carried out on an Olympus BX61 267 
microscope at a magnification of ×1,250, using a dry (×100) objective in the Dating laboratory of Géosciences 268 
Environnement Toulouse (France). Confined track-length measurements were performed using a drawing tube and 269 
digitizing tablet, calibrated against a stage micrometer. Single-grain AFT ages were calculated using the external 270 
detector method and the zeta calibration approach, as recommended by the I.U.G.S. Subcommission on 271 
Geochronology (Hurford, 1990). Track-length measurements were restricted to confined tracks parallel to the c-272 
crystallographic axis. Fission tracks in apatite shorten or anneal with increased temperature and duration of heating. 273 
For apatite of typical Durango composition (0.4 wt% Cl), experimental and borehole data (Green et al. 1989; Ketcham 274 
et al. 1999) show that over geologic time fission tracks begin to anneal at a sufficient rate to be measurable above 275 
~60°C, with complete annealing and total resetting of the apatite fission track age occurring between 100 and 120°C. 276 
This range of temperatures is usually labelled the apatite fission-track partial annealing zone (PAZ).  277 

3.2 Thermochronological data interpretation 278 

3.2.1 Age-elevation relationships (AER) 279 

For each crustal block (Fig. 2), the age-elevation relationships (AERs) between the different thermochronological data 280 
have been used to estimate first-order apparent exhumation rates and also to get information on timing for potential 281 
changes in exhumation (i.e. break-in-slope in AERs). This approach is independent from the thermal structure of the 282 
block under consideration (e.g. Wagner et al., 1977; Fitzgerald et al., 1995; Braun, 2002; Fitzgerald and Malusà, 283 
2019), but it relies on severaly assumptions and simplifications. First, it only considers the measured 284 
thermochronological ages without taking into account potential sample-specific kinetics from parent element content 285 
for instance (e.g. Ault et al., 2019). The AER approach also considers a vertical distribution of investigated samples 286 
(Stüwe et al. 1994), which is rarely the case in the field, and may also be influenced by potential changes in topography 287 
(Braun, 2002) or the presence of secondary faults. A major potential problem concerning the interpretation of AERs 288 
is the complexity of the exhumation scenario (i.e. number of segments which can be defined in an age-elevation 289 
dataset), we thus used a Bayesian Information Criterion (BIC) to select the appropriate model complexity (Schwarz, 290 
1978). In this study, we followed the approach developed by Glotzbach et al. (2011) to determine the best-fitting AER 291 
estimates for AHe, AFT and ZHe data with minimization of the BIC. 292 
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3.2.2 Inverse thermal modeling under QTQt 293 

In order to reconstruct the thermal history of the different crustal blocks (Fig. 2), time-temperature paths were modeled 294 
with QTQt 5.7.0 software (Gallagher et al., 2009; Gallagher, 2012) using AHe and ZHe single-grain ages and 295 
parameters (eU, Rs) together with AFT single-grain ages with length distribution data. QTQt software uses a Bayesian 296 
Markov chain Monte Carlo (MCMC) sampling method to infer sample time-temperature histories (Sambridge, 1999; 297 
Charvin et al., 2009). This software is particularly efficient to model together several samples from a same elevation 298 
profile. We parametrized modeling to allow all samples of a given elevation profile to evolve under a common thermal 299 
path with a typical geothermal gradient of 30°C ± 10°C in order to take full advantage of the multi-sample inversion 300 
approach (Vermeesch and Tian, 2014). The radiation-damage model of Gautheron et al. (2009) has been chosen for 301 
the AHe, the kinetic models of Ketcham et al. (2007) for AFT and Guenthner et al. (2013) diffusion model for ZHe. 302 
For each model, 100,000 iterations have been performed and the predicted vs. observed ages graph is systematically 303 
presented with output time-temperature histories. ZHe data are modeled only for the Carança block (where we 304 
obtained a ZHe elevation profile), and are used as first-order time-temperature constraints to define the thermal 305 
histories of the other crustal blocks (no availablble ZHe profile, only scarce individual data obtained with the 306 
population method). 307 

4 Results 308 

4.1 New thermochronological ages  309 

4.1.1 Apatite and zircon (U-Th)/He  310 

All AHe and ZHe single-grain ages obtained in this study are reported in Table 1. We also present different graphs of 311 
ages vs. Rs, eU and Th/U in the Supporting Information (Fig. S1). For the South Mérens block, an augen gneiss 312 
(sample ST13) was collected in the footwall of the Fontpédrouse fault and provides a mean AHe age of 16.7 ± 1.0 313 
Ma. Two apatite grains have not been considered to calculate the mean AHe age due to their anomalous high eU 314 
content compared to the other grains, possibly due to U-rich inclusions in these apatite grains (Table 2 and Fig. S1). 315 
Note that ST13 has an AHe age younger than all AHe ages (all >25 Ma) previously obtained in the South Mérens 316 
block (Maurel et al., 2008; Milesi et al., 2020b). This cannot be explained by different Rs or eU values of the dated 317 
apatite grains (Table 1, Fig. S1) and therefore sample ST13 will be considered independently of other samples from 318 
the South Mérens block due to its particular structural position in the footwall of the Fontpédrouse fault (Fig. 3). 319 
 320 

