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Abstract

In this study, we examine the ability of the data assimilation of global satellite-based carbon monoxide (CO) observations to

constrain high-latitude boreal wildfire emissions. We compare the optimized emissions from inversions using CO measurements

from the Measurement of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sounding Interferometer (IASI).

We found that both inversions yield generally consistent posterior CO emissions globally; however, distinct differences are

observed for the episodic 2017 Canadian wildfires. The 3-day global coverage of MOPITT limits its ability to accurately

optimize emissions, while the daily global coverage of IASI provides a moderate improvement despite its lower surface sensitivity.

Through a series of observing system simulation experiments (OSSEs), we show that the temporal coverage of IASI most strongly

influenced the posterior estimates, while the differences in vertical sensitivities of MOPITT and IASI have a minor contribution.

1



manuscript submitted to JGR: Atmospheres

Can the data assimilation of CO from MOPITT or1

IASI constrain high-latitude wildfire emissions?2

A Case Study of the 2017 Canadian Wildfires3

Erik Lutsch1, Debra Wunch1, Dylan B.A. Jones1, Cathy Clerbaux2, James W.4

Hannigan3, Tai-long He1, Ivan Ortega3, Sébastien Roche1,a, Kimberly Strong1,5
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Key Points:12

• MOPITT and IASI CO measurements provide consistent posteriori emissions glob-13
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Abstract19

In this study, we examine the ability of the data assimilation of global satellite-based car-20

bon monoxide (CO) observations to constrain high-latitude boreal wildfire emissions. We21

compare the optimized emissions from inversions using CO measurements from the Mea-22

surement of Pollution in the Troposphere (MOPITT) and Infrared Atmospheric Sound-23

ing Interferometer (IASI). We found that both inversions yield generally consistent pos-24

terior CO emissions globally; however, distinct differences are observed for the episodic25

2017 Canadian wildfires. The 3-day global coverage of MOPITT limits its ability to ac-26

curately optimize emissions, while the daily global coverage of IASI provides a moder-27

ate improvement despite its lower surface sensitivity. Through a series of observing sys-28

tem simulation experiments (OSSEs), we show that the temporal coverage of IASI most29

strongly influenced the posterior estimates, while the differences in vertical sensitivities30

of MOPITT and IASI have a minor contribution.31

1 Introduction32

The Arctic is a major receptor for pollution from mid-latitude regions (Stohl, 2006;33

Law & Stohl, 2007; Shindell et al., 2008). Through the emissions of greenhouse gases,34

trace gases and particulate species, high-latitude boreal wildfires have significant impacts35

on Arctic air quality and climate (Amiro et al., 2009; Warneke et al., 2009). Wildfires36

are also a major driver of the boreal net ecosystem carbon balance. Climate warming37

and drying has led to more severe and frequent forest fires, with this trend expected to38

increase with future climate change (Kasischke & Turetsky, 2006; de Groot et al., 2013).39

Increasing wildfire emissions in the future may reverse the carbon balance of the boreal40

ecosystem from a net sink to net source (Bond-Lamberty et al., 2007), resulting in a pos-41

itive climate feedback (Li et al., 2017). Carbon monoxide (CO), a product of incomplete42

combustion, is considered an ideal tracer of biomass burning as it is emitted in a large43

abundance across all wildfire regimes globally (e.g. Andreae (2019)). Since CO is co-emitted44

with greenhouse gases, reactive trace gases, and particulate species, observations of CO45

can be utilized to improve our understanding of factors influencing boreal fire emissions46

and their impact on atmospheric composition and chemistry.47

Global chemical transport models (CTMs) are used to simulate the impact of emis-48

sions, transport and chemistry on the atmospheric abundance of a large number of gas49

phase and particulate species. Global CTMs, in all cases, rely on a number of param-50
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eterizations of the emissions, chemistry and transport within the model, in order to sim-51

ulate atmospheric processes at finite resolution, both in space and time. All CTMs suf-52

fer errors as a result of the finite chemical and transport operators (Philip et al., 2016),53

while transport errors are inherent in the meteorological fields reanalyses that are used54

to drive the models (Yu et al., 2018). Simulations of biomass burning emissions and their55

transport are also highly uncertain. Most biomass burning emissions inventories, includ-56

ing the commonly used Fire Inventory from NCAR (FINN; Wiedinmyer et al. (2011)),57

the Quick Fire Emission Database (QFED; Koster et al. (2015)), the Global Fire Emis-58

sion Database (GFED; van der Werf et al. (2017)) and the Global Fire Assimilation Sys-59

tem (GFAS; Kaiser et al. (2012)), are all bottom-up inventories, in which satellite ob-60

servations of burned areas, burned fraction, fire-radiative power (FRP), and vegetation61

type are used to estimate the total dry matter burned. The mass of dry matter burned62

is scaled by the emission factor (EF, e.g. Andreae and Merlet (2001); Akagi et al. (2011);63

Andreae (2019)) for a particular species to yield the total mass of the species emitted.64

Each quantity used in the estimation of these emissions is subject to its own uncertainty,65

leading to errors in the calculated total emissions of biomass burning.66

In the case of an episodic wildfire plume, global CTMs generally do not take into67

account direct injection of emissions into the free troposphere which may often occur (Val Mar-68

tin et al., 2010, 2018). Injection of emissions into the free troposphere can result in dif-69

ferent transport pathways of the plume compared to those from near-surface emissions.70

Accounting for this may be particularly important for more accurately capturing the long-71

range transport of a plume. Long-range transport errors are exacerbated by the numer-72

ical diffusion in coarse-resolution CTMs, further reducing the accuracy of simulations73

of the transport of episodic wildfire plumes (Rastigejev et al., 2010; Eastham & Jacob,74

2017).75

In contrast to bottom-up biomass burning emission inventories, satellite-based ob-76

servations can provide top-down estimates on wildfire emissions. Currently, several satellite-77

based instruments routinely measure CO globally, including the Measurements of Pol-78

lution of the Troposphere (MOPITT) (Deeter, 2003), Atmospheric Infrared Sounder (AIRS)79

(Aumann et al., 2003), Atmospheric Chemistry Experiment Fourier Transform Spectrom-80

eter (ACE-FTS) (Clerbaux et al., 2008), Cross-track Infrared Spectrometer (CrIS) (Fu81

et al., 2016), Infrared Atmosphere Sounding Interferometer (IASI) (Clerbaux et al., 2009),82

and the Tropospheric Monitoring Instrument (TROPOMI) (Landgraf et al., 2016). Each83
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of these instruments provides global observations of CO with varying temporal and hor-84

izontal resolution, and vertical sensitivity.85

To quantify global emissions of CO, including wildfire sources, these space-based86

measurements may be used in a data assimilation approach with global CTMs. Several87

studies have implemented global satellite observations of CO from MOPITT (e.g. Arellano88

