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Abstract

Climate vulnerability assessments rely on water infrastructure system models that imperfectly predict performance metrics under

ensembles of future scenarios. There is a benefit to reduced complexity system representations to support these assessments,

especially when large ensembles are used to better characterize future uncertainties. An important question is whether the

total uncertainty in the output metrics is primarily attributable to the climate ensemble or to the systems model itself. Here

we develop a method to address this question by combining time series error models of performance metrics with time-varying

Sobol sensitivity analysis. The method is applied to a reduced complexity multi-reservoir systems model of the Sacramento-San

Joaquin River Basin in California to demonstrate the decomposition of flood risk and water supply uncertainties under an

ensemble of climate change scenarios. The results show that the contribution of systems model error to total uncertainty is

small (˜5-15%) relative to climate based uncertainties. This indicates that the reduced complexity systems model is sufficiently

accurate for use in the context of the vulnerability assessment. We also observe that climate uncertainty is dominated by the

choice of GCM and its interactive effects with the representative concentration pathway (RCP), rather than the RCP alone.

This observation has implications for how climate vulnerabilities should be interpreted.
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Abstract 23 

Climate vulnerability assessments rely on water infrastructure system models that imperfectly 24 

predict performance metrics under ensembles of future scenarios. There is a benefit to reduced 25 

complexity system representations to support these assessments, especially when large ensembles 26 

are used to better characterize future uncertainties. An important question is whether the total 27 

uncertainty in the output metrics is primarily attributable to the climate ensemble or to the systems 28 

model itself. Here we develop a method to address this question by combining time series error 29 

models of performance metrics with time-varying Sobol sensitivity analysis. The method is applied 30 

to a reduced complexity multi-reservoir systems model of the Sacramento-San Joaquin River 31 

Basin in California to demonstrate the decomposition of flood risk and water supply uncertainties 32 

under an ensemble of climate change scenarios. The results show that the contribution of systems 33 

model error to total uncertainty is small (~5-15%) relative to climate based uncertainties. This 34 

indicates that the reduced complexity systems model is sufficiently accurate for use in the context 35 

of the vulnerability assessment. We also observe that climate uncertainty is dominated by the 36 

choice of GCM and its interactive effects with the representative concentration pathway (RCP), 37 

rather than the RCP alone. This observation has implications for how climate vulnerabilities should 38 

be interpreted. 39 

 40 

 41 

 42 

 43 

 44 
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1. Introduction 45 

Climate vulnerability assessments have become a common feature of water resources systems 46 

planning studies (Arnell, 2011; Plummer et al., 2012; US Bureau of Reclamation, 2012; Weaver 47 

et al., 2013). These assessments generally require ensemble simulations of future climate scenarios 48 

that are passed through a combination of hydrologic models and water resources systems models 49 

to measure the vulnerability of the water system to properties of future climate. Once these 50 

vulnerabilities are identified, additional simulation or optimization experiments are used to 51 

determine how well different adaptation actions mitigate these vulnerabilities (Herman et al., 2015; 52 

Herman et al., 2020).   53 

 54 

The literature on the uncertainties that underlie future climate scenarios (Knutti et al., 2008; 55 

Northrop and Chandler, 2014; Lehner et al 2020), associated hydrologic responses (Wilby and 56 

Harris, 2006; Steinschneider et al., 2015a; Mendoza et al., 2016; Kundzewicz et al., 2018), and 57 

water system vulnerability under climate change (Steinschneider et al., 2015b,c) is extensive. 58 

However, water resources systems model uncertainties are usually neglected in these climate 59 

impact assessments, presumably under the assumption that they are negligible in comparison to 60 

other uncertainties. This assumption is likely valid for systems models underpinned by years to 61 

decades of development. However, many of these high-fidelity models are computationally 62 

expensive and ill-suited for ensemble experiments required by climate vulnerability and adaptation 63 

assessments. More parsimonious system models and emulators of complex systems models have 64 

become a popular means of reducing the computational cost of systems model simulation in 65 

ensemble experiments (Haasnoot et al., 2014; Gijsbers et al., 2017; Basco-Carrera and Mendoza 66 

