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Abstract

For more than 150 years, geological features claimed to be evidence for pre-Pleistocene glaciations have been debated. Advance-

ments in recent decades, in understanding features generated by glacial and mass flow processes, are here reviewed. It is timely

to make renewed comparisons and to re-visit the interpretations of data used to support pre-Pleistocene glaciations. Similarities

and differences of Quaternary glaciogenic and sediment gravity flow features, which are most often referred to as proxies and

evidence of ancient glaciations, are documented, discussed and closely examined, in order to uncover the origin of more ancient

deposits. It is necessary to use multiple proxies to develop a correct interpretation of ancient strata. Analyses and evaluation

of data are from a) Quaternary glaciations and glaciers, b) formations which have been assigned to pre-Pleistocene glaciations,

and c) formations with comparable features associated with mass-flow deposition (and occasionally tectonics). The aim is

not to reinterpret specific formations and past climate changes, but to enable data to be evaluated using a broader and more

inclusive conceptual framework. To achieve this goal, detailed descriptions of field evidences are documented from papers that

may suggest different interpretations of these data. This is not in an intention to present revised interpretations of these papers,

but to collect data and develop a foundation for enhanced analysis of geologic processes and features. Regularly occurring

features interpreted to be glaciogenic and are contemporaneous with pre-Pleistocene diamictites which have been interpreted

to be tillites, have often been shown to have few or no Quaternary glaciogenic equivalents. These same features commonly

form by sediment gravity flows or other non-glacial processes, which may have led to misinterpretations of ancient deposits.

These features include, for example, appearances and documented data from the extent and thickness of diamictite deposits,

environmental and depositional affinity of fossils in close connection to diamictites, grading and bedding of diamictites, fabrics,

size of erratics, polished and striated clasts and surfaces (“pavements”), boulder pavements, lineations, valleys, glaciofluvial

deposits, dropstones, laminated sediments, glaciomarine sediments, periglacial structures, soft sediment tectonics, and surface

microtextures. The analysis of these features provide detailed documentation that may be used to help identify the origin for

many pre-Pleistocene diamictites. Recent decades of progress in research relating to glacial and sediment gravity flow processes

has resulted in proposals by geologists, based on more detailed field data, more often of an origin by mass movements and

tectonism than glaciation. The most coherent data of this review, i.e. appearances of features produced by glaciation, sediment

gravity flows and a few other geological processes, are summarized in a Diamict Origin
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70 For more than 150 years, geological features claimed to be evidence for pre-Pleistocene

71 glaciations have been debated. Advancements in recent decades, in understanding features

72 generated by glacial and mass flow processes, are here reviewed. It is timely to make renewed

73 comparisons and to re-visit the interpretations of data used to support pre-Pleistocene

74 glaciations. Similarities and differences of Quaternary glaciogenic and sediment gravity flow

75 features, which are most often referred to as proxies and evidence of ancient glaciations, are

76 documented, discussed and closely examined, in order to uncover the origin of more ancient

77 deposits. It is necessary to use multiple proxies to develop a correct interpretation of ancient

78 strata.

79 Analyses and evaluation of data are from a) Quaternary glaciations and glaciers, b) formations

80 which have been assigned to pre-Pleistocene glaciations, and c) formations with comparable

81 features associated with mass-flow deposition (and occasionally tectonics). The aim is not to

82 reinterpret specific formations and past climate changes, but to enable data to be evaluated

83 using a broader and more inclusive conceptual framework. To achieve this goal, detailed

84 descriptions of field evidences are documented from papers that may suggest different

85 interpretations of these data. This is not in an intention to present revised interpretations of

86 these papers, but to collect data and develop a foundation for enhanced analysis of geologic

87 processes and features.

88 Regularly occurring features interpreted to be glaciogenic and are contemporaneous with pre-

89 Pleistocene diamictites which have been interpreted to be tillites, have often been shown to

90 have few or no Quaternary glaciogenic equivalents. These same features commonly form by

91 sediment gravity flows or other non-glacial processes, which may have led to

92 misinterpretations of ancient deposits. These features include, for example, appearances and

93 documented data from the extent and thickness of diamictite deposits, environmental and

94 depositional affinity of fossils in close connection to diamictites, grading and bedding of
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95 diamictites, fabrics, size of erratics, polished and striated clasts and surfaces (“pavements”),

96 boulder pavements, lineations, valleys, glaciofluvial deposits, dropstones, laminated

97 sediments, glaciomarine sediments, periglacial structures, soft sediment tectonics, and surface

98 microtextures. The analysis of these features provide detailed documentation that may be

99 used to help identify the origin for many pre-Pleistocene diamictites. Recent decades of

100 progress in research relating to glacial and sediment gravity flow processes has resulted in

101 proposals by geologists, based on more detailed field data, more often of an origin by mass

102 movements and tectonism than glaciation. The most coherent data of this review, i.e.

103 appearances of features produced by glaciation, sediment gravity flows and a few other

104 geological processes, are summarized in a Diamict Origin Table.

105 Keywords:

106 tillite

107 sediment gravity flow (SGF)

108 striation

109 groove

110 dropstone

111 paleoclimate

112 fossil vegetation

113 glaciogenic proxies

114 surface microtexture

115 Late Paleozoic Ice Age

116 Terminology

117 Dropstone and lonestone: Dropstone is a genetic label for a clast that has been dropped into
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118 water from ice. This label may also be used for clasts dropped by other agents, like from

119 floating vegetation. In the current paper the label dropstone will refer to any outsized clasts

120 which have been interpreted in the literature to be dropped from ice, even if that interpretation

121 may not be valid. A non-genetic term for outsized clasts is lonestone. This term would be

122 better to use than dropstone, but as lonestones are commonly interpreted to be dropstones and

123 the terms sometimes even are used interchangeable, the label dropstone is used whenever it

124 has been done so by earlier researchers. Otherwise, the interpretation of the origin has to be

125 discussed for every clast that is referred to.

126 Groove: Commonly defined in width as >10 mm up to a few meters or more. Marine

127 geologists may label any large linear erosional (V-shaped) forms as grooves (Nwoko et al.,

128 2020a), even if they are kilometers in width, but in the current paper the definition is used for

129 erosion by tools.

130 Striation: Commonly defined as <10 mm in width. Marine geologists may label large

131 erosional (wide and flat-bottomed) channels made by megaclasts on the sea bottom as

132 striations (Nwoko et al., 2020a), but that definition is not used in the current paper.

133 Tillite and”tillite”: This label is a genetic term, and by definition a lithified till. Any ancient

134 diamictite which has been classified as tillite by former researchers, even if the evidence from

135 recent geological research indicates a non-glacial origin of the deposit, will here also be

136 labeled tillite. If the word diamictite should be used instead of tillite, then the current or most

137 common interpretation of the deposit will be missed. Therefore, for the discussions

138 concerning the interpretation of the origin of a deposit, the term will be marked within

139 quotation marks, i.e. “tillite,” independent of the most recent interpretation.

140 1. Introduction

141 1.1. Structure of the current paper
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142 The basic assumption for the current paper is that the recent is better known than the past.

143 This is an actualistic approach, i.e., the principle that the same processes and natural laws

144 applied in the past are the same as those active today. By not using models or longstanding

145 interpretations, but recent field studies and experiments, this actualistic approach is followed.

146 Recent progress in studies of sediment gravity flow (SGF) (used interchangably with mass

147 flow), glaciogenic and a few other processes which may be relevant, are applied when

148 documenting the origin of ancient deposits. Where there is a lack of published data,

149 documentation is compiled or otherwise acknowledged as missing. It may be questioned that

150 mainly Quaternary examples of geologic features are used in comparison to features from the

151 much longer pre-Quaternary time scales, but as it is assumed that natural laws have not

152 changed, this will not be much of a problem.

153 Diamictites are often interpreted to have been formed in a cold climate environment based on

154 the general structure of the deposits, associated geologic features, and polar wander paths.

155 Geochemical data may be used to strengthen the interpretation of glaciation, but these display

156 apparent shortcomings (Frimmel, 2010; Bahlburg and Dobrzinski, 2011; Garzanti and

157 Resentini, 2016; Macdonald, 2020; Caetano-Filho et al., 2021; Mikhailova et al., 2021;

158 Rogov et al., 2021; Scotese et al., 2021; Retallack et al., 2021). Similarities in outcrop of

159 most of the features of glaciation may, however, be produced by different geologic processes

160 (Isbell et al., 2021), mainly SGFs, and therefore more detailed criteria are needed for

161 interpretation. The current paper analyzes and reviews a broad range of such geologic

162 features. The intention is to design questions for field research, rather than to present

163 solutions to all problems of interpretation. Only the appearance of geologic features which are

164 described in great detail will be documented, and former general inferred interpretations of

165 glaciation may not be followed. Different processes which may create similar features are

166 documented in a way of using process-related or “process-sedimentological” principles “to

167 consider alternative hypotheses” (Shanmugam, 2012). Relevant field data is summed up in a
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168 Diamict Origin Table, as a guide to the interpretation of the geologic features which have

169 been documented and discussed (Appendix).

170 Even if there is an awareness of the importance of gathering data from different research

171 disciplines, it may be difficult to evaluate what data shall be used while constructing and

172 interpreting models. Areas which have been described to have formed by ancient glaciations

173 have to be discussed from data compilation from many research disciplines. It may also be

174 insufficient to use interpretations from different research disciplines or articles as facts, if the

175 research data may be better described from a different geological and climatological aspect

176 than is currently done.

177 The current paper concentrates on features which are most often reported and also

178 documented in detail in association with “tillites,” and these are compared to similar features

179 from Quaternary glaciations and SGFs that mimic (or are) these features. Therefore,

180 unintentionally, this work may have become controversial, not because of the compilation of

181 research data, but because of longstanding interpretations of many ancient deposits. The

182 documentation is to a large part biased by reference to well documented and extensive

183 outcrops. The main exception is the documentation of outsized clasts, because lonestones are

184 often interpreted to be dropstones and therefore are commonly suggested to be evidence for

185 glaciation (e.g., Rodríguez-López et al., 2016; López-Gamundí et al., 2021; Le Heron et al.,

186 2021a; Bronikowska et al., 2021).

187 1.2. Historical sketch

188 Ever since diamictites were first interpreted to be pre-Pleistocene ice age deposits, by Ramsay

189 in 1855 for some Permian boulder deposits in England (Harland and Herod, 1975; Hoffman,

190 2011), there has been much controversy over their interpretation. The first steps of SGF
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191 research can be said to have started in 1827, with the introduction of the term flysch (Studer,

192 1827). The first mention of a submarine fan was in 1955 (Menard, 1955), and the first

193 mention of a turbidite-fan link in ancient fans was in 1962 (Bouma, 1962; Shanmugam,

194 2016). The importance of SGFs in the geologic record has often been underestimated

195 (Shanmugam, 2016, 2020, 2021b), even if SGF deposits have often been documented in

196 papers concerning diamictites. Lately, hyperpycnal flows have been recognized to transform,

197 after deposition, into a full spectrum of SGF deposits, including cohesive debris flows and

198 rhythmites, which adds one more dimension to this research area (Zavala and Arcuri, 2016;

199 Shanmugam, 2019, 2021b; Zavala, 2019, 2020).

200 Since the early 1970s, starting with an earlier paper by Crowell (1957), it has been recognized

201 that many “ice-age remains” have been deposited by different kinds of SGFs, for example by

202 turbidity currents but especially by cohesive debris flows. For example, in the Tertiary of

203 Alaska, twelve major glaciations were reinterpreted as formed largely by SGFs (Plafker et al.,

204 1977; Eyles and Eyles, 1989). Schermerhorn published a comprehensive review which

205 documented the evidence for a SGF origin of ancient diamictites, shown in his classic work

206 on Late Precambrian diamictites (Schermerhorn, 1974a, 1976a, 1976b, 1977). The current

207 paper is partly inspired by the work of Schermerhorn, but is also influenced by published

208 work on fan deposits and SGFs (Shanmugam, 2016; Peakall et al., 2020). Many researchers

209 in addition to Schermerhorn have compared tills, glaciomarine sediments and different kinds

210 of SGFs, but the work may have been hampered by the assumption that outcrops with

211 equivocal origin are ice-age deposits (Hambrey and Harland, 1981; Boulton and Deynoux,

212 1981; Anderson, 1983; Wright et al., 1983; Eyles, 1993). The documentation in

213 Schermerhorn´s classic paper (1974a) has to a large part gone unnoticed, even though this

214 article may be referred to in passing (e.g., Le Heron et al., 2017). Eyles (1993) wrote: “ ...

215 unfortunately, the inclusion of strata that were indisputable of a glacial origin weakened the

216 essential correctness of Schermerhorn´s argument.”
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217 Pre-Pleistocene formations which are, or have been, interpreted to have formed by glaciations

218 are documented from the Archean, the Paleoproterozoic, the Neoproterozoic, and during all

219 periods of the Phanerozoic (Hambrey and Harland, 1981; Caputo and Santos, 2020; Youbi et

220 al., 2021) sometimes even in the tropics and indicating low elevations (Soreghan et al., 2014),

221 including during five different episodes of the Cretaceous (Alley et al., 2020). The most

222 accepted and geologically important glaciations are in the Paleoproterozoic, the

223 Neoproterozoic, the Upper Ordovician, and the Late Paleozoic Ice Age (LPIA; recently dated

224 to 372-259 million years; Pauls et al., 2021) (Hambrey and Harland, 1981).

225 1.3. Bias in diamictite research

226 Glaciogenic proxies are documented in order to find stratigraphic intervals displaying

227 glaciations, as there, on the basis of uniformitarianism, had been many glaciations throughout

228 earth history (e.g., Williams, 2005). The current interpretation of a stratigraphic interval

229 commonly biases the research questions and which observations and measurements are made,

230 and frequently it is mainly data supposed to be relevant for the current interpretation that are

231 reported. These circumstances have resulted in that alternative interpretations were not always

232 fully investigated. Therefore the features which are described in the literature often contain

233 too few details to establish if the deposits have originated from glacial action, SGF or by any

234 other means. For example, a clast or a surface with striations is often reported to have been

235 glacially striated if present in connection to a diamictite (Atkins, 2003). In other words,

236 features which may be formed in different environments are reported, but diagnostic features

237 may not be documented or discussed. Single or even groups of features which display

238 appearances partly similar to and interpreted to be glaciogenic features, may subsequently be

239 shown to be very different from Pleistocene and more recent glaciogenic features. In short,

240 the question of the origin of diamictites has become a part of a scientific paradigm (Kuhn,

241 1970; Shanmugam, 2016) connected to long-term climatic correlations (Young, 2013; Shields
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242 et al., 2022).

243 As recent research uncovers growing evidence of non-glacial transport, diamictites worldwide

244 have more often been interpreted as glaciomarine and often considered as parts of interglacial

245 periods. This includes approximately 95% of all “glaciogenic” deposits, i.e. sediments which

246 may contain an abundance of marine fossils, and to a large part are made up of SGF deposits

247 (Eyles 1993; González and Glasser, 2008; Isbell et al., 2016; López-Gamundí et al., 2016,

248 2021; Assine et al., 2018; Vesely et al., 2018; Rosa et al., 2019; Sterren et al., 2021; Isbell et

249 al., 2021; Molén and Smit, 2022). These interpretations make it more difficult to discover if

250 the deposits had been produced primarily by glaciation or are non-glacial marine. In this case

251 often the only “unequivocal” evidence for glacial influence is considered to be dropstones,

252 especially if outsized clasts occur in rhythmites, but also if SGF deposits or stratified

253 diamictites display outsized clasts (e.g., Ezpeleta et al., 2020). Apart from dropstones, striated

254 clasts and surfaces (“pavements”) are commonly referred to as evidence for glaciation

255 without discussing alternative interpretations in depth (e.g., different examples in Molnia,

256 1983a; Miall, 1983, 1985; Eyles, 1993; Hoffman et al., 1998; Carto and Eyles, 2012a;

257 Rodríguez-López et al., 2016; Le Heron et al., 2017; Le Heron and Vandyk, 2019).

258 1.4. Geologic features produced by sediment gravity flows

259 Gravity-induced slope processes include variations of rock fall, slides, slumps, debris flows

260 and turbidites. In some outcrops there is an almost complete visible sectioned sequence,

261 horizontally and/or vertically, which shows how mass movements have changed from e.g.,

262 slides, to debris flows, and finally to turbidity currents (Ogata et al., 2019; Rodrigues et al.,

263 2020; Kennedy and Eyles, 2021). Sedimentary and erosional features which commonly form

264 from such processes, especially those originating from cohesive debris flows, share many

265 similarities in appearance to glaciogenic features and are present in many diamictites which
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266 had been interpreted to be glaciogenic (e.g., Molén, 2017, 2021). Another process which

267 shows similarities to slope processes are land derived hyperpycnal flows. Such flows can in

268 some cases last for months. Even though they have a different origin from slope processes,

269 they display similarities in the sedimentation process and the deposits may be reworked and

270 transform into a full spectrum of SGFs (Zavala and Arcuri, 2016; Shanmugam, 2019, 2021b;

271 Zavala, 2019, 2020). Hyperpycnal flow deposits are therefore included here in what is

272 commonly described as SGF deposits.

273 Below is a list of features that commonly originate by especially cohesive debris flows, but

274 which also may originate from other slope processes like turbidites and slides that commonly

275 co-occur with debris flows. These geologic features are important to acknowledge as there are

276 differences between features of glaciation and SGFs which will be outlined herein. The

277 features below are well known in the geologic community within the discipline of slope

278 processes, but the details are often not well known outside of this community. All the features

279 listed have to be acknowledged. An assemblage of these are commonly present in close

280 connection to diamictites, i.e. they are parts of ancient diamictites and other erosional and

281 depositional features which have been interpreted to be glaciogenic, and are by definition also

282 present in areas displaying non-glacial SGF deposits. If the features in the list below are

283 studied more in detail, it may be possible to demonstrate if an area or outcrop was formed

284 mainly by SGFs or by glaciation. A subsample of references from a complete research

285 discipline, which may be the most important from the discipline of SGF research, which all

286 document many of the features in the list below, are Middleton and Hampton (1976),

287 Shanmugam et al. (1994), Schneider and Fisher (1998), Major et al. (2005), Moscardelli et al.

288 (2006), Talling et al. (2007, 2012, 2015), Watt et al. (2012), Dakin et al. (2013), Pickering

289 and Hiscott (2015), Shanmugam (2016, 2020, 2021), Peakall et al. (2020), Cardona et al.

290 (2020), Baas et al. (2021); Dufresne et al. (2021).

291 a) diamict texture, but deposits often may be in streaks and display some sorting and grading,



13

292 b) grooves and striations on clasts and surfaces/pavements, especially below debris flows that

293 may hold clasts in fixed positions,

294 c) lonestones which may be interpreted as dropstones,

295 d) sharp and irregular fronts,

296 e) a great degree of scatter and variable thickness of the deposits,

297 f) variable erosion and depth of deformation of the underlying substratum (e.g, sharp,

298 undulating, interdigitating, ripple-type, grooved),

299 g) deposition in or at the end of channels,

300 h) reworking at the top of the deposits by bottom currents,

301 I) conformably draping by mass flow beds of rapid deposition (mainly turbidites),

302 j) soft sediment structures, like load casts, clastic dykes, boudinage, folds and convolute

303 bedding,

304 k) scour and fill structures,

305 l) rhythmites,

306 m) climbing ripples,

307 n) contorted rip-up soft slabs of sandstone or other sediments,

308 o) mud-flakes or clasts which have often been pressed down into the underlying sediments

309 from above, and therefore the beds also display holes or depressions below debrites, where

310 embedded clasts have been eroded out,

311 p) a thickness-to-width ratio commonly thicker than 1:50,

312 q) more than 3-5% clay, or otherwise may transform distally into hyperconcentrated flow or

313 sediment-laden floods,

314 r) an appearance of crossbedding,

315 s) a basement which has been rounded with a superficial appearance of having been glaciated,

316 e.g. displaying bedrock forms similar to roches moutonnées, even with evidence of plucking,

317 t) brecciation of the substratum, which may also display cataclasis,

318 u) a thin basal layer of debris, i.e. a traction carpet or liquefied sandstone,
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319 v) rip up soft sedimentary megaclasts with intact stratigraphy,

320 x) entrainment of sediments, including processes that may be defined as plucking, during the

321 complete path of movement,

322 y) laminar behavior, 

323 z) uphill movement,

324 za) no or rare evidence of fossils,

325 zb) an upper hummocky terrain,

326 zc) drop formed landforms which are erosional remnants.

327 2. Similarities and differences between glaciogenic and other geologic features

328 Ancient outcrops commonly are visually restricted, and therefore it may be difficult to

329 document appearances of features from the action of glaciers or any other processes. Many

330 different geological features which may be misinterpreted in restricted outcrops, are

331 documented below. Some researchers state that it may be impossible to confidently identify a

332 specific environment of deposition by macroscopically features and textural criteria

333 (Kilfeather et al., 2010), but as is documented in the current paper there are more unequivocal

334 critera than is usually recognized.

335 If there is glaciogenic material which has never been processed by but only transported by a

336 glacier, such as supraglacial till, it will not acquire many of the characteristics imposed by

337 glacial forces. The same holds for flow tills, if they are supraglacial mass flows that have

338 never been covered by a glacier. This may also hold for some aspects of squeezed flow till

339 (Hicock, 1991; Hicock and Dreimanis, 1992b). Flow tills are in any case difficult to

340 differentiate from non-glaciogenic mass flows, especially if they are formed subaqueously

341 (Evenson et al., 1977). Englacial till which has been deposited as melt-out till also may not

342 acquire many glaciogenic features. However, all material that is deposited in a subglacial
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343 environment will display evidence of this process (Mahaney, 2002; Molén, 2014).

344 Furthermore, supraglacial tills and other tills that have not been transported at the base of a

345 glacier are usually a minor part of glaciogenic sediments, and they are easily removed by later

346 erosion, in contrast to basal till.

347 Many features which are interpreted to be evidence of glaciation form in a wide range of

348 environments (e.g., Eyles, 1993; Eyles and Boyce, 1998; Atkins, 2003; Thompson, 2009). If

349 clasts from one environment are incorporated by a new process, e.g., tectonic material that is

350 mixed with finer material and beach/slope material in a debris flow, the origin of the deposit

351 may be difficult to uncover (e.g., Festa et al., 2019). This mixing of different materials is

352 common in SGFs, and up to 50% of the material may be entrained through erosion from the

353 substrate along the path of the flow (e.g., Thompson, 2009; Carto and Eyles, 2012a, 2012b;

354 Ortiz-Karpf et al., 2017; Ogata et al., 2019; Nugraha et al., 2020; Rodrigues et al., 2020).

355 Eyles and Eyles (2000) described a “cement-mixer-model” of how different sediments could

356 mix.

357 Each of the features reviewed in the sections 2.1.-2.18. is commonly referred to when

358 exploring evidence of glaciation. There is, however, an increasing understanding that similar

359 features, which more or less mimic the typical glacial features, also can originate as a

360 consequence of different kinds of SGFs and other non-glacial processes. In addition, there are

361 many geologic features from “ancient ice-ages” which have rarely or never been formed by

362 Pleistocene or younger glaciers. These features may be at odds with a glaciogenic

363 interpretation, but often at the same time indicate a SGF or/and tectonic origin. Also, there are

364 some general problems in regard to “tillites” that do not apply to SGFs, e.g. climate and

365 correlations, which are also discussed below.

366 2.1. Geographical extent, dating, climate and fossils
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367 2.1.1. Geographical extent

368 SGFs occur worldwide, independent of latitude, and are therefore present in the same areas as

369 the more geographically restricted glaciers. Mountain glaciers are areally restricted, but are

370 present worldwide if above the equilibrium-line altitude (e.g., Mahaney, 1990).

371 The geographic extents of deposits from “ancient ice-ages” are often comparatively small and

372 “tillites” are often dispersed as separate outcrops (e.g., Lindsay, 1966; Finkl and Fairbridge,

373 1979; Fairbridge and Finkl, 1980; Deynoux and Trompette, 1981b; Le Heron et al., 2018a).