(2004); Heald et al. (2004); Fortems-Cheiney et al. (2011); Jiang et al. (2011, 2015); Yin89

et al. (2015); Jiang et al. (2017); X. Zhang et al. (2020)) and IASI (e.g. Muller et al. (2018);90

Zheng et al. (2019)) to quantify and refine global CO source emission inventories. How-91

ever, few studies have focused on the high-latitude boreal wildfires. Pfister et al. (2005)92

performed a case study using the using regional-scale data assimilation of MOPITT CO93

to quantify boreal wildfire emissions of CO from the 2004 Alaskan wildfire season. Gonzi94

et al. (2011) used MOPITT CO observations to identify seasonal trends of global wild-95

fire sources. However, due the episodic nature of high-latitude wildfires and the limited96

observations in high-latitude regions, the ability for the data assimilation of global CO97

measurements to accurately constrain these emissions remains uncertain, particularly98

with respect to the temporal coverage and vertical sensitivity of the measurements.99

The data assimilation of MOPITT and IASI to optimize the global CO state have100

been performed in past studies (e.g. Barré, Gaubert, et al. (2015); Barré, Edwards, et101

al. (2015); Inness et al. (2013, 2015)). Inness et al. (2013) examined the Monitoring At-102

mospheric Composition and Climate (MACC) reanalysis and found that the assimila-103

tion of IASI CO resulted in a greater low-bias of CO in the Northern high-latitudes as104

opposed to the assimilation of MOPITT CO, through comparison to independent mea-105

surement datasets. Comparisons of the data assimilation of MOPITT and IASI CO were106

examined by Barré, Gaubert, et al. (2015) and concluded that both MOPITT and IASI107

constrain the CO state close to the main anthropogenic, biogenic and biomass burning108

sources, while IASI provided improved constraints on far-away CO sources. Furthermore,109

IASI provided better constraints on the global CO field, while MOPITT provided stronger110

constraints on near-surface CO in the main source regions as compared to independent111

measurements. However, comparison of the ability of the data assimilation of MOPITT112

or IASI to optimize emission sources has not yet been studied.113

In this study, we assess and compare the ability of satellite observations of CO to114

optimize high-latitude boreal wildfire emissions using measurements of CO from the MO-115
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PITT and IASI instruments in order to distinguish the contribution of the temporal cov-116

erage and vertical sensitivity of the measurements. We examine a case study of the 2017117

Canadian wildfires, which contained two separate wildfire events in British Columbia (BC)118

and the Northwest Territories (NWT) of Canada in August 2017 (Lutsch et al., 2019).119

Emissions for these wildfires resulted in large-scale perturbations to atmospheric CO (e.g.120

Lutsch et al. (2019, 2020)) and aerosols (e.g., Khaykin et al. (2018); Peterson et al. (2018);121

Ranjbar et al. (2019)) throughout the Northern Hemisphere. Due to the large-scale im-122

pact of these wildfires, these events provide an ideal case to examine the ability of our123

data assimilation system to precisely locate and optimize their emissions.124

The structure of this paper is as follows. Section 2.1 presents the satellite and ground-125

based measurements used in this study. Section 2.2 describes the GEOS-Chem adjoint126

model and its configuration as implemented for this study. The global and regional pos-127

terior emission estimates obtained from MOPITT and IASI are presented and discussed128

in Section 3.1. Sections 3.2 and 3.3 examine the regional analysis of the high-latitude129

boreal wildfires and the 2017 Canadian wildfires, respectively. The inversions are eval-130

uated using high-latitude ground-based measurements in Section 3.4. To examine the131

impact of measurement temporal coverage and vertical sensitivity, a series of observing132

system simulation experiments (OSSEs) were performed and the results are highlighted133

and interpreted in Section 3.5. Lastly, a summary of the study and suggestions for fu-134

ture studies are provided in Section 4135

2 Methods136

2.1 Measurements and Instruments137

2.1.1 MOPITT138

The Measurement of Pollution in the Troposphere (MOPITT) instrument was launched139

in December 1999 aboard the NASA Terra satellite. Full details of the MOPITT instru-140

ment are provided by Drummond et al. (2010) and are presented briefly here. MOPITT141

is a nadir-viewing gas correlation radiometer. Since August 2001, measurements of CO142

are made using two thermal-infrared (TIR) bands (channels no. 5 and no. 7; 4.617±0.055143

µm) and one near-infrared (NIR) band (channel no. 6; 2.334±0.011 µm). A linear de-144

tector array allows MOPITT to record simultaneous measurements at four different sound-145

ing locations, each with field-of-view of approximately 22 × 22 km2. The Terra satel-146
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lite is in a daytime-descending, Sun-synchronous orbit at an altitude of approximately147

700 km, with an equator crossing time of 10:30 local time. Terra makes approximately148

14-15 orbits per day and the instrument achieves near-global coverage every 3 to 4 days.149

There are three retrieval products of CO from MOPITT: the TIR-only (T), NIR-150

only (N) and the joint TIR-NIR retrieval (J). We use total column measurements from151

the TIR-NIR MOPITT v8 (v8J; (Deeter et al., 2019)) retrieval product because it pro-152

vides the most vertical information. MOPITT retrievals of CO are performed using an153

iterative optimal estimation algorithm (OEM; Rodgers (2000)) utilizing MOPITT cal-154

ibrated radiances and a priori knowledge of CO variability (Deeter et al., 2014, 2017; Lamar-155

que et al., 2012). Volume mixing ratio (VMR) retrievals are performed in log-space to156

retrieve log(VMR) on a 10-layer vertical retrieval grid from the surface to 100 hPa. To-157

tal columns of CO are calculated directly from the retrieved CO VMR profile. A priori158

CO profiles are derived from a model climatology which varies seasonally and geograph-159

ically; the a priori climatology was introduced for processing MOPITT version 7 prod-160

ucts (Deeter et al., 2017). The a priori value is from climatological output from the Com-161

munity Atmosphere Model with Chemistry (CAM-chem; Lamarque et al. (2012)) and162

is described by Deeter et al. (2014). The a priori covariance matrix is described by Deeter163

et al. (2010).164

In addition to validation with in situ aircraft CO measurements (Deeter et al., 2019),165

MOPITT CO products have been validated against ground-based Fourier-transform in-166

frared (FTIR) measurements. Buchholz et al. (2017) performed a comparison of MO-167