2017; Voinov et al., 2018; Badham et al. 2019; Helgeson et al., 2021). These models provide faster 67 
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runtimes at the expense of some accuracy in system representation. Their use raises the question 68 

of whether such reduced complexity models are suitable for use in climate vulnerability 69 

assessments and how this should be assessed.  70 

 71 

Past work has considered the question of whether a systems model is fit-for-purpose (Haasnoot et 72 

al. 2014; Hamilton et al., 2022). For example, Haasnoot et al. (2014) emphasize the ability of the 73 

model to produce “credible outcomes with sufficient accuracy for the screening and ranking of 74 

promising actions and pathways in order to support… strategic adaptive planning decisions.” They 75 

describe a simplified systems model as fit-for-purpose if it produces decisions that are consistent 76 

with a more complex model. In the context of climate vulnerability assessments, we investigate a 77 

related concept: whether prediction errors arising from the systems model are negligible compared 78 

to the uncertainty in forcing, particularly around key output metrics that are most relevant to 79 

decision-making. This emphasizes the relative accuracy of the systems model against the 80 

background of other exogenous uncertainties, and thus contributes a complementary viewpoint by 81 

assessing if the model is fit-for-purpose in the context of planning under uncertain future 82 

conditions. This viewpoint is consistent with recent recommendations to ensure greater 83 

transparency and more robustness in climate change impact assessments (Wagener, 2022). 84 

 85 

This technical note advances variance decomposition as an approach to assess the suitability of 86 

water systems models in climate vulnerability studies. Uncertainty decomposition is widely used 87 

to assess sources of uncertainty in climate models and their influence on key variables of interest 88 

(Hawkins and Sutton 2009, Lehner et al 2020). It is also used to identify factors that drive 89 

uncertainty in water systems performance metrics (Schlef et al. 2018; Greve et al 2018) and the 90 
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broader human-Earth system (Lamontagne et al., 2019). In this study we extend this technique to 91 

assess whether a water systems model is sufficiently accurate for its intended purpose in a climate 92 

vulnerability assessment, providing a diagnostic method to propagate and decompose systems 93 

model error in the context of an ensemble of climate scenarios.  94 

 95 

2. Data and Methods  96 

2.1 Case Study & Simulation Model  97 

The proposed method is demonstrated using a new, daily time step simulation model of the eight 98 

largest reservoirs in the Sacramento-San Joaquin River Basin (SSJRB), California, and the water 99 

supply pumping operations near the system outlet in the Sacramento-San Joaquin Delta (Figure 100 

1). The model structure and data requirements were simplified from recently developed simulation 101 

models of this system (ORCA - Cohen et al. 2020, 2021; CALFEWS - Zeff et al. 2021) for the 102 

purpose of efficiently estimating water supply and flooding metrics in the Delta in large ensemble 103 

climate vulnerability assessments.  104 

 105 
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 106 

Figure 1. Overview of the Sacramento-San Joaquin River Basin (SSJRB) simulation model. 107 
(a) Reservoir operating policy relating releases R to storage S; (b) inflow and pumping 108 
locations; (c) model accuracy (R2) for storage at the 8 reservoirs in the system and total delta 109 
exports compared to the CALFEWS systems model (Zeff et al., 2021). The time periods for 110 
the comparison are Oct 1997-Sept 2021 (SSJRB) and Oct 1996-Sept 2016 (CALFEWS). *The 111 
Oroville result for the SSJRB model is impacted by the operational response to the Feb 2017 112 
spillway failure over the subsequent year. 113 
 114 

The SSJRB reduced complexity systems model (referenced hereafter as the SSJRB model) consists 115 

of three components: reservoir release policies, gains, and Delta pumping. The model contains 43 116 

parameters, including: five release policy parameters for each of the eight reservoirs, two 117 

parameters for gains, and one parameter for Delta pumping. The model uses the historical observed 118 

median operating pattern (storage and release for each day of the water year) over the period 1997-119 

2021, and adjusts this pattern based on current hydrologic conditions. Initially, reservoir operations 120 

are described by 5-parameter (𝑥!, … 𝑥") exponential water supply and linear flood hedging rules 121 

(Figure 1a). The water supply rule is given by: 122 

#!(%)
#!,#(%)

= ' '!(%)
'!,#(%)