374 There are two exceptions. The first is the Ordovician deposits in northern Africa which cover

375 between 8 x 106 (Biju-Duval et al., 1981) and 20 x 106 km2 (Fairbridge, 1979). The size

376 difference depends on whether the Arabian diamictites are included or not. If the lesser

377 Ordovician outcrops in South Africa, Europe and South America are included, the maximum

378 hypothetical glaciated area is c. 40 x 106 km2 (Le Heron et al., 2005, 2018a; Ghienne et al.,

379 2007). The second exception is the LPIA outcrops which cover maybe 30 x 106 km2 if

380 deposits from separate basins in South America, Antarctica, Australia, India, South Africa,

381 Congo and Madagascar are included (Gravenor, 1979). Parts of the Arabic Peninsula,

382 Ethiopia, Chad and a few other areas may also be included in the LPIA (e.g., Bussert, 2010,

383 2014; Le Heron, 2018). The LPIA has lately been alternatively interpreted as many smaller

384 glaciations, to a large part marine and including SGFs, and parts of the area have even been

385 described as formed in a large glacial lake (Horan, 2015; Dietrich et al., 2019; Fedorchuk et

386 al., 2019; López-Gamundí et al., 2021; Isbell et al., 2021; Ives and Isbell, 2021).

387 Neoproterozoic diamictites are commonly present in downwarping or deep basins, otherwise

388 close to rifts, and rarely on stable bedrock (Schermerhorn, 1974a; Eyles, 1993; Arnaud, 2008;

389 Frimmel, 2018; Kennedy and Eyles, 2019, 2021), and many Precambrian “tillites” can be

390 correlated with tectonic movements apparently connected to continental breakup (Eyles,
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391 1993; Williams, 2005; Carto and Eyles, 2012a, 2012b; Delpomdor et al., 2016; Gómez-Peral

392 et al., 2017; Kennedy and Eyles, 2019, 2021; Molén 2021). Recent active areas of

393 tectonism/volcanism may display similar geologic features as in Precambrian “tillites” (Carto

394 and Eyles, 2012a). Peperites are mixed with Neoproterozoic diamictites in Argentina and

395 Paleoproterozoic diamictites in Canada, indicating that volcanism was the triggering process

396 for the origin of some diamictites (Young et al., 2004b; Pazos et al., 2008). Deposits from

397 Phanerozoic ice-ages have accumulated on more stable bedrock than during the Precambrian

398 (Schermerhorn, 1974a), but the LPIA formations in both southern Africa and South America,

399 have been deposited in tectonically controlled former sinking basins or close to areas of

400 tectonic movements (Johnson et al., 1997; Barbolini et al., 2018; Hansen et al., 2019; Dietrich

401 and Hofmann, 2019; Fedorchuk et al., 2019; Limarino and López-Gamundí, 2021; Creixell et

402 al., 2021; Veroslavsky, 2021; Molén and Smit, 2022). The overall geological framework of

403 the Ordovician glaciated area was a continuous transgression over a slowly subsiding cratonic

404 platform (Ghienne, 2003), and there is evidence of recurrent magmatic activity in the area

405 from the Precambrian to the Holocene (Ghuma and Rogers, 1978; El-Makhrouf, 1988; Young

406 et al., 2004a; Permenter and Oppenheimer, 2007; Liégeois, 2006). Consequently, even the

407 Paleozoic glaciations may in some aspects be connected to tectonism. Quaternary glaciations

408 commonly were and are on more stable bedrock.

409 Many ancient sedimentary deposits which are interpreted to be glacially influenced are

410 hundreds of meters to many kilometers thick (Volkheimer, 1969; Schermerhorn, 1974a;

411 Woolfe, 1994: Visser, 1989a; Vesely and Assine, 2014; Ali et al., 2018; Kennedy and Eyles,

412 2019; Rosa et al., 2019), as are mass flow deposits (Kuenen, 1964; Komar, 1970). As an

413 example, a median thickness value for 197 mass flows (mainly Pliocene and younger) is 66

414 m, but thicknesses of hundreds of meters are common and there are examples of kilometers

415 (Moscardelli and Wood, 2016; Ogata et al., 2019; Alves and Gamboa, 2020). Large mass

416 movements may even generate isostatic uplift or downwarping of the lithosphere (Kneller et
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417 al, 2016). Sedimentation will in general be more massive in areas where there is rapid

418 subsidence in tectonically active basins (Kennedy and Eyles, 2021). SGF deposits may be

419 complex, multi-layered units which may have been deposited during an event or a very short

420 time period (e.g., Shanmugam, 2012, 2021b).

421 Even though the examples below are mostly from sediments deposited on oceanic crust,

422 marine fossils are present almost worldwide, from former transgressions, and marine fossils

423 are present next to geologic features which are interpreted to be glaciogenic (see examples in

424 sections 2.1., 2.13, 2.15). Massive debris flows may travel 200 km without depositing any

425 sediment (Talling et al., 2007), and therefore the resulting deposits may appear to be isolated

426 “tillite” mounds. Many SGFs travel long distances, e.g., 900-2000 km outside off the coast of

427 northwestern Africa (Georgiopoulou et al., 2010; Moscardelli and Wood, 2016), and there

428 have been suggestions of 4000 km for less dense turbidity currents (Pickering and Hiscott,

429 2015). Such flows affected extensive areas, e.g., 95 000 km2 for the Storegga Slide

430 (Haflidason et al., 2004) and 132 000 km2 in the Canada Basin (Moscardelli and Wood,

431 2016). The largest known Late Pleistocene debris flow influenced an area of 45 000 km2

432 (Embley, 1982) and the largest known recent turbidity current influenced an area of 500 000

433 km2 (Heezen and Hollister, 1971), but SGFs are usually much more restricted in areal extent

434 than these two deposits, with a median value less than 100 km2 (Moscardelli and Wood,

435 2016). 

436 In contrast to “tillites” and SGF deposits, separate till beds, with characteristic structure and

437 mineral content, can be traced over hundreds of kilometers and are often less than five meters

438 thick (Schermerhorn, 1974a). Most layers are less than 100 m and usually not more than 10 m

439 thick. In Canada the thickness of the till is 2-10 m (Eyles et al., 1983), in Norway the mean

440 till layer is 5 m (Haldorsen, 1983), in Finland 2-3 m and in Sweden 5-15 m (Flint, 1971). At

441 the southern limit of the North American inland ice sheet, separate till beds are superposed
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442 and in total often thicker, e.g., from 10 to 52 m in a 300 km wide band (Flint, 1971), but in

443 Europe the tills often thin out at the southern limits (Piotrowski et al., 2001). The thickest

444 known accumulation of till beds from the Pleistocene is 400 m (Flint, 1971; Schermerhorn,

445 1974a).

446 The late Cenozoic exceptions, which exhibit thick glacial sequences, are in places with

447 glaciomarine sedimentation, at the continental shelf of Antarctica and the Yakataga

448 Formation of the Gulf of Alaska (Anderson, 1983). Most of these deposits have originated by

449 SGFs but under the influence of nearby glaciers (Eyles and Lagoe, 1998).

450 Valley glaciers commonly merge into larger glaciers. Similarly “glacial” paleo-flows may be

451 in one main direction and a few smaller merging valley flow directions (Visser, 1981). This is

452 similar to what may take place during large slides/SGFs (e.g., Haflidason et al., 2004). Also,

453 SGFs may diverge, bend and split into many smaller flows (Moscardelli et al., 2006;

454 Sobiesiak et al., 2018; Kumar et al., 2021), somewhat similar to what may take place if a

455 glacier is spreading out over a more planar surface.

456 Erosion has reduced the extent of many Pleistocene glaciogenic deposits. This explanation

457 must not, however, be used only to defy the small and discontinuous extent of ancient

458 deposits without documentation of evidence of erosion subsequent to a glacial period.

459 2.1.2. Correlations and dating 

460 In general, there are always intricate problems with correlations, especially if these are long

461 distance (Blauw, 2012; Gaucher et al., 2015). Commonly diamictites do not contain material

462 that may be isotopically dated. Diamictites and “glaciogenic features” have therefore

463 sometimes been interpreted to be glacial, only if they are of the “correct” age. Furthermore,
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464 diamictites which commonly are regarded as glaciogenic today have earlier been regarded as

465 not glaciogenic, because they have been considered to have been in the wrong

466 paleogeographic area (Caputo and Santos, 2020). In some cases, diamictites have been

467 redated, even four times, in order to correlate these to other deposits which have been

468 interpreted to be glaciogenic. There are examples of redating from the Neoproterozoic

469 throughout the Phanerozoic and occasionally even into the Pleistocene (Dow et al., 1971;

470 Schenk, 1972; Schermerhorn, 1974a; McClure, 1980; Rehmer, 1981; Carto and Eyles, 2012b;

471 de Wit, 2016a, 2016b; Moxness et al., 2018; Caputo and Santos, 2020; Hore et al., 2020). All

472 these reinterpretations show that there are many difficulties and unknowns in the studies of

473 diamictites and other geologic features which have been referred to as being glaciogenic.

474 2.1.3. Fossil vegetation

475 Fossil vegetation, including coal deposits, is often present adjacent to or in between deposits

476 from “ancient ice-ages” (e.g., Plumstead, 1964; Lindsay, 1970a; Finkl and Fairbridge, 1979;

477 Rocha-Campos and Santos, 1981; Gravenor and Rocha-Campos, 1983; Gravenor et al., 1984;

478 Stavrakis and Smyth, 1991; Woolfe, 1994; Fedorchuk et al., 2019; Kent and Muttoni, 2020).

479 Even if the time scales are long, these sedimentary proximities are so common that they have

480 to be discussed.

481 Plants are better climatic indicators than rocks and would indicate any deviation from a polar

482 climate. However, the ecology of plants often is interpreted from geology and not from plant

483 physiology or ecology, which may be circular reasoning. For example, old editions of books

484 may describe the Glossopteris flora as subtropical or tropical, but not so in more recent

485 editions (e.g., Dott and Batten, 1976, compared to e.g., Prothero and Dott, 2003).

486 Current experiments and observations show different levels of 13C and 12C in living plants,
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487 depending on e.g. latitude, temperature, precipitation and species (Cernusak et al., 2008;

488 Kohn, 2010; White, 2015; Porter et al., 2017; Stein et al., 2021). Furthermore, there are

489 different sensitivities to pCO2 and other environmental factors for different plants (Klein and

490 Ramon, 2019; Wilson et al., 2020; Stein et al., 2021), and many plants are insensitive to

491 environmental drivers for isotope discrimination including pCO2, water and temperature

492 (Stein et al., 2021). Some researchers have even sampled data only from plant studies that

493 show isotope discrimination, to calculate former pCO2 (Stein et al., 2021). All these different

494 data make ancient pCO2 model calculations based on plant fossil carbon-isotope data

495 suspicious.

496 2.1.3.1. Association between vegetation and glaciogenic sediments

497 Macrofossils are rarely found in diamictites. However, in the LPIA of South Africa, fossils of

498 plants of Gangamopteris of the Glossopteris flora have been found within the diamictites and

499 squeezed in between the Dwyka “tillite” and the underlying “ice-polished bedrock” (du Toit,

500 1926; Sandberg, 1928). Coalified plant fragments occur within massive “tillites,” and coal

501 seams are often present on or between “tillites” (du Toit, 1926; Sandberg, 1928; Adie, 1975;

502 Anderson and McLachlan, 1976; John, 1979; Bond, 1981a, 1981b; Le Blanc Smith and

503 Eriksson, 1979; Visser, 1983a, 1989a; Stavrakis, 1986; Stavrakis and Smyth, 1991; Von

504 Brunn, 1994; Hancox and Götz, 2014; Caputo and Santos, 2020). Coal seams that may be

505 interbedded with “glaciogenic” diamictites have in many instances coalesced with other coal

506 seams to form one thick coal seam (Stavrakis and Smyth, 1991). Interlayering of diamictite

507 and coal beds is often considered to be a result of reworking of diamictites (Hancox and Götz,

508 2014), but that explanation does not hold well for plant fossils within massive diamictites and

509 coalesced strata. Geologic evidence of long time periods are commonly missing. Coal seams

510 that are interbedded between diamictites are often thin, and complete sequences may appear

511 to be a kind of debrites (Hancox and Götz, 2014). 
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512 In the LPIA of Antarctica, diamictites intrude strata upward as diapirs (nearest plant fossils

513 are c. 0.5 m above the “tillite”; Cuneo et al. , 1993), and boulders and conglomerates from the

514 upper strata protrude downward into the diamictite. Furthermore, “glaciotectonic structures”

515 are present both in the “tillite” and the lower part of the coal bearing strata (mainly

516 sandstones and conglomerates; Isbell, 2010). In some places the boundary between the beds

517 are gradational, and in other places the deposits are interfingering (Cuneo et al. , 1993; Isbell,

518 2010). Considered as a whole, these evidences indicate a short time period. Isbell (2010)

519 concluded that the evidence suggested “temperate glacial conditions.”

520 Deposits containing fossil plants close to diamictites may be considered to be hyperpycnites,

521 i.e. deposits formed by dense water flows laden with sediment and large plant parts. These

522 may be sorted into dense and diluted parts, with or without plant material, but plant material

523 may also be transported with turbidities, cyclones and tsunamis (Zavala and Arcuri, 2016;

524 Shanmugam, 2019, 2021b; Zavala, 2019, 2020; Dou et al., 2021). Plant parts have been

525 transported into deep marine basins at estimated paleodepths of approximately 400-600 m

526 (Pickering and Corregidor, 2005).

527 The evidence from the absence of plant fossils within most Paleozoic diamictite deposits may

528 be an indication of water depth or transport distance, i.e. in deeper water, or during longer

529 transport, plant material and other organisms may be sorted out. The ä13Ccarb in the Dwyka

530 Group diamictites appear to be of primarily algal origin, which may be an indication of water

531 depth (Scheffler et al., 2003). Fossils are seldom reported from within debris flow deposits.

532 On the other hand, Holocene glaciogenic deposits may hold an abundance of trees and other

533 plants, if forests have grown nearby (Ryder and Thomson, 1986; Fleisher et al., 2006). This

534 would not be considered to be uncommon in areas with Alpine glaciation or at the

535 southernmost parts of continental glaciers, but less common if there was polar climate.
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536 2.1.3.2. Ecology

537 The vegetation present next to “glaciogenic” facies of the LPIA deposits does not include

538 typical cold-climate plants (Anderson and McLachlan, 1976; McLoughlin, 2011; Hancox and

539 Götz, 2014; Caputo and Santos, 2020). The LPIA fossil plants, i.e. the Glossopteris flora, do

540 not display any typical appearances of cold climate peats or other cold climate environments,

541 and no indication that they could have thrived in polar climates (Srivastava and Agnihotri,

542 2010; McLoughlin, 2011; Isbell et al., 2016; Götz et al., 2018; Gastaldo et al., 2020a, 2020b;

543 Mays et al., 2020; Tripathy et al., 2021). The main argument for a cold climate adaptation of

544 the vegetation (if this question even is raised) is the close connection to sedimentary deposits

545 which are regarded to be from an ice age. Similar plant fossils are present even at a

546 paleolatitude of 75-85ES, even if there are not always diamictites close by, and the estimated

547 range of productivity of these far southern forests is similar to that of modern forests (Cuneo

548 et al., 1993; Isbell et al., 2016; Miller et al., 2016; Decombeix et al., 2021). There also are

549 indications that at least some plants were evergreen (Gulbranson et al., 2014), and no

550 evidence of frost rings (Taylor et al., 1992). But growth rings would be expected from a shift

551 from light to dark seasons, or amount of precipitation (e.g., Glock, et al., 1960; LaMarche,

552 1969; McLoughlin, 2011). Even if all these fossil plants are not close to diamictites in time or

553 space, they are in a paleopolar area. It would seem as reasonable to argue that because there

554 are temperate or possible subtropical plant fossils present close to many diamictites, as these

555 are also present where there is no diamictites, such deposits cannot be glaciogenic and might

556 instead be SGF deposits. Although the Glossopteris flora species are gymnosperms, and not

557 angiosperms which have been better studied, leaf size and appearance may be an indicator of

558 paleoclimate. Hence, the physiology of the fossil plants, displaying complete (non-toothed)

559 and also large sized leaves, suggests that the Glossopteris flora of Gondwana could even be

560 considered to be evidence for a tropical or subtropical climate zone (e.g., Gastaldo et al.,

561 2020a; DeVore and Pigg, 2020).
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562 The Paleozoic ferns, gymnosperms and other plants are present in many climatic zones. The

563 same genus or even species of plants that are present next to Paleozoic “tillites,” are also

564 present in many places with non-glacial climate (e.g., compare Gateway to the Paleobiology

Database, 2020, to Barbolini, 2014). For example, Glossopteris flora, which is present over565

566 most of Gondwana (McLoughlin, 2011), have been discovered in the Late Permian of Jordan,

567 i.e. in the northern, tropical/subtropical part of Gondwana (Blomenkemper et al., 2020), in

568 Mongolia (Naugolnykh and Uranbileg, 2018), and also in deposits at the Permian-Triassic

569 border of Pakistan which are considered to have been laid down during a greenhouse climate

570 (Schneebeli-Hermann et al., 2015). Meyerhoff et al. (1996), Srivastava and Agnihotri (2010),

571 McLoughlin (2011), and Mays et al. (2020) describe more examples of Glossopteris flora

572 outside of the Gondwana area, but there is skepticism whether all these fossils really are

573 Glossopteris (Mays et al., 2020). Coal-forming plants showing affinities to plants which are

574 present in North America and Europe and are interpreted to be from tropical or subtropical

575 areas, are also present in Gondwana, but these fossils have not been clearly described or are

576 reassigned to other species, which may make the interpretation of paleoclimate from these

577 fossils at least equivocal (Charrier, 1986; Spiekermann et al., 2020). However, well

578 documented Sigillaria is present in northern Gondwana (Seward, 1932) and lepidodendroid

579 lycopsids (Lepidodendrales) in the Devonian of Australia (Peyrot, et al., 2019).

580 From the evidence of the vegetation, it may be possible that the climate during the LPIA was

581 similar to the Middle/Late Permian, Mesozoic and early Cenozoic “near-tropical”

582 “Greenhouse World” climate, the latter displaying no large glaciers and mean annual

583 temperatures from maybe +5EC to +20EC (or at least no long periods of time with

584 temperatures below the freezing point) close to the poles (Leonard et al., 1981; Sloan and

585 Barron, 1990; Bickert and Heinrich, 2011; Rose et al., 2013; Mori et al., 2016; Bernardi et al.,

586 2018; Decombeix et al., 2021), with e.g., dinosaurs (Mori et al., 2016; Fiorillo et al., 2019;

587 Takasaki et al., 2019) and subtropical and temperate forests growing close to the poles

http://fossilworks.org/
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588 (Wolfe, 1977; Morris, 1985; Francis, 1990; Kerr, 1993, 2008; Wilf et al., 2009; Cerda et al.,

589 2012). There is a lack of evidence of continuous glaciation in Gondwana during the LPIA,

590 even if the South Pole was situated close by from the Late Proterozoic until the Early Triassic

591 (e.g., Horan, 2015). And there are very few and no unequivocal evidences of glaciation in the

592 northern hemisphere during the LPIA (Isbell et al., 2012, 2013, 2016; Montañez and Poulsen,

593 2013; Craddock et al., 2019; Griffis et al., 2019; Fedorchuk et al., 2019, 2021; Rosa and

594 Isbell, 2021). The LPIA is immediately followed by a period of “Triassic Hothouse extremes”

595 (Götz et al., 2018). Even during the Neogene the Antarctic continental mean summer

596 temperatures were +5EC, i.e. possible 30EC warmer than today (Rees-Owen et al., 2018).

597 All the evidence from fossils show that there is no need to ascribe a polar climate to polar

598 areas, as may be done when referring to polar wander paths and also to the recent climate at

599 the poles.

600 2.2. Till structure

601 In many aspects SGF deposits may be indistinguishable from subglacial tills (section 1.4. and

602 e.g., Mountjoy et al., 1972; Schermerhorn, 1974a; Kurtz and Anderson, 1979; Lowe, 1982;

603 Visser, 1983a; Wright et al., 1983).

604 Transverse and irregular moraine forms are not common in diamictites, but are regularly

605 present in Pleistocene and younger tills. However, compressional transverse ridges,

606 hummocky terrain, and flow lines similar to those on the surfaces of some glaciers, are

607 formed by SGFs (e.g., Haflidason et al., 2004; Pickering and Hiscott, 2015; Nugraha et al.,

608 2020; Dufresne et al., 2021; Procter et al., 2021).

609 2.2.1. More mass flows and marine sediments than basal glaciogenic sediments 
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610 “Tillites,” in comparison to glaciogenic depoits from the Holocene and Pleistocene, more

611 often have been disturbed by SGFs, or have been interpreted to be deposited mainly by glacial

612 marine sedimentation (i.e. 95%, section 1.3.), and, therefore, it is especially difficult to

613 distinguish such deposits from non-glaciogenic SGF deposits (e.g., Aalto, 1971; Martin,

614 1981a; Von Brunn and Stratten, 1981; Gravenor et al., 1984; Molén and Smit, 2022). The

615 natural explanation for this – erosion of higher lying terrestrial source areas – has not been

616 substantiated by reports concerning possible evidence of erosion of “tillites,” and there may

617 still be much sedimentary material close to the central areas of “glaciation” (Biju-Duval et al.,

618 1981; Gravenor and Rocha-Campos, 1983; Visser, 1988, 1989a; Le Heron et al., 2010).

619 Often ancient basal “tillites”/diamictites are overlain and/or underlain by SGF deposits or

620 marine strata (e.g., Banerjee, 1966; Visser, 1983b; González and Glasser, 2008; Caputo and

621 Santos, 2020) – a less common observation in Pleistocene deposits. Slides, slumps and debris

622 flows often trigger turbidity flows that will retain some coarse sediment and will be deposited

623 on top of, or downslope from, the denser flow (Hampton, 1972; Middleton and Hampton,

624 1976; Embley, 1980, Lowe. 1982). This can explain why diamictites often are surrounded by,

625 or draped with, shale or rhythmites with lonestones (e.g., Molén, 2017, 2021; Rampino, 2017;

626 López-Gamundí et al., 2021).

627 2.2.2. No rock flour and density of deposits

628 Till contains a large component of rock flour, i.e. material with a grain size <2 ìm, as

629 opposed to many “tillites” (Frakes, 1979; Molén, 2017). For example, the Saharan and Saudi

630 Arabian Ordovician diamictites which are interpreted to be glaciogenic are composed of

631 similar sized material as the underlying sandstones, i.e. sand/silt and no (or very little)

632 grinded rock flour (Le Heron et al., 2005, 2006; Yassin and Abdullatif, 2017). Diamictites in

633 China also are sandy to silty (Chen et al., 2021).
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634 Deposits formed by direct sedimentation from dense suspension are among the most loosely

635 packed natural sediments (Lowe, 1982), i.e. different from subglacially deposited material.

636 However, SGF deposits appear to consolidate quickly, which may mimic compression of

637 sediments by glaciers in tills (Moscardelli et al., 2006). Also, as diamictites are lithified, the

638 cementing agent might obscure indices of the former ratio of pore spaces.

639 2.2.3. Correlation between clast size and thickness of strata

640 The largest boulders in “tillites” are often present in the thickest sedimentary horizons

641 (Schermerhorn, 1974a; Martin et al., 1985; Eyles and Januszczak, 2007). This indicates

642 transport by SGFs (Dott, 1963; Kuenen, 1964; Larsen and Steel, 1978; Derbyshire, 1979;

643 Lowe, 1982; Walton and Palmer, 1988; Middleton and Neal, 1989; Eyles and Januszczak,

644 2007; Kennedy and Eyles, 2021). Ice distribute boulders more randomly.