 321 
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Figure 3. Synthesis of AHe and ZHe ages in the study area. Samples with green and italic labels are new samples 322 
from this study, those with black labels are from previous literature studies (Maurel et al. 2008; Gunnell et al., 2009; 323 
Milesi et al., 2019; 2020a; 2020b). Along altitudinal profiles, samples from North to South are : ST profile - ST3, 324 
ST4, ST10, ST9, ST8, ST7, ST6; GAL profile - GAL7, GAL6, GAL5, GAL3. Samples ST6, ST7, ST9, ST10 and 325 
GAL5 were dated in this study. 326 
 327 
In the footwall of the Têt fault, three samples from the Canigou massif, previously analyzed using multigrain AHe 328 
approach, were re-processed using a single-grain approach. Sample CAN12 from the base of the profile (970 m) shows 329 
a mean AHe age of 16.7 ± 1.3 Ma that agrees with the multigrain AHe age of 18.8 ± 1.0 Ma (Maurel et al., 2008). On 330 
top of the massif (2,784 m), sample CAN4 displays larger single-grain AHe age dispersion between 24.3 and 33.5 331 
Ma, without any clear relationship with the apatite chemical composition (Table 1 and Fig. S.1). The mean single-332 
grain AHe age of CAN4 (27.9 ± 4.8 Ma), despite high uncertainty, is younger than the multigrain AHe age of 34.7 ± 333 
1.7 Ma obtained on three aliquots by Maurel et al. (2008). At an intermediate elevation (2,050 m), a single apatite 334 
grain provides an AHe age of 19.6 ± 1.0 Ma for sample CAN8. In the southern Costabonne massif, two samples 335 
VER11 (1,560 m) and VER13 (1,935 m) show low intra-sample age dispersion, except one apatite grain excluded for 336 
the mean age calculation due to its important eU content and young AHe age (Table 1 and Fig. S.1). AHe ages are 337 
respectively of 30.6 ± 1.8 Ma for VER11 and 34.9 ± 1.8 Ma for VER13. In the olistostrome of the Conflent basin, two 338 
augen gneisses (OL1 and OL2, Fig. 2) provide five AHe ages with four of them between 40.8 ± 2.3 Ma and 49.5 ± 339 
2.2 Ma, and one at 21.7 ± 1.1 Ma. In the Carança massif, a new AHe mean age of 11.9 ± 0.9 Ma has been obtained 340 
for a granite sample (GAL5), thus confirming previous single-grain AHe ages between 10.0 ± 0.4 Ma and 14.1 ± 1.1 341 
Ma obtained for the GAL profile (Milesi et al., 2020b). In the western part of Carança block, samples ST6, ST7, ST9 342 
and ST10 collected at a similar elevation provide mean AHe ages of 25.5 ± 6.5 Ma, 17.1 ± 1.4 Ma, 24.3 ± 3.0 Ma and 343 
19.6 ± 4.4 Ma, respectively (Table 1 and Fig. 3). ST samples provide quite large intra-sample variability in AHe ages, 344 
which cannot be explained by the chemical characteristics (eU, Th/U) or the grain size (Rs). 345 
 346 
In the Carança massif, seven samples collected at different elevations (from 900 to 1,900 m) have been dated using 347 
the single-grain ZHe method. These zircon grains have an eU content mostly ranging between 500 and 1900 ppm, 348 
except sample PLA2 (1,900 m) that contains two zircons with eU values above 3000 ppm. These samples do not 349 
display important intra-sample age variation and show mean ZHe ages increasing regularly with elevation from 22.0 350 
± 1.7 Ma to 32.5 ± 3.3 Ma. The two samples PLA3 (1,622 m) and TET5 (1,900 m) from the top of the profile display 351 
similar ZHe ages of 36.2 ± 2.9 Ma and 37.3 ± 3.0 Ma, respectively (Table 1 and Fig. 3).  352 
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Table 1. (U-Th)/He data on apatite and zircon. Single-grain data with * (and in italics) have been considered as 353 
outliers and not considered for the mean age calculation. 354 

 355 

Block Sample/ Rs U Th eU Th/U 4He ± s Ft Corrected age Error
grain µm ppm ppm ppm ncc/g ncc/g Ma ±1ơ (Ma)

ST13a 81.8 12.4 18.6 16.9 1.5 29023.1 1160.9 0.84 17.0 0.8
ST13b 81.3 14.1 16.0 17.9 1.1 28315.3 849.5 0.85 15.5 0.6
ST13c 67.0 24.2 24.4 30.0 1.0 49313.1 986.3 0.82 16.7 0.7
ST13d 59.9 14.3 14.6 17.8 1.0 30276.5 1211.1 0.82 17.2 0.7
ST13e 61.3 77.2 73.7 94.9 1.0 143789.9 1437.9 0.82 15.4 0.7
ST13f 45.5 48.5 59.8 62.9 1.2 102885.4 2057.7 0.7 18.1 0.8
ST13g* 53.3 130.3 158.8 168.4 1.2 356975.6 3569.8 0.8 22.9 1.0
ST13h* 43.9 94.3 102.8 119.0 1.1 227047.7 2951.6 0.7 21.9 1.1

Mean 16.7 1.0

GAL5a 57.3 20.6 5.1 21.8 0.2 19915.4 597.5 0.77 9.8 0.6
GAL5b 62.7 11.2 5.6 12.5 0.5 15730.0 471.9 0.81 12.9 0.8
GAL5c 60.8 7.8 2.1 8.4 0.3 10375.3 415.0 0.79 13.0 0.8

Mean 11.9 1.8

ST10a 61.3 50.1 28.0 56.8 0.6 109832.3 2196.6 0.77 20.9 1.2
ST10b 56.3 62.3 27.3 68.8 0.4 94741.0 1136.9 0.75 15.3 0.8
ST10c 75.1 56.1 26.4 62.4 0.5 103165.4 1547.5 0.81 17.0 0.9
ST10d 67.0 29.1 7.4 30.8 0.3 76314.5 1526.3 0.81 25.2 1.3

Mean 19.6 4.4

ST9a 60.4 46.6 17.7 50.8 0.4 119148.9 1191.5 0.79 24.7 1.2
ST9b 68.1 38.6 10.2 41.0 0.3 83334.3 1666.7 0.83 20.4 1.0
ST9c 68.0 59.8 25.8 66.0 0.4 158824.9 1588.2 0.81 24.5 1.3
ST9d 63.2 54.0 19.8 58.8 0.4 164830.2 1648.3 0.84 27.8 1.7

Mean 24.3 3.0

ST7a 61.0 11.3 3.2 12.1 0.3 18475.0 923.8 0.79 16.1 0.8
ST7b 64.6 16.1 4.6 17.2 0.3 31125.3 1245.0 0.80 18.7 0.9
ST7c 70.5 24.1 5.9 25.5 0.2 40022.5 800.4 0.82 15.8 0.7
ST7d 63.5 14.2 3.7 15.1 0.3 26010.2 1040.4 0.80 17.9 0.9

Mean 17.1 1.4

ST6a 82.1 7.4 2.6 8.1 0.4 27252.5 817.6 0.85 33.1 1.8
ST6b 62.3 13.1 3.3 13.9 0.3 28447.2 1137.9 0.78 21.7 1.1
ST6c 67.9 7.2 3.3 8.0 0.5 17354.2 867.7 0.82 21.9 1.0

Mean 25.5 6.5

CAN12a 77.8 32.7 17.4 36.9 0.5 67808.4 678.1 0.84 18.1 0.9
CAN12b 61.3 32.4 10.6 35.0 0.3 54050.7 540.5 0.83 15.5 0.7
CAN12c 102.6 8.3 24.1 14.1 2.9 25356.0 253.6 0.90 16.6 0.8

Mean 16.7 1.3

CAN8a 80 33.5 2.4 34.1 0.1 67878.1 678.8 0.84 19.6 1.0

CAN4a 42.6 8.1 17.9 12.4 2.2 25850.1 258.5 0.71 24.3 1.5
CAN4b 45.1 16.5 43.7 27.0 2.6 62074.6 620.7 0.74 26.0 1.4
CAN4c 61.7 11.6 35.4 20.1 3.0 64660.9 646.6 0.80 33.5 1.9

Mean 27.9 4.8

VER11a 50.0 237.6 17.0 241.7 0.1 639343.3 6393.4 0.75 29.2 1.4
VER11b 47.9 228.1 19.4 232.7 0.1 684958.3 6849.6 0.74 32.7 1.6
VER11c 49.9 153.7 13.2 156.9 0.1 429612.5 4296.1 0.76 29.9 1.5