(
($

      (1) 123 
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where 𝑅)(𝑡) is the release for the ith reservoir,	𝑆)(𝑡) is the storage, and 𝑅),+(𝑡) and 𝑆),+(𝑡) are the 124 

median release and storage for that day of the water year, respectively. The water supply release 125 

determined from Eq. 1 is then increased to model flood control operations. Specifically, if the day 126 

of the water year falls between [𝑥,, 𝑥-] and 𝑆)(𝑡) > 𝑥"𝑆),+(𝑡), then 𝑅)(𝑡) is increased by the 127 

amount 𝑥.(𝑆)(𝑡) − 𝑥"𝑆),+(𝑡)). 128 

 129 

Next, the hydrologic gains into the Delta, G(𝑡), are defined as the Delta inflow 𝐷)/(𝑡) minus the 130 

sum of reservoir outflows. This term represents the tributaries for which reservoirs are not modeled 131 

(see Figure 1b) as well as additional inflows downstream of the reservoirs. Gains can be either 132 

positive or negative. Positive gains represent winter inflows, while negative gains represent 133 

consumptive withdrawals in the summer. These gains are estimated from historical patterns using 134 

two parameters (𝑥0, 𝑥1): 135 

𝐺(𝑡) = 𝐺+(𝑡) 3∑
'!(%)
2!) 5

(%
+	𝑥1∑ 𝑄)(𝑡)) 	    (2) 136 

where 𝐺+(𝑡) are the median gains for that day of the water year, 𝐾) is the storage capacity of 137 

reservoir 𝑖 ∈ [1,8], and 𝑄)(𝑡) is the inflow into reservoir 𝑖. The first term in (2) covers the broader 138 

seasonal patterns of withdrawals, while the second term represents additional Delta inflows that 139 

are assumed to be correlated with reservoir inflows included in the model.  140 

 141 

The Delta pumping policy is represented by the following equation with one parameter, 𝑥3: 142 

𝑃(𝑡) = 𝐷)/(𝑡)	𝑝+(𝑡)	3∑
'!(%)
2!) 5

(&
     (3) 143 

where 𝑃(𝑡) is the total pumping volume, 	𝑝+(𝑡) is the median pumping for that day of the water 144 

year (percent of inflow), and the storage fraction term is the same as in Eq. 2. We impose an upper 145 
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bound on pumping to approximate a combination of the infrastructure capacity and environmental 146 

guidelines, though this amount can be exceeded if needed. 147 

 148 

The parameters for all of the model components are fit with differential evolution (Storn and Price, 149 

1997). The historical data used to find the median daily patterns and to fit the parameters are taken 150 

from the California Data Exchange Center (CDEC; cdec.water.ca.gov). These operating rules are 151 

empirical simplifications based on the observed data, and do not exactly match those published in 152 

water control manuals. However, they ensure that all reservoirs follow the same model structure, 153 

and that the model is parsimonious enough to calibrate and modify. Figure 1c shows the ability of 154 

the systems model to replicate historical storage for each of the eight reservoirs. Overall, the 155 

systems model adequately represents the operations of these facilities, with R2 values for daily 156 

simulated and observed storage ranging between 0.66 and 0.91, with an average of 0.81. This 157 

performance is slightly worse than that of a recently published, more detailed, state-of-the-art 158 

simulation model of the California water system (CALFEWS; Zeff et al., 2021), which has an 159 

average storage R2 of 0.88 for the same reservoirs, and also contains a more detailed system 160 

representation south of the Delta to describe deliveries to irrigation districts. However, the SSJRB 161 

model is significantly faster (3-4 orders of magnitude) due to a combination of simplified structure 162 

and Numba just-in-time compilation (Lam et al., 2015). In the analysis that follows, we investigate 163 

whether the decrease in accuracy significantly influences our understanding of system 164 

performance in the context of broader climate uncertainties.  165 

 166 

2.2 Error Models for Key System Model Outputs 167 
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Two output variables from the SSJRB systems model are of interest in this study: a water supply 168 

metric - delta pumping exports, 𝑃(𝑡) - and a flood control metric - delta outflows, 𝐷45%(𝑡) =169 