645 2.2.4. Grading in sediments

646 There is much grading in diamictites which have been or are interpreted to be “tillites,”

647 including lodgement/basal “tillites,” i.e. a) graded bedding, upwards fining, or the largest

648 boulders deposited at the bottom of the sequences (Kulling, 1951; Lindsay, 1968; Bowen,

649 1969; Schermerhorn, 1975; Visser and Kingsley, 1982; Visser, 1982; Deynoux, 1985b;

650 Gravenor and Von Brunn, 1987; Le Heron et al., 2018b, Le Heron et al., 2021b), b) “tillites”

651 grading upwards to shales, dropstone bearing shales or fluvial sediment (Dow et al., 1971;

652 Frakes and Crowell, 1969; Visser et al., 1987; Mustard and Donaldson, 1987b;

653 López-Gamundí, 2010), c) reverse grading from “sandstone with rounded dropstones” to

654 “clast-rich diamictite” (Hoffman et al., 2021), and d) conglomerates or breccias grade

655 upwards to, or are directly overlain, by diamictites which have been interpreted to be “tillites”

656 or SGFs (Kulling, 1951; Lindsay, 1966, 1970; Lindsey, 1969; Cahen and Lepersonne, 1981;
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657 Deynoux and Trompette, 1981b; Visser, 1981, 1983b, 1997; Mustard and Donaldson, 1987a,

658 1987b; Isbell et al., 2008; Festa et al., 2016; Kennedy and Eyles, 2021; Molén, 2021).

659 The occurrence of breccias might indicate that the process of movement was triggered by

660 tectonism, or that the bedrock broke to pieces by the impact of a SGF (Dakin et al., 2013;

661 Molén, 2021). Grading is an indication of transportation by SGFs (section 1.4; Cecioni, 1957;

662 Eriksson, 1991), but may be present in glacogenic deposits. Even if there is not any evidence

663 of grading in all stratigraphic successions, many pre-Pleistocene “glaciogenic” and also SGF

664 deposits display a general sequence, with a few or many of the following facies, starting from

665 the bottom: breccia, conglomerate or clast supported diamictite, massive diamictite, stratified

666 diamictite, sand or siltstone, and rhythmites with finer material displaying lonestones (e.g.,

667 Molén, 2017, 2021; Le Heron et al., 2021b López-Gamundí et al., 2021; Molén and Smit,

668 2022). Furthermore, massive diamictites which have been studied in more detail, have been

669 shown to be stratified, and may indicate a non-glacial origin (Stavrakis, 1986; Stavrakis and

670 Smyth, 1991; Von Brunn, 1994; Visser, 1997; Visser et al. 1997; Huber et al. 2001;

671 Haldorsen et al. 2001; Isbell et al., 2008; Dietrich and Hofmann, 2019; pers. commun., Johan

672 N. J. Visser, 2020; Molén and Smit, 2022).

673 2.2.5. Bedding and amalgamation

674 Sandstones which have been interpreted to be “tillites” may be faintly bedded and display

675 structures similar to dish structures (Biju-Duval et al., 1981; Gravenor and Rocha-Campos,

676 1983; Deynoux 1985b), which might indicate deposition by debris flows (Middleton and

677 Hampton, 1976; Lowe, 1982; Visser, 1983a). But, fissility textures in tills, and dewatering of

678 two component glaciomarine facies, may occasionally display an appearance similar to dish

679 structures.
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680 Ancient diamictites often display amalgamation of debris flow deposits (Kennedy and Eyles,

681 2021), which Domack and Hoffman (2011) interpreted as amalgamation of tillites. The

682 number of “tillite” beds also had been interpreted as the number of glaciations (Ali et al.,

683 2018).

684 2.2.6. Presence of soft sediment structures

685 In SGFs, large rip-up contorted slabs of soft sediments are commonly transported (Crowell,

686 1957; Lindsay, 1966; Lowe, 1979; Shanmugam, 2012, 2021b; Vesely et al., 2018; Rosa et al.,

687 2019; Rodrigues et al., 2020; Isbell et al., 2021), but sometimes such “clasts” have been taken

688 as evidence for glaciation (Deynoux and Trompette, 1981b; Runkel et al., 2010). Even though

689 soft-sediment rafted material may occasionally be transported by and not become shattered by

690 glaciers, “tillites” often contain contorted transported sheets of sediment, thus indicating a

691 more probable transport by SGFs (Lindsay, 1966; Bowen, 1969; Frakes et al., 1969; Visser,

692 1983b; Deynoux, 1985b; Molén, 2017; Kennedy and Eyles, 2019, 2021).

693 Other structures which are commonly present in SGF deposits, but also in a lesser amount in

694 what is or have been considered to be glaciogenic sediments/tillites are: rotational structures,

695 necking structures (squeezing of material between clasts), wisps, flame structures, sediment

696 diapirs, load casts, intra-clasts of diamictite (not to confuse with intra-tills; Evans et al.,

697 2006), and dykes (e.g., Shanmugam, 2012, 2017b, 2021b; Isbell et al., 2016; Moxness et al.,

698 2018; Molén, 2021; Kennedy and Eyles, 2019; Caputo and Santos, 2020; Molén and Smit,

699 2022). 

700 2.2.7. Clasts pressed into underlying surface

701 Clasts in “tillites” have been pressed down into the underlying surface, which actually is not
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702 always considered to had been soft (Lindsay, 1970a, 1970b; Hambrey, 1983; Caputo and

703 Santos, 2020). This can be better explained by a SGF over unconsolidated sediment than a

704 glacial origin (Molén, 2017).

705 2.2.8. Channels below or next to “tillites”

706 In the sedimentary strata just below or next to “tillites” there are occasionally erosional

707 channels (Lindsay, 1970a; Biju-Duval et al., 1981; Schatz et al., 2011; Molén, 2017). These

708 structures indicate that water, debris flows or slides eroded the underlying sediments before

709 deposition took place, but these may not be incompatible with a glaciogenic origin (Mountjoy

710 et al., 1972; Karlsrud and Edgers, 1982; Walton and Palmer, 1988; Eyles and Eyles, 1989;

711 Eyles 1990; Eriksson, 1991; Talling et al., 2007; Dakin et al., 2013; Shanmugam, 2016; Baas

712 et al., 2021).

713 2.2.9. Fabrics 

714 The long axes of pebbles in Pleistocene tills often show a 10-20E dip in the direction of the

715 ice movement, but there may also be a transverse fabric present (Lindsay, 1968, 1970a,

716 1970b; van der Meer et al., 2003; Evans et al., 2016).

717 In SGFs the fabric of outsized clasts can be similar to a till fabric, including a bimodal fabric

718 and transverse oriented clasts, but it also display differences changing with the height in the

719 sedimentary sequence (Lindsay, 1968; Best, 1992; Kim et al., 1995; Major, 1998; Kennedy

720 and Eyles, 2019). In many SGF deposits the fabric is planar or sub-parallel to bedding

721 (Evenson et al., 1977; Hill et al., 1982; Gravenor, 1986; Eriksson, 1991; Rodrigues et al.,

722 2020), but it may be (sub)vertical, in places displaying protruding large clasts, or, about 30%

723 of the clasts have a dip in excess of 20º (Lawson, 1979; Visser, 1996; Dasgupta, 2003; Liu et
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724 al., 2021). The variation of the fabric sometimes makes it possible to find support for an

725 origin by SGF. It is more difficult to provide conclusive evidence for a glacial origin of a

726 diamictite only from fabrics, if the deposits are not in widespread horizons, even if doubts

727 about the origin may not be strong (Lindsay, 1968; Lawson, 1979; Hicock and Dreimanis,

728 1992b; Piotrowski et al., 2001, 2002).

729 Pre-Pleistocene “tillite” fabrics typically display no systematic patterns and appearances

730 which are indicative of tills, i.e. there are many varied directions and dips (Bigarella et al.,

731 1967; Lindsey, 1969; Lindsay, 1970a, 1970b; Lindsay et al., 1970; Rehmer, 1981; Young,

732 1981a; Gravenor and Rocha-Campos, 1983; Miall, 1983; Deynoux, 1983, 1985b; Visser et

733 al., 1987, 1997; Visser 1996). Many “tillite” fabrics seem to be more or less planar, but

734 sometimes the dips are not reported (Visser, 1983b).

735 2.2.10. Flutes

736 Flutes may be formed behind obstacles in any environment. In glacial environments,

737 obstacles are commonly at least 0.3-0.5 m higher than a lodged till surface, the flute is

738 commonly lower and thinner than the obstacle, and the length may be many kilometers

739 (Woodworth-Lynas, 1996). These are different from flutes described from areas which are

740 interpreted to have been produced by glaciation, e.g. different appearance next to obstacles or

741 no evidence of obstacles (e.g., Rosa et al., 2019; Le Heron et al., 2019).

742 2.2.11. Impact structures, meteorites

743 Deformed en echelon-fractures, hinged and crushed stones, which are followed by brittle

744 fracture, such as so-called “bread-cut-to-slices”structures are typical for impact-cratering

745 events (Oberbeck et al., 1993a, 1993b, 1994; Rampino, 2017). Such evidence has been
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746 proxies to reinterpret “tillites” as originating by impact-generated debris flows (Rampino,

747 1994, 2017). Other criteria for impacts are shocked clast and minerals, and distinctive surface

748 microtextures on quartz grains (Rampino, 1994, 2017; Mahaney, 2002).

749 2.3. Erratics

750 2.3.1. Erratics, transport and inclinations – similarities

751 Except for by glaciation, erratics can be transported by e.g. mass flows, tsunamis and

752 cyclones (Carter, 1975; Malahoff et al., 1979; Elfström, 1987; Shanmugam, 2012, 2021b;

753 Lascelles and Lowe, 2021). The largest clasts transported by tsunamis are 40x27x6 m

754 (Lascelles and Lowe, 2021; see also Shanmugam, 2012, 2021b). Probably the largest known

755 erratics in “tillites” are 40 m, 100 m, and 320 m long, respectively, and the structures in the

756 surrounding diamictites indicate that these clasts have been transported by SGFs

757 (Schermerhorn, 1975; Molén, 2017). Large clasts are often deposited at the margin of mass

758 flow deposits (Ortiz-Karpf et al., 2017).

759 Large slide blocks are often more than one kilometer long and hundreds of meters high. The

760 largest known blocks are hundreds of square kilometers in area. Some of these have been

761 moved many tens to hundreds of kilometers (Maxwell, 1959; Wilson, 1969; Mountjoy et al.,

762 1972; Schermerhorn, 1975; Moore et al., 1989, 1995; Alves, 2015; Ortiz-Karpf et al., 2017;

763 Hodgson et al., 2018; Sobiesiak et al., 2018; Soutter et al., 2018; Alves and Gamboa, 2020;

764 Nwoko et al., 2020a, 2020b; Puga Bernabéu et al., 2020; Kennedy and Eyles, 2021; Kumar et

765 al., 2021). This long distance transport of material, whether debris flows or slides, is possible

766 because of processes labeled hydroplaning, shear wetting or substrate liquefaction (de Blasio,

767 2006; Moscardelli et al., 2006; Sobiesiak et al. 2016, 2018; Alves and Gamboa, 2020). 
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768 Turbidity currents and other mass flows have transported debris many hundreds (Wilson,

769 1969; Komar, 1970; Embley, 1976; Embley and Morley, 1980; Wright et al., 1983;

770 Middleton and Neal, 1989; Stoopes and Sheridan, 1992; Shanmugam, 2016) to thousands

771 (Kuenen, 1964; Stevenson et al., 2014) of kilometers. Far-transported clasts may become

772 incorporated in existing sediments, whereafter the deposits turn unstable and move as dense

773 SGFs, which after deposition displays characteristics similar to tills (Crowell, 1957; Jansa

774 and Carozzi, 1970; Walton and Palmer, 1988; Eyles 1990).

775 Slopes beneath Pleistocene and younger glaciers may vary, but often it is close to zero over

776 large areas, i.e. close to 0.001E. Slopes recorded for coarse grained turbidity flows (containing

777 gravel sized clasts) are commonly as low as 0.02-0.05E (Kuenen, 1964; Komar, 1970; Wright

778 et al., 1983; Stevenson et al., 2014; Sobiesiak et al., 2018). For debris flows the angle

779 commonly is below 1E but in places less than 0.1E (Mountjoy, 1972; Carter, 1975; Middleton

780 and Hampton, 1976; Embley, 1976, 1982; Shanmugam, 2021b), but even debris flows may

781 move over an area with lower slopes than 0.05E (Stevenson et al., 2014). Subaqueous

782 landslides have been recorded to travel on slopes of approximately 1E for almost 1000 km

783 (Yincan et al., 2017). If these slopes are compared with those in ancient “tillites,” some of the

784 gentler slopes in “tillites” are steeper than for glaciers, thus indicating a possibility of SGF

785 transport, for example, in the Ordovician in Sahara 1E (Fairbridge, 1971), and in different

786 places in South America 0.25-1E (Caputo and Crowell, 1985).

787 Even though all researchers may not be aware of how common this is (de Wit, 2016a, 2016b),

788 SGFs and slides may climb upwards (e.g., Pickering and Hiscott, 2015; Nugraha et al., 2020),

789 sometimes for horizontal distances of more than 100 km (Stevenson et al., 2014). A recent

790 slide started from above the sea surface, then moved submerged for 1.5 km down to a depth

791 of 80-90 m below sea level, before it re-emerged on land and was deposited at a height of 15

792 m above sea level (Dufresne et al., 2018). A submarine slide moved uphill 500 m against a
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793 16E slope (Tucholke, 1992), and another travelled upwards for 140 km to a height of 300 m

794 (Moore et al., 1989). One slide (or “debris avalanche”) traveled uphill to a height of 100 m at

795 a velocity of approximately 52 m/s (Watt et al., 2012). Submarine hills and overbank levee

796 sites which are covered by turbidites may be more than 180 m above the surrounding bottom

797 of the sea (Abbot and Embley, 1982; Mountjoy et al., 2018), but heights between 5-120 m are

798 commonly recorded (some covers may just by because of the thickness of the flows), and for

799 debris flows 20 m uphill flow has been documented (Stevenson et al., 2014).

800 2.3.2. Erratics, transport and inclinations – differences

801 2.3.2.1. Size dependence

802 In glaciers there is no clear maximum size for transported clasts, as the competence of ice

803 sheets is almost limitless. The Pleistocene glaciers transported scores of large clasts (both

804 sedimentary and magmatic, e.g., Bukhari et al., 2021; Fig. 1). Even if there has been no large

805 systematic study, Quaternary glaciations have accumulated innumerable quantities of large

806 clasts in boulder size, which are evident almost everywhere. The accumulation of large

807 boulders in Fig. 1D, in this single spot (which is not exceptional, but common), is more

808 abundant than the total number of boulders present in many “tillites” covering large areas.

809 Both in “tillites” and SGFs boulders are rarer (e.g., Molén, 2021). In Pleistocene deposits

810 great areas are covered with thousands upon thousands of boulders even with diameters larger

811 than one meter (Fig. 1). Erratics with diameters larger than 5-10 m are not rare, and some

812 erratics are hundreds of meters (Embleton and King, 1968) and even many kilometers in

813 length (Stalker, 1975, 1976). The largest known block, which might have been transported

814 with glacier ice, measures 4000x2000x120 m (Sugden and John, 1982).

815 In all deposits from ancient “ice-ages” the erratics are usually not larger than a few meters in
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816 diameter, and even erratics one meter in diameter are rare (e.g., Kulling, 1951; Flint, 1961;

817 Schwarzbach, 1961; Hambrey and Harland, 1981; Visser and Kingsley, 1982; Visser, 1982,

818 1983b; Caputo and Crowell, 1983; Martin et al., 1985; Deynoux, 1985b; Haldorsen et al.,

819 2001; Zimmerman et al., 2011; Bechstädt et al., 2018; Vesely et al., 2021). Blocks larger than

820 five meters in diameter have rarely been reported. A common maximum clast size is 1.5-2 m,

821 but often the largest erratics have a diameter less than 25-50 cm, and over large areas the size

822 is only around 5 cm (e.g., Von Brunn and Stratten 1981; Le Blanc Smith and Eriksson, 1979;

823 Visser, 1983b; Chen et al., 2020, 2021; Le Heron et al., 2021b; Vesely et al., 2021; Molén

824 2021).

825 In beds from the same area, which have been deposited by verified SGFs, or at least showing

826 indication of quick deposition, the clast size is often larger than in supposed “tillites” or other

827 glaciogenic material which has not been deposited by SGF processes (Molén, 2021). When

828 these differences are documented, which is not often done, there is a clear systematic trend.

829 For example, in LPIA deposits in South America, the “glaciogenic” beds commonly carry

830 clasts of cobble size, while gravity or water flow deposits carry boulders of many meters in

831 size (Rosa et al., 2019; López-Gamundí et al., 2021). And in the Neoproterozoic Namibian

832 deposits the largest clast, many meters in size, are in massive debris flows or slides, even

833 though these clasts at the same time had been interpreted to be dropstones (Domack and

834 Hoffman, 2011). This systematic difference is opposite to what is expected, because glaciers

835 can in general transport larger clasts than SGFs, without showing any evidence of flow

836 structures.

837 If a SGF moves at a low velocity, if there is less water and less turbulent movement involved,

838 and if the SGF is denser, i.e. a high-strength cohesive debris flow, then the final deposit ought

839 to display an appearance more similar to a till than deposits from other mass movements. This

840 might be the explanation of why deposits from “ancient ice-ages” do not contain many large
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841 erratics. If a deposit from a dense SGF should not exhibit easily recognizable and extensive

842 evidence of turbulence, SGF currents and tectonic slide and slip structures, it might be that a

843 size of 1-3 m in diameter is most often the maximum size of the clasts that can be transported

844 (Komar, 1970; Clark, 1991; Talling et al., 2012; Dakin et al., 2013; Peakall et al., 2020). This

845 size of clasts is often the maximum size that has been observed moving with slow (Shepard

846 and Dill, 1966; Carter, 1975; Middleton and Hampton, 1976) and fast (Elfström, 1987) SGFs.

847 When the clasts are larger, a stronger current and/or higher buoyancy in the matrix is

848 necessary, and the sedimentary structures (e.g., fluvial, bedding and different kinds of slide

849 and load structures) will more clearly indicate that there has been a SGF, and the difference

850 between the deposit and a till is clear cut.

851 Fig. 1. This is the common appearance of tills and other glaciogenic material in most parts of

852 Sweden, i.e. there are innumerable large boulders everywhere. A. Clast in the jökulhaup or

853 sandur of Mettjaur, Västerbotten county, Sweden. This size of clasts is common. B. The

854 probably largest erratic clast in Europe, the Botsmark rock (split into pieces probably by a

855 local postglacial earthquake; Mörner, 2008). There is till under this piece of a mountain, so it
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856 has not only been transported on top of the underlying bedrock. (See person in white shirt for

857 scale.) C. Large boulder in southern Sweden, Scania. D. A Blattnick moraine, a special kind

858 of Rogen moraine, displaying large boulders (Markgren and Lassila, 1980).

859 2.3.2.2. Jigsaw puzzle texture

860 A jigsaw-puzzle texture, where sediment has been pressed in between separate pieces of

861 fractured clasts, are often present in mass flow deposits (Costa, 1984; Scott, 1988b; Stoopes

862 and Sheridan, 1992; Schneider and Fisher, 1998; Legros et al., 2000; Capra and Macias,

863 2002; Thompson, 2009: Thompson et al., 2010; Dufresne et al., 2018, 2021). These have also

864 been documented from “tillites” that display SGF facies (Harker and Giegengack, 1989; Bose

865 et al., 1992; Harker, 1993; Arnaud and Eyles, 2006; Ali et al., 2018; Molén, 2021). Jigsaw-

866 puzzle textures have not been reported from basal tills (Ui, 1989; Thompson, 2009). In stony

867 tills clasts have been single fractured with pieces still nearly in place, and soft or weathered

868 clasts have been transported with glaciers, but these do not display a typical jigsaw-puzzle

869 texture (Broster and Seaman, 1991; Piotrowski et al., 2004).

870 In areas that may be interpreted to be subglacial, the basal unconformity below diamictites

871 may be highly irregular and heterogenous, with areas of sediment injections into sedimentary

872 bedrock, and “elongated boulders” of sediment displaying jigsaw-puzzle texture, but all these

873 features are common in SGFs (Dufresne et al., 2021; Molén 2021; Le Heron et al., 2021b).

874 2.4. Polished, faceted and striated clasts

875 It is often assumed that glacially transported clasts exhibit more striations than clasts that

876 have been transported by SGFs. This assumption is not well documented as there is a great
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877 difference in the frequency of striated clasts reported from different kinds of environments

878 (Table S1, Supplementary material).

879 Polished, faceted and striated clasts can form by different kinds of mass movements and by

880 tectonic movements including by folding (Crowell, 1957; Flint, 1961; Schermerhorn and

881 Stanton, 1963; Winterer, 1964; Schermerhorn, 1974a; Doré, 1981; Eisbacher, 1981; Rehmer,

882 1981; Hambrey, 1983; Martin et al., 1985; Eyles and Boyce, 1998; Atkins, 2003; Dakin et al.,

883 2013). In SGFs there may be more striated clasts where there are more clasts (Kennedy and

884 Eyles, 2021). Even hard quartzite can be striated in SGFs (Van Houten, 1957; Schermerhorn

885 1974a; Eyles, 1993), but usually most striations are exhibited by sedimentary clasts

886 (Winterer, 1964). Clasts formed under these circumstances may be impossible to distinguish

887 from clasts polished, faceted and striated by the action of ice-movement. 

888 In the LPIA “tillites” of South Africa the shapes and sizes of clasts exhibit a very complex

889 pattern which do not give any independent support to a glaciogenic origin (Hall and Visser,

890 1984). “Glacially shaped” so-called flat-iron clasts in the Gowganda Formation are slightly

891 concave or convex “para-flat” with many small protuberances which shows that they cannot

892 have been shaped by ice, and the deposits having an appearance more like a breccia that has

893 been transported a short distance (Miall, 1985; Molén, 2021).

894 Even if there may be differences between striations on clasts from different environments,

895 there are many similarities, and not all environments have been compared (Atkins, 2003,

896 2004). Striations on clasts in SGFs may be random and also curve around corners. Striations

897 on glacially striated clasts may display one or more sub-parallel, or parallel, directions,

898 usually on a flat side of the clast. But, glacially transported clasts may display striations that

899 turn around edges or curvatures (Hicock, 1991; Hicock and Dreimanis, 1992a). Clasts that are

900 tectonically scratched usually display strictly parallel striations, and occasionally in more than
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901 one direction (Frakes, 1979; Kennedy et al., 2019). Photographs and reports on striated clasts

902 in SGFs reveal that they usually have random but frequently parallel to sub-parallel striations

903 (Winterer, 1964; Lindsay, 1966; Winterer and von der Borch, 1968; Atkins, 2004) similar to

904 clasts from “tillites” which have striations that are random (Kulling, 1951), bend around

905 corners (Frakes, 1979; Deynoux, 1985b) display single parallel (du Toit, 1926; Deynoux and

906 Trompette, 1981b), and crossing parallel and sub-parallel striations (Deynoux, 1985b).

907 Occasionally clasts in “tillites” display both tectonic and “glacial” striations so the evidence is

908 equivocal (Aitken, 1991).

909 Occasionally clasts displaying “glaciogenic” climate features, like einkanter, “flutes” and

910 ventifacts, may be described from conglomerates and interpreted to have been formed at an

911 earlier time by glaciers (Williams, 2005). The internal structure of clasts may display an

912 appearance of being striated, some clasts appear to be faceted after having been cleaved in flat

913 planes, including bullet shaped clasts, and as a result, mistakes have been made in the

914 interpretation of ancient deposits as “tillites” (Vellutini and Vicat, 1983; Rowe and

915 Backeberg, 2011). Stoss and lee-forms on clasts may be formed in different environments

916 where there is mechanical erosion, but in lodgement tills clasts may have double stoss-lee

917 forms (Krüger, 1984, Benn and Evans, 1996). Double stoss-lee forms on clasts may be the

918 only unequivocal criteria for glaciation (Krüger, 1984).

919 In “tillites” soft sedimentary clasts may be subangular, fresh and commonly striated, while

920 harder basement clasts are rounded, commonly weathered and rarely striated (Schermerhorn,

921 1976b; Deynoux and Trompette, 1981b; Eisbacher, 1981; Deynoux, 1985b). This may be an

922 indication for SGFs which transport older pre-weathered and pre-rounded basement clasts

923 together with newly ripped up sedimentary clasts.