PITT v6 CO products against 14 global ground-based mid-infrared FTIR measurement168

sites of the Network for Detection of Atmospheric Composition Change (NDACC). Bi-169

ases were found to vary between MOPITT CO products with mean biases across all sites170

of 2.4% for TIR-only, 5.1% for joint TIR-NIR, and 6.5% for NIR-only. The bias was found171

not to depend on latitude but rather on proximity to CO sources, with larger biases near172

local sources. MOPITT v8 has been validated against near-infrared FTIR measurements173

of the Total Carbon Column Observing Network (TCCON) by Hedelius et al. (2019).174

A high-bias of the MOPITT v8 joint TIR-NIR product against the TCCON FTIR mea-175

surements was observed, which generally varied between 6-8% across 31 measurement176

sites.177
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2.1.2 IASI178

We use CO total column abundances retrieved from observations by the IASI in-179

strument on board the Metop-A satellite. Full details of the IASI instrument are pro-180

vided by Clerbaux et al. (2009). The satellite has a Sun-synchronous polar-orbit provid-181

ing twice daily global coverage at 9:30 local time and 21:30 local time overpasses. To main-182

tain consistency with MOPITT, we only use IASI observations from the morning over-183

pass. IASI is a Fourier-transform spectrometer with a spectral range of 15.5 to 3.62 µm184

(645 to 2760 cm−1). Raw measurements from IASI are interferograms which are processed185

and transformed into radiometrically calibrated spectra. The maximum optical path dif-186

ference is ±2 cm which leads to 0.5 cm−1 full width at half-maximum apodized spectral187

resolution. Over a swath width of ∼2200 km, a total of 120 views are collected for 30188

arrays of four individual elliptical pixels. Each pixel has a 12 km diameter at nadir which189

increases at the larger viewing angles.190

We used the most recent CO data product: FORLI v20140922 (https://iasi.aeris191

-data.fr/co/) described by Hurtmans et al. (2012). Retrievals of CO take advantage192

of absorption in the fundamental 1-0 CO rotation-vibration band centered around 4.7193

µm. CO is retrieved at each location with vertical sensitivity that is dependent on the194

absorption of interfering species, vertical concentration profile of the species, local sur-195

face temperature and emissivity, the vertical temperature profile, and the measurement196

noise and spectral resolution. For thermal-infrared measurements of CO, the vertical in-197

formation content is mainly attributed to the mid-troposphere.198

The FORLI-CO product (Hurtmans et al., 2012) was used in this study and is based199

on OEM to retrieve CO profiles on a 19-layer retrieval grid. The a priori information and200

error covariance are constructed from a database of observations from MOZAIC IAGOS201

(Measurement of Ozone and Water Vapor by Airbus In-service Aircraft, In-service Air-202

craft for a Global Observing System flights) and ACE-FTS (Clerbaux et al., 2008). Prior203

information is complemented with the global model LMDz-INCA (Laboratoire de Météorologie204

Dynamique-Interaction with Chemistry and Aerosols) to account for both polluted and205

ambient conditions (Turquety et al., 2009).206

The FORLI-CO product has been validated against ground-based FTIR measure-207

ments of NDACC by Kerzenmacher et al. (2012). Mean biases ranged from -4.5% at the208

Southern Hemisphere site of Wollongong, Australia to a maximum of 10.8% at Bremen,209
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Germany. Comparisons to measurements obtained on the MOZIAC flights showed bi-210

ases of less than 13% (De Wachter et al., 2012).211

2.1.3 Ground-based Measurements212

FTIR mid-infrared measurements are provided by the Network for Detection of At-213

mospheric Composition Change (NDACC, De Mazière et al. (2018), www.ndacc.org).214

NDACC FTIR instruments record solar-absorption spectra during daylight hours and215

clear-sky conditions. Measurements are generally made at a spectral resolution of 0.0035216

cm−1, with a frequency of ∼20 mins. Vertical mixing ratio profiles and integrated col-217

umn amounts are retrieved using OEM.218

Ancillary measurements for the validation of the inversion results are provided by219

the Total Carbon Column Observing Network (TCCON; Wunch et al. (2011)), which220

is a global network of FTIR instruments. Solar absorption spectra recorded in the short-221

wave infrared with a spectral resolution of 0.02 cm−1 are used to perform a profile scal-222

ing retrieval to produce total columns of CO. CO is measured as a standard species of223

TCCON, with a frequency of ∼2-3 mins during daylight hours and clear-sky conditions.224

In this study, we have selected two high-Arctic FTIR measurement sites: Eureka225

(80.05◦N, 86.42◦W), Canada and Thule (76.53◦N, 68.74◦W), Greenland. Measurements226

at both sites were found to be fire-affected during August 2017 as described in detail by227

Lutsch et al. (2019). The Eureka instrument is affiliated with both the TCCON (Strong228

et al., 2019) and NDACC networks, contributing measurements to both by measuring229

in alternating NIR and mid-infrared modes, respectively. The Thule instrument contributes230

measurements to the NDACC network only.231

2.2 The GEOS-Chem Model232

The GEOS-Chem CTM is implemented in this study. We use version 35j of the GEOS-233

Chem adjoint, which is based on the forward-model of GEOS-Chem version 8-02-01. The234

model is driven with assimilated meteorological fields from the Goddard Earth Observ-235

ing System version 5.11.0 (GEOS-FP) from the NASA Global Model and Assimilation236

Office (GMAO). Model simulations were performed at a horizontal resolution of 4◦×5◦237

with 47 vertical levels. The model is run using the CO-only mode of GEOS-Chem. This238

CO-only simulation uses prescribed OH concentrations and we have chosen to use monthly239
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OH fields provided from TransCom (Patra et al., 2011) following Lutsch et al. (2020),240

which are based on the experimentally derived OH concentrations of Spivakovsky et al.241

(2000).242

The simulations used the global anthropogenic emission inventory from EDGAR243

3.2FT2000 (Olivier & Berdowski, 2001), but this has been selectively substituted by the244

following regional emission inventories: the US Environmental Protection Agency (EPA)245

National Emission Inventory (NEI) for 2008 in North America (Olivier & Berdowski, 2001),246

the Criteria Air Contaminants (CAC) inventory for Canada, the Big Bend Regional Aerosol247

and Visibility Observational (BRAVO) Study Emissions Inventory for Mexico (Kuhns248

et al., 2005), the Cooperative Program for Monitoring and Evaluation of the Long-range249

Transmission of Air Pollutants in Europe (EMEP) inventory for Europe in 2000 and the250

INTEX-B Asia emissions inventory for 2006 (Q. Zhang et al., 2009). Biomass burning251

emissions are provided by the Global Fire Assimilation System (GFASv1.2; Kaiser et al.252