Mean 30.6 1.8

VER13a* 61.9 377.9 156.1 415.3 0.4 969933.9 9699.3 0.81 24.0 1.3
VER13b 52.9 275.0 61.6 289.8 0.2 920151.0 9201.5 0.77 34.3 1.8
VER13c 57.7 237.9 65.3 253.6 0.3 860128.9 8601.3 0.79 35.4 1.8

Mean 34.9 1.8

CAN12 (42.56647N  2.48237E 970m) Augen gneiss

CAN8 (42.53956N  2.46652E 2,050m) Augen gneiss

CAN4 (42.51892N  2.45676E 2,784m) Augen gneiss

Costabonne 
block

VER11 (42.477943N  2.305973E 1,560m) Highly fractured augen gneiss with chlorite

VER13 (42.471203N  2.343885E 1,935m) Augen gneiss

Canigou 
block 

Apatite

GAL5 (42.51287N 2.20037E 1,147m) Granite

ST10 (42.4949N  2.17104E 1,383m) Augen gneiss

ST9 (42.49203N 2.17351E 1,421m) Fractured augen gneiss

ST7 (42.48421N 2.17433E 1,494m) Augen gneiss

ST6 (42.48116N 2.17433E 1,533m) Augen gneiss

South 
Mérens 
block

ST13 (42.50727N 2.15867E 1,289m) Augen gneiss

Carança 
block
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 356 

4.1.2 Apatite fission tracks (AFT)  357 

In the Carança massif, three new AFT ages have been obtained for samples TET4 (1,390 m) and GAL4 (1,221 m) and 358 
ST2 (1,217 m) (Fig. 4). They are respectively of 17.4 ± 1.7 Ma, 15.2 ± 1.4 Ma and 17.4 ± 1.7 Ma, with related mean 359 
track lengths of 12.84 ± 0.50 µm, 12.81 ± 0.70 µm and 12.39 ± 0.50 µm. AFT data and mean track lengths are 360 
summarized in Table 2 and shown with literature data on Figure 4. 361 

OL2a 81.2 15.2 9.2 17.4 0.6 76552.5 765.5 0.85 43.1 2.0
OL2b 38.6 41.7 49.8 53.7 1.2 100135.0 1001.4 0.71 21.7 1.1
OL2c 82.5 13.0 16.3 16.9 1.3 87438.1 874.4 0.87 49.5 2.2

OL1a 48.4 17.2 10.7 19.7 0.6 72121.3 721.2 0.71 42.9 2.4
OL1b 56.7 20.9 9.7 23.2 0.5 88868.5 888.7 0.78 40.8 2.3

TET1.1a 47.9 1185.3 530.6 1312.6 0.4 2188733.2 43774.7 0.70 19.7 1.6
TET1.1b 71.0 632.9 201.8 681.3 0.3 1577103.0 41004.7 0.80 23.9 1.9
TET1.1c 53.5 525.5 215.5 577.2 0.4 1158414.3 20851.5 0.77 21.6 1.7
TET1.1d 54.7 581.0 338.7 662.3 0.6 1397788.4 29353.6 0.77 22.7 1.8

Mean 22.0 1.7

TET4a 73.7 460.9 175.7 503.0 0.4 1449839.5 21747.6 0.83 28.7 2.3
TET4b 60.8 548.1 770.2 733.0 1.4 2244859.4 24693.5 0.76 33.5 2.7
TET4c 56.1 869.6 320.0 946.4 0.4 3000148.0 48002.4 0.75 35.2 2.8

Mean 32.5 3.3

TET5a 63.7 564.0 149.9 600.0 0.3 2172324.1 39101.8 0.77 38.9 3.1
TET5b 67.8 933.1 423.6 1034.8 0.5 3586410.1 71728.2 0.79 36.3 2.9
TET5c 68.5 1192.0 315.4 1267.7 0.3 4567608.3 68514.1 0.82 36.4 2.9
TET5d 58.9 968.6 452.4 1077.1 0.5 3262406.1 48936.1 0.76 33.2 2.7

Mean 36.2 2.9

GAL7a 62.4 1090.8 483.6 1206.8 0.4 2620687.7 39310.3 0.80 22.4 1.8
GAL7b 54.7 950.0 407.1 1047.7 0.4 2191714.2 39450.9 0.74 23.5 1.9
GAL7c 52.3 1264.8 556.2 1398.3 0.4 3105604.0 52795.3 0.77 24.0 1.9

Mean 23.3 1.9

GAL3a 55.4 1678.1 328.7 1757.0 0.2 4976741.5 59720.9 0.74 31.6 2.5
GAL3b 59.8 685.1 436.9 789.9 0.6 2120801.6 31812.0 0.78 28.6 2.3
GAL3c 67.4 685.6 477.6 800.3 0.7 2144053.6 40737.0 0.81 27.5 2.2
GAL3d 66.0 881.9 207.1 931.6 0.2 2581295.1 41300.7 0.78 29.4 2.3

Mean 29.3 2.3

ST3a 59.9 1316.3 557.5 1450.2 0.4 3801126.6 49414.6 0.76 28.6 2.3
ST3b 63.4 1802.8 314.4 1878.2 0.2 4910004.5 68740.1 0.77 28.0 2.2
ST3c 61.3 1121.4 661.1 1280.0 0.6 2993707.8 47899.3 0.77 25.3 2.0

Mean 27.3 2.2

PLA3a 49.5 2958.1 226.3 3012.4 0.1 9898474.3 89086.3 0.75 36.2 2.9
PLA3b 50.4 3478.6 417.7 3578.8 0.1 11888683.1 106998.1 0.75 36.8 2.9
PLA3c 61.3 1678.8 277.0 1745.2 0.2 6282251.9 50258.0 0.77 38.9 3.1

Mean 37.3 3.0

Carança 
block

OL2 (42.55702N  2.39468E 780m) Fractured augen gneiss

OL1 (42.53754N  2.3375E 930m) Fractured augen gneiss

Zircon

Note. Ft: Alpha ejection correction (Farley et al., 1996)

Olistolithes

TET1.1 (42.52611N 2.24305555E 900 m) Granite with chlorite

TET 4 (42.51175N 2.25487E 1,390m) Augen gneiss

TET 5 (42.49078N 2.23036E 1,900m) Augen Gneiss

GAL7 (42.51505N 2.19904E 1,025m) Fractured fine grained gneiss with quartz and calcite veins and locally oxides

GAL3 (42.51018N 2.20525E 1,363m) Fine grained gneiss

ST3 (42.50001N 2.16697E 1,174m) Unaltered gneiss with biotite

PLA3 (42.49343N 2.15462E 1,622 m) Fractured leucocratic gneiss and locally oxidized 
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 362 

Figure 4. AFT central ages for the study area. Samples ST2, GAL4 and TET4 (in green) are from this study, AFT 363 
ages in black have been extracted from Maurel et al. (2008) and Gunnell et al. (2009) (See Supplementary Table S1 364 
for details and locations). 365 