924 2.5. Striated, grooved and polished surfaces/pavements
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925 2.5.1. Presence of striated, grooved and polished surfaces/pavements

926 Pavements/striated surfaces can form by many different processes, including by glaciers, sea

927 ice (Hume and Schalk, 1964; Flint, 1971; Hoppe, 1981), icebergs (section 2.7), mass

928 transport and tectonism (Sandberg, 1928; Flint, 1961; Schermerhorn and Stanton, 1963;

929 Frakes et al., 1969; Hambrey, 1983; Iverson, 1991; Eyles and Boyce, 1998; Legros et al.,

930 2000; Vandyk et al., 2021). Subaqueous flow tills may generate tool marks, but these would

931 be very restricted (Evenson et al., 1977). There are many similarities displayed by surfaces

932 produced by these diverse processes. There are also many differences in appearance which

933 usually, if they are thoroughly documented, may be sufficient to reveal the origin of various

934 striated/grooved surfaces.

935 Erosional marks are almost always formed beneath glaciers, but it is not always recognized

936 how commonly these form by different kinds of mass flows (e.g., Scott, 1988b; Dakin et al.,

937 2013; Peakall et al., 2020). Striated, grooved and polished bedrock, including chevron

938 structures/crescentic gouges/chattermarks, grooves, nailhead striae (which may be labeled

939 prod marks by SGF researchers), and deposition of fluted ridges, form as a result of different

940 kinds of mass movements. These have been documented in both ancient and recent

941 formations, including from debris flows, volcanic flows, avalanches, earth slides, tectonism

942 and other kinds of mass movements (Pettijohn and Potter, 1964; Glicken, 1996; Shepard and

943 Dill, 1966; Enos, 1969; Wilson, 1969; Harrington, 1971; Daily et al., 1973; Allen, 1984;

944 Scott, 1988b; Waitt, 1989; Blatt, 1992; Schneider and Fisher, 1998; Eyles and Boyce, 1998;

945 Atkins, 2003; Draganits et al., 2008; Dakin et al., 2013; Hu and McSaveney, 2018; Sobiesiak

946 et al., 2018; Peakall et al., 2020; Vandyk et al., 2021). Cohesive SGFs may move plastically,

947 sometimes almost like a glacier, and therefore striations, grooves and polishing will appear

948 more similar to erosion by glacier ice, at least on a local scale. This may also happen from

949 pure tectonic movements, i.e. slickensides or fault grooves which locally may display an
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950 apperance very similar to glaciogenic striated and abraded formations including presence of

951 crescentic fractures, flute ridges, nail head striations and striated clasts (Eyles and Boyce,

952 1998; Atkins, 2003; Vandyk et al., 2021). The most common tools producing marks in soft

953 sediment, including striations and grooves, appear to be shale clasts (Hampton, 1972;

954 Middleton and Hampton, 1976; Lowe, 1979; Clark, 1991; Peakall et al., 2020).

955 Debris flows may overlie grooved surfaces that are tens of kilometers long, 15 m deep and 25

956 m wide (Posamentier and Kolla, 2003; Peakall et al., 2020). Detailed studies of grooves

957 formed by SGFs, have documented flows covering distances in excess of 40 km and areas of

958 c. 300 km2 (Peakall et al., 2020). That may explain why most pre-Pleistocene pavements are

959 in soft sediments (e.g., Le Heron et al., 2020), as opposite to the Pleistocene and Holocene.

960 Examples of misidentified pavements include several meters long grooves and striations in

961 the Triassic of Australia, which are clearly non-glacial (Gore and Taylor, 2003). On the island

962 of Svalbard 2-3 m long striations and “ice-polished bedrock” (sandstone and shale) have been

963 formed under the action of sea-ice and waves (Hoppe, 1981). Other “glaciogenic” surfaces

964 exhibiting nail-head striae and “possible” crescentic gouges (Schenk, 1965) have been

965 reinterpreted as tectonic in origin (e.g., Miall, 1985). In certain cases pavements are

966 mentioned as evidence of glaciation, but upon investigation the descriptions appear to be

967 erroneous and there are not even any indications of pavements (Dey et al., 2020).

968 2.5.2. Formation of striated, grooved and polished surfaces/pavements

969 Striations formed by clasts frozen to the bottom of glaciers consist of sub-parallel sets,

970 commonly accompanied by chattermarks and/or nailhead striae (Anderson, 1983). Similar

971 striations can, however, also be formed by SGFs, and be both parallel/sub-parallel and

972 somewhat curved and show crosscutting to 90E but commonly < 40E, both on rock surfaces
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973 and on soft sediment (Pettijohn and Potter, 1964; Enos, 1969; Harrington, 1971; Middleton

974 and Hampton, 1976; Allen, 1984; Ricci Lucchi, 1995; Hu and McSaveney, 2018; Peakall et

975 al., 2020). Tectonic striations will mostly be parallel. Soft sediment slickensides may form

976 internally in tills (Evans et al., 2006), but commonly the appearance of slickensides is very

977 different from striations and grooves.

978 At the sole of warm-based glaciers clasts gradually reorient, horizontally and vertically, such

979 that striations and grooves will always change their appearances (Iverson, 1991). There is a

980 debate concerning whether cold-based glaciers move, but a clast at the bottom of a glacier is

981 never frozen with no internal movement within the ice and striations are varied in appearance

982 (Atkins, 2004, 2013). Glacial striations of Pleistocene age, on sedimentary bedrock may

983 display a superficial appearance similar to striated surfaces below SGFs, as they are parallell

984 and straight for short distances (Fig. 2A). But such glaciogenic striations bear evidence of

985 sideways horizontal and vertical movements (Iverson, 1991), and commonly are short (e.g.,

986 0.05-1 m; Soko³owski and Wysota, 2020), even if the features are not incompatible with

987 some mass flow striations.
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988 Fig. 2. Pavements. A and B are Pleistocene (Weichselian), C and D are LPIA. A. Glacial

989 striations in Silurian limestone (Gotland, Sweden). The striations in the limestone show

990 superficial similarities to some striations from SGFs in soft sediments. But, the evidence of

991 horizontal and vertical wobbles of the clasts from within the glacier is clearly apparent, if

992 only looking a little bit more in detail on the picture. (Gotlands Museum, 1986. Pieces of

993 paper are c. 10 cm.) B. Glacial striations on the stoss side of a roche moutonée in magmatic

994 bedrock (University of Stockholm, Sweden). At the roche moutonée the striations and

995 grooves are short, irregular, and subparallel. C. Soft sediment LPIA “glaciogenic” striations

996 which are perfectly similar to those formed by SGFs, i.e. straight an parallell and no or little

997 evidence of vertical or sideways wobbles of the tools making the striations and grooves

998 (Oorlogskloof, South Africa, arrow is 25 cm) (Draganits et al., 2008; Peakall et al., 2020;

999 Molén and Smit, 2022). D. LPIA striations on Precambrian andesitic lava (marker is c. 1 m)

1000 (Douglas, South Africa). The striations are almost exactly parallel for a distance of more than
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1001 50 m (variation is reported as approximately 1E by Stratten and Humphreys, 1974).

1002 2.5.3. Differences displayed by striated, grooved and polished surfaces/pavements

1003 SGFs and slides generate a number of features on surfaces, including different grooves and

1004 striations, which are seldom or never generated with similar appearances below glaciers.

1005 Striated and grooved surfaces displaying such appearances, i.e. those that are generated by

1006 mass flows, are common in areas where there are pre-Pleistocene “tillites.” For example,

1007 during the Paleozoic the majority of “subglacially formed pavements” are in unlithified sand

1008 (Le Heron et al., 2020; Fig. 2C), whereas similar surfaces are very rare or non-existent in

1009 Pleistocene and more recent deposits. A number of the appearances of striated surfaces

1010 displayed by SGFs are documented in the list below. Most of these appearances are

1011 documented by Peakall et al. (2020) and Baas et al. (2021).

1012 a) SGFs commonly display straight movements, often for hundreds of meters or more, and

1013 extensive striated and grooved surfaces may be generated in time periods of only seconds or

1014 minutes (Piper et al., 1999; Peakall et al., 2020; Baas et al., 2021). Debris flows have traveled

1015 at a speed of 500 km/h (Shanmugam, 2002).

1016 b) Grooves are often parallel, display constant rounding, depth and width, may display

1017 parallel internal striae, and occasionally raised lateral ridges (Peakall et al., 2020, Baas et al.,

1018 2021).

1019 c) SGFs may pass areas without leaving much traces. This is shown by the presence of bypass

1020 zones, which can be tens of kilometers, where there is no erosion (Moscardelli et al., 2006;

1021 Georgiopoulou et al., 2010; Talling et al., 2012; Stevenson et al., 2014; Cardona et al., 2020;

1022 Peakall et al., 2020; Baas et al., 2021).

1023 d) Stacked striated surfaces are common in SGFs, with more or less vertical and horizontal

1024 distance between these surfaces, i.e. in some areas the striated surfaces even shift
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1025 stratigraphic position and move up and down through the beds as a result of different

1026 movements during deposition (Enos, 1969; Petit and Laville, 1987; Draganits et al., 2008; Le

1027 Heron et al., 2014; Peakall et al., 2020). (Fig. 3.) Similar stacked striated surfaces are not

1028 observed from Pleistocene or more recent deposits where it is known that glaciers were the

1029 depositional agent (Trosdtorf et al., 2005a). Stacked striated/grooved surfaces commonly

1030 display similarities to what has been labeled “tectonic hydroplastic slickensides” or “internal

1031 grooves and striations” in SGFs that form in soft sand (Enos, 1969; Petit and Laville, 1987;

1032 Deynoux and Ghienne, 2004, 2005; Le Heron et al., 2005, 2014), while some are stacked

1033 slickensided (or slickenlined) clay or mud (Simms, 2007; Cesta, 2015; Rodrigues et al.,

1034 2020). Woodworth-Lynas and Dowdeswell (1994), Vesely and Assine (2014), and Rosa et al.

1035 (2019) interpreted single and stacked soft sediment surfaces as evidence for ice-keel scouring

1036 by icebergs. Such an interpretation was not accepted for “glaciogenic” striated surfaces in the

1037 Ordovician of northern Africa, that was interpreted as hydroplastic and formed

1038 simultaneously by tectonics and pressure from below thick glaciers (Deynoux and Ghienne,

1039 2004, 2005; Le Heron et al., 2005, 2014). (Iceberg keel grooves are discussed in section 2.7.)

1040 e) Traction carpet sediments are common between striated surfaces and superposed diamictite

1041 debrites. The sediments may be striated, and may be a stratigraphic plane where clasts

1042 commonly glide (Moscardelli et al., 2006; Georgiopoulou et al., 2010; Talling et al., 2012;

1043 Dakin et al., 2013; Cardona et al., 2020; Peakall et al., 2020; Molén and Smit, 2022). Thin

1044 basal layers of sediment are not present between Quaternary tills and pavements, even if a

1045 process for the origin of such sediments could be hypothesized during special circumstances

1046 in rare and confined environments.

1047 f) Contacts below “tillites” may display overhanging walls (Miall, 1985; Molén 2021) or

1048 channels (Moncrieff and Hambrey, 1988) which may exhibit striations (Frakes and Crowell,

1049 1970; Armentrout, 1983). This may result from erosion by SGFs rather than from glaciation,

1050 with or without striations (Scott, 1966; Shepard and Dill, 1966; section 1.4.).
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1051 Table S2 (Supplementary material) lists striated surfaces which display similar appearances

1052 as mass flows, from striated surfaces/pavements which had been interpreted to have formed

1053 by glacial ice. Even though all appearances of pre-Pleistocene striated surfaces have not been

1054 observed in recent deposits, and some are difficult to fully explain, the evidence documented

1055 in Table S2 display similarities to striated surfaces which have a mass transport or a tectonic

1056 origin, rather than a glaciogenic origin. In conclusion, similar pavement features commonly

1057 do not form, or have never formed, by Pleistocene or younger glaciers, and therefore these

1058 “pavements” are better explained by a mass transport origin rather than by glaciation.

1059 Fig. 3. Four soft sediment stacked sandstone striated surfaces, LPIA, Dwyka Group,

1060 Oorlogskloof, South Africa. These surfaces are perfectly similar to those made by SGFs

1061 (Draganits et al., 2008; Peakall et al., 2020). The regular appearance of the grooves show no

1062 similarity with glaciogenic surfaces.

1063 2.6. Striated, grooved and polished surfaces, rock polish
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1064 Mechanically abraded rock surfaces formed beneath glaciers may display a thin glossy

1065 coating layer. Such glacial polish is typically a few micrometers thick, consisting of minute

1066 transported clasts and mineral fragments in a fine-grained amorphous matrix of nano-sized

1067 phyllosilicates. The observations suggest bending and fracturing of the uppermost part of the

1068 original bedrock, followed by smearing of clast fragments and amorphous material on top of

1069 the bedrock surfaces (Siman-Tov et al., 2017). Variants of such surfaces may also be

1070 generated in fault zones. Except for formation by mechanical shearing, an appearance of rock

1071 polish may result from purely chemical precipitation (Bussert, 2010; Molén, 2017).

1072 Striated and grooved surfaces below Neoproterozoic diamictites, commonly interpreted to be

1073 “tillites,” have been shown to be at least partly formed by post-depositional chemical

1074 modification, and there is “polish” even on striations with rugged surfaces (Molén, 2017).

1075 Surfaces on Ordovician “glaciogenic” soft sandstone surfaces display cataclasis of mineral

1076 grains, but not amorphization and smearing of clast fragments (Denis et al., 2010). Ichno-

1077 fossil Tigillites burrows at this striated surface remains undeformed, which would be quite

1078 exceptional if a glacier would have passed the soft sediment area (Denis et al., 2010). In

1079 Chinese Ediacarian-Cambrian sediments “glaciogenic” polish is mentioned to occur on

1080 apparently soft sediment surfaces, where striations also have been formed inside the

1081 diamictite, above a surface displaying perfectly straight striations in two directions, but

1082 occasionally curvilinear (Le Heron et al., 2018b). None of these polished surfaces displays

1083 more than superficial similarities to polish on Quaternary pavements.

1084 A recent rock avalanche in China, initially moving as a “water-saturated, dense grain flow,”

1085 passing over dolomitic black shale, formed a surface “highly reminiscent of a classical

1086 striated rock pavement from beneath a glacier,” displaying polish and chemical precipitation

1087 (Hu and McSaveney, 2018). Polish, melting and precipitation are formed in realistic

1088 mechanical experiments and from landslides (Legros et al., 2000; Hu and McSaveney, 2018).
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1089 Heat is always produced by friction, and large mass flows or slides could under certain

1090 circumstances probably generate high temperatures, capable of creating polish and lithifying

1091 the underlying surface (compare to a pavement where temperatures of c. 1000EC have been

1092 suggested below an outcrop commonly interpreted to have been deposited below glaciers;

1093 Bestmann et al., 2006; Molén, 2017).

1094 2.7. Striated, grooved and polished surfaces, iceberg keel scour marks

1095 Ice scour marks form when keels of icebergs and sea or lake ice press up ridges and plough

1096 through unconsolidated sediments. Some of the pre-Pleistocene soft sediment surfaces which

1097 have been interpreted to be formed by glaciers, had been interpreted to be from icebergs or

1098 sea ice (Woodworth-Lynas, 1992; Woodworth-Lynas and Dowdeswell, 1994; Vesely and

1099 Assine, 2014, who reinterpreted 17 soft sediment surfaces as generated by icebergs;

1100 Rodríguez-López et al., 2021: Table S2, Supplementary material) while others refrain from

1101 such an interpretation (Deynoux and Ghienne, 2004, 2005; Le Heron et al., 2005, 2014,

1102 2020). Similarities between SGFs, single moving clasts, and iceberg scours, include cases

1103 where the underlying sediments become depressed. Similarities also include berms that may

1104 be pushed up next to iceberg scours, in size from a few centimeters to many meters high, and

1105 similar linear ridges which may form by SGFs next to single clasts which are moving at the

1106 bottom, and even sometimes by running water. Non-glacial push up and sedimentary linear

1107 structures may be labeled lateral ridges, flowbands, or sometimes levees (e.g., Dufresne and

1108 Davies, 2009; Kneller et al., 2016; Peakall et al., 2020; Procter et al., 2021).

1109 Quaternary ice keel scour marks may be more than 20 km long, depth may be 80 m, and they

1110 may be up to 1 km wide. They may form at depths of more than 600 m, but are more common

1111 at depths of 60-400 m or less (Woodworth-Lynas, 1992; Woodworth-Lynas and Dowdeswell,

1112 1994; Dowdeswell and Hogan, 2016). In SGFs isolated outrunner blocks, up to many
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1113 hundreds of square meters in size, are common, and have traveled many kilometers over very

1114 low gradients e.g., 0.3-0.4E, and have made long glide tracks and scour marks in the sea

1115 bottom (Prior et al., 1982; Nissen et al., 1999; Ilstad et al., 2004; Moscardelli et al., 2006;

1116 Festa et al., 2016, Nwoko et al, 2020b, Kumar et al., 2021). Larger outrunner blocks, in

1117 kilometer-sizes, have outrun the main slide deposits for c. 10 km and have excavated

1118 megascours that, including the basal erosion within the main slide deposit, are 1 km wide,

1119 150 m deep and 70 km long (Soutter et al., 2018). SGFs may make deep scours that turn

1120 through about 45E, and then split into many smaller <10 m deep scours (Moscardelli et al.,

1121 2006). There may therefore by at least superficial similarities between ice keel scour marks

1122 and mass flow processes, and in at least one case they are known to have formed in a non-

1123 glacial turbidity current environment (Scott, 1966). “Iceberg grooves”in the Paleoproterozoic

1124 of India were only between 1.2-7.8 cm wide, and 9.2-13.1 cm deep, and pointing in the

1125 direction of 66-68E from the surface (instead of close to 90E) (Rodríguez-López et al., 2021).

1126 This gives them an appearance of small fractures induced only by short sediment movement,

1127 and these were later (quickly) filled with sandy laminated sediments.

1128 In a few instances grooves below “tillites” are curved (Bryan, 1983), up to an angle of 90E in

1129 one meter (Fairbridge, 1979), and they may still be parallel after they changed direction

1130 (Allen, 1975). This is believed to result from overturning of iceblocks, or from changed wind

1131 or current direction that diverted icebergs with clasts frozen to their bottom. However, from

1132 different mechanisms, SGFs may turn, at occasions even 180E, and therefore the direction of

1133 sole structures also will change (Enos, 1969; Kneller et al., 1991; Pickering et al., 1992;

1134 Butler and Tavarnelli, 2006; Draganits et al., 2008; Peakall et al., 2020).

1135 Woodworth-Lynas (1996) published a detailed list of features generated by icebergs, and an

1136 update of a few of the more important of these which can be readily studied in ancient

1137 lithified restricted outcrops in the field, are mentioned below:
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1138 a) In the Quaternary there is an abundance of ice-keel scours generated by icebergs over a

1139 total approximate area of 10x106 km2 (Woodworth-Lynas and Dowdeswell, 1994). The

1140 complete bottom surface may be covered by a network of ice-scour marks, occasionally

1141 displaying straight directions but commonly curvilinear and often in many different directions

1142 (Woodworth-Lynas, 1992; Woodworth-Lynas and Dowdeswell, 1994; Batchelor et al., 2020).

1143 Because of e.g. tides, there are examples of looped or spiralling iceberg scour marks

1144 (Woodworth-Lynas et al., 1985; Newton et al., 2016). Different from Quaternary sediments,

1145 large grooves which have been interpreted as ice scour marks in pre-Pleistocene

1146 environments (commonly in sand) are often single, but if many soft sediment surfaces are

1147 superposed or next to each other they are pointing in the same direction (different from

1148 stacked soft striated surfaces in recent tidal mud sediments; Woodworth-Lynas, 1996), and

1149 they often display exactly parallel grooves and striations within the scour.

1150 b) There may be grooves and striations within ice-scour marks (Batchelor et al., 2020), and if

1151 so these are subparallel, i.e. different to parallel grooves and striations commonly generated

1152 beneath SGFs (section 2.5.).

1153 c) Commonly pre-Pleistocene surfaces which have been interpreted to be iceberg keel scours,

1154 are horizontal, while more recent marks may be undulous in cross-section and display small

1155 scale faults induced by iceberg loading (Thomas and Connell, 1985; Woodworth-Lynas and

1156 Guigné, 1990). Wave action and diurnal tides are documented from ice-berg keel scour marks

1157 in Quaternary sediments (Woodworth-Lynas and Guigné, 1990; Bennett and Bullard, 1991),

1158 and there should be evidence of constant changing vertical movements below icebergs. There

1159 is also documentation of up to 2 m high and 20-40 m wide orthogonal or perpendicular

1160 ridges, asymmetric in cross-profile, that are interpreted to have been produced from tides

1161 during the Quaternary (Dowdeswell and Hogan, 2016; Batchelor et al., 2020).

1162 d) Ring structures, a few decimeters high and wide, made from up to 50 m large chunks of

1163 shore ice, are formed today in Canada (Dionne, 1992). Similar forms produced by icebergs,

1164 i.e. grounding pits, may be 10 m deep and 50 m in diameter (Dowdeswell and Ottesen, 2013;
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1165 Batchelor et al., 2020). Similar structures have not been reported from the pre-Pleistocene.

1166 e) There are micromorphological criteria for iceberg keel scours (Linch and Dowdeswell,

1167 2016) which have been used to interpret the origin of a pre-Pleistocene soft-sediment striated

1168 pavement as not formed by icebergs but by a grounded icemass (Le Heron et al., 2020).

1169 f) There are grounding-zone wedges showing clear evidence of still-stands or re-advances of

1170 glaciers, up to 15 m high, which have not been registered from the pre-Pleistocene (Batchelor

1171 et al., 2020).

1172 g) Large areas (kilometers) display up to 2 m high asymmetric or sinuous corrugation ridges

1173 that are transverse to the strike of the glaciers, which are easily explained by tide-water

1174 fluctuations during glacial retreat (Batchelor et al., 2020). Similar structures have not been

1175 documented in the pre-Pleistocene. 

1176 In conclusion, if there is evidence of a series of vertical and sideway movements, from tides,

1177 waves wind or currents, and subparallel grooves/striations, an iceberg keel origin of scour

1178 marks may be a better option of interpretation than other processes. Other data may be of

1179 help, as mentioned above, but the evidence from movement is diagnostic.

1180 2.8. Boulder pavements

1181 There are many boulder accumulations with a more or less flat upper surface which geologists

1182 have described as boulder pavements. Hansom (1983) described boulder pavements which

1183 probably originated by winnowing out of fine material from glacial till on beaches. Close to

1184 the continental shelf/continental slope boundary (Boulton, 1990), or anywhere below sea

1185 level where there is net erosion, the fine material will be winnowed out and leave the

1186 boulders. In other places, pavements originated where sea ice had forced boulders into the

1187 underlying substrate (Hansom, 1983). Hara and Thorn (1982) described fluvial boulder beds

1188 which had been modified by periglacial processes as “subnival boulder pavements,” and frost
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1189 heaved boulders that display “flat” tops because of gravity but not paving. During drainage of

1190 dammed lakes, boulders can accumulate to form a deposit exhibiting a flat upper surface,

1191 called a boulder delta (Elfström, 1987). The Mount St. Helens eruption generated a lahar that

1192 cut volcanic boulders and produced “... a surface similar to a glacial pavement cut in

1193 conglomerate” (Scott, 1988a), and more or less planar boulder accumulations are present in

1194 other SGF deposits (Best, 1992). What appears to be boulder or pebble trains (which may be

1195 described as boulder pavements) may be formed by SGFs, but are often present in “tillites”

1196 (Bussert, 2014; Kennedy and Eyles, 2019).

1197 The Pleistocene “classical” inter- and intra-till boulder pavements are usually only one layer

1198 thick (Clark, 1991; Hicock, 1991). These have been suggested to originate possible by a

1199 process slightly similar to debris flows, where boulders sink down into fine-grained till and

1200 after that deforms by overriding glaciers (Clark, 1991; Hicock, 1991). It would therefore be

1201 difficult to differentiate this kind of pavement from boulders that have accumulated from

1202 debris flows (Lowe, 1979, 1982).

1203 Boulder pavements are common in pre-Pleistocene “tillites” (e.g., Lindsay, 1970a; Gravenor,

1204 1979; Rocha-Campos and Santos, 1981; Martin, 1981a; Von Brunn and Stratten, 1981;

1205 Visser, 1983b; Caputo and Crowell, 1985; Visser and Hall, 1985, López-Gamundí et al.,

1206 2016). but are more seldom reported from the Pleistocene (Derbyshire, 1979).