(2012)), which are derived from assimilation of FRP observations of the Moderate Res-253

olution Imaging Spectroradiometer (MODIS) on the Aqua and Terra satellites. GFAS254

provides global emissions for open fires at a native resolution of 0.1◦×0.1◦ which have255

been re-gridded to the 4◦×5◦ GEOS-Chem horizontal resolution grid. Additional CO256

sources come from the oxidation of methane and biogenic non-methane volatile organic257

compounds (NMVOCs) as described in previous studies (Jiang et al., 2017). The bio-258

genic emissions are simulated using the Model of Emissions of Gases and Aerosols from259

Nature, version 2.0 (MEGANv2.0; Guenther et al. (2006)).260

2.2.1 4D-Var Data Assimilation261

The GEOS-Chem adjoint provides the ability to optimize emission inventories by262

assimilating measurements of CO. Emissions are optimized by applying spatially- and263

time-varying corrective scaling factors to reduce the measurement-model mismatch. Sources264

of CO are constrained using the 4D-Var data assimilation scheme of GEOS-Chem. The265

intent of the approach is to minimize the cost function:266

J(x) =

N∑
i=1

[F(x)− zi]
T
S−1
σ [F(x)− zi] + [x− xa]

T
Sa

−1 [x− xa] , (1)

where x is the state vector of CO emissions, xa is the a priori state vector, F(x) is the267

observation operator and zi is a given CO measurement. The number of measurements268
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during the assimilation period is denoted by N . The temporal resolution of the forward269

model is 1 hr, and therefore the high-resolution CO measurements are temporally av-270

eraged to 1 hr and spatially averaged onto the 4◦×5◦ horizontal grid.271

We assume a uniform observation error covariance (Sσ) of 20% without spatial cor-272

relation for both the MOPITT and IASI assimilation following previous studies (Jiang273

et al., 2011, 2017). Measurement errors for IASI CO observations typically range from274

5-15%. However, a 20% observation error covariance was selected to account for the pos-275

sibility of greater measurement uncertainties (>15%) in high-latitude regions, and to main-276

tain consistency with the MOPITT assimilation. The a priori covariances are indepen-277

dent of the observations and therefore, the same values were applied to the MOPITT278

and IASI assimilations. The combustion sources of CO (fossil fuels, biofuels and biomass279

burning) are combined with the oxidation source from VOCs, assuming a uniform 50%280

a priori error. The CO source from the oxidation of CH4 is optimized separately as a glob-281

ally aggregated source assuming a 25% a priori error.282

2.2.2 Assimilation Configuration283

Biases in the initial condition for the state of CO can adversely affect the optimized284

emissions and it is therefore essential to first mitigate these biases before optimizing CO285

emissions. Due to the differences in the a priori profiles, vertical sensitivity and sampling286

frequencies leading to differences in the MOPITT and IASI CO measurements, it is nec-287

essary to generate separate initial conditions that are unique to each instrument. Ini-288

tial conditions were generated by assimilating MOPITT or IASI measurements to op-289

timize the CO distribution using the weak-constraint 4D-Var assimilation scheme (Stanevich290

et al., 2021). Further details of the weak-constraint 4D-Var assimilation scheme are de-291

scribed in Appendix A.292

The emissions optimization with the 4D-Var assimilation scheme is performed as293

follows. The optimized state for 1 June 2017 obtained from the weak-constraint 4D-Var294

assimilation is used as the initial condition. A 4-month assimilation window was selected295

(1 June - 1 October 2017). The first month (June) is treated as a spin-up period and the296

last month (September) is considered as a spin-down period. The spin-down period pro-297

vides additional observations to constrain emissions in the previous months. The months298

of July and August are the analysis period corresponding to the peak months of the bo-299
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real wildfire season. In this emission optimization, the optimized emission estimates are300

returned as monthly emission scale factors.301

For both MOPITT and IASI assimilations, the observations are treated in a super-302

observations scheme as described by X. Zhang et al. (2019), which reduces the represen-303

tativeness error associated with the variability of CO measurements within each model304

grid-box (Miyazaki et al., 2012). For each hour of simulation, observations are binned305

onto the GEOS-Chem horizontal grid. The model VMR and partial column profiles, for306

MOPITT and IASI respectively, are transformed following Rodgers and Connor (2003)307

by the instrument averaging kernel and a priori profiles to yield a smoothed model to-308

tal column as described in Appendix B. For both MOPITT and IASI observations, we309

have selected a uniform observation error covariance (Sϵ) of 20% of the total column of310

each measurement as stated in Section 2.2.1 to account for representativeness errors and311

the influence of random transport errors in the model.312

The CO observations only provide constraints on the total amount of CO emitted313

in a given region and therefore there is insufficient information in the inversion to dis-314

tinguish between individual source types. As such, combustion sources (i.e., fossil fuel,315

biofuel, and biomass burning) are aggregated with the CO source from the oxidation of316

biogenic non-methane NMVOCs as a single source term. The inversions provide a con-317

straint on the CO source in each grid box. The CO source from the oxidation of CH4318

is treated as a single global source.319

3 Results & Discussion320

3.1 Global Optimized CO Emission Estimates321

The total a posteriori CO emissions for July-August 2017 obtained from the MO-322

PITT and IASI inversions are tabulated in Table 1 for the source regions of Figure 1,323

and are shown in Figure 2. The a posteriori emissions are generally consistent across all324

regions between the two inversions. The North American anthropogenic CO a posteri-325

ori values are 10.3 Tg and 10.9 Tg, for MOPITT and IASI, respectively, which are not326

significantly different from the a priori of 11.0 Tg. Biomass burning emissions of boreal327

North America (BONA) are a considerable nearby source with an a priori of 20.0 Tg.328

MOPITT and IASI a posteriori emissions are 20.2 Tg and 17.1 Tg, respectively. Sim-329

ilarly, European a posteriori emissions are near identical for the MOPITT and IASI in-330
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Figure 1. Source regions for biomass burning (shaded), and anthropogenic sources (black

rectangles) used for the regional analysis as summarized in Table 1.

versions (10.5 Tg and 10.4 Tg, respectively), which is slightly greater than the a priori331

of 9.6 Tg. Boreal Asian (BOAS) wildfire emission estimates show more notable differ-332

ences, with a posteriori emissions of 17.2 Tg and 14.2 Tg for MOPITT and IASI, respec-333

tively, compared to an a priori of 17.9 Tg. Small differences are observed between the334

MOPITT and IASI a posteriori estimates for Temperate North America (TENA) and335

Central Asia (CEAS) which are a minor contribution to Northern Hemisphere biomass336

burning sources, while Europe (EURO) are identical. The rest of the world (ROW; sum337

of all other regions) biomass burning a posteriori estimates are consistent between the338

two inversions with a difference of ∼4%.339

Asian anthropogenic a posteriori emissions are both lower than the a priori (48.2340

Tg) for the MOPITT (33.2 Tg) and IASI (37.7 Tg) inversions. This result is consistent341

with past studies illustrating a decreasing trend of CO emissions in this region (e.g., Jiang342

et al. (2017)). Elsewhere (ROW), a posteriori anthropogenic emissions are greater than343

the a priori in both inversions, which is indicative of the increasing trend of CO emis-344

sions in developing countries. The differences in the MOPITT and IASI a posteriori es-345

timates for the sources from ROW biomass burning, and CH4 and NMVOCs oxidation346

sources are not significantly different.347
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Table 1. Total a priori and a posteriori CO emissions from the MOPITT and IASI inversions

for July - August 2017.