𝐷)/(𝑡) − 𝑃(𝑡). We develop error models for these two metrics using the historical simulation from 170 

the SSJRB systems model, which enables stochastic simulation of these errors under a wide range 171 

of future scenarios at a daily time step. 172 

 173 

We follow the general approach in McInerney et al. (2017) and define a residual term, εt, equal to 174 

the difference between the daily observations and simulations after transformation:  175 

𝜀% = 𝑓(𝑂%|𝜆) − 	𝑓(𝑀%|𝜆)      (4) 176 

Here, Ot is the observed data associated with the decision-relevant variable of interest (e.g., delta 177 

outflows or delta pumping exports), Mt is the systems model simulation of that variable, t is a time 178 

step (daily in this case) within the historical record of length T, and 𝑓(∙ |𝜆) is a transformation with 179 

parameter λ. The transformation is used to simplify the probabilistic behavior of the observed and 180 

simulated time series before calculating the residuals. Here, we employ the Box-Cox 181 

transformation (Box and Cox, 1964), which becomes the identity transformation for λ=1 and 182 

approaches a logarithmic transformation as λ approaches 0. However, other transformations (e.g., 183 

log-sinh) could also be applied.  184 

 185 

To remove any systematic bias between the simulations and observations, the residuals are 186 

regressed against the transformed simulation: 187 

𝜀% = 𝛽! + 𝛽,	𝑓(𝑀%|𝜆) + 𝜖%     (5) 188 

Two assumptions are made: 1) systems model bias is correlated with the magnitude of the 189 

simulated response, e.g., the systems model tends to underestimate the observations when it 190 
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predicts large flows and overestimate the observations when it predicts low flows; 2) this bias is a 191 

linear function of the magnitude of the simulation itself. The bias correction in Eq. 5 could be 192 

made more general using a non-linear function (e.g., a local weighted regression or generalized 193 

additive model), but initial analysis (not shown) suggested this was unnecessary for the case study 194 

used in this work.  195 

 196 

The bias corrected residuals 𝜖% are then decorrelated in time using an autoregressive (AR) model: 197 

 198 

𝜖% = 𝜃! + 𝜃,𝜖%6, + 𝜉%      (6) 199 

An AR(1) model was found to be sufficient to remove autocorrelation in the delta outflow and 200 

export residual time series. However, any higher-order autoregressive moving average (ARMA) 201 

model can be selected based on the behavior of the residual series 𝜖%.    202 

 203 

Once the model above is fit to the historical series of data, stochastic traces 𝑂,:8∗J  are simulated for 204 

new periods of interest (t* = 1, …, T* , e.g., future decades under climate change). These 205 

simulations are produced with the following steps: 206 

1) Bootstrap a value of 𝜉% from the historical record.  207 

2) For a new time t*, estimate 𝜖%∗K  using Eq. 6, the resampled value of 𝜉%, and the previous 208 

value 𝜖%∗6,L .  209 

3) Estimate 𝜀%∗K  using Eq. 5, the value 𝜖%∗K , and the systems model simulation 𝑀%∗M . 210 

4) Estimate 𝑂%∗M = 𝑓N𝜀%∗K 	+ 	𝑓N𝑀%∗M O𝜆PO𝜆P6,   211 

Steps 1-4 are then repeated for all time steps t* = 1, …, T*. 𝜖!Q  is initialized as 0.  212 

 213 
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2.3 Climate Scenarios 214 

In this study, we assess whether the SSJRB systems model error in key variables of interest (e.g., 215 

delta outflows and exports) is sufficiently small in the broader context of climate uncertainty. This 216 

is tested by forcing the systems model with an ensemble of projected flows between 2020-2099 217 

for each of the 8 reservoir inflow points of the system (see Figure 1). The ensemble, developed in 218 

Brekke et al. (2014), is derived from CMIP5 general circulation model (GCM) simulations (Taylor 219 

et al., 2012), downscaled to a daily timescale and 1/8° spatial resolution using the updated Bias-220 

Correction and Spatial Disaggregation (BCSD) technique (NCAR, 2014) followed by daily 221 

disaggregation (Wood et al., 2004). The ensemble is composed of four different representative 222 

concentration pathways (RCPs; 2.6, 4.5, 6.0, 8.5) and 31 different GCMs, with 97 scenarios 223 

altogether (not every RCP is used with every GCM). The downscaled, daily climate data force the 224 