1207 Pre-Pleistocene boulder pavements are often located at the base or top of “tillites.” Boulder

1208 pavements have been a) traced back to channel deposits (Lindsay, 1970a), b) described as

1209 bevelled dropstones (Moncrieff and Hambrey, 1988), c) formed by a local fault and covered

1210 by calcite (González and Glasser, 2008), and d) described as boulders lined up after each

1211 other, with a decrease in size both upstream and downstream, thus showing affinities to

1212 pebble trains in streams (Dal Cin, 1968). Boulder pavements are most common in the Dwyka
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1213 Group in South Africa, and display many different appearances. The basal “tillite” in the

1214 southern part of the Dwyka Group commonly is capped with a bed of boulder “tillite” at the

1215 top of an upwards coarsening sequence (Visser and Loock, 1982), and boulder accumulations

1216 may grade upwards into conglomerates labeled boulder rudites. One boulder pavement

1217 displays single imbricated beds (Visser and Hall, 1985) more typical of debris flow, tsunami

1218 or cyclone deposits (Shanmugam, 2012, 2021b). Boulder beds may be up to 12 m thick, and

1219 display moderate sorting (Visser and Hall, 1985). In places boulders have accumulated on the

1220 lee side of an obstacle (Visser and Loock, 1988) or are described as a lag deposit of a single

1221 layer of boulders at the base of sandstones (Visser et al., 1987).

1222 An origin of boulder pavements by SGFs seems at least as possible as an origin beneath a

1223 glacier, by winnowing out of material, by reversed grading, or simply by the common

1224 upwards movement of large clasts which takes place in SGFs (section 2.13.1.1.). The

1225 differences between ancient and Pleistocene inter/intra-till boulder pavements may be

1226 considerable.

1227 2.9. Erosional landforms, lineations

1228 There will always be superficial similarities between landforms generated by different

1229 processes, including at the boundary layer in different environments (Stokes, 2018), whether

1230 it be glaciers, running water or mass movements. The direction of movement and the

1231 cohesiveness or plasticity of the moving medium will generate features which may display

1232 different appearances.

1233 Commonly sea bottoms are sculptured and grooved over large areas by SGFs or slides. Ice

1234 streams mold large areas into streamlined landforms, i.e. lineations, sediment into drumlin-

1235 like forms, and through erosion of bedrock they produce linear landforms (Eyles et al., 2018).
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1236 Lucchitta (2001) studied subaqueous (glaciogenic) lineations at the Antarctic shelf, and

1237 concluded that they were similar to glaciogenic lineations on Mars. However, the lineations

1238 on Mars, including gigantic outflow channels, are probably formed by catastrophic water

1239 release from subsurface groundwater reservoirs, i.e. large scale tectonism and fissures

1240 releasing water, and not by glaciers (Baker and Milton, 1974; Baker and Kochel, 1979; Burr

1241 et al., 2002; Plescia, 2003; Rodriguez, 2005; Leask et al., 2007). Similar lineations were

1242 produced by catastrophic release of water and debris flows triggered by the failure of Mount

1243 St Helens stratocone (Major et al., 2005), the formation of the English Channel and the

1244 Channeled Scablands in Washington (Plescia, 2003; Gupta, 2007; Gupta et al., 2007, 2017).

1245 Other landforms in unconsolidated sediments or bedrock, heading in different directions,

1246 formed subaqueously or subaerially, including 60 km long channels/megascours and

1247 lineations with dimensions of up to many tens of km long, 6-8 km wide, and 600 m deep,

1248 from SGFs, and in places they are U-shaped (Best, 1992; Moscardelli et al., 2006; Robinson

1249 et al., 2017; Ortiz-Karpf et al., 2017; Nwoko et al., 2020a, 2020b). Lineations, tens of

1250 kilometers long, up to 10 m high, and with wavelengths of 100 m, also are formed by density-

1251 driven sediment and water movement, during seasonal weather conditions (Canals et al.,

1252 2006). A slide generated c. 30-120 km long, 100-600 m wide and 10-30 m deep grooves (Gee

1253 et al., 2007), which may be labeled lineations, but such forms may be labeled striations by

1254 marine geologists (e.g., de Blasio, 2006; Gee et al., 2007; Nwoko et al., 2020a). Smaller

1255 lineations, e.g., only 0.4-1.5 m high and spaced at 5-7 m, may also be formed by SGFs (Piper

1256 et al., 1999).

1257 In the Quaternary, there are megalineations that excessively outnumber those that are

1258 interpreted from the Paleozoic, both in areal size and evidence of large-scale energy impact

1259 during geological processing. These cover extensive areas, both subaqueously and

1260 subaerially, with both soft (drumlinised sediment) and hard (rock drumlinoid) forms

1261 (Margold et al., 2015; Dowdeswell et al., 2016a, 2016b; Eyles et al., 2018; Stokes, 2018;
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1262 Bukhari et al., 2021), contrasting with Paleozoic surfaces which are interpreted to be

1263 megalineations. In some areas there are also numerous, up to kilometers long and wide,

1264 transverse ridges (Stokes, 2018; Batchelor et al., 2020). The present author knows of no

1265 transverse ridges on lineations interpreted from the pre-Pleistocene. Pre-Pleistocene ice

1266 streams and lineations appear to be more sinuous, partly anastomosing or amalgamated,

1267 follow an outline similar to a SGF where they also change direction, are often parallel to the

1268 strike of the underlying bedrock, and are shorter and wider (see figures and descriptions in

1269 Andrews et al., 2019). Similar structures form by SGFs and slides, but may be labeled

1270 striations (Gee et al., 2005, 2007; Macdonald et al., 2011). Other areas displaying

1271 megalineations interpreted from Google Earth from sandstone plateaus in Chad (Le Heron,

1272 2018), display many different surface structures when investigated at greater detail including

1273 an underlying “dipping substrate” (Le Heron, 2018), rather than ice streams.

1274 Single linear landforms, including those which are drop formed, which display similarities to

1275 landforms that are interpreted to be glaciogenic (Assine et al., 2018), form by catastrophic

1276 outbursts of water which may or may not have any connection to glaciation (Burr et al., 2002;

1277 Plescia, 2003; Gupta, 2007; Gupta et al., 2007, 2017; Robinson et al., 2017), and also from

1278 SGFs (Dufresne and Davies, 2009), and may be labeled “whaleback bars” (Scott, 1988a) or

1279 “shadow remnants” (Moscardelli et al., 2006).

1280 Pre-Pleistocene roches moutonnées have often been reported, but these often display steep

1281 stoss sides and gentle lee sides (e.g., Frakes and Crowell, 1970; Visser and Loock, 1988;

1282 Bussert, 2010; Assine et al., 2018), as opposed to Pleistocene roches moutonnées. They may

1283 therefore be interpreted to be whalebacks or rock drumlins. Some “roches moutonnées” seem

1284 to have their stoss side undercut by erosion (Frakes and Crowell, 1970, their Fig. 6C) – a

1285 more likely phenomenon to take place below a SGF or in running water than below a glacier.

1286 Others have been shown to be a product of tectonics and fluvial erosion on structurally
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1287 controlled bedrock features (Vandyk et al., 2021). There is a large difference between the

1288 number of “roches moutonnées” and other small scale erosional landforms in pre-Pleistocene

1289 formations compared to younger formations, as they are almost all-present in Pleistocene and

1290 Holocene glaciogenic formations.

1291 Bedrock forms, especially those in magmatic rocks, should be better preserved than

1292 sediments in the rock record, but there is no extensive record evident from ancient “tillites.”

1293 2.10. Erosional landforms – plucking

1294 A process similar to glacial plucking may be caused by SGFs and fluvial action, including on

1295 the surface of magmatic bedrock (Dill, 1964, 1966; Shepard and Dill, 1966; Carter, 1975;

1296 Tinkler, 1993; Whipple et al., 2000; Stock and Dietrich, 2006; Dakin et al., 2013; Lamb et al.,

1297 2014; Hodgson et al., 2018; Vandyk et al., 2021). So-called p-forms (or s-forms) may be

1298 formed by non-glacial fluvial currents (Tinkler, 1993, Vandyk et al., 2021), even though they

1299 often are interpreted to be formed subglacially (Le Heron et al., 2019a; Chen et al., 2020;

1300 Vandyk et al., 2021). Additionally, there is a debate whether fluvial landforms which are

1301 similar to glaciofluvial landforms, have been produced by tsunamis or storm waves (Bryant

1302 and Young 1996; Burgeois, 2009; Shanmugam, 2012; Lascelles and Lowe, 2021). Cavitation

1303 may be one process responsible for plucking (Falvey, 1990). Another process that display

1304 slight similarities to glacial plucking is more like delamination, i.e. detachment of soft

1305 sediments or clasts and entrainment into SGFs (e.g., Butler and Tavarnelli, 2006; Clark and

1306 Stanbrook, 2009; Butler and McCaffrey, 2010; Dykstra et al., 2011; Fonnesu et al., 2016;

1307 Sobiesiak et al., 2016; Eggenhuisen et al., 2011; Hodgson et al., 2018; Ogata et al., 2019;

1308 Cardona et al., 2020; Kennedy and Eyles, 2021), and where the delaminated sediments have

1309 later been lithified (which is what commonly takes place, as can be seen almost everywhere in

1310 the complete geologic rock record). If plucking leaves a jagged and uneven surface, and no
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1311 later polishing (Miall, 1985), this indicate plucking by SGFs and not by glaciers (Molén,

1312 2021).

1313 2.11. Glacial and non-glacial valleys and fjords

1314 2.11.1. Glacial and non-glacial valleys – general appearance

1315 Many processes create valleys. Steep incisions hundreds of meters deep may be consistent

1316 both with glacial action and fluvial erosion driven by pure tectonic rift uplift (Vandyk et al.,

1317 2021). Hanging valleys are surprisingly common in non-glaciated areas, including in

1318 magmatic and metamorphic rocks, both subaqueously and subaerially (Dill, 1964; Sheppard

1319 and Dill, 1966; Erginal and Ertek, 2002; Mitchell, 2006; Wobus et al., 2006; Crosby et al.,

1320 2007; Lamb, 2008; Amblas et al., 2011; Harris et al., 2014; Normandeau et al., 2015). Such

1321 valleys could be the equivalent of “glacial” hanging valleys that have been interpreted from

1322 the Dwyka Group in South Africa (Visser, 1982; Hancox and Götz, 2014). “Glacial valleys”

1323 an basins in the LPIA of Namibia and Brazil, are “pre-glacial” in places including with

1324 examples of streamlined and striated landforms that are interpreted to be e.g. roches

1325 moutonnées (Martin, 1981b, Santos et al., 1996; Dietrich et al., 2021; Rosa et al., 2021).

1326 Submarine canyons are preferentially eroded in “resistant bedrock” (i.e., metamorphic,

1327 igneous and lithified sedimentary bedrock; Moosdorf et al., 2018) and next to the coast, and

1328 c. 1000 canyons are present at the Last Glacial Maxium and later shorelines (Bernhardt and

1329 Schwanghart, 2021). Isostatic movements could have elevated pre-Pleistocene submarine

1330 canyons above the present sea surface, giving these an appearance of having been carved by

1331 glaciers.

1332 Approximately a thousand non-glacial channels or scours, on slopes as low as 0.02E, which
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1333 are up to kilometers in depth and many kilometers in width and length, have been

1334 documented, and this is only from the northeast Atlantic margin (Macdonald et al., 2011).

1335 Channels are common in mass transport deposits (Kneller et al., 2016; sections 2.2.8, 2.7.-

1336 2.9.). Smaller channels are common on fan deposits (Shanmugam, 2016). Initial V-shaped

1337 grooves or “megalineaments” up to tens of kilometers long, 6-8 km wide and 600 m deep,

1338 formed by mass flow transport, may turn into larger U-shaped valleys during movement

1339 (pictures in Ortiz-Karpf et al., 2017). Megascours, up to 1 km wide, 150 m deep and 70 km in

1340 length, some with a basal slide surface of 7000 km2 and moving down slopes of c. 1.1E for

1341 290 km, some formerly interpreted as submarine channels, some with extremely irregular

1342 basal boundary geometry, had originated by erosion from debris flows and slides (Dakin et

1343 al., 2013; Sobiesiak et al., 2018; Soutter et al., 2018).

1344 All this variation and similarities need to acknowledged when the origin of ancient valleys is

1345 the question for study.

1346 2.11.2. Glacial and non-glacial valleys – shape

1347 Glaciated valleys are commonly U-shaped, and fluvial valleys are commonly V-shaped

1348 (Montgomery, 2002; Prasicek et al., 2014). But glaciogenic tunnel valleys may be both V-

1349 shaped and U-shaped (van der Vegt et al., 2012). And U-shaped valleys are produced by

1350 many non-glacial processes and in different environments, i.e. in pull-apart basins (Gürbüz,

1351 2010; Fedorchuk et al., 2019), by slides, rivers and SGFs (Woolfe, 1994; Ebert, 1996; Lamb,

1352 2008; Giddings et al., 2010; Amblas et al., 2011; Macdonald et al., 2011; Clarke et al, 2012;

1353 He et al., 2013; Vachtman et al., 2013; Coles, 2014; Ortiz-Karpf et al., 2017; Pauls et al.,

1354 2019; Isbell et al., 2021), in submarine canyons (Imbo et al., 2003; He et al., 2013; Gales et

1355 al., 2014; Pehlivan, 2019; Puga Bernabéu et al., 2020; see also Kumar et al., 2021), and by

1356 lowering of the sea level (compare descriptions in Germs and Gaucher, 2012 to Sial et al.,
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1357 2015; and also Giddings et al., 2010 to Bechstädt et al., 2018). Coles (2014) wrote: “In fact

1358 fluvial valleys occupied a wide range of valley shapes, not simply the V-shape referred to in

1359 previous, particularly glacial orientated, literature. This means these idealized forms cannot

1360 be solely used to distinguish between glacial and fluvial valleys.”

1361 2.11.3. Glacial and non-glacial valleys – fjords

1362 Fjords are distinctive overdeepened narrow valleys. They are most shallow at the outlet where

1363 there is a “sill” or ridge of any material, but commonly bedrock (Fig. 4), which can be more

1364 than 1 km higher than the deepest parts of the fjords (Mangerud et al., 2019). Fjords are very

1365 common in the Pleistocene and Holocene, almost 1800 are recorded (Syvitski and Shaw,

1366 1995), and these would easily be preserved in the rock record. However, there is a very poor

1367 record of ancient fjords. The few examples reported in the literature mainly document

1368 sedimentary infill of valleys, they do not display the typical fjord appearance with e.g., a ridge

1369 at the outlet, and may display uneven and irregular floors (Bowen, 1969; Visser, 1987;

1370 Kneller et al., 2004; Bussert, 2010; Alonso-Muruaga et al., 2018; Bechstädt et al., 2018;

1371 Moxness et al., 2018; Fedorchuk et al., 2019; Dietrich et al., 2021; Vesely et al., 2021).

1372 Landforms interpreted as fjords/glaciated valleys, including documented striated and abraded

1373 landforms, may have been formed by tectonics combined with SGFs and fluvial erosion

1374 (sections 2.5, 2.9-2.11.1).
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1375 Fig. 4. The smallest fjord observed by the present author, Vassdalsvatnet, Lofoten Peninsula,

1376 Norway. The length of this fjord is around 400 m, but it has the same appearance as all other

1377 fjords, i.e. it is deepest in the middle and displays a ridge at the outlet. There are actually two

1378 ridges in this fjord, similar to what may be present in some larger fjords. One is next to the

1379 road and another one is sticking up through the ice as a small island (in the middle of the

1380 picture). In the same area there are more small fjords with slightly greater lengths and depths.

1381 2.12. Glaciofluvial deposits

1382 Any strong water currents produce similar features, e.g., compare González and Glasser

1383 (2008) to Lamb et al. (2014). Lang et al. (2020) described bedforms in glaciogenic settings

1384 generated by “supercritical” currents and wrote: “individual bedform types are generally not

1385 indicative of any specific depositional environment.“ Further, they stated that glaciogenic

1386 “upper-flow regime bedforms” are rare in pre-Pleistocene deposits, and provided only five

1387 examples from pre-Pleistocene environments and all from Upper Ordovician “glaciogenic”
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1388 sandstone areas (Lang et al., 2020). 

1389 Only when water flow is restricted by ice, and no other obstacles are present, there may be

1390 differences. All kinds of glaciofluvial deposits where ice restricted the flow of water, e.g., in

1391 kames (Fig. 5B), englacial and supraglacial eskers, lateral channels, crevasse fillings, etc., are

1392 missing from ancient deposits. These structures ought to be the more diagnostic features, as

1393 opposed to the often documented “glaciofluvial” or fluvial outwash and channel sandstones

1394 which can form in a wide variety of environments.

1395 2.12.1. Eskers

1396 Pleistocene eskers are commonly well sorted, often large boulders at the bottom center, then

1397 followed by finer clasts and sand (Fig. 5A). Their appearance is like linear conglomerates, but

1398 mostly sand higher up in the stratigraphic sequence. This general and most important

1399 structural configuration of eskers is the most significant difference compared to pre-

1400 Pleistocene linear landforms which are interpreted to be eskers. Furthermore, there are no

1401 reports of erratics on top of or close to the top of pre-Pleistocene “eskers,” which is a

1402 common phenomenon for Pleistocene eskers (Frakes, 1979). Only a few reports mention

1403 “glacial” tectonic disturbances in pre-Pleistocene “eskers” or “tunnel valleys,” similar to ice-

1404 push structures, ice-block load structures and lateral slump and slide structures displayed by

1405 Pleistocene eskers (Allen, 1975; Biju-Duval et al., 1981).

1406 Sediments which are interpreted to be pre-Pleistocene eskers are rarely reported (Vesely et al.,

1407 2021). There are, however, sandstone channels in many places which show superficial

1408 similarities to eskers. These are mainly present in the Upper Ordovician and many may have

1409 been reinterpreted to be tunnel valleys (see below). LPIA linear sandstone bodies in South

1410 America which had been interpreted to be eskers are commonly short but may be up to 100 m
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1411 long and display about the same width (1.5-2 m) as height (1-2.5 m) (González and Glasser,

1412 2008), while common width/depth ratios for eskers lie between 2 and 20 (Vesely et al., 2021).

1413 These “eskers” display occasional thin layers of pebbles, and are covered by “tillite”

1414 (González and Glasser, 2008). There are also debris-filled (e.g., conglomerates) channels in

1415 the same area which earlier had been interpreted to be eskers (González and Glasser, 2008).

1416 Fig. 5. A. Esker in Västerbotten county, Sweden. Boulders of different sizes and sand are

1417 sorted into different zones. Upper zone is winnowed out (below highest coastline).

1418 Commonly eskers consist of more sand and smaller boulders than the esker in the picture. B.

1419 A kame, i.e. a “short esker hill.” This one is exceptional as it mainly consists of very large

1420 boulders. Antamåla rör, Småland county, Sweden (Lundqvist, 1979).

1421 2.12.2. Tunnel valleys

1422 Ordovician and LPIA geologic features which have been interpreted as tunnel valleys (but

1423 sometimes may be interpreted as ice stream valleys) are commonly made up of sandstone.
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1424 These may be tens of kilometers long, tens of meters to occasionally more than 300 m deep,

1425 more than 1 km wide, linear or slightly sinuous, and may display amalgamation or an

1426 anastomosing network (Le Heron et al., 2004; Le Heron. 2010; Vesely et al., 2021). These

1427 tunnel valleys display many similarities to other types of valleys with which they can be

1428 confused. They are in many respects similar to fluvially eroded valleys (e.g., Baker and

1429 Milton, 1974; Gupta et al., 2017; Zaki et al., 2018, 2020, 2021). In some ways, they are

1430 similar to quickly formed slump-generated recent megachannels, but the sedimentary material

1431 is almost only sand in the Paleozoic valleys but richer in clay in recent valleys which may

1432 explain structural differences in appearance (Eyles and Lagoe, 1998). Tunnel valleys also

1433 resemble tidal channels (except for depth, up to 60 km long, 3 km wide and 22 m deep;

1434 Aliotta and Perillo, 1987), non-glacial sandstone channels (lacustrine or marine, tens of

1435 kilometers long, tens of meters deep, more than 1 km wide, linear or slightly sinuous and

1436 often amalgamated, but if exhumed may show up as positive landforms; e.g., Bell et al.,

1437 2020; Dou et al., 2021), and submarine channels and canyons (e.g., compare to Covault and

1438 Romans, 2009; Covault et al., 2016; Shanmugam, 2016). Some researchers have interpreted

1439 tunnel valleys to be fluvial even if glaciers have been close by (Keller et al., 2011).

1440 Pleistocene tunnel valleys are somewhat more outstanding than more ancient “tunnel

1441 valleys,” up to 100 km long, 400 m deep and 5 km wide, but most common is c. 10 km, 100

1442 m and 1.5 km, respectively, displaying a typical width/depth ratio around 10 (Vesely et al.,

1443 2021). While van der Vegt et al. (2012) mix descriptions of Ordovician “tunnel valleys” and

1444 Pleistocene tunnel valleys, cross-sections indicate that the Ordovician examples commonly

1445 are wider and not as deep. Furthermore, there are no intra-formal striated pavements in the

1446 Pleistocene, but these are common in the Ordovician tunnel valley sediments. Pleistocene

1447 tunnel valleys are better preserved but also display more of an appearance of a valley than

1448 pre-Pleistocene examples (Vesely et al., 2021, their Fig. 13).
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1449 The control of the distribution of Ordovician tunnel valleys may partly be from the existence

1450 of older crustal lineaments, and the valleys are bounded by faulted and/or folded zones

1451 (Ghienne et al., 2003; Le Heron et al., 2006), which may add a tectonic component to their

1452 origin. Keller et al. (2011) wrote: “The genesis of these tunnel (?) valleys is still a matter of

1453 debate.” Le Heron et al. (2018a) wrote that there is an absence “of suitable modern

1454 analogues” to these tunnel valleys, even though they tried to solve the problem.

1455 2.12.3. Raised channels, eskers and tunnel valleys

1456 Except for the linear non-glacial landforms described in previous sections, there are more

1457 than 100 areas displaying inverted stream channels, i.e. wadis or other fluvial channels, which

1458 have been exhumed and stand out as long positive ridges (Zaki et al., 2021). These are present

1459 on almost all continents, from the Silurian until the Holocene, and these may be compared to

1460 Ordovician raised channels/eskers/tunnel valleys which are interpreted to be glaciogenic

1461 (Maizels, 1990a, 1990b; Zaki and Giegengack, 2016; Zaki et al. 2018, 2020, 2021). In Egypt,

1462 there are more than 7000 sinuous ridges, across -40 000 km2, up to 18 km in length, up to a

1463 few hundred meters in width and up to 33 m high, which are commonly interpreted to be

1464 inverted wadis (Zaki and Giegengack, 2016; Giegengack and Zaki, 2017; Zaki et al., 2018,

1465 2020). In different areas, ridges may be up to approximately 500 km long, the heights may be

1466 more than 40 m and the widths up to 4 km (Zaki et al., 2021). Such raised channels could

1467 easily be mistaken for eskers or tunnel valleys, especially if they would not show up clearly in

1468 stratigraphic sections. In the Plio-Pleistocene sediments of Oman, there is a complicated

1469 network of many generations of raised channel systems, but also many deeply buried, some of

1470 which have been labeled with the term “pseudo-esker” (Maizels, 1990a, 1990b). These are up

1471 to 250 km long, in some places more than 2 km wide, but commonly <30 m in height, and

1472 they display similarities to the Ordovician “tunnel valleys” in shape, length and composition

1473 (compare Maizels, 1990a, 1990b, to e.g., Vesely et al., 2021).
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1474 In conclusion, there is a suggested similarity of pre-Pleistocene tunnel valleys and eskers to

1475 non-glacial channels, and a suggested difference to Pleistocene tunnel valleys and eskers.

1476 2.13. Dropstones

1477 2.13.1. Dropstones, similarities

1478 Dropstones are often assumed as prime evidence for glaciation, with the consequence that

1479 cold climates have been interpreted for many areas. For example, Rodríguez-López et al.