Type Name Description a priori [Tg] MOPITT [Tg] IASI [Tg]

Anthro. NA North America 11.0 10.3 10.9

EU Europe 9.6 10.5 10.4

AS Asia 48.2 33.2 37.7

ROW Rest of World 16.6 19.0 23.1

Biomass BONA Boreal North America 20.0 20.2 17.1

TENA Temperate North America 1.9 2.0 2.6

BOAS Boreal Asia 17.9 17.2 14.2

EURO Europe 0.5 0.6 0.6

CEAS Central Asia 4.7 4.7 5.2

ROW Rest of the World 41.1 65.8 68.6

Other CH4 Methane Oxidation 178.4 179.9 182.6

NMVOC NMVOC Oxidation 134.7 141.7 147.7

a priori Anthropogenic

0.0 0.5 1.0 1.5 2.0
Tg

MOPITT a posteriori Anthropogenic

0.0 0.5 1.0 1.5 2.0
Tg

IASI a posteriori Anthropogenic

0.0 0.5 1.0 1.5 2.0
Tg

MOPITT-IASI a posteriori Anthropogenic

1.0 0.6 0.2 0.2 0.6 1.0
Tg

a priori Biomass Burning

0 1 2 3 4 5 6 7 8
Tg

MOPITT a posteriori Biomass Burning

0 1 2 3 4 5 6 7 8
Tg

IASI a posteriori Biomass Burning

0 1 2 3 4 5 6 7 8
Tg

MOPITT-IASI a posteriori Biomass Burning

3.0 1.8 0.6 0.6 1.8 3.0
Tg

a priori NMVOC Oxidation

0.0 0.5 1.0 1.5 2.0
Tg

MOPITT a posteriori NMVOC Oxidation

0.0 0.5 1.0 1.5 2.0
Tg

IASI a posteriori NMVOC Oxidation

0.0 0.5 1.0 1.5 2.0
Tg

MOPITT-IASI a posteriori NMVOC Oxidation

2.0 1.2 0.4 0.4 1.2 2.0
Tg

Figure 2. MOPITT and IASI inversion a priori and a posteriori CO emissions for July-

August 2017 for anthropogenic, biomass burning and NMVOC oxidation sources. Differences

between the a posteriori estimates of the MOPITT and IASI inversion are also shown.
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3.2 Regional Analysis of High-latitude Wildfires348

In this section, we present the results of the MOPITT and IASI emission inversions349

for July - August 2017 focusing on the high-latitude boreal wildfire regions of BONA and350

BOAS. The results are tabulated in Table 2. In July 2017, the a priori and a posteri-351

ori emission estimates are near identical for the MOPITT and IASI inversions. The July352

wildfire emissions were absent of any large wildfire smoke plumes. For North American353

anthropogenic emissions, the a posteriori estimates (4.5 Tg for MOPITT and 4.4 Tg for354

IASI) are lower than the a priori of 5.5 Tg.355

In August 2017, the boreal North American wildfires presented an exceptional per-356

turbation to wildfire CO emissions. The August 2017 a priori estimate is considerably357

greater than for July at 14.2 Tg and 5.8 Tg, respectively. The a posteriori estimate ob-358

tained from the MOPITT inversion is 14.4 Tg, which is a minor difference from the a359

priori. A reduction of emissions is observed in the a posteriori estimate for IASI, which360

is 11.4 Tg. However, both the a posteriori estimates for North American anthropogenic361

emissions in August are greater than for July. As anthropogenic CO sources have smoothly-362

varying seasonal variability, a marked increase in anthropogenic emissions is not expected363

from July to August. The differences may be largely attributed to the inability of the364

inversion to accurately distinguish between North American anthropogenic and wildfire365

sources. Due to the long-range transport of the wildfire smoke plumes, the westerly trans-366

port of these emissions also coincides with continental outflow of anthropogenic sources.367

This misattribution is particularly evident for wildfire emission estimates from the368

boreal regions of boreal North America (BONA) and Asia (BOAS) due to their adja-369

cent anthropogenic source regions, North America and Europe. For July, anthropogenic370

North American a posteriori emissions are 4.5 and 4.3 Tg for the MOPITT and IASI in-371

versions, respectively, with an a priori of 5.5 Tg. Boreal North American a posteriori emis-372

sions are 5.8 Tg and 5.7 Tg for the MOPITT and IASI inversions, respectively, with a373

priori of 5.8 Tg. For August, an increase in the a posteriori North American anthropogenic374

emissions is observed, with the MOPITT and IASI inversions suggesting 5.8 Tg and 6.6375

Tg, respectively. During the period of the 2017 Canadian wildfires in August, a slight376

increase in boreal North American wildfire emissions is observed in the a posteriori for377

MOPITT, while for IASI a decrease is observed. Considering net emissions from North378

America (a priori of 11.3 Tg and 19.7 Tg, for July and August, respectively), the total379
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a posteriori emissions from the MOPITT inversion are 10.1 Tg and 20.2 Tg for July and380

August, respectively. For IASI, the combined emissions are 10.0 Tg and 18.0 Tg, for July381

and August, respectively. For both instruments, the combined anthropogenic and wild-382

fire a posteriori emissions are lower than the a priori.383

Total anthropogenic and wildfire (BONA and TENA) a priori in the North Amer-384

ican domain is 31 Tg for July to August. The a posteriori estimates are 30.5 Tg and 27.9385

Tg for the MOPITT and IASI inversions, respectively, which are not notably different386

from the a priori. However, regional differences are present between the MOPITT and387

IASI inversions, as discussed in the following section.388

3.3 Regional Analysis of the 2017 Canadian Wildfires389

In this section, we focus on the two main wildfire emission hot-spots identified by390

Lutsch et al. (2019): British Columbia (BC) and Northwest Territories (NWT). These391

regions are shown in Figure 3 and the results of the MOPITT and IASI inversions are392

tabulated in Table 3. The BC and NWT hot-spots account for ∼70% of all wildfire emis-393

sions in North America for the month of August 2017. A posteriori emissions obtained394

from the MOPITT and IASI inversions show generally consistent results on continental-395

scales as shown in Table 2. The distinct differences between the two inversions are ob-396

served for the BC and NWT wildfires. The net a posteriori estimates in MOPITT and397