 366 

Table 2. Fission-track data for the Carança massif. Analyses were determined by the external detector method using 367 
0.5 for the 4π/2π geometry correction factor. Apatite fission-track ages were calculated using dosimeter glass (CN-5; 368 
Analyst Stephanie Brichau, ξ=341.8± 7.8) calibrated by multiple analyses of IUGS apatite age standards (Hurford, 369 
1990). Pχ2 is probability of obtaining χ2 value for v degrees of freedom, where v is the amount of crystals. Central 370 
age is a modal age, weighted for different precisions of individual crystals. In track density, ρd is the fission track 371 

Track density (x106 tr.cm-2)
Sample No. of ρd ρs ρi RE Pχ2 U Central age  Mean track length StD No. of tracks

(elevation) crystals [Nd] [Ns] [Ni] (%) (%) (ppm) (Ma ± 1σ) (μm) (μm) measured
TET4 10 1.183 0.400 4.546 0.1 67.37 48.0 17.4 ± 1,7 12.84 ± 0.5 1.81 35
1,390 m [10391] [119] [1377]
GAL4 16 1.189 0.333 4.659 14.7 17.14 49.0 15.20 ± 1.4 12.81 ± 0.7 2.53 40
1,221 m [10391] [163] [2203]
ST2 20 1.177 0.307 3.601 17.6 28.01 38.3 17.4 ± 1.7 12.39 ± 0.5 2.46 57
1,217 m [10391] [150] [1741]

Age dispersion
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density of the standard U-glass (CN-5); Ns (spontaneous), Ni (induced) and Nd (dosemeter) are the fission track 372 
numbers corresponding to ρs, ρi and ρd, respectively. 373 

4.2 AERs and apparent exhumation rates 374 

4.2.1 Hanging wall of the Têt fault 375 

In the hanging wall of the Têt fault, AERs are presented only for the South Mérens block (Fig. 5a). AERs based on 376 
AFT and AHe data suggest a three-stage exhumation scenario defined by the lowest BIC (Fig. 5a). Samples between 377 
1,400 m and 2,400 m provide AFT central ages between 32.3 ± 3.4 Ma and 38.6 ± 2.4 Ma, corresponding to a mean 378 
apparent exhumation rate of 0.48 km/Ma. The uncertainty on this exhumation rate is relatively large (from 0.22 to 379 
1.90 km/Ma) because most samples lie on an apparent vertical straight line. Samples CMPC1 and CMPC2 from the 380 
top of the profile (2,900 m), with AFT central ages ~50 Ma, indicate a lower apparent exhumation rate (0.04 km/Ma) 381 
that prevailed between ~35 and 50 Ma (Fig. 5a, upper graph); although the two ZHe ages in this block suggest potential 382 
variability in the exhumation rate during this period. CMPC1 and CMPC2 are the westernmost samples, it may also 383 
be possible that they have experienced different exhumation than other samples further East. However, these are the 384 
only thermochronological data available above 2,400 m for the South Mérens block, so we cannot assess further this 385 
potential difference.  386 
 387 
AHe ages from samples above 1,700 m indicate an apparent negative exhumation rate between 35 and 40 Ma. Sample 388 
ML3 (2,030 m), which presents an AHe mean age older than its AFT central age has not been considered. This age 389 
inversion can find several explanations: an excess helium in the apatite grains (Green et al., 2006), the presence of 390 
inclusion inside or rich U-Th grain boundary phases (Murray et al., 2014). Sample ST13 is not presented in the Figure 391 
5, its mean AHe age (16.7 ± 1.0 Ma) is younger than that of other samples and cannot be explained by the regional 392 
AER trend. The particular structural location of this sample in the footwall of the Fontpédrouse fault, close to the fault 393 
corner between Fontpédrouse (NW-SE) and the Têt fault (NE-SW) can explain the specific exhumation history due 394 
to the NW-SE fault activity (see Section 2.1). The negative apparent exhumation rate obtained can be due to: (1) the 395 
small number of samples (4 in total) above 1,700 m used to precisely define an exhumation rate in this block; (2) a 396 
change in AHe kinetics due to the rapid exhumation (e.g Ault et al., 2019); (3) a major decrease of relief during this 397 
period (Braun, 2002; Reiners, 2007; McDannell et al., 2014). This AER above 1,700 m is strongly influenced by AHe 398 
mean ages from CMPC1/2 samples at the top of the profile (Fig. 5a, lower graph), and can be explained only by rapid 399 
exhumation rates, consistently with the exhumation rates derived from the AFT central ages during this period (Fig. 400 
5a, upper graph). Samples between 1,000 m and 1,700 m (Fig. 5a, lower graph) provide AHe mean ages between 24.2 401 
± 4.0 Ma and 40.0 ± 2.0 Ma, suggesting an important decrease in the apparent exhumation rate (0.05 km/Ma). For 402 
comparison, AFT ages in the North Mérens block support a mean apparent exhumation rate of 0.46 km/Ma between 403 
~52 and 48 Ma, with high uncertainty due to the low number of AFT central ages obtained for this block (see 404 
Supporting Information Fig. S2).  405 
 406 
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 407 

Figure 5. Age-Elevation Relationships (AERs) for AFT and ZHe (first raw) and AHe data (second raw) for (a) the 408 
South Mérens block (the AHe mean age of sample ML3 at elevation of 2,050 m, with AHe mean age older than AFT 409 
central age has not been considered), (b) the Canigou-Costabonne massif and (c) the Carança massif. 410 
 411 

4.2.2 Footwall of the Têt fault  412 

In the footwall of the Têt fault, the Canigou-Costabonne (Fig. 5b) and Carança blocks (Fig. 5c) are separated by the 413 
Py fault and therefore their AERs have been considered individually. On Figure 5b (upper graph), the AER deduced 414 
from AFT data in the Canigou sub-block (between 970 m and 2,784 m), suggests a single exhumation phase between 415 
ca. 22 and 27 Ma, with an apparent exhumation rate of 0.33 km/Ma. AHe mean ages from the same block (Fig. 5b, 416 
lower graph) are between 16.7 ± 1.8 Ma and 34.7 ± 2.5 Ma, suggesting an apparent exhumation rate of 0.16 km/Ma 417 
from the Priabonian to the end of the Burdigalian. South of the Canigou massif, samples from the Costabonne massif 418 
do not show enough elevation difference to provide a reliable exhumation rate from AERs. However, it can be noted 419 
that for samples taken at similar elevations in these two massifs, the AFT and AHe ages are 1 to 10 Ma older in the 420 
Costabonne massif than in the Canigou massif (Fig. 5b). 421 
 422 
In the Carança massif (Fig. 5c), both ZHe and AHe data have been used to constrain apparent exhumation rates from 423 
AERs. Three AFT central ages cannot be used given the limited elevation distribution (Fig. 5c, upper graph). ZHe 424 
data obtained on 7 samples show a quasi-ideal AER with an apparent exhumation rate of 0.06 km/Ma between ca. 37 425 
and 22 Ma. AHe data suggest a similar apparent exhumation rate (0.07 km/Ma), between ca. 22 and 10 Ma, with some 426 
age variability for samples between 1,250 and 1,550 m on the ST profile, probably due to the proximity of secondary 427 
NW-SE faults that locally fragmented the massif in many sub-blocks (Fig. 5c, lower graph). We can also note that the 428 
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AER slope defined between 17 and 15 Ma by the three AFT central ages of the Carança block is in agreement with 429 
that derived from AHe mean ages from 20 to 10 Ma (Fig. 5c). 430 