Variable Infiltration Capacity (VIC) hydrologic model, previously calibrated for watersheds across 225 

the US West (see Brekke et al. 2014).  226 

 227 

To generate a balanced ensemble, we filter the full ensemble described above to include only those 228 

GCMs with simulations under the RCP 4.5 and 8.5 emission scenarios (i.e., the most common 229 

emission scenarios across all GCMs). This leads to 29 GCMs under these two RCPs, for a total of 230 

58 scenarios. For each scenario and its associated trace of simulated daily delta outflows and delta 231 

exports from the SSJRB systems model, we develop a stochastic ensemble of 100 traces of delta 232 

outflow and exports using the error modeling procedure in Section 2.2. This results in a total of 233 

5,800 80-year traces of daily delta outflows and exports, which are then analyzed using sensitivity 234 

analysis (described next) to partition variance among the various uncertainty sources: GCMs, 235 

RCPs, and systems model error. We also consider whether the variance partitioning changes 236 
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considerably if a smaller set of GCMs is used, for instance based on their ability to capture aspects 237 

of regional climate (Gershunov et al., 2017; Pierce et al., 2018). 238 

 239 

2.4 Sensitivity Analysis 240 

We use Sobol sensitivity analysis to attribute variance within the ensemble of 5,800 traces of delta 241 

outflows and exports to the GCMs, the RCPs, systems model error, and interactive effects between 242 

these different sources of uncertainty. These three inputs are sampled as integer factors in the 243 

sensitivity analysis (i.e., the choice of GCM, RCP, and systems model error realization). 244 

Ultimately, the model is classified as fit-for-purpose for large ensemble experiments in a climate 245 

vulnerability assessment if the variance attributed to the systems model uncertainty and its 246 

interactive effects is small compared to the other sources of uncertainty.  247 

 248 

Sobol sensitivity analysis is described in detail elsewhere (Sobol, 2001; Saltelli et al., 2010; Pianosi 249 

et al., 2016; Herman and Usher, 2017) and therefore only briefly reviewed here. Let Yk be the 250 

output metric of interest from the SSJRB systems model, which we define separately for each year 251 

of simulation (k=2020, …, 2100). For delta outflows, we define Yk as the annual maximum outflow 252 

in year k; for delta exports, Yk is defined as the annual sum of exports. While other metrics could 253 

be chosen, these metrics are representative of annual flood and drought risk in the Sacramento-254 

San Joaquin system. The Sobol method is used to attribute variance in Yk to individual uncertainty 255 

factors and their interactions, and can be written as follows:  256 

𝐷(𝑌9) = ∑ 𝐷)) +∑ 𝐷):);: + 𝐷,-…=    (7) 257 

Here, 𝐷(𝑌9) represents the total variance in Yk, 𝐷) is the first-order variance contribution of the ith 258 

factor, 𝐷): is the second-order variance contribution of the interaction between the ith and jth factors, 259 
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and 𝐷,-…= represents the variance contribution of all higher-order interactions greater than second-260 

order. Sensitivity indices are then defined as the fraction of individual variance contribution terms 261 

to the total variance (e.g., >!
>

 and >!(
>

 represent the first-order sensitivity index for factor i and 262 

second-order sensitivity index for factors i and j, respectively). Similarly, the total-order sensitivity 263 

for a given factor (1 − >~!
>

) uses the variance associated with all factors besides factor i (𝐷~)) to 264 

define the variance attributed to all first-order and higher-order interactions associated with factor 265 

i. See Saltelli (2002) for additional detail on the numerical estimation of terms (𝐷),	𝐷):, 𝐷~)).  266 

 267 

When making a determination of whether the systems model is sufficiently accurate for use in a 268 

climate impact analysis, we avoid setting a distinct threshold for the variance attributed to the 269 

systems model. This is ultimately a subjective choice based on user preference, and we believe 270 

that forwarding an (arbitrary) threshold here would discourage critical evaluation and collaborative 271 

decision-making on a case-by-case basis that is central to effective water resources planning. 272 