1480 (2016) interpreted lonestones in Cretaceous sediments as dropstones, even though there is no

1481 other demanding evidence for glaciation. Similarly, Frakes and Krassay (1992) interpreted

1482 lonestones in Jurassic and Cretaceous fine grained sediments as probably glaciogenic

1483 dropstones, because there was a shortage of fossil driftwood in the strata. However, Donovan

1484 and Pickerill (1997, 2008) considered lonestones in the early Cenozoic of Jamaica as non-

1485 glaciogenic, as there was no evidence or possibility for glaciation at that place and time. And

1486 Doublet and Garcia (2004) interpreted dropstones from Mesozoic sediments in Spain as

1487 dropped from floating trees. LPIA dropstones in Argentina had dropped as rock fall from

1488 steep valley walls (Moxness et al., 2018).

1489 Many different parameters are important for the appearance of clast penetration and sediment

1490 disturbance during impact. These parameters include water depth, properties of the bottom

1491 sediment, clast size and shape (Bronikowska et al., 2021), whether clasts are frozen to ice

1492 during sinking, simultaneous deposition of sediment by flowing water, and if the sediments

1493 are reworked by SGFs. Small dropstones, approximately a cm in size or smaller, may not

1494 produce much structures in bottom sediments (Bronikowska et al., 2021). Even if there are

1495 many unknowns, there are criteria which may help to determine if a lonestone has been

1496 dropped or has been transported by a SGF (see below).
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1497 Any violent disturbance of the environment, like glaciation, earthquakes, mass movements,

1498 tsunamis, and even larger storms, may induce scenarios that transport clasts which may

1499 display an appearance of dropstones (Tachibana, 2013; see also Shanmugam, 2012). Recent

1500 tsunamis have documented runups up to 524 meter above sea level, i.e. in 1958 in Alaska

1501 (Paris et al., 2018). Clasts can also be transported in water by biological rafting, as projectiles,

1502 and occasionally by floatation or strong whirlwinds (Liu and Gastaldo, 1992; Oberbeck et al.,

1503 1993a; Bennett et al., 1994, 1996; de Lange et al., 2008; Bronikowska et al., 2021).

1504 Deposition of all these clasts may display an appearance similar to glaciogenic dropstones,

1505 like compaction of sediment both during deposition and later because of dewatering and/or

1506 compression from superimposed sediments.

1507 Iceberg dump mounds are accumulations of clasts dropped when icebergs overturn and

1508 release lots of material at once. These may be sorted, from the sinking of the sediments

1509 through the water column, may be conical or display different patterns of irregular outlines

1510 and different penetration of the underlying sediment (Thomas and Connell, 1985;

1511 Pisarska-Jamro¿y et al., 2018; Bronikowska et al., 2021). However, Aitken (1993) showed

1512 the mounds documented by Thomas and Connell (1985) to be small subaqueous fans and

1513 debris flows, even if they are in an area where there is deposition from icebergs. Another

1514 accumulation of sediments, labeled “till pellets,” can be found smeared out as if they have

1515 been molded by the overlying sediment (Miall, 1983; Visser, 1983a). Clast accumulations

1516 may be produced in any flowing media.

1517 2.13.1.1. Transport by sediment gravity flows

1518 Clasts transported with SGFs are often embedded in a clayey matrix (Bouma, 1964; Embley,

1519 1982). Single clasts, up to 20 meter in diameter (Shanmugam, 2016, 2021b), or clusters of
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1520 clasts can be dragged along, slide on top of a sedimentary mass flow sequence, move upwards

1521 through the flow, or be winnowed out, and be deposited at different depths of a sedimentary

1522 sequence during single events (Postma et al., 1988; Scott, 1988b; Best, 1992; Pickering and

1523 Hiscott, 2015; Shanmugam, 2020, 2021b; Kennedy and Eyles, 2021). These clasts may

1524 display an appearance similar to clasts transported by icebergs, i.e. these are “left-overs” or

1525 lonestones, or “dumps” (Crowell, 1957, 1964; Schermerhorn, 1974a; Kim et al., 1995).

1526 Transport of lonestones by SGF deposits can be determined by fabric analyses (section 2.2.9).

1527 In lahar deposits in Utah the clasts are often locally concentrated in clots high up in the

1528 sedimentary beds (Walton and Palmer, 1988), thus showing similarities with “iceberg roll

1529 dumps” (e.g., in the LPIA of Tasmania; Powell, 1990). Clasts with diameters of up to 15 cm

1530 had been transported more than 400 km, probably by water currents and/or SGFs. After

1531 deposition, the clasts became incorporated in SGFs. These clasts were earlier thought to have

1532 been transported with icebergs (Jansa and Carozzi, 1970).

1533 2.13.1.2. Transport by vegetation, animals and floatation

1534 Especially during a catastrophe (e.g., a tsunami) much material can be transported with up-

1535 rooted trees. In Carboniferous coal seams, boulders with weights up to 70 kg are present

1536 (Price, 1932; Woolfe, 1994). Boulders in Cretaceous and Carboniferous sediments have been

1537 transported up to 100 km or more, by floating with plants (Hawkes, 1943; Liu and Gastaldo,

1538 1992). Boulders transported with contemporary tree roots have sizes up to 3 m (Bennett et al,

1539 1996). Fossils of land-living plants are present from the Ordovician, even if their affinities are

1540 largely unknown (Servais et al., 2019).

1541 Clasts dropped from kelp or vegetation may not display any differences to those dropped

1542 from icebergs (Doublet and Garcia, 2004). Probably hundreds of thousands of kelp rafts are



68

1543 transporting attached clasts of “dropstones-to-be” today in the Southern Ocean alone (Waters

1544 and Craw, 2017), and ancient transport with kelp or other algae is documented (Bennett et al.,

1545 1994; Zalasiewicz and Taylor, 2001). Species of green and red algae may float on the water

1546 surface (Thiel and Gutow, 2005). Red algae are present in the Precambrian (1.6 billion years,

1547 Bengtson et al., 2017; 1.0 billion years, Gibson et al., 2018) and in Ordovician sediments

1548 (Fry, 1983), but these are commonly smaller species which could not transport larger clasts

1549 than maybe a few centimeters. Unspecified macroalgae (incomplete specimens >2 cm in

1550 length which are small parts of much larger algae) are present in close connection to “glacial”

1551 diamictites in the Neoproterozoic (Ye et al., 2015; Chen et al., 2015). Green algae are known

1552 from the Cambrian (Servais et al., 2019), but their origin may be placed in the Meso- or

1553 Neoproterozoic (Del Cortona et al., 2020). Kelp, which commonly refers to brown algae, are

1554 considered to have diverged some 100 million years ago (Silberfeld et al., 2010), and most

1555 larger forms maybe not until 25 million years ago (Rothman et al., 2017), even if some

1556 Precambrian to Jurassic fossils are classified as possible brown algae (Hollick, 1930; Fry,

1557 1983; Zalasiewicz and Taylor, 2001; Silberfeld et al., 2010). Kelp transports much sediment

1558 onto beaches, including veneers of clasts, over distances of 5000 km, in sizes commonly up to

1559 83 kg, and a record estimated weight of a large clast of 365 kg (Emery and Tschudy, 1941;

1560 Garden and Smith, 2011).

1561 Microbial mats occasionally are lifted from the bottom surface and may transport clasts, sand

1562 clusters and clay fragments which are up to several cm long (Schieber, 1999; Thiel and

1563 Gutow, 2005). Pebbles up to 25 mm in length, can in rare instances float directly on the

1564 surface of the sea surface (Hume, 1963; Bennett et al., 1996). Gastroliths with weights up to

1565 2.5 kg, and clusters of gastroliths up to 70 kg. had been recorded from sedimentary sequences

1566 (Bennett et al., 1996). However, the appearance of gastroliths, commonly displaying a

1567 “polished” rounded form, in most cases would be easy to sort out from dropstones.



69

1568 2.13.3. Dropstones, differences

1569 The amount of material which has been dropped by ice in Quaternary sedimentary deposits

1570 may be “astounding” over extensive areas and can even create “pathways”of dropstones

1571 (Korstgärd and Nielsen, 1989; Dionne, 1993; Pisarska-Jamro¿y et al., 2018), but pre-

1572 Pleistocene rafted material commonly is dispersed. Marine sedimentation from a large glacier

1573 would be more uniform over wider areas than deposition from SGFs (Clark and Hanson,

1574 1983; Boulton, 1990).

1575 Ancient dropstone-bearing strata often are deposited as blanketing layers on top of “tillites,”

1576 similar to turbidity deposits (compare, e.g., Talling et al., 2007; Shanmugam, 2016; Molén,

1577 2017, 2021; Rampino, 2017). The sediments commonly are not present close to the outermost

1578 border of diamictites, or in bowls in the upper surface of the “tillite,” where marine, brackish

1579 and lake sediments usually are deposited (Deynoux, 1985b).

1580 Thomas and Connell (1985) documented data and developed criteria for recognition of

1581 dropstones from a Pleistocene lake in Scotland, and these were further developed mainly by

1582 theoretical numerical process modeling by Bronikowska et al. (2021). The list below

1583 describes the most common features, and these are also those that are not commonly present

1584 in SGF deposits. The difference between the appearance of dropstones documented by

1585 Thomas and Connell (1985), in SGF deposits, and those in pre-Pleistocene strata, are

1586 mentioned in the comments.

1587 a) Penetration of dropstones 5-20 cm in diameter is commonly about 1/3 of the clast size, but

1588 2/3 if clasts display close to vertical orientation and are thin. Larger clasts penetrate more

1589 (Bronikowska et al., 2021). However, it is difficult to state anything conclusively concerning

1590 the magnitude of crushing and depressions in underlying laminae, because the firmness of the

1591 bottom sediments vary from hard to soft (Bronikowska et al., 2021).
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1592 Comment 1: Clasts transported by SGFs may not penetrate laminae. Laminae below clasts are

1593 almost always bent just by the compaction of the sediments, but sharp rocks commonly

1594 penetrate. Single penetrations of laminae are always to be expected for SGFs. Some reef

1595 blocks transported by mass flows are interpreted to have sunk down >1 m into underlying soft

1596 sediments (Rigby, 1958). 

1597 Comment 2: Dropstones in ancient diamictites do not usually cut through underlying laminae

1598 (Fig. 6), although a few authors report evidence of penetration (Binda and van Eden, 1972;

1599 Smith and Eriksson, 1979; Mustard and Donaldson, 1987a), and laminae that are not

1600 penetrated are not diagnostic of a dropstone origin (Thomas and Connell, 1985). Published

1601 photos and descriptions of ancient dropstones generally show that laminae have been bent

1602 around the clasts or slightly pressed down, not commonly cut or crushed (even if photos of

1603 such features are often chosen for publication, e.g., Molén, 2021), even though the clasts may

1604 be c. 0.6 m in diameter (Schenk, 1965; Visser and Kingsley, 1982; Gravenor et al., 1984; Kim

1605 et al., 1995; Craddock et al., 2019; Isbell et al., 2021; Table S3). The sediments thin out

1606 around clasts, both above and below, and the sediments are actually draping the clasts, which

1607 is what could be expected from SGFs (Dey et al., 2020; Molén, 2021). In some areas clast are

1608 “locally very abundant along bedding planes” (Kneller et al., 2004).

1609 b) Variable clast size.

1610 Comment 1: Clasts may be sorted in SGF deposits. In the Gowganda Formation dropstones

1611 are more common in coarse grained than in fine grained rhythmites (Mustard and Donaldson,

1612 1987a).

1613 Comment 2: Dropstones which have been transported by sea ice or vegetation will usually

1614 have a smaller size and better sorting and roundness than those which have been transported

1615 by glacier ice, the latter which may be up to 10 m in diameter (Gilbert, 1990). Diameters of

1616 Quaternary glaciogenic dropstones of diameters 0.5 m and larger are not uncommon (Dionne,

1617 1993; Meyer et al., 2016; Pisarska-JamroŸy et al., 2018; Bronikowska et al., 2021). The

1618 maximum size of “left-overs” in SGFs should in general be smaller than dropstones (Clark
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1619 and Hanson, 1983; Peakall et al., 2020), but as already documented (section 2.3.) the

1620 “erratics” in “tillites” are smaller than those in tills, and it is therefore necessary to compare

1621 relative sizes (Molén, 2021). While single supposed dropstones in pre-Pleistocene sediments

1622 may be up to 3 m in diameter (Rodríguez-López et al., 2016), and clasts many meters in size

1623 that are interpreted to be dropstones are present in massive debris flows or slides (Domack

1624 and Hoffman, 2011), pre-Pleistocene dropstones commonly are much smaller. As examples,

1625 dropstones in the Neoproterozoic outcrops are mostly pebble-sized (Schermerhorn, 1977) as

1626 opposed to common meter-sized dropstones of Precambrian affinity in Pleistocene and

1627 Holocene deposits (Dionne, 1993). In the Dwyka Group in South Africa dropstones are often

1628 only 2-5 cm, but may rarely be up to one meter across (Visser, 1982, 1983b), and in massive

1629 “glaciomarine” diamictites they may be a few meters (Haldorsen et al., 2001). Le Heron et al.

1630 (2017) mentioned “unequivocal” evidence for ice rafting, from the Neoproterozoic of Death

1631 Valley, but pictured dropstones were solely 2-3 cm in diameter and displaying only limited

1632 penetration, as would also be expected from lonestones. Maslov (2010) mentioned dropstones

1633 of sizes “up to 2 cm” in Paleoproterozoic sediments. It may be suspected that very small

1634 dropstones, with a diameter of only a few cm or smaller, will not penetrate much into

1635 sediments (Bronikowska et al. 2021), but in SGFs even the smallest clasts likely will disturb

1636 the laminations.

1637 c) Most clasts are oversized.

1638 Comment: In SGF deposits it is common that the clasts have a similar size or are smaller than

1639 the sediment beds within where they are buried. (Fig. 6, Table S3.)

1640 d) No correlation between the size of clasts and thicknesses of beds.

1641 Comment: SGF deposits may display correlation. (Fig. 6, Table S3.) In ancient “glaciogenic”

1642 deposits larger dropstones are often present in thicker layers, which suggest that they have

1643 been transported by SGFs (McCann and Kennedy, 1974, plate 2; Martin et al., 1985; Mustard

1644 and Donaldson, 1987a; Moncrieff and Hambrey, 1990, their Fig. 6C; Molén, 2021).

1645 e) Fabrics – only measured on 50 clasts (Thomas and Connell, 1985). Clast orientation
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1646 seldom subparallel to stratification (4%), more often inclined (46%), but most are subvertical

1647 (50%).

1648 Comment: Fabrics variable in SGF deposits, but planar fabrics and vertical clasts are not

1649 uncommon. (Section 2.2.9. Also, see planar fabrics for outsized clasts and “dropstones” in

1650 Lindsay et al., 1970; Kim et al., 1995.)

1651 f) No current indicators.

1652 Comment 1: In a laminated or rhythmic sediment section, any horizontal movement in the

1653 bottom sediments may result in disturbances around clasts. Evidence of movements may

1654 indicate that the deposition was not slow, i.e. not within an environment displaying more or

1655 less stagnant bottom water. Clasts which are transported within SGFs, whether the sediments

1656 will be deposited as laminations or not, may show both external and internal (within the

1657 sediment) structures indicating horizontal movement. (Fig. 6.)

1658 Comment 2: There are often lee side structures connected with pre-Pleistocene “dropstones”

1659 (Lindsey, 1969; Ovenshine, 1970; Visser, 1983a; Aitken, 1991; Molén, 2017, 2021). In the

1660 Middle Permian of Australia brachiopod fossils are present on the lee sides of oversized

1661 clasts which are interpreted to be dropstones (Yang et al., 2018). In places the sediment has

1662 been pushed up in front of a dropstone, without any evidence of penetration of underlying

1663 beds, as if the clast has been moved along in a SGF (Mustard and Donaldson, 1987a, their

1664 Fig. 6G; Molén, 2017, 2021).

1665 g) Sediment around clasts are commonly rucked (pushed up on both sides, commonly sharp

1666 folds), ruptured (lamination in sediment next to, below and/or above clast is broken and

1667 mixed) and/or onlapped (covering sediment next to clasts not draped around the clast, but

1668 stops at the clast, except for those laminae that cover the clast).

1669 Comment: Draping is prevalent if clasts are transported by SGFs. Draping of clast may

1670 display laminae that commonly are covering the clasts on all sides, but the thickness of the

1671 sediments may change next to the clast. Some laminae may thicken next to the clasts, others

1672 may thin out. Some may only stop at the clast. Commonly there are not many sharp



73

1673 sedimentary structures around clasts transported by SGFs. Laminae may become diffuse or

1674 split into more laminae, reflecting wake eddies (compare to Kim et al., 1995). (Fig. 6.)

1675 Table S3 (Supplementary material) document dropstones which display features which are

1676 more compatible with transport by SGFs than to dropping from ice.

1677 Fig. 6. Clasts which have been interpreted as dropstones from the Ghaub and Chuos

1678 Formations of Namibia. The irregularities and appearances displayed in the beds next to the

1679 clasts indicate currents and a SGF origin. If clasts as small as these would have been dropped

1680 from ice, they may not have disturbed the sediment much at all (Bronikowska et al., 2021). In

1681 general, the appearances displayed in these pictures are common in ancient “glaciogenic”

1682 sediments, but different from Quaternary dropstone bearing sections. A. The bed containing

1683 the clast becomes thicker next to the clast on both sides. There may be penetration of strata,

1684 but even if the clast is pointy it appears more that the sediment is slightly bent because of
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1685 compression during transport and therefore thins out beneath the clast. (Drawing after

1686 Hoffman www.geol.umd.edu/~jmerck/geol342/lectures/06.html). B. There is a small

1687 “impact” structure to right of the clast, but nothing on the left side. Laminae on the left are

1688 straight. To the right, the beds above the clast bend down over the clast. The appearance is

1689 one of diffuse wake eddies on the right side of the clast. Clast is c. 1.5 cm in length. (Drawing

1690 after Le Heron et al., 2021a.) C. The sediment bed becomes thicker next to the clast. The clast

1691 is regularly enclosed by sediment above and below. This is the most common appearance of

1692 pre-Pleistocene clasts interpreted to be dropstones. D. This clast is inside a thicker sediment

1693 bed. The bed thickens next to the clast, which is especially evident on the right side of the

1694 clast where the sediment surface enclosing the clast is at a lower level than on the left side.

1695 To the left, both the bedding and the underlying sediment are bent, as would be the case if the

1696 clast was transported in that direction enclosed in a SGF. It can be discussed if there is much

1697 evidence of penetration, or if the sediments mostly thin out beneath the clast. (Photographs by

1698 T. Bechstädt; Bechstädt et al., 2018.)

1699 2.14. Laminated sediments

1700 “Varved sediments” (laminated beds) which may be interpreted as deposited on a yearly basis

1701 can form instantaneously by SGFs, including hyperpycnal flows, and also from contour

1702 currents (the latter commonly move with speeds up to 3 m/s, and including cyclone driven

1703 bottom flows with velocities of up to 70 m/s), in many different environments (Kuenen,

1704 1964; Pettijohn and Potter, 1964; Winterer, 1964; McKee et al., 1967; Lowe, 1982, 1988;

1705 Gravenor and Rocha-Campos, 1983; Domack, 1990; Dykstra, 2012; Zavala and Arcuri, 2016;

1706 Yawar and Schieber, 2017; Shanmugam, 2017a, 2021a; Tedesco et al., 2020; Isbell et al.,

1707 2021; Tian et al., 2021). There are criteria for distinguishing yearly varves from surge

1708 laminae, and also other rhythms, even though these criteria are not clear cut (Smith and

1709 Ashley, 1985), and there is a vigorous debate in this area (e.g., Andrews et al., 2018; Smith
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1710 and Bailey, 2018a, 2018b; Da Silva et al., 2019; Matys Grygar, 2019; Smith, 2019). Marine

1711 couplets, with affinities to annual lacustrine varves, often form in response to tidal water if

1712 there is an abundance of suspended sediment available, and may display double mud layers

1713 (Cowan and Powell, 1990; Smith et al., 1990; Shanmugam, 2016, 2017a, 2021a, 2021b). A

1714 recorded maximum of 1000 couplets have been deposited in three to four years time (Molnia,

1715 1983b). In connection to the variation in differences in sedimentation in general, Shanmugam

1716 (2017a) concluded that “the grand ingrained principle of 'one deposit for one flow type' is

1717 nothing more than a misplaced optimism.”

1718 In pre-Pleistocene “glacial” deposits many rhythmites with an appearance of yearly varves

1719 occur in what must have been marine settings (Schermerhorn, 1977). Annual varves can only

1720 form in fresh water, for example in a lake or perhaps sometimes on a shallow shelf where an

1721 abundance of meltwater is constantly draining from a large glacier. Experiments show that

1722 clay flocculates and will deposit as quickly as sand, if there is no stirring (Schieber et al.,

1723 2007, 2013; Sutherland et al., 2015), and thin silt/clay laminae which are often interpreted to

1724 be yearly varves are deposited simultaneously in both fresh and salt water (Yawar and

1725 Schieber, 2017). The only known marine rhythmites form in response to tidal water (Cowan

1726 and Powell, 1990), or originate by turbidity currents.

1727 Pre-Pleistocene rhythmite sequences may exhibit features not shown by yearly varves.

1728 “Varves” in the Gowganda Formation may be very finely laminated as opposite to more

1729 thickly laminated Pleistocene yearly varves (Molén, 2021). They have been reinterpreted as

1730 non-annual (because of the rhythmite pattern) “distal” turbidites and may contain ripple

1731 marks (Jackson, 1965; Miall, 1983, 1985; Eyles et al., 1985; Smith and Bailey, 2018b).

1732 Rhythmites next to Precambrian “tillites” in the Appalachian mountains, and in the

1733 Gowganda Formation, have been put into question because the “winter layers” are thicker

1734 than the “summer layers” (Schwab, 1981; Molén, 2021), as this appearance is the opposite of



76

1735 normal varve deposition, but may be possible in rare instances if produced during glaciation.

1736 In the LPIA Dwyka Group of South Africa this is a common appearance (Tavener-Smith and

1737 Mason, 1983). Rhythmites in the Dwyka Group have been reinterpreted to be deposited from

1738 turbidites or tidal activity (Isbell et al., 2008), and LPIA “varves” in Brazil are no longer

considered to be annual (Kochhann et al., 2020)..1739

1740 2.15. Glaciomarine (and lake) diamictites

1741 There is an astounding number and a great diversity of submarine glacial features, linear,

1742 transverse and irregular, covering large areas, which have been produced by glaciers, from the

1743 Pleistocene until today (Dowdeswell et al., 2016a, 2016b). In glaciomarine sediments there

1744 would be grounding zones displaying pushed up transverse till and sea-bottom mud ridges, as

1745 well as different kinds of subglacial, englacial and supraglacial submarine fans where the

1746 upflow part of the deposits shows evidence of having been bordered by an ice-shelf or a

1747 glacier (Boulton, 1990; Powell, 1990; Zecchin et al., 2015). There is nothing remotely similar

1748 to this in the pre-Pleistocene record. There is either no record at all of similar features, the

1749 features are different than those in the Quaternary record, or there are only single examples

1750 where it would be expected to be large areas covered by similar features (Molén, 2021). And,

1751 there are no reports of observational evidence of removal of material by erosion of large areas

1752 of former subaqueous glaciogenic features, i.e. erosion of areas which would be more

1753 protected than terrestrial environments.

1754 In pre-Pleistocene glaciomarine deposits, almost the only evidence given for glaciation is

1755 dropstones, especially if the clasts are found in rhythmites (Frakes et al., 1969; Binda and

1756 Eden, 1972; McCann and Kennedy, 1974; Anderson, 1983; Miall, 1983, 1985; Visser 1989a).

1757 But, if there are marine or lacustrine fossils close to or within sediments that are interpreted to

1758 be glaciogenic, interpretations should be regarded as tentative. As mentioned earlier c. 95%
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1759 of ancient “glaciogenic” deposits are interpreted to be marine (section 1.3.), and there are

1760 often marine fossils close to or even (autochthonously) within such diamictites (e.g., Allen,

1761 1975; Bryan, 1983; González and Glasser, 2008; Caputo and Santos, 2020, Sterren et al.,

1762 2021; López-Gamundí et al., 2021). Marine fossils also are common in cyclone and tsunami

1763 deposits, which may trigger mass flows (Shanmugam, 2012).