4.3 Thermal evolution 431 

4.3.1 Hanging-wall of the Têt fault 432 

The thermal history of the South Mérens block has been derived for all AHe (30) and AFT (12) data from 16 samples 433 
used to define AERs (Fig. 5a). For this block, the two ZHe ages of samples ML1 and ML6 (Fig. 3) have been used as 434 
time-temperature constraints for numerical modeling. Another model set-up, including AHe ages of ST13 and ML3 435 
samples and without any ZHe constraint, has been considered and is presented in the Supporting Information (Figure 436 
S3). The output thermal evolution, depicted on Figure 6a, shows that between 50 and 38 Ma, the South Mérens block 437 
experienced a cooling rate of around 5°C/Ma, followed by an abrupt acceleration in cooling (~30°C/Ma) between 38 438 
and 35 Ma. Then, since 35 Ma, this block was experiencing slow and continuous cooling (<1°C/Ma). Similar results 439 
have been observed in the alternative model (Supporting Information Figure S3), while AHe ages of ST13 and ML3 440 
samples cannot be correctly reproduced (Figure S3). With the exception of two AHe ages, all predicted AHe, AFT 441 
ages and track lengths are consistent with the observed data implemented for inverse modeling (Fig. 6a).  442 

4.3.2 Footwall of the Têt fault 443 

For the Têt footwall, QTQt thermal modeling was conducted successively on the Canigou and Carança blocks, which 444 
are separated by the Py fault. In the Canigou block, data available in the Costabonne sub-block were not considered 445 
due to the presence of the Llipodère fault between the Canigou and Costabonne sub-blocks (Fig. 1b) and the lack of 446 
data under 2,200 m (only 2 samples with AHe method, VER11 and VER13). An alternative modeling set-up with data 447 
from Costabonne sub-block is available in the Supporting Information (Fig. S3). The Canigou thermal modeling (Fig. 448 
6b) was designed with all the AHe (12), AFT (6) and track-length data from 7 samples available from the bottom to 449 
the top of the massif (thermal modeling output without ZHe constraint is available in the Supporting Information, 450 
Figure S3). The output thermal history suggests an important cooling event until ca. 33 Ma (onset timing not precisely 451 
constrained) at around 30°C/Ma, followed by slow cooling (<1°C/Ma) until ca. 26 Ma. A second cooling phase at 452 
~10°C/Ma can be observed between 26 and 19 Ma, followed by slow cooling until present-day. The thermal history 453 
reproduces well AHe, AFT ages and mean track lengths, except the AHe age of sample CAN9 (2,100 m) and mean 454 
track lengths measured on samples from the Canigou summit (CAN4 and CAN5). Thermal modeling based on data 455 
from the Costabonne sub-block (Supporting Information, Figure S3) also suggests rapid cooling (30°C/Ma) for this 456 
block between 32 and 29 Ma, followed by slow cooling (<1°C/Ma); however this model output should be considered 457 
with caution due to the small amount of data (4 AFT and 2 AHe). This rapid cooling would be consistent with an early 458 
Oligocene cooling phase, before the Oligo-Miocene phase recorded between 26 and 19 Ma for the Canigou massif 459 
(Fig. 6b).  460 
 461 
The modeled thermal history of the Carança block (Fig. 6c) is based on AHe (59), AFT (3) and ZHe (24) data from 462 
20 samples. Output thermal history reveals slow cooling (<1°C/Ma) of the massif between 40 and 25 Ma. The main 463 
cooling phase at ~20°C/Ma occurred between 25 and 21 Ma, followed by slow cooling (<1°C/Ma) until 12 Ma. A 464 
second cooling pulse, of relatively minor magnitude, can be observed between 12 and 9 Ma with a predicted cooling 465 
rate of 10°C/Ma, and is followed by slow cooling (<1°C/Ma) since 9 Ma. Despite the important amount of data and 466 
an apparent dispersion of AHe ages (see Fig. 6c), the modeled thermal history reproduces well the AHe ages (except 467 
for samples GAL6, GAL3, ST6 and ST9), AFT ages and ZHe ages (except for sample GAL7). However, we can note 468 
that the predicted mean track lengths are not well reproduced and are generally longer than the observed ones (Fig. 469 
6c).  470 
 471 
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 472 

Figure 6. Thermal history of (a) South Mérens block from the hanging wall of the Têt fault, (b) Canigou massif and 473 
(c) Carança block from the footwall of the Têt fault. Thermal models were computed using QTQt software (Gallagher, 474 
2012). T-t paths for the uppermost (blue) and the lowermost (red) samples are presented (dashed lines correspond to 475 
95 % confidence interval). Black boxes are constraints based on ZHe data from South Mérens block and Canigou 476 
massif, ZHe data are modeled for the Carança block. To the right, age-elevation profiles using predicted vs. observed 477 
ages for each block are presented as well as observed and predicted track lengths. AHe ages represented with orange 478 
error bars in the South Mérens block are not used to construct the thermal evolution model. Sample names for which 479 
several thermochronometers were used are indicated in bold. Note that mean predicted/observed data are presented 480 
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for clarity, but that thermal modeling has been using/predicting single-grain AHe/ZHe data and (U-Th)/He ages 481 
(uncorrected for alpha ejection; Farley et al., 1996).  482 