Similar logic supports recent efforts in the statistical literature to discourage the use of arbitrary p-273 

values when assessing the statistical significance of relationships (Wasserstein and Lazar, 2016). 274 

 275 

3. Results and Discussion  276 

3.1 Systems Error Models 277 

Error accumulates throughout the system to influence the key metrics of interest: delta outflows 278 

and exports. Figures 2a and 2d show the observed and simulated time series of daily delta outflows 279 

and exports, respectively. The systems model captures the observed outflows well, with a Nash-280 

Sutcliffe efficiency (NSE) over the entire period of 0.74 and a percent bias of 3.2%. Simulations 281 

of daily exports are less skillful, with an NSE of 0.32 and percent bias of 12.1%, although when 282 
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aggregating to a weekly time step the simulations are better (NSE of 0.63). Notably, the systems 283 

model tends to underestimate the largest delta outflows, albeit with one exception in 2017. The 284 

SSJRB systems model imposes a cap on delta exports, but observed exports occasionally exceed 285 

this limit. The systems model also overestimates the smallest delta outflows (Figure 2a), 286 

particularly during dry years, and exhibits fewer and less extreme declines in daily exports (Figure 287 

2d). 288 

 289 

Figure 2. a) Observed (blue) and simulated (red) daily delta outflows. The grey area shows 290 
95% bounds of the stochastic delta outflow simulations. b) Target versus actual coverage 291 
probabilities (i.e., the probability that observations fall within the p percent bounds of the 292 
simulated ensemble), with p varied from 1% to 99%. c) The CDF of observed (blue) and 293 
simulated (red) annual maximum delta outflows, as well as the 95% bounds for the CDF of 294 
annual maxima from the stochastic traces. d-e) Same as (a-b) but for daily delta exports. f) 295 
Same as (c) but for the annual sum of delta exports.  296 
 297 

We fit error models for both the delta outflow and export series in order to generate stochastic 298 

traces of these variables. A Box-Cox transformation with λ=0.3 is applied to the delta outflows, 299 



15 
 

while the delta exports are not transformed (i.e., λ=1). Also, delta outflow residuals 𝜀% did not vary 300 

significantly with model simulations, so 𝛽, = 0 in Eq. 5. Figures 2a and 2d show 95% bounds 301 

generated using the stochastic ensemble. These uncertainty bounds are developed by simulating 302 

delta outflow and export residuals and adding them to the SSJRB simulation. Several important 303 

features emerge from the ensemble. The delta outflows ensemble clearly captures some of the 304 

lowest outflow values, but also captures several of the peak outflow events. Similarly, the 305 

stochastic delta exports ensemble better captures many of the lowest observed exports and 306 

observed exports that extend above the cap imposed in the SSJRB model.  307 

 308 

This is clear in Figures 2b and 2e, which show coverage probabilities for the stochastic ensemble. 309 

Coverage probabilities quantify how often the observations fall between the @
-
 and 31 − @

-
5 310 

percentiles of the stochastic ensemble, with a ranging from 0.01 to 0.99 in Figures 2b,e. The target 311 

coverage probabilities (i.e., a×100%) are compared against the observed coverage probabilities to 312 

assess the reliability of the stochastic ensemble. The results show that the ensemble is very reliable, 313 

with the largest deviations between target and observed coverage probabilities only reaching 314 

~5.5%.  315 

 316 

The assessments above focus on daily data, but we are often interested in specific aggregated 317 

metrics of model output. Figures 2c and 2f show the distribution of observed and simulated annual 318 

maximum delta outflows and annual total delta exports, respectively. These are the focus of the 319 

uncertainty decomposition shown in Section 3.2 below. Also shown in Figure 2c,f are the same 320 

distributions from the stochastic traces. For delta outflows, the simulated distribution tends to 321 

underestimate that of the observed, except for the very largest annual maxima. However, the 322 
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stochastic ensemble captures the observed distribution reasonably well, albeit with an 323 

underestimation between the 40th and 75th percentiles of the distribution. The opposite issue is 324 

apparent in the delta exports data, as the SSJRB model tends to overestimate the observed annual 325 

totals. The stochastic ensemble corrects these discrepancies and adequately captures the observed 326 

distribution.  327 

 328 

3.2 Sensitivity Analysis 329 

The SSJRB model was used to generate a 5,800-member ensemble of future simulations across 2 330 