IASI inversions differ by ∼1.5 Tg for August, which is predominantly attributed to wild-398

fires in BC and NWT, with a difference of 2.8 Tg. Differences in a posteriori estimates399

of other North American wildfire regions are negligible. Both inversions exhibit an in-400

crease in North American anthropogenic emissions from July to August which may be401

partly attributed to misrepresentation of wildfire emissions as anthropogenic.402

To interpret these differences we need to consider the differences in the wildfire regimes403

and plume transport of the BC and NWT sources. The transport of these plumes was404

examined in Lutsch et al. (2019) using a back-trajectory analysis and the results are sum-405

marized here. The predominant wildfire emissions from these sources occurred in Au-406

gust 2017. A large plume originated in the BC region on 10 August 2017, which was trans-407

ported northward to NWT, and combined with the NWT source on 14 August 2017. The408

combined plume was then transported poleward, where it reached the Eureka and Thule409

FTIR measurement sites on 19 August and 20 August, respectively. Through the back-410
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Figure 3. Cumulative July - August 2017 wildfire CO emissions over Canada. The black

boxes indicate the BC (bottom) and NWT (top) wildfire source regions. Locations of the FTIR

sites Eureka and Thule are shown by the red and green stars, respectively.

trajectory analysis, Lutsch et al. (2019) suggested the BC wildfire plumes influencing the411

FTIR measurement sites likely corresponded to the injection of the plume into the up-412

per free-troposphere (>5 km), while the NWT plume corresponded to near-surface emis-413

sions, or injection into the lower free-troposphere (<5 km). Plume injection heights are414

provided by the GFASv1.2 emissions inventory. For the selected BC regions, a maximum415

plume top altitude of ∼8.5 km was reported for 10 August, with an August monthly mean416

of ∼4.5 km. For NWT, an August maximum plume top altitude of ∼3.6 km on 14 Au-417

gust was observed, with a monthly mean of 1.9 km. However, in the GEOS-Chem ad-418

joint model, wildfire injection heights are not currently included, and wildfire emissions419

are released assuming a uniform distribution through the boundary layer.420

To examine the impact of smoke plume injection heights on the inversion, a sen-421

sitivity test was performed as shown in Appendix C by evenly distributing the emissions422

from the surface to the daily maximum injection height from the GFASv1.2 inventory.423

The simulations illustrate that the inclusion of injection height information for the BC424

and NWT wildfire resulted in an insignificant contribution to the MOPITT inversion,425

and only a minor influence for IASI. While the inclusion of the injection height informa-426
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tion in the model may slightly improve the simulation of smoke plume transport, the in-427

herent transport errors of the global coarse-resolution model are likely still the dominant428

source of smoke plume transport errors. A past study by Gonzi et al. (2011) had exam-429

ined the sensitivity of MOPITT CO inversions to wildfire plume injection heights, and430

also concluded they had a minor influence on the a posteriori emissions.431

A second sensitivity test was performed to further diagnose the ability of each in-432

strument to constrain wildfire emissions. In this test, BONA wildfire emissions are per-433

turbed by a factor of 2 and the results are summarized in Table D1. The results showed434

that both instruments were generally able to recover the a posteriori anthropogenic es-435

timates of the truth from the unperturbed case of Table 3. For wildfires sources, the IASI436

inversion yielded a posteriori estimates closer to the the truth than MOPITT. This re-437

sult suggests that the data assimilation of IASI measurements provides a better constraint438

of wildfire emissions. The contributions of each instrument’s temporal coverage and ver-439

tical sensitivity are examined in Section 3.5.440

3.4 Comparison Against Ground-based FTIR Measurements in the Arc-441

tic442

Independent measurements of CO during the 2017 Canadian wildfires are scarce.443

Due to the transport of these plumes into the high-Arctic, observations are further lim-444

ited due to the lack of dedicated observation sites in the region. Although there are a445

number surface-based measurement networks for CO, model comparisons to surface ob-446

servations are prone to representativeness error. As shown by Lutsch et al. (2019), ground-447

based FTIR measurements during the 2017 Canadian wildfires were recorded in Eureka,448

Nunavut and Thule, Greenland as part of NDACC. Additional observations are provided449

at the Eureka site from TCCON measurements. The FTIR timeseries are shown in Fig-450

ure 4.451

All GEOS-Chem simulations show a general underestimation in comparison to the452

Eureka FTIR measurements on the fire-affected day of 19 August 2017. Consistent with453

the a posteriori emission estimates, the MOPITT a posteriori is nearly identical to the454

a priori, while the IASI a posteriori is more greatly underestimated in comparison to the455

Eureka FTIR measurements. As illustrated in Lutsch et al. (2019), Eureka was predom-456

inately influenced from 17-21 August 2017 by wildfire emissions originating in NWT. For457
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Figure 4. Hourly-averaged FTIR CO total columns for August 2017 at Eureka and Thule

(black). The GEOS-Chem a priori timeseries (grey), MOPITT inversion (blue) and IASI (red)

inversion timeseries are also shown.

Thule, there is some indication that GEOS-Chem captures the influence of the wildfire458

emissions during the period of enhanced FTIR measurements from 19–22 August. Thule459

was found to be predominately influenced by wildfire emissions originating in BC. As460

was the case for Eureka, the a posteriori estimates for MOPITT are nearly identical to461

the a priori, while the IASI a posteriori emission estimates leads to a further underes-462

timation in comparison to the Thule FTIR measurements.463

Although the GEOS-Chem to FTIR comparisons would suggest an underestima-464

tion of emissions from BC and NWT wildfire sources, it should be noted that inherit model465

errors may also contribute to this underestimation. Global models tend to suffer from466

numerical diffusion errors (Eastham and Jacob (2017); Rastigejev et al. (2010)) as a re-467

sult of the coarse vertical and horizontal resolution. Numerical diffusion will contribute468

to errors in the simulated transport pathways of the plume, in addition to artificial loss469

of the tracer species. Additionally, the coarse model resolution leads to loss of vertical470

convection as a result of degrading the input meteorological fields from its native res-471

olution (Yu et al., 2018). The poorly resolved vertical convection may lead to further er-472

rors in simulating the transport wildfire smoke plumes. However, these model errors will473
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also contribute to errors in the inversion itself, leading to uncertainties in the model a474

posteriori emissions, although these issues are inherent in the inversion.475

3.5 Observing System Simulation Experiments (OSSEs)476

To diagnose the sensitivity of the inversion to the observation coverage and ver-477

tical resolution of the observations, we perform several observing system simulation ex-478

periments (OSSEs). First, pseudo observations are generated by sampling the optimized479