5 Discussion  483 

5.1 The Têt fault hanging wall: contractional stage  484 

In the hanging wall of the Têt fault, North and South Mérens blocks were distinguished in the present study. In the 485 
North Mérens block, AHe mean ages are between 30 and 40 Ma (Fig. 3), while AFT central ages are between 45 and 486 
54 Ma (Figs. 4 and S3). These ages are older than those obtained at similar elevations in the South Mérens block. This 487 
difference in low-T thermochronological data suggests an early exhumation of the North Mérens block during the 488 
Early Eocene, which is in agreement with McCaig and Miller (1986), who proposed on the basis of of 40Ar/39Ar mica 489 
dating that the Mérens fault was reactivated southward around 50-60 Ma. The scarcity of data in the North Mérens 490 
block has not allowed to perfom thermal modeling. 491 
 492 
The thermal history of the South Mérens block (Fig. 6a), obtained using AHe and AFT data, highlights a first stage of 493 
cooling between 50 and 38 Ma (> 5°C/Ma), that is coeval with a period of maximum shortening in the Eastern Pyrenees 494 
that has been evidenced in the Agly-Salvezines massifs to the North of our study area (Ternois et al., 2019). This 495 
cooling stage became more rapid between 38 and 35 Ma (~30°C/Ma, Fig. 6a). The fast exhumation rate that prevailed 496 
during this last cooling stage (0.45 km/Ma from AER, Fig. 5a) can be associated with the activity of the Cadi-Canigou 497 
thrust fault that emerges further South (Ternois et al., 2019). This thrust is one of the major fault accommodating the 498 
convergence between the Iberian and European plates during the Eocene (also see Fitzgerald et al., 1999; Whitchurch 499 
et al., 2011; Rushlow et al., 2013; Mouthereau et al., 2014; Bosch et al., 2016; Labaume et al., 2016; Cruset el al., 500 
2020). This interpretation is also consistent with the general propagation and stacking of the nappes from the North to 501 
the South in the Pyrenees (Jolivet et al., 2007; Fillon and van der Beek, 2012; Cruset et al., 2020).  502 
 503 
At around 35 Ma, our thermal model output suggests that nearly all the samples collected from 1100 m to 2900 m 504 
were above their respective PAZ and PRZ. After 35 Ma, low cooling rates are consistent with an important decrease 505 
in exhumation towards present-day in the Têt-fault hanging wall (Fig. 5a). This is in agreement with the recent 506 
exhumation model for the Axial Zone proposed by Curry et al. (2021). On the basis of a regional thermochronological 507 
data compilation and thermo-kinematic modeling (for details see Curry et al. 2011), this exhumation model suggests 508 
that rock uplift rates peak at 30-40 Ma in the Eastern Pyrenees, about 10 Ma earlier than in the western Pyrenees (see 509 
also Fillon and van der Beek, 2012 for a similar conclusion). 510 

 511 



manuscript submitted to Tectonics 

 18 

Figure 7. Output thermal histories for the study area: the South Mérens block (blue), the Canigou massif (red, with 512 
the associated box for ZHe constraint) and the Carança block (green). Thermal models were computed using QTQt 513 
software (Gallagher, 2012). Main cooling events are indicated by purple (hanging wall of the Têt fault) and grey 514 
(footwall of the Têt fault) bars. 515 

5.2 The Têt fault footwall : extensional stage  516 

In the different crustal blocks from the southern Têt fault footwall, we used a large number of ZHe, AFT and AHe 517 
data to constrain output thermal histories that emphasize multiple cooling phases since the end of the Eocene. (Fig. 518 
7). A first fast cooling (~25°C/Ma), that started at an unconstrained period but ended at ca. 33 Ma, is recorded 519 
essentially by samples from the top of the Canigou massif (CAN4 and CAN5). Within these two samples, the 520 
differences between modeled and observed mean track lengths (Fig. 6b) can be explained by the the small amount of 521 
measured tracks (n= 30 and 69, respectively, see Fig. 4). We can note that zircon fission-track ages of Maurel et al. 522 
(2008) from the top and bottom of the Canigou massif are very similar (30.9 ± 2.5 Ma and 33.8 ± 2.1 Ma respectively, 523 
see Supporting Information Table S1). This suggests an important exhumation step of at least 2,000 m during the 524 
Priabonian-Rupelian period, which is not recorded further West in the Carança block by the ZHe data (Fig. 5c). 525 
Thermochronological data from the Costabonne masssif are also consistent with an early Rupelian cooling phase in 526 
the Py fault footwall (Supporting Information Figure S3). The Py normal fault is a NW dipping master fault between 527 
the Canigou and Costabonne massifs (with numerous field evidence of substantial displacement : triangular facets, 528 
metric fault core with gouges) that branches out on the Têt fault to the North (Fig. 1 and 2). 529 
 530 
This important exhumation signal in the Canigou and Costabonne massifs is better explained by normal faulting rather 531 
than south-verging thrusting at regional scale, such as described further South of the study area (e.g. Cruset et al., 532 
2020). We propose that this interpretation of exhumation before 33 Ma is only relevant to the Canigou and Costabonne 533 
massifs (Figs. 1 and 6) and not to the whole Canigou-Carança range in agreement with Ternois et al. (2019). The Têt 534 
and Py faults had probably both accommodated the main exhumation of the Canigou and Costabonne blocks, the 535 
normal activity of the Py fault (or both faults) resulting in maintaining the Carança block at depth to the West. Normal 536 
activity of the western part of the Têt fault (Carança block) cannot be excluded due to the connection between the Py 537 
and the Têt faults (Fig. 1). The normal activity of the Py fault thus explains why the low-T thermochronometers used 538 
in our study do not record any cooling below PRZ nor PAZ during this period in the Carança block. In a contractional 539 
context, the diachronism between the Canigou and Carança blocks would require the presence of a master reverse 540 
back-thrust between these two blocks, which is not supported by field observations along the Py fault. Because the 541 
South Mérens block was already at shallow crustal level and thus has not recorded any significant cooling/exhumation 542 
since 35 Ma, both the Py fault and the southeasternmost segment of the Têt fault were probably active during the 543 
Priabonian-Rupelian period to allow for the exhumation of the Canigou-Costabonne massifs only.  544 
 545 
The second major cooling event from our output thermal histories occurred between the upper Oligocene and the 546 
lower Miocene (i.e. ca. 26 to 19 Ma), and was recorded by both the Canigou and the Carança massifs (Fig. 7). During 547 
this period, the Canigou massif experienced relatively fast exhumation (0.33 km/Ma from AER, Fig. 5b). This 548 
cooling/exhumation signal can be thus associated to normal faulting all along the Têt fault. In the Canigou massif, 549 
low-T thermochronology data do not document any major cooling/exhumation since 19 Ma, suggesting that the 550 
southeastern segment of the Têt fault remained partly inactive since the Burdigalian. This is in agreement with the 551 
sedimentary record in the Conflent basin, showing that the main subsidence, associated with normal activity of the 552 
eastern segment of the Têt fault, was concentrated from the Aquitanian to the Early Burdigalian (Calvet et al., 2014). 553 
In addition, the AHe mean ages (mostly older than 40 Ma) obtained on gneiss samples from the olistotrome formation 554 
in the Conflent basin suggest that the olistolithes collapsed during this upper Oligocene–lower Miocene phase of 555 
significant exhumation. Indeed, AHe mean ages from the olistotrome formation are older than for modern bedrock 556 
samples at the top of the Canigou profile (AHe mean ages about 30 Ma, Fig. 5b). These old ages also show that the 557 
olistolithes were not buried enough to reset the AHe signal. 558 
 559 
In the Carança block, our AHe data allow to differentiate two sub-blocks separated by the NW-SE Fontpédrouse fault 560 
(Figs. 1 and 3). AHe mean ages from the eastern sub-block (TET and GAL samples) are younger (10-15 Ma) than for 561 
the western sub-block (ST and PLA samples) collected at similar elevations (15-25 Ma, Fig. 3). This AHe age 562 
difference is obvious for samples between 1,250 and 1,550 m (Fig. 5c). In addition, the Fontpédrouse normal fault 563 
propagates in the South Mérens block, and it seems likely that the AHe mean age of 16.7 ± 1.0 Ma obtained close to 564 
this fault (sample ST13) recorded the fault activity during the Burdigalian (see also alternative thermal modeling in 565 