RCPs, 29 GCMs, and with 100 stochastic traces of model error (as described above). The Sobol 331 

analysis resamples from these discrete factors to decompose the variance in the two output metrics 332 

across the entire ensemble for each year, as shown in Figures 3a and 3b. Here we show the first-333 

order sensitivity indices for RCP, GCM, and systems model error, as well as second-order 334 

sensitivity indices that quantify the variance associated with interactive effects. Higher order 335 

sensitivity is not shown, and so the cumulative variance shown in Figure 3 is always slightly less 336 

than 100% of the total variance. All sensitivity indices are smoothed with a 10-year rolling average.  337 

 338 

Several insights emerge from Figures 3a,b. First, the largest source of uncertainty in both metrics 339 

stems from the first-order effects of the GCMs. Averaged across all years, first-order GCM 340 

uncertainty accounts for 49% and 46% of the total variance in delta outflows and exports, 341 

respectively. This result demonstrates that the GCM used to simulate system inflows has the single 342 

largest impact on the variance in decision-relevant metrics of interest, regardless of emission 343 

scenario or other factors. We speculate that climate model uncertainty dominates the total 344 
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uncertainty due to the range of regional precipitation responses (from both internal variability and 345 

change) across the GCMs (Schlef et al., 2018), but we do not verify that here. 346 

 347 

The second largest source of uncertainty stems from the interactive effect of GCMs with RCPs. 348 

The magnitude of this uncertainty rivals that of the first-order GCM effect, and when averaged 349 

across years, accounts for 41% and 35% of the variance in delta outflows and exports, respectively. 350 

In contrast, the first-order effect of the RCPs is small, on average less than 2%. This result 351 

highlights that neither annual maximum delta outflow nor annual total delta exports are explained 352 

by consistent differences that emerge across emission scenarios. This is true even by the end of 353 

the century when temperature differences between RCP 4.5 and RCP 8.5 are greatest. Instead, it 354 

is the variable response of the GCMs to a given RCP that explains a large portion of variance in 355 

the delta outflows and exports. That is, if one GCM projects drier conditions as emissions rise, but 356 

another projects wetter conditions with greater emissions, only the combination of both the 357 

emissions scenario and the specific GCM can explain the response of the water system. 358 

 359 

Finally, we consider the variance explained by factors related to the systems model uncertainty. 360 

Figures 3a,b show that for both delta outflows and delta pumping, uncertainties related to the 361 

system model are small in comparison to the other sources. The uncertainty attributed to the first-362 

order systems model effect is under 1% across time, as is the interactive effect between the system 363 

model error and RCP. The interactive effect between systems model error and GCM is larger, with 364 

time-averaged values of 4% for delta outflows and 7.9% for delta exports. However, the 365 

cumulative uncertainty for all first and higher-order terms related to systems model error (i.e., 366 

total-order sensitivity, not shown in Figure 3) is 8.2% for delta outflows and 16.5% for delta 367 
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exports, far below the uncertainties related to the GCMs and their interactive effects with emission 368 

scenarios. From this perspective, we deem the systems model sufficiently accurate to support 369 

climate change vulnerability studies of the system, given the set of 29 GCMs considered in the 370 

ensemble. 371 

 372 

It is reasonable to question if this result is consistent when a smaller set of GCMs with less 373 

variability and a more consistent representation of the climate system is selected for analysis. To 374 

answer this question, Figures 3c,d show the same results as in Figures 3a,b but based on a subset 375 

of the original ensemble composed of simulations from the two RCPs and only four GCMs 376 

(access1-0, canesm2, cnrm-cm5, gfdl-cm3). These GCMs have been shown to capture atmospheric 377 

river dynamics along the US West Coast that are important to water supply and flood risk in the 378 

SSJRB system (Gershunov et al., 2017). Note that access1-3 is also highlighted as skillful in 379 

Gershunov et al., 2017 but is not available in the ensemble of VIC simulations (see Section 2.3).  380 

 381 

In the restricted set of GCMs, the uncertainty attributable to the first-order effect from the GCMs 382 

declines, though it is still substantial. A similar result is seen for the interactive effect between the 383 