CO states from the IASI inversion at the MOPITT and IASI measurement locations, in480

both space and time. These pseudo observations are then used for six OSSEs:481

1. MOPITT sampled with an averaging kernel of unity applied.482

2. IASI sampled with an averaging kernel of unity applied.483

3. MOPITT sampled with MOPITT averaging kernel applied.484

4. MOPITT sampled with IASI averaging kernel applied.485

5. IASI sampled with MOPITT averaging kernel applied.486

6. IASI sampled with IASI averaging kernel applied.487

Cases (1) and (2) allow for the impact of the temporal coverage of the observations488

on the inversion to be quantified. Cases (3) and (4) provide a means to quantify the con-489

tribution of the averaging kernels with the temporal coverage of MOPITT. Similarly, Cases490

(5) and (6), will quantify the contribution of the averaging kernels with the greater tem-491

poral coverage of IASI.492

Both the MOPITT and IASI measurement averaging kernels are spatially and tem-493

porally variable as they are dependent on the a priori CO profiles and true profiles of494

the measurement. However, the shape and magnitude of the averaging kernels of both495

instruments do not vary greatly. The averaging kernels of each instrument are distinct496

between the two. For the OSSE inversions, it is ideal to apply the true averaging ker-497

nel profiles of each instrument to the pseudo observations. Due to the different tempo-498

ral coverage of MOPITT and IASI, it is not possible to match the pseudo observations499

to the instrument averaging kernels in Cases (4) and (6). To mitigate this issue, a mean500

averaging kernel is generated for each instrument by averaging all measurements glob-501

ally for all of 2017. This method provides an idealized averaging kernel for each mea-502
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Figure 5. Global mean total column averaging kernels for 2017 of MOPITT and IASI CO

measurements. The shaded region represents the standard deviation from the mean.

surement to be applied for all pseudo observations. These mean MOPITT and IASI av-503

eraging kernels are shown in Figure 5.504

The mean MOPITT averaging kernel exhibits a fairly uniform distribution, with505

mean values between 0.5 and 1.0 through the troposphere and lower stratosphere. Min-506

imal sensitivity to the surface is observed, with a mean value of approximately 0.2±0.2.507

The mean IASI averaging kernel exhibits a more pronounced peak through the mid- to508

upper-troposphere (∼4-12 km), with values exceeding 1.0 in this range. Although the509

magnitude of the mean averaging kernels of IASI and MOPITT differ as a result of the510

differences in their respective retrieval schemes, both instruments have sufficient verti-511

cal sensitivity in the free troposphere. Given the more pronounced peak of the IASI av-512

eraging kernels in the 4-12 km range, it is expected that the IASI assimilation should513

be more sensitive to transported wildfire emissions which are generally most abundant514

at these altitudes.515

The results of the OSSEs are summarized in Table 4 and shown in Figure 6. For516

July 2017, wildfire emissions observed in the a priori and a posteriori of the truth are517

largely attributed to the BC wildfires, while anthropogenic emissions in North America518
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Figure 6. Regional a priori and a posteriori emissions for the OSSEs corresponding to Table

4.

are the predominant CO source. In all OSSEs, the a posteriori anthropogenic emissions519

are similar to the truth, with absolute differences of 5% or less. Similarly, total wildfire520

emissions of North America are also comparable to the truth, with absolute differences521

of 5% or less. For BC, the a posteriori emissions of the OSSEs differ from the truth rang-522

ing from 8% to 20%. Cases (1) and (2) yield the best agreement to the truth with an523

8% overestimation. However, the a posteriori estimates of NWT are identical for all OSSEs.524

For August 2017, total North American emissions are largely attributed to wild-525

fire emissions. In all cases, a underestimation of North American anthropogenic emis-526

sions is observed. For North American wildfire emissions, an overestimation is observed527

in all OSSEs. BC wildfire emissions are underestimated in the OSSEs, while they are528

overestimated for NWT. It should be noted that the magnitude of the differences in the529

a posteriori estimates of the OSSEs is correlated with the magnitude of emissions, with530

greater emissions resulting in greater differences.531

Comparing Cases (1) and (2) indicates the relative impact of the spatial and tem-532

poral coverage of MOPITT and IASI, respectively, for both North American anthropogenic533

and wildfire emissions. For these continental regions, Case (2) provides the closest agree-534

ment to the truth, indicating that greater temporal coverage is advantageous in constrain-535

ing continental scale emissions. Similarly, IASI coverage (Case 2) provides better esti-536

mates for the regional wildfire sources of BC and NWT, with the exception of NWT in537

July, which is a small emission source. The combined impact of the instrument cover-538
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age and its vertical sensitivity is highlighted in Cases (3) to (6) for NWT in August, which539

result in poorer agreements with the assumption of a IASI averaging kernel, regardless540

of the instrument coverage. The averaging kernel only has a modest impact, while the541

instrument coverage is the main factor influencing the ability of the assimilation to con-542

strain wildfire emissions.543

The advantage of the greater temporal sampling of IASI is also observed in Table544

4 and Figure 6. The greater temporal sampling better captures the transport of wild-545

fire emissions in comparison to MOPITT, while providing a greater number of measure-546

ments near the wildfire sources. Therefore, IASI provides an improvement in the abil-547

ity to resolve the episodic wildfire sources.548

4 Summary549

In this study, we examined the ability of MOPITT and IASI CO observations to550

constrain episodic boreal wildfire emissions using a case study of the 2017 Canadian wild-551

fires. Global CO emission sources were optimized using data assimilation of MOPITT552

and IASI CO observations, respectively. As discussed in Section 3.1, the MOPITT and553

IASI inversions produced generally consistent posterior emissions globally (see Table 1).554

For the high-latitude boreal wildfire regions of BONA and BOAS, MOPITT a posteri-555

ori emissions were nearly identical to the a priori. The regional analysis presented in Sec-556

tion 3.2 of the high-latitude wildfire regions of BONA and BOAS suggest that both the557

MOPITT and IASI inversions partially attribute wildfire emissions in these regions to558

neighboring anthropogenic sources of North America and Europe, respectively. This re-559

sult indicates that both the MOPITT and IASI instruments are unable to accurately con-560

strain episodic boreal wildfire emissions.561

The inability of MOPITT to constrain high-latitude wildfire emissions, while IASI562

provided some improvement, was further illustrated in the regional analysis of the 2017563