manuscript submitted to Tectonics 

 19 

Supporting Information, Figure S3). Note that despite the proximity of a huge gouge zone and evidence for fluid 566 
alteration, the Rare Earth Element distribution of this sample remains unaffected by hydrothermalism (see Supporting 567 
Information, Figure S4) compared to our previous observations along the Têt fault itself (Milesi et al., 2020b). NW-568 
SE trending faults are frequent in this western segment of the Têt fault (see Milesi, 2020; Taillefer et al., 2021) and 569 
their activity can account for an important segmentation of the Carança massif with therefore a spatial variability in 570 
AHe data due to slightly different cooling histories within the different sub-blocks. In spite of these local perturbations 571 
by NW-SE faults in the Carança block, AHe and ZHe data are well reproduced by the QTQt model (Fig. 6c), and only 572 
mean track lengths show important differences between observed and modeled data, which can be explained by the 573 
small amount of tracks measured on the three samples (see Table 2 for details). 574 
 575 
A third cooling event has been recorded between 12 and 9 Ma (Serravalian-Tortonian) but only for the Carança block 576 
(Fig. 7). The lack of record in the Canigou-Costabonne and South Mérens crustal blocks suggests a tectonic activity 577 
limited to the southwestern segment of the Têt fault, rather than a general exhumation of the eastern part of the 578 
Pyrenees (Huyghe et al., 2020; Calvet et al., 2021). This relatively recent activity can explain the preservation of 579 
triangular facets along the Têt fault (Petit and Mouthereau, 2012; Delmas et al., 2018) and is also consistent with the 580 
syntectonic sedimentation of late-Miocene age recorded by the lower unit in the Cerdagne basin (Pous et al., 1986; 581 
Augusti and Roca, 1987; Roca, 1996). The opening of the Cerdagne pull-apart sedimentary basins appears essentially 582 
controlled by the development of the NW-SE normal faults, facilited by pre-existing NW-SE segments along the Têt 583 
fault (Cabrera et al., 1988).  584 

5.3 Fault system evolution model and geodynamic implications 585 

In the eastern part of the Pyrenees, North-South shortening has been recorded until ca. 35 Ma by our low-T 586 
thermochronological data. This is consistent with the timing for late contractional episode on the North Pyrenean 587 
Thrust Front (Grool et al., 2018) and the last main peak of pyrenean activity (Bartonian-Priabonian) recorded in 588 
Provence (Lacombe and Jolivet, 2005). On another side, new U-Pb on calcite studies suggest that shortening in the 589 
external units of the Pyrenees proceeded until the middle Miocene (Cruset et al., 2020; Hoareau et al., 2021; Parizot 590 
et al., 2021), which could be a consequence of the far field stress imposed by Africa-Europe convergence (Jolivet et 591 
al., 2021b; Mouthereau et al., 2021). Based on the sedimentary record, a recent study in the Gulf of Lion margin 592 
revealed that the shift between the pyrenean contractional and extensional tectonics occurred during the late Rupelian 593 
(~30 Ma, Séranne et al., 2021), with evidence for a rapid change in the tectonic regime. Although the timing of this 594 
shift in tectonic regime is globally consistent (see Section 5.2), our results suggest a slightly earlier onset of normal 595 
faulting along the Py and Têt faults, i.e. during the Priabonian, and an end of extensional tectonics at ca. 33 Ma (Fig. 596 
7). We should also note that previous thermochronological studies proposed a large-scale episode of exhumation 597 
recorded in the Eastern Pyrenees between 35 Ma and 30 Ma (Morris et al., 1998) that could be regarded as a 598 
consequence of normal faulting, rather than thrusting. This first extensional event preeceded a ~7 Ma long period of 599 
exhumation quiescence between 33 and 26 Ma (Fig. 7), which is synchronous to the development of back-arc 600 
extension in the Mediterranean domain (onset at 32–30 Ma, Jolivet and Faccenna, 2000). Thus the first exhumation 601 
and coeval extensional tectonic phase does not appear to be related to the rifting phase leading to the opening of the 602 
Liguro-Provençal domain, especially with regard to the specific configuration of the Py fault (Fig. 8a, i.e. oriented 603 
N030E compared to the N060E main trend of the Gulf of Lion faults). This event may rather correspond to the West 604 
European Rifting from strain geometry and age of exhumation (Ziegler, 1992; Romagny et al., 2020; Angrand and 605 
Mouthereau, 2021; Jolivet et al., 2021b; Mouthereau et al., 2021; Séranne et al., 2021). The West European Rifting is 606 
considered geodynamically independent and can lead or be immediately followed by the Gulf of Lion opening 607 
(Réhault et al., 1984; Séranne, 1999; Vignaroli et al., 2008; Jolivet et al., 2015, 2020). 608 
 609 
A second extensional event has been recorded between the upper Oligocene and Burdigalian for the whole Canigou-610 
Carança range, associated to a main normal faulting phase along the Têt fault (Figs. 7 and 8b). This event corresponds 611 
to the main cooling event recorded by Maurel et al. (2008), and it appears to be related to the opening of the Gulf of 612 
Lion, consistently with sedimentary records on the Catalan margin (Bartrina et al., 1992). In terms of direction of 613 
extension (NW-SE), this event clearly corresponds to the NE-SW trend of the faults observed in the Languedoc, 614 
Roussillon, Catalan and Valencia troughs, as well as offshore faults observed at the margin of the Gulf of Lion (e.g. 615 
Séranne, 1999; Mauffret et al., 2001; Maillard et al., 2020; Romagny et al., 2020; Jolivet et al., 2021a). In terms of 616 
timing, this second extensional event appears slightly younger than the onset of rifting in Languedoc (late Rupelian, 617 
Séranne, 1999), and earlier than the second stage of normal faulting on the Catalan margin (Roca and Desegaulx, 618 
1992), probably reflecting the rift propagation towards the Southwest (Séranne, 1999). 619 
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 620 
A third extensional event (Fig. 8c) has been recorded by AHe data in the Carança and the South Mérens blocks, not 621 
in the Canigou-Costabonne block(Fig. 3). In the Carança massif, AHe data suggest a change in the direction of 622 
extension from NW-SE to NE-SW during the Lower-Miocene times (ca. 18 Ma), with normal-sense mouvement on 623 
the NW-SE Fontpédrouse fault. This stage evolved afterwards between 12 and 9 Ma on the southwestern segment of 624 
the Têt fault, commonly associated to a reactivation stage with moderate normal displacements between 150 and 500 625 
m (Pous et al., 1986; Clauzon et al., 1987; Rehault et al., 1987; Roca and Desegaulx, 1992; Tassone et al., 1994; 626 
Calvet, 1999; Carozza and Baize, 2004; Delcaillau et al., 2004; Agustí et al., 2006; Clauzon et al., 2015). AHe data 627 
along the Têt fault reveal that the exhumation was probably more pronounced along the southwestern segment (>500 628 
m). This stage, that is not recorded by low-T thermochronology data in the Canigou massif (Maurel et al., 2008, this 629 
study), marks differential exhumation along the Têt fault, more pronounced at this stage in the southwestern part, 630 
consistently with sediment infills of the Cerdagne basin (Pous et al., 1986; Agustí et al., 2006). This late activity on 631 
the southwestern segment of the Têt fault confirms the southwestward propagation of the exhumation along the Têt 632 
fault (Carozza and Delcaillau, 1999; Carozza and Baize 2004). The direction of extension is also consistent with 633 
Middle-Miocene to Pliocene normal faulting in the Emporda basin and the North-Catalan Ranges that trends globally 634 
NW-SE (Medialdea et al., 1994; Saula et al., 1994; Tassone et al., 1994; Lewis et al., 2000, Taillefer et al., 2021). 635 
Moreover, the pull-apart opening of the Cerdagne basin, accommodated by normal activity of NW-SE to E-W faults 636 
(Pous et al., 1986; Agustí et al., 2006) and right-lateral displacements on NE-SW faults (Cabrera et al., 1988), suggests 637 
that the main direction of extension was NNE-SSW, allowing the NE-SW Têt fault to be reactivated in right-lateral 638 
strike-slip mouvement (Fig. 8, Cabrera et al., 1988, Goula et al., 1999; Carozza and Baize, 2004, Delcaillau et al., 639 
2004). We should also note that this trend of extension is also compatible with the stress tensors obtained in the 640 
Cerdagne area by Cruset et al. (2020). NW-SE faults could therefore have contributed to the uplift of the Cerdagne 641 
basin during Middle Miocene (Huyghe et al., 2020; Calvet et al., 2021; Tosal et al., 2021).  642 
 643 