GCMs and RCPs. Importantly, we only observe a small increase in the variance attributed to the 384 

systems model. Instead, the variance contribution associated with the first-order effect of the RCPs 385 

increases the most, from less than 2% in the full ensemble to 11% and 10% in the limited ensemble 386 

for delta outflows and exports, respectively. This is consistent with the expectation that the effects 387 

of emission scenario on hydrologic response are more apparent in GCMs which provide a more 388 

consistent representation of regional climate. Still, the main result from the full ensemble persists: 389 

systems model uncertainty is small compared to other uncertainties, therefore the reduced 390 
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complexity model is suitable for climate vulnerability analysis. We note that we repeated this same 391 

experiment with 4 different GCMs that were shown to produce realistic simulations of 392 

precipitation and temperature in California (Pierce et al., 2018), with very similar results (not 393 

shown). 394 

 395 

 396 

Figure 3. Variance contribution of GCMs, RCPs, and system model uncertainty to the total 397 
variance of (a,c) annual maximum delta outflows and (b,d) annual total delta exports, shown 398 
by year and for first-order effects and second-order interactions. Results are smoothed using 399 
a lagged 10-year rolling average and shown when using (a,b) all GCMs and (c,d) only four 400 
GCMs selected for their accurate representation of atmospheric rivers (ARs).  401 
 402 

4. Conclusions 403 

This technical note contributes a novel approach to determine whether a water resources systems 404 

model is sufficiently accurate for ensemble experiments in climate vulnerability assessments. The 405 



20 
 

approach decomposes the variance in decision-relevant metrics (delta outflows and exports) to 406 

compare systems model error to other uncertainty sources (e.g., future climate scenarios). Model 407 

error in the output metrics is represented by a time series error model. To our knowledge, this is 408 

the first time error models and variance decomposition have been used to assess model suitability 409 

for climate impact experiments.  410 

 411 

This technique is demonstrated with a new, computationally efficient, daily systems model of 412 

reservoirs within the Sacramento – San Joaquin River Basin California. The analysis shows that 413 

uncertainties from the systems model are small in comparison to those associated with future 414 

climate scenarios, especially in the key metric of annual maximum delta outflow. Systems model 415 

uncertainty contributes more to the total variance in delta exports, although the future climate 416 

scenarios continue to dominate variance in the delta export metric. GCMs and their interactive 417 

effects with RCPs contribute the most uncertainty in future delta outflows and exports. In 418 

comparison, the first-order contributions from the RCPs themselves are small. The conclusions 419 

above hold even if smaller ensembles of GCMs are selected based on their ability to represent 420 

regional climate, although with a somewhat larger direct contribution from emission scenario. 421 

 422 

The approach presented here is widely applicable and can be extended to consider other uncertainty 423 

sources not accounted for in this experiment. For instance, the effects of climate model error and 424 

natural climate variability, which were combined in the experiment presented here, could be 425 

separated using single-model initial condition large ensembles (Lehner et al., 2020). Similarly, 426 

hydrologic model uncertainty can significantly affect water resource impact assessments (Malek 427 

et al., 2022) and could be accounted for by using multiple model structures and behavioral 428 
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parameter sets. As the ensemble size grows, the computational costs of the approach (in particular 429 

the Sobol method) may become infeasible. Therefore, future work is needed to consider alternative 430 

methods for sensitivity analysis that are more efficient, such as ANOVA or the method of Morris 431 

(Morris 1991; Herman et al., 2013). Further consideration of the tradeoff between model accuracy 432 

and parsimony is also warranted.  433 

 434 

A few caveats of the approach deserve mention. The systems model uncertainty is quantified based 435 

on historical errors between observed and modeled outcomes, but this approach will not capture 436 

any nonstationarity in the error distribution that emerges under new boundary conditions. 437 

Similarly, the current approach does not capture structural uncertainties related to changes in the 438 

system, e.g., infrastructure adaptation or land-use change in response to exogenous forcing. 439 

Despite these caveats, the combined use of time series error models and sensitivity analysis 440 

provides an effective and straightforward screening method to assess the suitability of a systems 441 

model in large ensemble climate vulnerability assessments.  442 
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