1764 Neoproterozoic “tillites” usually are not bordered by marine till and a wide zone of ice-rafted

1765 material (Schermerhorn, 1977). Diamictites in general are draped with shale or rhythmites

1766 with lonestones (e.g., Rampino, 2017; Molén, 2017, 2021; López-Gamundí et al., 2021). A

1767 submarine subglacial fan has been inferred from the Carboniferous of Tasmania, but with no

1768 diagnostic ice-contact features present (Powell, 1990). None of the other geological features

1769 have been clearly identified with diagnostic geologic features from any ancient deposit, but

1770 some features may be interpreted from commonly more restricted sedimentary assemblages to

1771 try to integrate the data into a glaciogenic framework (e.g., Aquino et al., 2016; Rosa et el.,

1772 2019; Dietrich and Hofmann, 2019).

1773 2.16. Periglacial structures 

1774 Periglacial look-alike structures, with the appearance of e.g. ice-wedges, can form by

1775 processes other than freezing and thawing, for example, wetting and drying, thermal

1776 contraction, sedimentary compaction, gravitational loading, small scale tectonics, flexure over

1777 an uneven surface, and almost any volume change in sediments (Yehle, 1954; Flint, 1961;

1778 Schermerhorn, 1974a; Black, 1976; Walters, 1978; Eyles and Clark, 1985; Shanmugam,

1779 2012; Robinson et al., 2017). In tropical waters, polygons originate by infilling of sediment

1780 from above, in fractures that form during cementation (SEPM, 2021). Sheeting joints in

1781 sandstones may display polygonal structures over large areas (Loope and Burberry, 2018).
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1782 Ice-wedges are normally filled with material from above and polygons frequently show stony

1783 margins (Frakes, 1979). This is not shown by pre-Pleistocene “permafrost” deposits. In

1784 Pleistocene to Holocene polygonal ice-wedge networks (or casts), polygon diameters may be

1785 between 1-46 m, wedge depth 0.25-50 m, and wedge width 0.1-10 m, while the same

1786 structures in the Neoproterozoic Port Askaig Formation were 0.35-1.5 m, 0.09-1.12 m and

1787 0.05-0.3 m, respectively (Eyles and Clark, 1985). The latter was explained as non-glacial and

1788 interpreted to have been generated by gravitational downfolding, and similar structures are

1789 widely reported in shallow marine sequences (Fig. 7).

1790 Clastic dykes have been documented in, for example, the Gowganda Formation in Canada

1791 (Young, 1981b) and the Dwyka Group in South Africa (Visser and Loock, 1982; Visser et al.,

1792 1987). “Ice wedges” from the Ordovician “glacial” in the Sahara likely are sandstone dykes

1793 radiating from sand volcanoes (Fairbridge, 1970; Bryan, 1983), and some sandstone dykes

1794 have been documented to cross each other with an appearance of polygons (Allen, 1975;

1795 Deynoux, 1985a). There are sandstone dykes also in, for example, the Neoproterozoic Port

1796 Askaig “tillites” in Scotland (Eyles and Clark, 1985) and the probable non-glacial diamictites

1797 in France (Eyles, 1990), and these have been interpreted as ice-wedges (Hambrey, 1983).

1798 In the Ordovician of Sahara there are up to 1 km long domes which had been interpreted as

1799 pingos (Bryan, 1983). Further research showed that these structures are tectonically uplifted

1800 diapiric structures in soft sediments, from vertical loading or maybe from upwelling basalts

1801 (Fairbridge, 1971, 1979; Le Blanc Smith and Eriksson, 1979; Le Heron et al., 2005).

1802 Other features which are present in periglacial sedimentary sequences are solifluction debris,

1803 loess, cover sands, ventifacted clasts, slope wash accumulations, frost shattered clasts,

1804 vertically aligned clasts, and size-sorting (Eyles and Clark, 1985), which are commonly not

1805 reported from the pre-Pleistocene.
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1806 On the whole it seems that “periglacial” structures are quite rare in pre-Pleistocene “tillites.”

1807 Instead, structures that mimic periglacial structures seem to be common, for example clastic

1808 or sandstone dykes formed by loading (Eyles and Clark, 1985). Dykes may be present below

1809 Quaternary tills but are not very common.

1810 Fig. 7. The figure shows how loading and diapirism in sand have created polygonal patterns,

1811 superficially similar to permafrost polygons. Uppermost two pictures show diapirism and the

1812 lower three show the appearance after erosion. (Figure from: Eyles and Clark, B.M., 1985.

1813 Gravity induced soft sediment deformation in glaciomarine sequences of the Upper

1814 Proterozoic Port Askaig Formation, Scotland. Sedimentology 32, 789-814.)

1815 2.17. Soft sediment deformation, tectonism

1816 In both glaciogenic and mass flow environments there are soft sediment tectonic deformation,
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1817 both compressional and tensional (Sobiesiak et al., 2018). There are no simple specified

1818 criteria used to distinguish different environments from each other. Ancient deposits have

1819 commonly not been compared to data from Quaternary proved non-glaciogenic and

1820 glaciogenic sediments (Visser et al., 1984; Hart and Roberts, 1994; McCarroll and Rijsdijk,

1821 2003), and the structures may be present in different sedimentary environments (Arnaud,

1822 2012). Dreimanis (1993) listed eight glaciotectonic structures, and wrote that most of them

1823 may be found in mass flow deposits. He concluded that it would be best to use multiple

1824 stress-related criteria, including e.g., glacial abrasion marks over an area of several hundred

1825 meters, to track down the origin of the deposit. Only conjugate sets of steep-dipping fractures

1826 are stated to be more common in glaciotectonic deposits (Dreimanis, 1993).

1827 A SGF origin may be more probable if there are (Visser et al., 1984; Dreimanis, 1993;

1828 Sobiesiak et al., 2018):

1829 a) tensional and compressional stress regimes in one single horizon,

1830 b) presence of dewatering structures,

1831 c) restriction of deformation to specific lithologies (even leaving other beds above and below

1832 intact and without deformation),

1833 d) intimate association with mass flow deposits,

1834 e) random orientation of microfold axes,

1835 f) sheared sediment lenses that usually are curved or bent in different ways,

1836 g) overturned recumbent flows which usually do not have their anticlines sheared off, and/or

1837 are occasionally flattened at their base, and/or have a bulbous terminus often pointing in the

1838 downflow direction,

1839 h) extension fractures which are filled by dykes that are localized on the distal side of the

1840 deposit and are accompanied by normal faults.

1841 Some of the structures tabulated above are also present in tills and are interpreted as evidence
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1842 of glaciotectonic deformation, e.g., dewatering structures (Dreimanis, 1993).

1843 Any mass flow which loses its velocity and comes to a stop will display both compressional

1844 and tensional regimes, except if it all stops as one large slab. If it is glaciotectonic there

1845 should commonly be more similar tectonism all through the sediments (e.g., Bennett et al.,

1846 2003), but occasionally more at the top parts of the deposits compared to the bottom.

1847 Soft sediment deformation in diamictites in the LPIA of Brazil were interpreted to be

1848 glaciotectonically formed (Rosa et al., 2019), but there was no unequivocal evidence of

1849 glaciotectonics compared to tectonics formed by mass flows. Other soft sediment tectonics in

1850 the LPIA of Brazil is interpreted to be from mass flows, even if there are postulated glaciers

1851 nearby (Mottin et al., 2018), and some glaciotectonic features had been reinterpreted as non-

1852 glacial (Rodrigues et al., 2020).

1853 2.18. SEM studies

1854 SEM studies of surface microtextures on quartz sand grains is a quick method to easily

1855 distinguish glaciogenic sediments from other sediments (Mahaney, 2002; Molén, 2014,

1856 2017). Glaciogenic quartz sand grains are characterized by fresh fractures which have been

1857 irregularly abraded all over the grain surface (Molén, 2014). The processes of fracturing and

1858 abrasion may take place at the same instant, as it is grinding rather than impacting that creates

1859 the fractures. It is possible to follow how a glaciogenic grain, which later will be transported

1860 glaciofluvially, will be abraded so that the typical glaciogenic surface microtextures will

1861 slowly first change to microtextures similar to those present in rivers (Molén, 2014; Kaliñska

1862 et al., 2022), and after that will continue to change depending on the environment of

1863 deposition. 
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1864 Single surface microtextures produced by glaciers, like different varieties of fractures, may

1865 form in any environment (Mahaney, 2002; Molén, 2014, 2017). This is basic physics, as there

1866 is no difference from the impact of similar forces from different environments. Therefore,

1867 there needs to be a systematic combination of surface microtextures if the origin of a

1868 sediment is to be revealed. Subglacial transport is necessary if surface microtextures typical

1869 for a glacial environment shall be acquired. Supraglacial till and flow tills (if they never have

1870 been transported subglacially), and to a large part englacial till, will not acquire any or only

1871 very few surface microtextures typical for a subglacial environment (Kaliñska et al., 2022).

1872 But as soon as a glacier processes rock material subglacially, glaciogenic surface

1873 microtextures form quickly. Supraglacial till, englacial till, and supraglacial flow till, are

1874 usually a minor part of glaciogenic sediments, and these sediments are often loosely packed

1875 and surficial and therefore easily removed by later erosion. This is in contrast to basal till.

1876 Periglacial environments also do not imprint glaciogenic surface microtextures on quartz sand

1877 grains (Kaliñska-Nartiša et al., 2017).

1878 Surface microtextures often stand out more on sand grains >250 µm. Smaller grains retain

1879 older surface microtextures more easily which may therefore be preserved from the original

1880 environment, instead of the grain displaying more evidence of the latest environment or

1881 transport history (Molén, 2014).

1882 A method of sorting surface microtextures based on the appearance of the complete grain

1883 surfaces, and not a multitude of small scale surface microtextures which may originate in

1884 different environments, has been shown to be simple and quick (Molén 2014). The data is

1885 easily visualized in a “2-History-Diagram” (Fig. 8). This diagram shows both the last

1886 geological history and the former. The former may be e.g., the origin before release from

1887 bedrock, or glaciation followed by fluvial or eolian transport. The method is described in

1888 detail in Molén (2014) and is applied in Molén (2017) and Molén and Smit (2022).
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1889 Soreghan et al. (2014) and Keiser et al. (2015), by referring to occurrences of single small-

1890 scale surface microtextures, misidentified grains that commonly originate from release from

1891 bedrock (compare to Mahaney, 2002; Molén, 2014), and interpreted these grains to be

1892 glaciogenic. This led them to suggest a glaciation at the Upper Paleozoic paleoequator.

1893 Immonen (2013) did not show any glacially abraded grains but only regular abrasion

1894 originating from movement by water, on e.g., fractures. Hore et al. (2020) and Alley et al.

1895 (2020) only showed unabraded fractures (some with regular rounding made from fluvial

1896 action) as evidence for glaciation in the Cretaceous of Australia. Le Heron et al. (2020)

1897 showed small fractures from Ordovician and LPIA sediments, which have no relevance to

1898 glaciation. Kaliñska-Nartiša et al. (2017), Passchier et al. (2021) and Kut et al. (2021)

1899 correctly identified surface microtextures as not glaciogenic, in periglacial/permafrost

1900 climate. Reahl et al. (2021) could differentiate out non-glaciogenic grains.

1901 Some typical glaciogenic grains, and a few multicyclical grains, are displayed in Fig. 9. No

1902 other environment except the subglacial environment displays the combination of fresh

1903 irregularly abraded fractures. Based on more than 50 years of research (but commonly

1904 described in a more complicated, not so straightforward way), if the combination of fresh

1905 irregularly abraded fractures is not present, then the sediment is not glaciogenic. This

1906 combination of surface microtextures is displayed even by processing from a very thin

1907 probable only c. 10 m thick glacier (Molén, 2014). Multicyclical, beach and river sand grains

1908 display fewer and smaller fractures, regular abrasion and more weathering, when compared to

1909 glaciogenic quartz grains (Mahaney, 2002; Molén, 2014, 2017). Grains in high energy

1910 environments, where there is no grinding similar to that occurring at the bottom of glaciers,

1911 like in a rockfall, a conglomerate or a SGF, may acquire many fractures but not much

1912 abrasion, at least not irregular abrasion (Mahaney, 2002; Molén and Smit, 2022).
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1913 Fig. 8. A 2-History-Diagram displays a “geological signature” from the appearance of surface

1914 microtextures of quartz sand grains. The data is easily visualized, and the diagram is easy to

1915 construct. The left diagram show surface microtextures from multicyclical grains from a

1916 diamictite which commonly is interpreted to be glaciogenic (Neoproterozoic, northern

1917 Norway; Molén, 2017). Grains from this area display regular abrasion (similar all over the

1918 grain, whether the grain is round or angular in general shape) and weathering (A1 + SP1), and

1919 a few fractures, but no glacial surface microtextures (F1+A1) (Molén, 2017). The right

1920 diagram show data from Pleistocene and Neoglacial tills from Scandinavia and Ontario. T1-

1921 T3, T5-T6/TN1-TN2 and Okstindan are samples from small Neoglacial glaciers. Västerbotten

1922 (Sweden) and Toronto (Ontario) are samples from Pleistocene glaciers. MA1/ST1 are

1923 samples from Pleistocene tills in Ontario which were composed of >95% crushed limestone.

1924 The glaciogenic grains are easily identified by displaying fresh fractures which are irregularly

1925 abraded (F1+A1) (Molén, 2014).

1926 F/f are large and small fractures, A is abrasion, EN are embayments/nodes where the grains

1927 were in contact with other bedrock material during cooling and crystallization, and C is

1928 chemically precipitated crystal surfaces. The number 1 displays the most recent surface
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1929 microtextures, from the most recent geological process, and number 2 are older overlapped

1930 surface microtextures. Percentages are numbers of grains displaying the documented surface

1931 microtexture compared to the total number of grains in the samples.

1932 The connecting lines in the diagrams are drawn only to enhance visibility, as described in

1933 Molén (2014). These lines are important, as they visually indicate the general trend of the

1934 different surface microtextures, up or down, and therefore also display an easily

1935 distinguishable “geological signature” of the appearance of each sample. Number of studied

1936 quartz sand grains are within parentheses. (Figure from: Molén, M.O., 2017.)
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1937 Fig. 9. SEM microphotographs of quartz sand grains from different environments. A is

1938 Neoglacial till and B-F are Pleistocene tills, Västerbotten county, Sweden. G-H are

1939 Pleistocene, Southern Ontario, Canada. I-L are multicyclical grains. Arrows point to fractures

1940 that have been irregularly abraded, i.e. typical for glaciogenic grains. A. Large fractures all

1941 over grain. On the upper surface all the fracture steps have been heavily abraded. B. Heavily

1942 fractured and abraded grain. The fracture steps on the light left surface have been abraded. C.

1943 Abrasion visible on fracture steps and in different parts of the grain surface. D. Large
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1944 fractures. Most abrasion shown in the insert, i.e. uneven abraded surface all over and fracture

1945 steps have been abraded. E. Multiple fractured grain. Many fractures are sharp, but irregular

1946 abrasion is present in many places all over the grain. F. Closeup of fracture faces displaying

1947 steps on grain E. Abrasion is best visible in lower left corner, but most other rounded surfaces

1948 are probably curved fractures. G. Closeup of spectacular fractures showing linear and curved

1949 steps. As this grain from a till is much magnified, only small areas displaying possible

1950 abrasion are visible. H. Multiple fractured grain. Many fractures are still sharp, but some have

1951 been heavily irregularly abraded. This is a short transported glaciofluvial quartz grain, and

1952 therefore the grain has not yet acquired regular abrasion typical for transport with running

1953 water. I-J. Grains displaying weathering and regular abrasion. Ordovician sandstone, Canada.

1954 K-L. Rounded grains displaying weathering and regular abrasion. These grains are from

1955 diamictites, formerly interpreted to be tillites, but the surface microtextures display the same

1956 appearance as multicyclical grains similar to e.g., the sandstone in Figs. 9 I-J. Neoproterozoic,

1957 Norway (Molén, 2017). (Scale bars are in ìm.)

1958 3. Discussion

1959 A feature of dubious origin present in a “tillite” may be interpreted as evidence for a

1960 glaciogenic origin. This feature may later be used as evidence for a glacial origin for similar

1961 features in other deposits. Maybe it was a slip of the tongue when Deynoux and Trompette

1962 (1981a) wrote the following about some Upper Ordovician sandstones in Guinea that were

1963 correlated with the “glacial” sediments in the Sahara: “There is no evidence for the glacial

1964 origin of these sandstones.” Similarly, Moncrieff and Hambrey (1990) acknowledged

1965 Schermerhorn´s (1974a) criticism of the glaciogenic interpretation of Neoproterozoic

1966 diamictites, but wrote that the glacial origin of many of the deposits has since then been

1967 confirmed, referring to Hambrey and Harland (1981). What they did not observe was the

1968 differences between what was reported in this extensive review volume of pre-Pleistocene
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1969 “glaciogenic” deposits and Pleistocene glaciogenic deposits, as reported here. Their own

1970 work (Moncrieff and Hambrey, 1990), concerning Neoproterozoic “glaciomarine” deposits in

1971 Greenland, showed that these outcrops did “... not have a suitable modern analogue.” They

1972 also suggested that ancient glaciomarine deposits, including from the Neoproterozoic in

1973 Greenland, should be used to aid the interpretation of recent sediments instead of the

1974 opposite. More bluntly, Dey et al. (2020) wrote concerning the Neoproterozoic Blaini

1975 Formation in India “... that the idea of its glacial origin is more a belief than a scientific

1976 interpretation.”

1977 All this might end up as a philosophical problem. Actualism may be defined as the notion that

1978 physical natural laws do not change over time or space, or, uniformity of process (Gould

1979 1987). Uniformitarianism (classical) is the notion that the rates and intensities of all processes

1980 have always been the same as today, or the same as during non-catastrophic conditions, and

1981 this concept is definitively falsified (Gould, 1987; Romano, 2015).

1982 Instead of believing in uniformity of climatic changes (uniformitarianism), one should put

1983 stronger confidence in uniformity of physical natural laws and per se sedimentary processes

1984 (actualism). There is no natural law which states that the climate must have been cold and

1985 humid over large areas at many different occasions during earth history, just because there has

1986 been an ice-age quite recently. There is no evidence of uniformity of climatic change from the

1987 geological record even if it would be assumed that all “tillites” are glaciogenic or from

1988 theoretical considerations (the Milankovitch astronomical theory not withstanding, e.g.,

1989 compare to Haldorsen et al., 2001). Bickert and Heinrich (2011) wrote “ ... we are far away

1990 from understanding the dynamics and processes of the Earth´s climatic change.” However, if

1991 the geological processes have changed during the ages (not only the rates or intensities), then

1992 also the natural laws must have changed.
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1993 The “exceptional” features which are frequently documented from ancient “glacial” periods

1994 and have been “pushed” into a glacial framework, indicate a need for a change of

1995 interpretations. The research which describe and explain processes from Quaternary glaciers

1996 and glaciations are invaluable, but they need to be accompanied by similar rigorous research

1997 of “tillites” and compare these to deposits resulting from SGFs and other non-glacial

1998 processes. Although some of the processes discussed in this paper have only been studied

1999 either in restricted areas or very rarely, we cannot reject explanations only on the basis of

2000 uniformitarianism. Many kinds of “catastrophes” have occurred, and the processes we have

2001 seen only on a local scale might on a number of occasions have been more widespread (Ager,

2002 1981). But, there is no need for large catastrophes to explain the origin of diamictites, but

2003 only recent common processes and time.

2004 It is essential to hold on to the basic concept that the recent is the key to the past, i.e. that the

2005 framework for scientific research should be actualism and not uniformitarianism. In the

2006 current paper the discussion has been concerning diamictites, glaciation and mass flows. In

2007 this context it is informative to quote researchers who have documented “missing” sediments:

2008 a) By comparing ancient slides to Quaternary slides, Woodcock (1979) wrote “... where are

2009 the analogues of the larger continental margin slides in the ancient record?” (...) and “...

2010 submarine slides described from present day continental margins are on average several

2011 orders of magnitude larger in cross-sectional area than submarine slides described from

2012 ancient on-land sequences.” There are marine sediments covering large areas of recent

2013 cratonic land surfaces, and there is no reason that there should have been large differences in

2014 the appearance of submarine slides during ancient transgressions.

2015 b) Concerning the similarities of geological features which may originate by impacts followed

2016 by earthquakes and tsunamis and those in “tillites” (even if the interpretation of impacts was

2017 overstated initially) Oberbeck et al. (1993a) wrote: “How do ancient glacial deposits become

2018 preserved, while expected impact crater deposits equal to the thickest of the ancient tillites
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2019 (and with the same appearance as tillites) become removed without a trace?”

2020 c) Shanmugam (2016) noted that “... the long-standing belief that submarine fans are

2021 composed of turbidites, in particular, of gravelly and sandy high-density turbidites, is a myth.

2022 This is because there are no empirical data ...” (from observations in the world´s oceans nor

2023 from experiments to validate this). “Mass-transport processes, which include slides, slumps,

2024 and debris flows (but no turbidity currents), are the most viable mechanisms for transporting

2025 gravels and sands into the deep sea.” He also noted that the “geologic reality is that frequent

2026 short-term events that lasts for only a few minutes to hours or days (e.g., earthquakes,

2027 meteorite impacts, tsunamis, tropical cyclones, etc.)” are the more important processes of

2028 transporting and depositing sediments. Or, as Kneller et al. (2016) stated: “Mass failures thus

2029 include the largest sedimentation events on earth.”

2030 d) And why, as the final and most important question, should it be that: “The dominant

2031 'glacial' facies in the rock record are subaqueous debris flow diamictites and turbidites

2032 recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep

2033 water basins by SGFs” (Eyles, 1993). Of course, the preservation potential is greatest in

2034 deeper basins, and therefore the question is if ancient glaciogenic material really has been

2035 preserved in any large abundance. It also appears that most “glaciations” can be correlated

2036 with tectonic movements (Eyles, 1993; Eyles and Januszczak, 2007; Kennedy and Eyles,

2037 2021; Molén, 2021; Molén and Smit, 2022), which would trigger SGFs but not per se long

2038 term cold climate, even though long term climatic changes connected to magmatism and

2039 tectonism were suggested by Youbi et al. (2021). 

2040 Documented geological data indicate that many more diamictites than suspected may be mass

2041 flow deposits. SGF is the most abundant process of moving sediment today, both on land and

2042 in water, and would have been so even in ancient times (Moore et al., 1994; Moscardelli et

2043 al., 2006; Talling et al., 2015; Shanmugam, 2016, 2020; Ventra and Clarke, 2018).
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2044 One can conclude with the words of Johan N. J. Visser, formerly of the University of the

2045 Orange Free State in South Africa, that: “... ancient deposits do not always correspond with

2046 Cenozoic glaciation models” (Visser, 1989a), or, as stated by Grotzinger et al. (2011) “...

2047 geology is about what happened – not what should have happened.”

2048 4. Conclusion

2049 Many geologic features which are assumed to originate only during a cold climate or by the

2050 action of ice, also form in many other environments and by non-glacial processes, especially

2051 by SGFs. Furthermore, many features which are present in deposits from the pre-Pleistocene

2052 “glacial” record are not present in the Pleistocene glacial record (and vice versa). These

2053 missing features commonly indicate an origin by different kinds of SGFs, combined with

2054 tectonic uplift or subsidence (e.g., Maxwell, 1959; Wilson, 1969; Eyles and Eyles, 1989;

2055 Eyles 1990, 1993; Kennedy and Eyles, 2021), rather than glacial or periglacial erosion and

2056 deposition. “Ancient ice-ages” may be mainly deposits from different kinds of SGFs, instead

2057 of glaciogenic deposits.

2058 However, a glacial component can often not be excluded only on the basis of sedimentary and

2059 erosional structures. Glacial environments are often complex and it is therefore possible to

2060 argue for a glacial origin for many features present in an outcrop. But if all geological data

2061 from a formation are considered, even if nine out of ten features are consistent with glaciation

2062 but may also be formed by SGFs, a non-glaciogenic interpretation of many “tillites” may

2063 become a clear possibility.