Canadian wildfires of Section 3.3. Optimized wildfire emissions for the BC and NWT564

obtained from the MOPITT inversion were nearly identical to the a priori. In contrast,565

the IASI inversion yielded a slight reduction of the a posteriori wildfire emissions in BC566

and NWT from the a priori.567

To identify the contribution of temporal converge and vertical sensitivity of each568

instrument, a series of OSSEs was performed as presented and discussed in Section 3.5.569
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For the BC and NWT wildfire sources, it was apparent that the greater temporal sam-570

pling of IASI consistently yielded a posteriori estimates that most closely replicated the571

truth. It was also observed that the vertical sensitivity of each instrument only had a572

minor contribution to the optimized emissions, whereas the MOPITT averaging kernel573

had a slight improvement over IASI.574

The results of this study indicate that to constrain high-latitude boreal wildfire emis-575

sions in a global CTM, the frequency and spatial density of the measurements is more576

important than the surface sensitivity. However, the inherent model errors may also ad-577

versely impact the ability to accurately optimize high-latitude wildfire emissions. The578

use of a higher-spatial resolution model would mitigate transport errors that are prone579

at course resolution. In addition, the use of a high-resolution model will also serve to im-580

prove the accuracy of simulating smoke plume transport. The implementation of real-581

istic wildfire emission injection heights would also be beneficial to improve this aspect582

of the model. Combined, these model improvements would enable more accurate esti-583

mates of wildfire emissions, while taking full advantage of IASI and future missions.584

Appendix A Weak-constraint 4D-Var Data Assimilation585

The 4D-Var assimilation scheme assumes the model is perfect and neglects the in-586

fluence of model errors in the cost function. To account for the influence of model er-587

rors, a forcing term is added to the cost function of Equation 1:588

J(x0,u) =
N∑
i=1

[F(x)− zi]
T
S−1
σ [F(x)− zi] + [x− x0]

T
B−1 [x− x0] +

N−1∑
i=1

uT
i Q

−1ui, (A1)

where x is the CO distribution, x0 is the initial CO distribution, B is the a priori co-589

variance, ui are the model forcing terms, and Q is the model a priori covariance matrix.590

The forcing terms have been assumed to be uncorrelated in time and uncorrelated to the591

estimated parameters and is updated every 6 days during the assimilation window. The592

model a priori covariance matrix Q is assumed to be constant. It should be noted that593

the terms the Equations 1 and A1 are nearly identical and therefore in the context of594

chemical data assimilation the forcing term may be thought of as artificial sources and595

sinks throughout the atmosphere. The assimilation is performed over a 3-month assim-596
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ilation window from 1 May - 1 July 2017 to generate an optimized CO distribution for597

1 June 2017.598

Column measurements of CO from MOPITT and IASI illustrate considerable dif-599

ferences as shown by George et al. (2015). Column differences between the MOPIT v5-600

TIR and the IASI v5T v20100815 retrievals are generally slightly higher over land with601

bias ranging from 0 to 13%. The MOPITT-IASI bias also exhibited a seasonal and lat-602

itudinal dependence. Biases in the total column CO measurements of the MOPITT v8J603

and IASI v20140922 have yet to be quantified. However, the initial model distribution604

is optimized for each instrument therefore partially mitigating the impact of the instru-605

ment biases in the inversion. The optimized initial states for MOPITT and IASI are shown606

in Figure A1.607

Appendix B Consideration of Measurement Averaging Kernels608

Averaging kernels represent the sensitivity of the measurement information con-609

tent provided by the measurement or a priori. It is essential that the averaging kernel610

is taken into account for the assimilation scheme. For both the MOPITT and IASI in-611

versions, the averaging kernels are applied as follows.612

B1 MOPITT averaging kernels613

The model state matching the MOPITT observation in both space and time is smoothed614

by the MOPITT averaging kernel:615

x̂ = hTxa + aT [log(x)− log(xa)] , (B1)

where x̂ is the smoothed model column (in units of molec cm−2), h is the column op-616

erator (in units of molec cm−2), a is the MOPITT total column averaging kernel (in units617

of molec cm−2), and x and xa are the model and a priori MOPITT VMR profiles, re-618

spectively. Each vector has a length of 10 corresponding to the number of levels in the619

MOPITT retrieval grid. As such, the model profiles are first binned from their 47-layer620

grid to the 10-layer MOPITT grid.621
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Figure A1. 1 June 2017 daily-mean a priori (top) and a posteriori (middle) CO states and a

posteriori-a priori relative difference for the MOPITT and IASI CO state optimizations.
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B2 IASI Averaging Kernels622

For IASI, the averaging kernel is applied in a similar method to MOPITT. The model623

column is smoothed by the IASI averaging kernel:624

x̂ = xa + aT [x− xa] , (B2)

where x̂ is the smoothed model column (in units of molec cm−2), a is the IASI total col-625

umn averaging kernel (unitless), x and xa are the model and IASI a priori partial col-626

umn profiles (in units of molec cm−2), respectively. Each vector has a length of 19 cor-627

responding to the number of levels in the IASI retrieval grid. As such, the model pro-628

files are first binned from their 47-layer grid to the 19-layer IASI grid.629
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Appendix C Sensitivity of Inversion to Boreal Wildfire Injection Heights630

Since wildfire emissions are commonly injected into the free troposphere, the as-631

sumption of emissions being distributed through the planetary boundary layer may not632

always be realistic. This assumption may also contribute further model plume transport633

errors in addition to the inherent model transport errors. To investigate the influence634

of wildfire emission injection heights, we performed a sensitivity test by injecting emis-635

sions based on archived plume injection heights from the GFASv1.2 emission inventory636

mean altitude of maximum injection (MAMI) product. Modeled emissions were then dis-637

tributed evenly from the surface to the daily maximum MAMI value in each 4◦×5◦ hor-638

izontal grid box. The results of MOPITT and IASI inversions are tabulated in Table C1.639
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Appendix D Sensitivity of the Inversion to A Priori Boreal Wildfire640

Emissions641

In the inversion system, the a posteriori emission estimates are sensitive to the a642

priori. In the case of boreal wildfire emissions, these episodic events occur on short-term643

timesecales, on the order of several weeks and unlike anthropogenic emissions, boreal wild-644

fires are subject to a high degree of variability. Total monthly emissions from boreal wild-645

fires may be comparable to or exceed those of nearby anthropogenic sources. The com-646

bination of the measurement uncertainty and model errors contribute to model noise,647

and as such, the wildfire emission signal may be comparable to the model noise. As a648

result, the inversion may lack the sensitivity to effectively constrain these emissions.649

To examine the sensitivity of the MOPITT and IASI inversions to boreal wildfire650

emissions, we perform a sensitivity experiment to quantify this impact. To do so, BONA651

wildfire emissions are scaled by a factor of 2 for the assimilation window from 1 June -652

1 October 2017. As the perturbed emissions may be unphysically large, the global a pri-653

ori covariance was also increased from 50% to 100%. The inversion results are tabulated654

in Table D1.655
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