 644 

Figure 8. Reconstitution of the extensional tectonic evolution since the Priabonian in the eastern part of the 645 
Pyrenees. a) Priabonian-Rupelian period (35-32 Ma) is marked by the exhumation of the Canigou-Costabonne massif, 646 
linked to the Py fault normal motion. A WNW-ESE direction of extension is proposed. b) Aquitanian-Burdigalian 647 
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period (26-19 Ma) is characterized by the opening of the Gulf of Lion and normal motion of the Têt fault, more 648 
pronounced on the eastern segment of the fault. This observation is in agreement with the early formation of the 649 
Conflent basin at 23 Ma. During this period, the Têt fault normal activity is associated to a change towards the North 650 
of extensional direction c) Burdigalian to Tortonian period (19-9 Ma) reveals a propagation further West of the 651 
exhumation along the Têt fault with late cooling event recorded for the Carança massif. Local (re-)activation of the 652 
NW-SE faults can be involved in AHe dispersion for this block. To the West, the formation of the Cerdagne basin 653 
during the Seravalian (13 Ma) is consistent with a spatial migration of the tectonic activity. Normal activity of the 654 
NW-SE faults and NE-SW Têt fault is possible under NNE-SSW extension. d) Plio-Quaternary period (5-0 Ma) is 655 
marked by a N-S fault activation (Capçir f.) and E-W direction of extension (Calvet, 1999; Rigo et al., 2015).  656 
 657 
This Lower-Miocene change in direction of extension could be related to geodynamic processes implying stress 658 
changes at the Mediteranean domain scale. Romagny et al. (2020) proposed a global change in the main direction of 659 
slab retreat at about 20 Ma, with a change in the direction of retreat from NNW-SSE to mostly E-W towards the 660 
Appenines. Although at far distance from our study area and not clearly kinematically consistent, such process 661 
involving mantle flux perturbations may have implied stress changes at far distances in the Pyrenean lithosphere. 662 
Another potential source of stress perturbation could be the mechanical interaction and linkage (e.g. Crider and 663 
Pollard, 1998; Kattenhorn et al., 2000) between the Cevennes and the Catalan lithospheric normal faults, through a 664 
very large-scale relay zone located in the Eastern Pyrenees. Such large-scale mechanical interaction could have 665 
favoured stress changes and strain distribution along multiple faults in this eastern part of the Pyrenees. Linkage had 666 
to develop with new NW-SE relay faults after the growth of the two NE-SW Cevennes and Penedes master faults in 667 
the Oligocene – Lower Miocene (e.g. Seranne et al., 1999), consistently with the timing and direction of the Upper 668 
Miocene NW-SE faults observed in the study area. Also note that both master fault segmentation at the place of the 669 
pre-existing Pyrenees and the timing of linkage are consistent with the margin development in the Roussillon and its 670 
specific orientation (NNW-SSE) in the Gulf of Lion (Mauffret et al., 2001). Finally, another hypothesis to consider is 671 
the presence of an new extensional phase due to a not well known geodynamic process in the area (e.g. stresses due 672 
to wedge collapse, erosion, or new mantle dynamic, etc.) in a larger domain since a similar cooling event has been 673 
recorded in the western Axial Zone (Fillon et al., 2021). 674 
 675 
During the Plio-quaternary period (Fig. 8d), seismic data inversion highlight a global N-S contraction in the area, 676 
while we can note E-W extension in the Cerdagne basin (Rigo et al., 2015). This E-W extension can be responsible 677 
for the Capçir N-S normal faulting (Calvet, 1999; Baize et al., 2002), kinematically consistent with a recent return to 678 
N-S Pyrenean contraction in the study area. 679 

6 Conclusions  680 

Low-temperature thermochronology and inverse thermal modeling reveal successive cooling periods associated to the 681 
differential exhumation of crustal blocks along the southern Têt fault. In the hanging wall of the Têt fault, low-T 682 
thermochronological data indicate a significant exhumation/cooling period (~30°C/Ma) between 38 and 35 Ma, 683 
followed by an important decrease in exhumation/cooling (<1°C/Ma). This slowdown is interpreted as the result of 684 
the last Pyrenean contractional stage during the Priabonian. In the Têt fault footwall, we propose that an early 685 
exhumation stage of the Canigou-Costabonne block is recorded until 33 Ma (~30°C/Ma) but not in the Carança block 686 
(further West), in association to the normal activity of both the Têt and Py faults. These results suggest a rapid switch 687 
between contractional and extensional regime in the Eastern Pyrénées during the Priabonian. A second major cooling 688 
event (~20°C/Ma) between the Upper Oligocene and Lower Miocene (26-19 Ma) is recorded both in the Canigou and 689 
Carança massifs, associated to the major period of activity of the Têt fault linked to the opening of the Gulf of Lion. 690 
During the upper Miocene, low-T thermochronological data from solely the Carança massif suggest a third cooling 691 
event (~10°C/Ma) during the Serravalian-Tortonian (12-9 Ma) and its segmentation in different sub-blocks separated 692 
by NW-SE faults. Our results reveal a progressive propagation of the deformation towards the Southwest along the 693 
Têt fault, and also account for major changes in the direction of extension in the Eastern Pyrenees since the Priabonian. 694 
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