2064 Thus, many researchers have become aware that sediments from SGFs form a large number

2065 of recent and ancient sedimentary deposits. Furthermore, even if there may still be debates,

2066 many “glaciations” have been reinterpreted completely or in part as SGF deposits or other
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2067 non-glacial phenomena (e.g., Newell, 1957; van Houten, 1957; Dott, 1961; Schwarzbach,

2068 1961; Winterer, 1964; Lindsay, 1966; Scott, 1966; Condie, 1967; Frakes et al., 1969;

2069 Volkheimer, 1969; Frakes, 1979; Schermerhorn, 1974a, 1974b, 1981; Cecioni, 1981;

2070 Vellutini and Vicat, 1983; Martin et al., 1985; Mahaney, 1987; Eyles and Eyles, 1989; Eyles,

2071 1990, 1993; Bailey et al., 1990; Rampino, 1994, 2017; Eyles and Januszczak, 2007;

2072 Thompson, 2009; Carto and Eyles, 2012a, 2012b; Delpomdor et al., 2016; Isbell et al., 2016;

2073 Molén, 2017, 2021; Bechstädt et al., 2018; Moxness et al., 2018; Fedorchuk et al., 2019;

2074 Kennedy et al., 2019; Le Heron and Vandyk, 2019; Pauls et al., 2019; Dey et al., 2020;

2075 Kennedy and Eyles, 2019, 2021; Dufresne et al., 2021; Isbell et al., 2021; Vandyk et al.,

2076 2021; Molén and Smit, 2022). It appears that many diamictites which have been interpreted

2077 as “tillites” have been formed in a similar geological environment, but not in a similar

2078 climate.

2079 The documentation of features from the current paper is summed up in the Appendix, a

2080 Diamict Origin Table. This table may be used as a working tool, and also as a reference in

2081 publications (Molén 2017, 2021). The documentation in the current paper has sorted out

2082 unequivocal criteria. Even if the current paper have reviewed most recent literature, because

2083 of a general lack of work in some research areas that have been discussed, a few of the

2084 similarities and differences between deposits with a different origin are provisional, requiring

2085 further documentation. Many of the features described need both better qualification and

2086 quantification before they can be used more conclusively. The evidence from surface

2087 microtextures may be the quickest way to interpret the origin of deposits, as the evidence

2088 from different surface microtextures from Pleistocene and Holocene deposits are not

2089 equivocal (Mahaney, 2002; Molén, 2014, 2017).
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2095 5. Appendix Diamict Origin Table

2096 FEATURE ORIGIN

Glaciog

.

Mass flow.

Tect.

Diamict

2097 Areally continuous  2  1
2098 Areally dispersed  1  2
2099 Large areal extent  2  1
2100 Warm climate sediments  0-1  2
2101 Warm climate fossils  0-1  2
2102 Matrix supported/fine grained  2  1-2
2103 Clast/bed thickness correlation  0-1  2
2104 Sorting/grading  0-1  2
2105 Streaks of different sediments/diamictites  1  2
2106 Unconsol. transport. sediment  1  2
2107 Soft substrate  1-2  2
2108 Fabrics  2  2

Strong  2  1
Weak  1  2
Bimodal  2  1
Planar  1  2
Variable in sections  1  2

2109 Erratics  2  2
>1-3 m diameter  2 1-(2)
Smaller in “tillite” than in mass flow  0  2
Jigsaw fractures  -  1

2110 Striated clasts  1-2  1-2
Subparallel striae  2  1
Parallel striae  1  2
Curved/random striae  1  2
Crossing striae  2  1
Soft angular not striated, hard rounded striated  1  2

2111 Faceted/polished clasts  1-2  1-(2)
2112 Pavement/striae/grooves  2  1

Subparallel striae  2  1 
Parallel striae  1  2
Crossing striae  2  1
Polished striae  2  1
Soft sediment pavement  1  2
Sediment pressed down  -  2
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Pressed up ridges  -  2
Stacked  0-1  1-2
Irregular horizontally and vertically  2  1-2
Regular striations  0-1  1-2
Continue over extensive areas  2  1
Interlaminated sediment/traction carpet  -  1
Ripples, laminae (etc.)  -  1
Brecciation  1  1
Overhanging walls (etc.)  0-1  1
Rock polish chemical  (?)  1

2113 Iceberg keel scour marks and mimics  2  0-1
Abundant where present  2  -
Changing directions  2  0-1
Superposed/stacked in same direction  -  1
Parallel strations/grooves  1  2
Undulous in cross-section  2  0-1
Evidence of tides, wind and waves  2  0-1
Grounding pits  2  (?)
Glacier grounding-zone wedges  2  (1)

2114 Boulder pavements  2  1-2
2115 Roches moutonnés/plucking  2  (0-1)

Uneven surface  0-1  1
2116 Fjords, overdeepened, regular, ridged outlet  2  (0-1)
2117 Eskers  2  (0-1)

Sorting  2  1
Large clasts on top  2  (?)

2118 Glaciofluvial restricted by ice, kames, etc.  2  -
2119 Dropstones/lonestones  2  2

No fabric  2  1
Weak fabric  1  2
Varied size of clasts  2  1
Small size  1  2 
Small size compared to other sediments  -  2 
Correlation: clast size and sediment thickness  -  2
Larger clasts in thicker sediments  1  2
Sorted  0-1  1-2 
Differently compressed laminae  1  2
No/little penetration  1  2 
1/3 of clast penetrate  2  1
Sediment thickness changes around clast  1  2
Lee side structures/movement/wake eddies  1  2
Rip-up clasts  0-1  1

2120 “Varves” (with dropstones) drape diamcitite  1  2
2121 Rythmites, thick "winter layer"  0-1  2
2122 Small tectonics, e.g., clastic dikes/water escape structures,

2123 especially within rhythmites

 1  2

2124 “Glaciomarine” deposits drape diamcitite  1  2
2125 Submarine glacial features  2  1
2126 “Periglacial” features not formed by frost  1  2
2127 Surface microtextures a) only fractured, or b) both

2128 weathered and regularly abraded

 -  2
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2129 Surface microtextures synchronously fractured and

2130 irregularly abraded

 2  -

2131 GEOLOGICAL FEATURES WHICH DISPLAY NO CRITERIA TO

2132 EASILY INTERPRET THE ORIGIN OF THESE FEATURES
2133 Geochemistry Too many exceptions and interpretations
2134 Transverse/irregular landforms Critera not fully documented
2135 Mass flows Difficult to see evidence of glaciation
2136 Channels below “tillites” Difficult to know the origin
2137 Flutes Critera not fully documented
2138 Impact structures Irrelevant, except if misinterpreted
2139 Lineations Too few criteria
2140 Glacial valleys Too much variation
2141 Channels/tunnel valleys Too few criteria
2142 Large soft sediment tectonic structures Too much variation

2143 Diamict Origin Table of geologic features formed in environments of glaciation, mass flows

2144 and tectonics. Columns display how common a feature may be, and if it has a glaciogenic

2145 origin or a non-glacogenic origin (mass flows etc).

2146 Tabulated features in the upper part of the table differ substantially between glaciogenic and

2147 non-glaciogenic deposits, and the more provisionally documented features are in the lower

2148 part. Even though the absolute differences are not known between different processes,

2149 relative values have been provided. Details of the origin of these structures are discussed in

2150 the text. Included in the SGF/tectonic column are also other non-glacial processes which have

2151 been discussed. Not all data discussed in the text are listed, but only those that more clearly

2152 help in interpreting the origin of a diamictite. Hence, provisional or insignificant (not fully)

2153 documented differences, and those that may be easily interpreted to have formed in different

2154 environments, are not tabulated but only discussed in the text.
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2155 In the column for glaciogenic origin, structures that form by non-glaciogenic processes in a

2156 glacial environment are not included, e.g., debris flows. However, if clasts in debrites are

2157 glacially striated, this may be evidence for glaciation. On the other hand, debrites, with no

2158 other evidence for a glacial environmen than striations that may form by debris flows, is not a

2159 very helpful evidence for interpreting presence of a glacial climate.

2160 2 = more common, 1 = less common, 0 = very rare, - = no example known, parentheses = rare

2161 or commonly displaying a distinct appearance, ? = no well documented research known.

2162 The complete, or parts of this table may be copied and used directly in publications (e.g.

2163 Molén, 2017, 2021). (Last column is left open for the area/outcrop studied.)
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4268 Supplementary material: Tables

4269 Place and/or

4270 environment

Percentage striated

clasts

Interpretation or comment Reference

4271 Sediment gravity

4272 flow

19 of 19 clasts were

striated.

One chert and the rest

softer sedimentary clasts.

Winterer, 1964.

4273 Sediment gravity

4274 flow

Almost 50%. Ca. 1% of the grains were

larger than sand, so one

would not expect to find

many striated clasts, even

if all the striated clasts

were sedimentary.

Winterer and von der

Borch, 1968.

4275 Tills and “tillites” 1-5% or 10-20%. Anderson, 1983;

Schermerhorn,

1974a.

4276 Carboniferous

4277 “glacial”

4278 conglomerate 

15-20% striated. Anderson, 1983.

4279 Late Paleozoic,

4280 “glaciogenic”

48% striated. Mostly sub-parallel but

also scattered.

Rocha-Campos and

Santos, 1981.

4281 Paleoproterozoic

4282 “glaciogenic”

Rare striations, and a

few clasts that display

facets.

Conglomerate above

grooved soft sand surfaces.

Williams, 2005.

4283 Carboniferous,

4284 “glaciogenic”

5-20% and up to 80%. Visser, 1982; Hall

and Visser, 1984;

Visser et al., 1987.



211

4285 East Antarctica,

4286 continental shelf

12% striated. Anderson, 1983.

4287 Ross Sea shelf

4288 area

60% striated or faceted;

in redeposited

conglomerate 21% were

striated and 4% faceted.

Hall, 1989.

4289 Antarctic shelf,

4290 McMurdo Sound 

57% striated, 80%

faceted.

Hall, 1989.

4291 Many different

4292 Quaternary

0.1% - 80%, mostly 10-

40%.

Atkins, 2003, 2004. 

4293 Table S1. Striations on clasts from different environments.
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4294 Location in

4295 ancient “glacial”

4296 environments

Structure, comment Reference

4297 Very common in

4298 pre-Pleistocene

4299 diamictites from

4300 all ages,

4301 worldwide (a, b

4302 and c from the

4303 list, and these are

4304 all displayed by

4305 most of these

4306 striated surfaces

4307 that is referred

4308 to).

Soft sediment striations and surfaces, within

or on top of sediments, including within

“tillites.” Striations/grooves on all bedrock

surfaces are commonly perfectly parallel.

Bigarella et al., 1967; Lindsay, 1970a;

Schermerhorn, 1970, 1971; Fairbridge, 1971;

Deynoux and Trompette, 1976; Frakes, 1979;

Visser and Loock, 1982; Visser, 1983b; Visser

et al., 1987, Deynoux and Ghienne, 2004; Le

Heron et al., 2005, 2010, 2018a, 2018b, 2019b,

2020; Keller et al., 2011; Vesely and Assine,

2014, list of 17 places; Rosa et al., 2016, 2019;

Molén, 2017; Alonso-Muruaga et al., 2018;

Assine et al., 2018; Dietrich and Hofmann,

2019; Caputo and Santos, 2020; Isbell et al.,

2021; López-Gamundí et al., 2021; Molén and

Smit, 2022.

4309 Common (as

4310 described in list,

4311 letter d).

Striations and grooves superimposed,

stacked, on many beds above each other,

commonly in soft sand.

Frakes and Crowell, 1969, 1970; Lindsay,

1970a; Flint, 1975; Deynoux and Trompette,

1976; Von Brunn, 1977; Biju-Duval et al.,

1981; Moncrieff and Hambrey, 1988; Visser and

Loock, 1988; Visser, 1988, 1989b; Deynoux

and Ghienne, 2004; Le Heron et al., 2004, 2005,

2006, 2010, 2018b, 2020; Keller et al., 2011;

Vesely and Assine, 2014; Assine et al., 2018;

Caputo and Santos, 2020; Molén and Smit,

2022.
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4312 South Africa,

4313 LPIA (a, b, c, d

4314 and e in list.)

Sediment strings turn into grooves or

striations. Three of four studied striated

surfaces did not display any diamictites in

the surrounding areas. 

Molén and Smit, 2022.

4315 Brazil, LPIA (a,

4316 b, c and f).

Many striated surfaces, the largest covers

2500 m2. Displaying soft sediment

slickensides from sliding (similar to Isbell et

al., 2001), flutes and grooved tops of

diamictites, sand slumps (interpreted to be

from “icebergs”; but compare to Molén and

Smit, 2022) and “anastomosing shear

planes,” inside diamictite or at surfaces. 

Rosa et al., 2019.

4317 Brazil, LPIA (a,

4318 b, c, d and e).

In one or more triple stacked striated

surfaces: Straight, parallel, bypass zones,

stacked, small sand flows cover striations,

ripples next to striations. Interpreted to be a

tidal water glacier.

Trosdtorf et al., 2005a, 2005b.

4319 China (a, b, c, d.) Bifurcating striae Le Heron et al., 2018b, 2019a; Chen et al.,

2020; compare to Molén and Smit, 2022.

4320 Botswana, LPIA

4321 (c in list).

The “original ground moraine” is interpreted

to have been “stripped off” from striated

surface before mudflows were deposited.

Frakes and Crowell, 1970.

4322 Antarctica,

4323 Permian (b, d, e

4324 in list).

Soft sediment surfaces are grooved or

striated only if a thin veneer of sorted

sediment is lying directly on top of the

surfaces. At places where the sorted sediment

disappear the striations also disappear.

Lindsay, 1970a.
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4325 South Africa,

4326 LPIA and Sahara,

4327 Ordovician (a, b,

4328 c, d and e in list).

1) Striations continued unbroken from the

top of a “tillite” into the striations on the

surface below. 2) Striations passed from lava

to a triple stacked soft sediment surface. 3)

Thin beds of sand, mud or laminated

sediment directly overlying striated surface.

4) Stratigraphy is: Grooved “tillite” surface,

mudstone, “tillite.” 5) Soft sediment surface

cut in ripple laminated siltstone. 6) Fossil

plants between striated surface and “tillite.”

7) A soft sediment surface, draped with

mudrock displaying crustacean track ways,

which transforms upwards to diamictite.

Comment: All these structures may form by

SGFs, but not below glaciers.

1) Flint, 1961. 2) Visser, 1988. 3) Visser, 1988;

Visser and Loock, 1988; Deynoux and Ghienne,

2004 (Sahara, Ordovician). 4) Von Brunn, 1977.

5) Visser, 1983b. 6) du Toit, 1926; Sandberg,

1928. 7) Von Brunn, 1996.

4329 Ethiopia, LPIA

4330 (b, c and e).

Traction carpet on a polished surface,

stacked striated surfaces (but this was not

recognized in article, their Fig. 6A.)

Bussert, 2010.

4331 Argentina (b, d). Intertill and intratill soft sediment surfaces,

occasionally tectonic and glacial striations on

the same surfaces.

González and Glasser, 2008.

4332 South America in

4333 1-2) LPIA and 3)

4334 Upper

4335 Precambrian (a, c,

4336 g).

1) Striations display the same direction as

foliation in underlying gneiss. 2)

Slickensides pass straight into the striations

on a surface. 3) A 180 000 m2 surface show

parallel “glacial” grooves which occasionally

exhibit “overhanging” walls.

Comment: Appear to be at least partly

tectonic.

1-2) Frakes and Crowell, 1969. 3) Isotta et al.,

1969; Frakes, 1979.
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4337 Cameroon,

4338 Neoproterozoic

4339 (a, b, c, d).

Stacked (“staircase”), no glaciogenic

deposits, on siltstone and limestone.

Caron et al., 2011.

4340 Sahara, Saudi

4341 Arabia,

4342 Ordovician (a, b,

4343 c, d).

1) Abundance of striations and grooves in

spite of the fact that there are very few clasts

in the “tillite.” 2) At right angles or oblique

to grooves; there are in places minor ripples.

3) Striations within current rippled and

laminated sandstone.

Comment: Would be possible if the origin is

by SGF.

1) Schermerhorn, 1970, 1971. 2) Fairbridge,

1971, 1979. 3) Le Heron et al., 2004.

4344 Saudi Arabia,

4345 Ordovician.

One picture shows striations that are very

irregular.

Comment: These display similarities to

striations made by volcanic flows or tectonic

movements (e.g., Pierson et al., 1990,

Rainbird 1993, Glicken 1996, Eyles and

Boyce 1998, Atkins 2003).

Keller et al., 2011, their Fig 12e.

4346 West Africa, Late

4347 Precambrian (e).

One 1 cm layer of sandstone with ripple-

marks is interposed in between the “tillite”

and the striated surface.

Comment: This can be suspected from

deposition of debris flows in water.

Trompette, 1981.

4348 Canada,

4349 Gowganda Fm,

4350 Paleoproterozoic

4351 (g).

Striated surfaces and boulders are probably

of tectonic origin.

Bielenstein and Eisbacher, 1969; Harker and

Giegengack, 1989; Miall, 1985.

4352 Canada and South

4353 America,

4354 Precambrian.

Occasionally the “tillite” is stratified

immediately above the surfaces.

Comment: This indicates deposition from

SGFs.

Schenk, 1965; Isotta et al., 1969. 
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4355 Australia,

4356 Paleoproterozoic.

Comment: Some believe that these surfaces

are tectonic, others that they are partially

tectonic and partially glacial.

Daily et al., 1973; Coats and Preiss, 1987.

4357 Australia, Late

4358 Proterozoic (c ).

Grooves etc. in soft sediment sand are

interpreted to be formed by meltwater or

glaciers. Conglomerate deposited on top of

the sand display the same transport direction

as the grooves. No evidence of any other

glaciogenic proxies. 

Comment: Except for a few examples,

similar grooves do not form by meltwater

and glaciers, but all may be from SGFs.

Williams, 2005.

4359 Chile, Cretaceous. Surface/contact zone exhibit both striations

and ripple-marks.

Comment: Has been reinterpreted as formed

by turbidity currents or mudflows.

Cecioni, 1957, 1981; Sanders and Cecioni,

1957; Scott, 1966.

4360 Norway, Late

4361 Proterozoic.

2 mm push up rinds around striations,

recently weathered out clasts, mud-flake

imprints.

Comment: 1) The evidence suggests a soft

surface. Point 2-4 below are explanations

based on a glaciogenic interpretation. 2). “...

the striated platform (...) is c. 150 Ma older

than the overlying diamictite.” 3) Quick

melting and “instantaneous” lithification at a

temperature > 1000EC. 4) A piece of till

dropped from an iceberg and landed on top

of the striations.

1) Molén, 2017. 2) Rice and Hofmann, 2000. 3)

Bestmann et al., 2006. 4) Mentioned by

Bjørlykke, 1967; as interpreted by von Gaertner,

1943.

4362 Worldwide. Glaciogenic striations. Displaying changing

vertically and horizontally movement

directions.

Not clearly documented before the Pleistocene.
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4363 Table S2. Striated surfaces/pavements which are all commonly interpreted to be from

4364 glaciation. All these surfaces conform well with an origin from mass transport, mainly from

4365 cohesive SGFs, but not with a glaciogenic origin. The table is not documenting every single

4366 occurrence of any surface structure from all mentioned areas, because then it would be very

4367 extensive. Some striated surfaces are referred to in more than one row, if many features are

4368 documented. The letters, a-g, are the criteria described in the list in section 2.5.
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4370 Brazil LPIA N <1 to 40 Y Y Y Y 1

4371 Argen-

4372 tina

LPIA N Y Y Y Y 2

4373 Ethiopia LPIA N Often cm Y Y Y 3

4374 Malaysia LPIA N 0.5-20 Y Y 4

4375 S-Africa,

4376 Namibia

LPIA N >2-5, but

> meter

Y Y Y Y 5

4377 Brazil Dev N 2 Y 6

4378 China Cam N Few cm Y Y Y Y 7

4379 China Neo N Y Y Y 8

4380 Namibia Neo N Y (N) Y (N) Y Y Y Y Y 9

4381 Namibia Neo N Y Y Y Y Y 10

4382 Namibia Neo N Y Y Y Y 11

4383 Namibia Neo N < 2 Y Y Y Y Y 12

4384 Scotland Neo N 3.5-9 Y Y Y Y 13

4385 Canada Neo N most 1-4 Y Y Y Y Y Y Y 14
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4386 Tasma-

4387 nia

Neo N most cm Y Y 15

4388 India Pal N Few cm Y 16

4389 Table S3. The table document examples of areas displaying clasts from pre-Pleistocene

4390 formations which had been interpreted as glaciogenic dropstones in the papers which are

4391 referred to, or in the majority of published papers describing the same formation. Lonestones

4392 from sedimentary sequences which have been fully explained as from SGFs, even if there

4393 may be some different opinions, are not in the table. Often reports of dropstones only mention

4394 just that word. In other reports only superficial similarities between dropstones and observed

4395 clast are mentioned, and commonly there are no detailed descriptions of the clasts which are

4396 interpreted to be dropstones. Therefore, it is difficult to find extensive data for this table, and

4397 some interpretations may be conjectural, only because too little data have been documented in

4398 the original reports. In the table appearances of dropstones which may not be mentioned in

4399 the original publication, but which are evident from published photographs, are tabulated.

4400 Examples of appearances of dropstones and sedimentary structures displayed around these

4401 clasts, from each research area, are documented in the different columns of the table. Not all

4402 lonestones from each area display all the apperances documented (which would be

4403 impossible), but may be predominant examples. The letters a-g in the columns refers to the

4404 descriptions in the list of features, with comments (section 2.13.3.). There may be clasts in the

4405 research areas which may display appearances that are compatible with any kind of transport,

4406 but the tabulated structures are those better compatible with transport by SGFs but less

4407 common or highly implausible from simple rafting in slowly moving or standing water. The

4408 data in the table do not show examples of exceptions of single or a few clasts which may have

4409 been deposited by any agent, if there is an abundance of clasts. Instead, the documented clasts
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4410 display the structures which may be in majority, or are otherwise reported in the referred

4411 articles, or possible only are photographed as typical for the area or formation. Therefore the

4412 table is partly conjectural and does not display definite documentation from each area. And

4413 further, the documentation from the different research areas does not include all data which

4414 may be of relevance, e.g., not the difference between the clast size of dropstones compared to

4415 clast size in other sediments, or other features which could be documented in the table,

4416 because such data is seldom published.

4417 Despite the shortcomings in the documentation from different research areas, the sedimentary

4418 structures in the table are more or less incompatible with an interpretation of simple rafting by

4419 ice or any other rafting agent. It is possible to draw the conclusion that too many clasts have

4420 been reported as dropstones even if the full evidence for this interpretation is not available. In

4421 conclusion, the data in the table are as well documented as the descriptions provided in the

4422 original reports and therefore may be possible to use in evaluation of different interpretations.

4423 Dev = Devonian.

4424 Cam = Cambrian.

4425 Neo = Neoproterozoic.

4426 Pal = Paleoproterozoic.

4427 N = Not documented as present. (Within paranthesis = exceptions.)

4428 Y = Documented, present.

4429 No sign = not mentioned or shown in the original publications.

4430
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4431 References: 1. Aquino et al, 2016; Vesley et al., 2018, 2021; Tedesco et al., 2020. 2. Schatz et

4432 al., 2011; Valdez Buso et al., 2021. 3. Bussert, 2014. 4. Baioumy, et al., 2020. 5. Commonly

4433 2-5 cm, rarely up to one meter, but in massive “glaciomarine” diamictites they may be a few

4434 meters. Visser, 1982, 1983b; Visser and Kingsley, 1982; Tavener-Smith and Mason, 1983;

4435 Haldorsen et al., 2001; Isbell et al., 2021. 6. Caputo and Santos, 2020. 7. Le Heron et al.,

4436 2018b. 8. Chen et al., 2021. 9. Hoffman and Halversen, 2008; Hoffman et al., 2021 (Ghaub).

4437 10. Domack and Hoffman, 2011 (Ghaub). 11. Bechstädt et al., 2018 (Ghaub). 12. Hoffman

4438 and Halversen, 2008; Le Heron et al., 2021a (Chuos); see also Martin et al., 1985. 13. Hartley

4439 et al., 2020. 14. Molén, 2021. 15. Hoffman et al., 2009. 16. Rodríguez-López et al., 2021.


